Fix the interpreter executable names.
[mudman.git] / md / language.md
1 % The Muddle Programming Language
2 % Greg Pfister
3   S. W. Galley
4   et al.
5 % 1979
6
7 MIT Technical Report 293
8
9 Laboratory for Computer Science\
10 Massachusetts Institute of Technology\
11 545 Technology Square\
12 Cambridge, Massachusetts 02139
13
14 Copyright
15 =========
16
17 This document is free of known copyright restrictions.
18
19 Abstract
20 ========
21
22 The Muddle programming language began existence in late 1970 as a 
23 successor to Lisp (Moon, 1974), a candidate vehicle for the Dynamic 
24 Modeling System, and a possible base for implementation of Planner 
25 (Hewitt, 1969). The original design goals included an interactive 
26 integrated environment for programming, debugging, loading, and 
27 editing: ease in learning and use; facilities for structured, 
28 modular, shared programs; extensibility of syntax, data types and 
29 operators: data-type checking for debugging and optional data-type 
30 declarations for compiled efficiency; associative storage, 
31 coroutining, and graphics. Along the way to reaching those goals, it 
32 developed flexible input/output (including the ARPA Network), and 
33 flexible interrupt and signal handling. It now serves as a base for 
34 software prototyping, research, development, education, and 
35 implementation of the majority of programs at MIT-DMS: a library of 
36 sharable modules, a coherent user interface, special research 
37 projects, autonomous daemons, etc.
38
39 This document was originally intended to be a simple low-level
40 introduction to Muddle. It has, however, acquired a case of
41 elephantiasis and now amounts to a discursive description of the whole
42 interpreter, as realized in Muddle release numbers 55 (ITS version)
43 and 105 (Tenex and Tops-20 versions). (Significant changes from the
44 previous edition are marked in the margin.) A low-level introduction
45 may still be had by restricting one's attention to specially-marked
46 sections only. The scope of the document is confined as much as
47 possible to the interpreter itself. Other adjuncts (compiler,
48 assembler, pre-loaded user programs, library) are mentioned as little
49 as possible, despite their value in promoting the language seen by a
50 user from "basic survival" to "comfortable living". Indeed, Muddle
51 could not fulfill the above design goals without the compiler,
52 assembler, structure editor, control-stack printer, context printer,
53 pretty-printer, dynamic loader, and library system -- all of which are
54 not part of the interpreter but programs written in Muddle and
55 symbiotic with one another. Further information on these adjuncts can
56 be found in Lebling's (1979) document.
57
58 Acknowledgements
59 ----------------
60
61 I was not a member of the original group which labored for two years
62 in the design and initial implementation of Muddle; that group was
63 composed principally of Gerald Sussman, Carl Hewit, Chris Reeve, Dave
64 Cressey, and later Bruce Daniels. I would therefore like to take this
65 opportunity to thank my Muddle mentors, chiefly Chris Reeve and Bruce
66 Daniels, for remaining civil through several months of verbal
67 badgering. I believe that I learned more than "just another
68 programming language" in learning Muddle, and I am grateful for this
69 opportunity to pass on some of that knowledge. What I cannot pass on
70 is the knowledge gained by using Muddle as a system; that I can only
71 ask you to share.
72
73 For editing the content of this document and correcting some
74 misconceptions, I would like to thank Chris Reeve, Bruce Daniels, and
75 especially Gerald Sussman, one of whose good ideas I finally did use.
76
77 Greg Pfister\
78 December 15, 1972
79
80 Since Greg left the fold, I have taken up the banner and updated his
81 document. The main sources for small revisions have been the on-line
82 file of changes to Muddle, for which credit goes to Neal Ryan as well
83 as Reeve and Daniels, and the set of on-line abstracts for interpreter
84 Subroutines, contributed by unnamed members of the Programming
85 Technology Division. Some new sections were written almost entirely by
86 others: Dave Lebling wrote chapter 14 and appendix 3, Jim Michener
87 section 14.3, Reeve chapter 19 and appendix 1, Daniels and Reeve
88 appendix 2. Brian Berkowitz section 22.7, Tak To section 17.2.2, and
89 Ryan section 17.1.3. Sue Pitkin did the tedious task of marking
90 phrases in the manuscript for indexing. Pitts Jarvis and Jack Haverty
91 advised on the use of PUB and the XGP. Many PTD people commented
92 helpfully on a draft version.
93
94 My task has been to impose some uniformity and structure on these
95 diverse resources (so that the result sounds less like a dozen hackers
96 typing at a dozen terminals for a dozen days) and to enjoy some of the
97 richness of Muddle from the inside. I especially thank Chris Reeve
98 ("the oracle") for the patience to answer questions and resolve
99 doubts, as he no doubt as done innumerable times before.
100
101 S. W. Galley\
102 May 23, 1979
103
104 This work was supported by the Advanced Research Projects Agency of
105 the Department of Defense and was monitored by the Office of Naval
106 Research under contract N00014-75-C-0661.
107
108 This document was prepared using [the PUB
109 system](http://www.nomodes.com/pub_manual.html) (originally from the
110 Stanford Artificial Intelligence Laboratory) and printed on the Xerox
111 Graphics Printer of the M.I.T. Artificial Intelligence Laboratory.
112
113 Foreword
114 --------
115
116 Trying to explain Muddle to an uninitiate is somewhat like trying to
117 untie a Gordian knot. Whatever topic one chooses to discuss first,
118 full discussion of it appears to imply discussion of everything else.
119 What follows is a discursive presentation of Muddle in an order
120 apparently requiring the fewest forward references. It is not perfect
121 in that regard; however, if you are patient and willing to accept a
122 few, stated things as "magic" until they can be explained better, you
123 will probably not have too many problems understanding what is going
124 on.
125
126 There are no "practice problems"; you are assumed to be learning
127 Muddle for some purpose, and your work in achieving that purpose will
128 be more useful and motivating than artificial problems. In several
129 cases, the examples contain illustrations of important points which
130 are not covered in the text. Ignore examples at your peril.
131
132 This document does not assume knowledge of any specific programming
133 language on your part. However, "computational literacy" is assumed:
134 you should have written at least one program before. Also very little
135 familiarity is assumed with the interactive time-sharing operating
136 systems under which Muddle runs -- ITS, Tenex, and Tops-20 -- namely
137 just file and user naming conventions.
138
139 ### Notation
140
141 Sections marked \[1\] are recommended for any uninitiate's first
142 reading, in lieu of a separate introduction for Muddle. \[On first
143 reading, text within brackets like these should be ignored.\]
144
145 Most specifically indicated examples herein are composed of pairs of
146 lines. The first line of a pair, the input, always ends in `$` (which
147 is how the ASCII character `ESC` is represented, and which always
148 represents it). The second line is the result of Muddle's groveling
149 over the first. If you were to type all the first lines at Muddle, it
150 would respond with all the second lines. (More exactly, the "first
151 line" is one or more objects in Muddle followed by `$`, and the
152 "second line" is everything up to the next "first line".)
153
154 Anything which is written in the Muddle language or which is typed on
155 a computer terminal appears herein in a fixed width font, as in
156 `ROOT`. A metasyntactic variable -- something to be replaced in actual
157 use by something else -- appears as *radix:fix*, in an italic font;
158 often the variable will have both a meaning and a data type (as here),
159 but sometimes one of those will be ommitted, for obvious reasons.
160
161 An ellipsis (...) indicates that something uninteresting has been
162 omitted. The character `^` means that the following character is to be
163 "controllified": it is usually typed by holding down a terminal's
164 `CTRL` key and striking the other key.
165
166 Chapter 1. Basic Introduction
167 =============================
168
169 The purpose of this chapter is to provide you with that minimal amount
170 of information needed to experiment with Muddle while reading this
171 document. It is strongly recommended that you do experiment,
172 especially upon reaching chapter 5 (Simple Functions).
173
174 1.1. Loading Muddle \[1\]
175 -------------------------
176
177 First, catch your rabbit. Somehow get the interpreter running -- the
178 program in the file `SYS:TS MDL` in the ITS version or
179 `SYS:MDL.SAV` in the Tenex version or `SYS:MDL.EXE` in the
180 Tops-20 version. The interpreter will first type out some news
181 relating to Muddle, if any, then type
182
183     LISTENING-AT-LEVEL 1 PROCESS 1
184
185 and then wait for you to type something.
186
187 The program which you are now running is an interpreter for the
188 language Muddle. **All** it knows how to do is interpret Muddle
189 expressions. There is no special "command language"; you communicate
190 with the program -- make it do things for you -- by actually typing
191 legal Muddle expressions, which it then interprets. **Everything** you
192 can do at a terminal can be done in a program, and vice versa, in
193 exactly the same way.
194
195 The program will be referred to as just "Muddle" (or "the
196 interpreter") from here on. There is no ambiguity, since the program
197 is just an incarnation of the concept "Muddle".
198
199 1.2. Typing \[1\]
200 -----------------
201
202 Typing a character at Muddle normally just causes that character to be
203 echoed (printed on your terminal) and remembered in a buffer. The only
204 characters for which this is normally not true act as follows:
205
206 Typing `$` (`ESC`) causes Muddle to echo dollar-sign and causes the
207 contents of the buffer (the characters which you've typed) to be
208 interpreted as an expression(s) in Muddle. When this interpretation is
209 done, the result will be printed and Muddle will wait for more typing.
210 `ESC` will be represented by the glyph `$` in this document.
211
212 Typing the rubout character (`DEL` in the ITS and Top-20 versions,
213 `CTRL`+`A` in the Tenex version) causes the last character in the
214 buffer -- the one most recently typed -- to be thrown away (deleted).
215 If you now immediately type another rubout, once again the last
216 character is deleted -- namely the second most recently typed. Etc.
217 The character deleted is echoed, so you can see what you're doing. On
218 some "display" terminals, rubout will "echo" by causing the deleted
219 character to disappear. If no characters are in the buffer, rubout
220 echoes as a carriage-return line-feed.
221
222 Typing `^@` (`CTRL`+`@`) deletes everything you have typed since the
223 last `$`, and prints a carriage-return line-feed.
224
225 Typing `^D` (`CTRL`+`D`) causes the current input buffer to be typed
226 back out at you. This allows you to see what you really have, without
227 the confusing re-echoed characters produced by rubout.
228
229 Typing `^L` (`CTRL`+`L`) produces the same effect as typing `^D`,
230 except that, if your terminal is a "display" terminal (for example,
231 IMLAC, ARDS, Datapoint), it firsts clears the screen.
232
233 Typing `^G` (`CTRL`+`G`) causes Muddle to stop whatever it is doing
234 and act as if an error had occurred (section 1.4). `^G` is generally
235 most useful for temporary interruptions to check the progress of a
236 computation. `^G` is "reversible" -- that is, it does not destroy any
237 of the "state" of the computation it interrupts. To "undo" a `^G`,
238 type the characters
239
240     <ERRET T>$
241
242 (This is discussed more fully far below, in section 16.4.)
243
244 Typing `^S` (`CTRL`+`S`) causes Muddle to **throw away** what it is
245 currently doing and return to a normal "listening" state. (In the
246 Tenex and Tops-20 versions, `^O` also should have the same effect.)
247 `^S` is generally most useful for aborting infinite loops and similar
248 terrible things. `^S` **destroys** whatever is going on, and so it is
249 **not** reversible.
250
251 Most expressions in Muddle include "brackets" (generically meant) that
252 must be correctly paired and nested. If you end your typing with the
253 pair of characters `!$` (`!`+`ESC`), all currently unpaired brackets
254 (but not double-quotes, which bracket strings of characters) will
255 automatically be paired and interpretation will start. Without the
256 `!`, Muddle will just sit there waiting for you to pair them. If you
257 have improperly nested parentheses, brackets, etc., within the
258 expression you typed, an error will occur, and Muddle will tell you
259 what is wrong.
260
261 Once the brackets are properly paired, Muddle will immediately echo
262 carriage-return and line-feed, and the next thing it prints will be
263 the result of the evaluation. Thus, if a plain `$` is not so echoed,
264 you have some expression unclosed. In that case, if you have not typed
265 any characters beyond the `$`, you can usually rub out the `$` and
266 other characters back to the beginning of the unclosed expression.
267 Otherwise, what you have typed is beyond the help of rubout and `^@`;
268 if you want to abort it, use `^S`.
269
270 Muddle accepts and distinguishes between upper and lower case. All
271 "built-in functions" must be referenced in upper case.
272
273 1.3. Loading a File \[1\]
274 -------------------------
275
276 If you have a program in Muddle that you have written as an ASCII file
277 on some device, you can "load" it by typing
278
279     <FLOAD file>$
280
281 where *file* is the name of the file, in standard operating-system
282 syntax, enclosed in "s (double-quotes). Omitted parts of the file name
283 are taken by default from the file name `DSK: INPUT >` (in the ITS
284 version) or `DSK: INPUT.MUD` (in the Tenex and Tops-20 versions) in
285 the current disk directory.
286
287 Once you type `$`, Muddle will process the text in the file (including
288 `FLOAD`s) exactly as if you had typed it on a terminal and followed it
289 with `$`, except that "values" produced by the computations are not
290 printed. When Muddle is finished processing the file, it will print
291 `DONE`.
292
293 When Muddle starts running, it will `FLOAD` the file `MUDDLE INIT`
294 (ITS version) or `MUDDLE.INIT` (Tenex and Tops-20 versions), if it
295 exists.
296
297 1.4. Errors â€” Simple Considerations \[1\]
298 -----------------------------------------
299
300 When Muddle decides for some reason that something is wrong, the
301 standard sequence of evaluation is interrupted and an error function
302 is called. This produces the following terminal output:
303
304     *ERROR*
305     often-hyphenated-reason
306     function-in-which-error-occurred
307     LISTENING-AT-LEVEL integer PROCESS integer
308
309 You can now interact with Muddle as usual, typing expressions and
310 having them evaluated. There exist facilities (built-in functions)
311 allowing you to find out what went wrong, restart, or abandon whatever
312 was going on. In particular, you can recover from an error -- that is,
313 undo everything but side effects and return to the initial typing
314 phase -- by typing the following first line, to which Muddle will
315 respond with the second line:
316
317     <ERRET>$
318     LISTENING-AT-LEVEL 1 PROCESS 1
319
320 If you type the following first line while still in the error state
321 (before `<ERRET>`), Muddle will print, as shown, the arguments (or
322 "parameters or "inputs" or "independent variables") which gave
323 indigestion to the unhappy function:
324
325     <ARGS <FRAME <FRAME>>>$
326     [ arguments to unhappy function ]
327
328 This will be explained by and by.
329
330 Chapter 2. Read, Evaluate, and Print
331 ====================================
332
333 2.1. General \[1\]
334 ------------------
335
336 Once you type `$` and all brackets are correctly paired and nested,
337 the current contents of the input buffer go through processing by
338 three functions successively: first `READ`, which passes its output to
339 `EVAL` ("evaluate"), which passes its output to `PRINT`, whose output
340 is typed on the terminal.
341
342 \[Actually, the sequence is more like `READ`, `CRLF`, `EVAL`, `PRIN1`,
343 `CRLF` (explained in chapter 11); Muddle gives you a carriage-return
344 line-feed when the `READ` is complete, that is, when all brackets are
345 paired.\]
346
347 Functionally:
348
349 -   `READ`: printable representations â†’ Muddle objects
350 -   `EVAL`: Muddle objects â†’ Muddle objects
351 -   `PRINT`: Muddle objects â†’ printable representations
352
353 That is, `READ` takes ASCII text, such as is typed in at a terminal,
354 and creates the Muddle objects represented by that text. `PRINT` takes
355 Muddle objects, creates ASCII text representations of them, and types
356 them out. `EVAL`, which is the really important one, performs
357 transformations on Muddle objects.
358
359 2.2. Philosophy (TYPEs) \[1\]
360 -----------------------------
361
362 In a general sense, when you are interacting with Muddle, you are
363 dealing with a world inhabited only by a particular set of objects:
364 Muddle objects.
365
366 Muddle objects are best considered as abstract entities with abstract
367 properties. The properties of a particular Muddle object depend on the
368 class of Muddle objects to which it belongs. This class is the `TYPE`
369 of the Muddle object. Every Muddle object has a `TYPE`, and every
370 `TYPE` has its own peculiarities. There are many different `TYPE`s in
371 Muddle; they will gradually be introduced below, but in the meantime
372 here is a representative sample: `SUBR` (the `TYPE` of `READ`, `EVAL`,
373 and `PRINT`), `FSUBR`, `LIST`, `VECTOR`, `FORM`, `FUNCTION`, etc.
374 Since every object has a `TYPE`, one often abbreviates "an object of
375 `TYPE` *type*" by saying "a *type*".
376
377 The laws of the Muddle world are defined by `EVAL`. In a very real
378 sense, `EVAL` is the only Muddle object which "acts", which "does
379 something". In "acting", `EVAL` is always "following the directions"
380 of some Muddle object. Every Muddle object should be looked upon as
381 supplying a set of directions to `EVAL`; what these directions are
382 depends heavily on the `TYPE` of the Muddle object.
383
384 Since `EVAL` is so ever-present, an abbreviation is in order:
385 "evaluates to *something*" or "`EVAL`s to *something*" should be taken
386 as an abbreviation for "when given to `EVAL`, causes `EVAL` to return
387 *something*".
388
389 As abstract entities, Muddle objects are, of course, not "visible".
390 There is, however, a standard way of representing abstract Muddle
391 objects in the real world. The standard way of representing any given
392 `TYPE` of Muddle object will be given below when the `TYPE` is
393 introduced. These standard representations are what `READ`
394 understands, and what `PRINT` produces.
395
396 2.3. Example (TYPE FIX) \[1\]
397 -----------------------------
398
399     1$
400     1
401
402 The following has occurred:
403
404 First, `READ` recognized the character `1` as the representation for
405 an object of `TYPE` `FIX`, in particular the one which corresponds to
406 the integer one. (`FIX` means integer, because the decimal point is
407 understood always to be in a fixed position: at the right-hand end.)
408 `READ` built the Muddle object corresponding to the decimal
409 representation typed, and returned it.
410
411 Then `EVAL` noted that its input was of `TYPE` `FIX`. An object of
412 `TYPE` `FIX` evaluates to itself, so `EVAL` returned its input
413 undisturbed.
414
415 Then `PRINT` saw that its input was of `TYPE` `FIX`, and printed on
416 the terminal the decimal character representation of the corresponding
417 integer.
418
419 2.4. Example (TYPE FLOAT) \[1\]
420 -------------------------------
421
422     1.0$
423     1.0
424
425 What went on was entirely analogous to the preceding example, except
426 that the Muddle object was of `TYPE` `FLOAT`. (`FLOAT` means a real
427 number (of limited precision), because the decimal point can float
428 around to any convenient position: an internal exponent part tells
429 where it "really" belongs.)
430
431 2.5. Example (TYPE ATOM, PNAME) \[1\]
432 -------------------------------------
433
434     GEORGE$
435     GEORGE
436
437 This time a lot more has happened.
438
439 `READ` noted that what was typed had no special meaning, and therefore
440 assumed that it was the representation of an identifier, that is, an
441 object of `TYPE` `ATOM`. ("Atom" means more or less *indivisible*.)
442 `READ` therefore attempted to look up the representation in a table it
443 keeps for such purposes \[a `LIST` of `OBLISTS`, available as the
444 local value of the `ATOM` `OBLIST`\]. If `READ` finds an `ATOM` in its
445 table corresponding to the representation, that `ATOM` is returned as
446 `READ`'s value. If `READ` fails in looking up, it creates a new
447 `ATOM`, puts it in the table with the representation read \[`INSERT`
448 into `<1 .OBLIST>` usually\], and returns the new `ATOM`. Nothing
449 which could in any way be referenced as a legal "value" is attached to
450 the new `ATOM`. The initially-typed representation of an `ATOM`
451 becomes its `PNAME`, meaning its name for `PRINT`. One often
452 abbreviates "object of `TYPE` `ATOM` with `PNAME` *name*" by saying
453 "`ATOM` *name*".
454
455 `EVAL`, given an `ATOM`, returned just that `ATOM`.
456
457 `PRINT`, given an `ATOM`, typed out its `PNAME`.
458
459 At the end of this chapter, the question "what is a legal `PNAME`"
460 will be considered. Further on, the methods used to attach values to
461 `ATOM`s will be described.
462
463 2.6. FIXes, FLOATs, and ATOMs versus READ: Specifics
464 ----------------------------------------------------
465
466 ### 2.6.1. READ and FIXed-point Numbers
467
468 `READ` considers any grouping of characters which are solely digits to
469 be a `FIX`, and the radix of the representation is decimal by default.
470 A `-` (hyphen) immediately preceding such a grouping represents a
471 negative `FIX`. The largest `FIX` representable on the PDP-10 is two
472 to the 35th power minus one, or 34,359,738,367 (decimal): the smallest
473 is one less than the negative of that number. If you attempt to type
474 in a `FIX` outside that range, `READ` converts it to a `FLOAT`; if a
475 program you write attempts to produce a `FIX` outside that range, an
476 overflow error will occur (unless it is disabled).
477
478 The radix used by `READ` and `PRINT` is changeable by the user;
479 however, there are two formats for representations of `FIX`es which
480 cause `READ` to use a specified radix independent of the current one.
481 These are as follows:
482
483 1.  If a group of digits is immediately followed by a period (`.`),
484     `READ` interprets that group as the decimal representation of a
485     `FIX`. For example, `10.` is always interpreted by `READ` as the
486     decimal representation of ten.
487
488 2.  If a group of digits is immediately enclosed on both sides with
489     asterisks (`*`), `READ` interprets that group as the octal
490     representation of a `FIX`. For example, `*10*` is always
491     interpreted by `READ` as the octal representation of eight.
492
493 ### 2.6.2. READ and PRINT versus FLOATing-point Numbers
494
495 `PRINT` can produce, and `READ` can understand, two different formats
496 for objects of `TYPE` `FLOAT`. The first is "decimal-point" notation,
497 the second is "scientific" notation. Decimal radix is always used for
498 representations of `FLOAT`s.
499
500 "Decimal-point" notation for a `FLOAT` consists of an arbitrarily long
501 string of digits containing one `.` (period) which is followed by at
502 least one digit. `READ` will make a `FLOAT` out of any such object,
503 with a limit of precision of one part in 2 to the 27th power.
504
505 "Scientific" notation consists of:
506
507 1.  a number,
508
509 2.  immediately followed by `E` or `e` (upper or lower case letter E),
510
511 3.  immediately followed by an exponent,
512
513 where a "number" is an arbitrarily long string of digits, with or
514 without a decimal point (see following note): an an "exponent" is up
515 to two digits worth of `FIX`. This notation represents the "number" to
516 the "exponent" power of ten. Note: if the "number" as above would by
517 itself be a `FIX`, and if the "exponent" is positive, and if the
518 result is within the allowed range of `FIX`es, then the result will be
519 a `FIX`. For example, `READ` understands `10E1` as `100` (a `FIX`),
520 but `10E-1` as `1.0000000` (a `FLOAT`).
521
522 The largest-magnitude `FLOAT` which can be handled without overflow is
523 `1.7014118E+38` (decimal radix). The smallest-magnitude `FLOAT` which
524 can be handled without underflow is `.14693679E-38`.
525
526 ### 2.6.3. READ and PNAMEs
527
528 The question "what is a legal `PNAME`?" is actually not a reasonable
529 one to ask: **any** non-empty string of **arbitrary** characters can
530 be the `PNAME` of an `ATOM`. However, some `PNAME`s are easier to type
531 to `READ` than others. But even the question "what are easily typed
532 `PNAME`s?" is not too reasonable, because: `READ` decides that a group
533 of characters is a `PNAME` by **default**; if it can't possibly be
534 anything else, it's a `PNAME`. So, the rules governing the
535 specification of `PNAME`s are messy, and best expressed in terms of
536 what is not a `PNAME`. For simplicity, you can just consider any
537 uninterrupted group of upper- and lower-case letters and (customarily)
538 hyphens to be a `PNAME`; that will always work. If you neither a
539 perfectionist nor a masochist, skip to the next chapter.
540
541 #### 2.6.3.1. Non-PNAMEs
542
543 A group of characters is **not** a `PNAME` if:
544
545 1.  It represents a `FLOAT` or a `FIX`, as described above -- that is,
546     it is composed wholly of digits, or digits and a single `.`
547     (period) or digits and a `.` and the letter `E` or `e` (with
548     optional minus signs in the right places).
549
550 2.  It begins with a `.` (period).
551
552 3.  It contains -- if typed interactively -- any of the characters
553     which have special interactive effects: `^@`, `^D`, `^L`, `^G`,
554     `^O`, `$` (`ESC`), rubout.
555
556 4.  It contains a format character -- space, carriage-return,
557     line-feed, form-feed, horizontal tab, vertical tab.
558
559 5.  It contains a `,` (comma) or a `#` (number sign) or a `'` (single
560     quote) or a `;` (semicolon) or a `%` (percent sign).
561
562 6.  It contains any variety of bracket -- `(` or `)` or `[` or `]` or
563     `<` or `>` or `{` or `}` or `"`.
564
565 In addition, the character `\` (backslash) has a special
566 interpretation, as mentioned below. Also the pair of characters `!-`
567 (exclamation-point hyphen) has an extremely special interpretation,
568 which you will reach at chapter 15.
569
570 The characters mentioned in cases 4 through 6 are "separators" -- that
571 is, they signal to `READ` that whatever it was that the preceding
572 characters represented, it's done now. They can also indicate the
573 start of a new object's representation (all the opening "brackets" do
574 just that).
575
576 #### 2.6.3.2. Examples
577
578 The following examples are not in the "standard format" of "*line
579 typed in*`$` *result printed*", because they are not, in some cases,
580 completed objects; hence, `READ` would continue waiting for the
581 brackets to be closed. In other cases, they will produce errors during
582 `EVAL`uation if other -- currently irrelevant -- conditions are not
583 met. Instead, the right-hand column will be used to state just what
584 `READ` thought the input in the left-hand column really was.
585
586   ------------------------------------------------------------------------------------
587   Input                       Explanation
588   --------------------------- --------------------------------------------------------
589   `ABC$`                      an `ATOM` of `PNAME` `ABC`
590
591   `abc$`                      an `ATOM` of `PNAME` `abc`
592
593   `ARBITRARILY-LONG-PNAME$`   an `ATOM` of `PNAME` `ARBITRARILY-LONG-PNAME`
594
595   `1.2345$`                   a `FLOAT`, `PRINT`ed as `1.2345000`
596
597   `1.2.345$`                  an `ATOM` of `PNAME` `1.2.345`
598
599   `A.or.B$`                   a `ATOM` of `PNAME` `A.or.B`
600
601   `.A.or.B$`                  not an `ATOM`, but (as explained later) a `FORM`
602                               containing an `ATOM` of `PNAME` `A.or.B`.
603
604   `MORE THAN ONE$`            three `ATOM`s, with `PNAME`s `MORE`, and `THAN`, and
605                               `ONE`.
606
607   `ab(cd$`                    an `ATOM` of `PNAME` `ab`, followed by the start of
608                               something else (The something else will contain an
609                               `ATOM` of `PNAME` beginning `cd.`)
610
611   `12345A34$`                 an `ATOM` of `PNAME` `12345A35` (If the A had been an E,
612                               the object would have been a `FLOAT`.)
613   ------------------------------------------------------------------------------------
614
615 #### 2.6.3.3. Â (Backslash) in ATOMs
616
617 If you have a strange, uncontrollable compulsion to have what were
618 referred to as "separators" above as part of the `PNAME`s of your
619 `ATOM`s, you can do so by preceding them with the character `\`
620 (backslash). `\` will also magically turn an otherwise normal `FIX` or
621 `FLOAT` into an `ATOM` if it appears amongst the digits. In fact,
622 backslash in front of **any** character changes it from something
623 special to "just another character" (including the character `\`). It
624 is an escape character.
625
626 When `PRINT` confronts an `ATOM` which had to be backslashed in order
627 to be an `ATOM`, it will dutifully type out the required `\`s. They
628 will not, however, necessarily be where you typed them; they will
629 instead be at those positions which will cause `READ` the least grief.
630 For example, `PRINT` will type out a `PNAME` which consists wholly of
631 digits by first typing a `\` and then typing the digits - no matter
632 where you originally typed the `\` (or `\`s).
633
634 #### 2.6.3.4. Examples of Awful ATOMs
635
636 The following examples illustrate the amount of insanity that can be
637 perpetrated by using `\`. The format of the examples is again
638 non-standard, this time not because anything is unfinished or in
639 error, but because commenting is needed: `PRINT` doesn't do it full
640 justice.
641
642   -------------------------------------------------------------------------------
643   Input                    Explanation
644   ------------------------ ------------------------------------------------------
645   `a\ one\ and\ a\ two$`   one `ATOM`, whose `PNAME` has four spaces in it
646
647   `1234\56789$`            an `ATOM` of `PNAME` `123456789`, which `PRINT`s as
648                            `\1233456789`
649
650   `123\ $`                 an `ATOM` of `PNAME` `123space`, which `PRINT`s as
651                            `\123\`, with a space on the end
652
653   `\\$`                    an `ATOM` whose `PNAME` is a single backslash
654   -------------------------------------------------------------------------------
655
656 Chapter 3. Built-in Functions
657 =============================
658
659 3.1. Representation \[1\]
660 -------------------------
661
662 Up to this point, all the objects we have been concerned with have had
663 no internal structure discernible in Muddle. While the characteristics
664 of objects with internal structure differ greatly, the way `READ` and
665 `PRINT` handle them is uniform, to wit:
666
667 -   `READ`, when applied to the representation of a structured object,
668     builds and returns an object of the indicated `TYPE` with elements
669     formed by applying `READ` to each of their representations in
670     turn.
671
672 -   `PRINT`, when applied to a structured object, produces a
673     representation of the object, with its elements represented as
674     `PRINT` applied to each of them in turn.
675
676 A Muddle object which is used to represent the application of a
677 function to its arguments is an argument of `TYPE` `FORM`. Its printed
678 representation is
679
680     < func arg-1 arg-2 ... arg-N >
681
682 where *func* is an object which designates the function to be applied,
683 and *arg-1* through *arg-N* are object which designate the arguments
684 or "actual parameters" or "inputs". A `FORM` is just a structured
685 object which is stored and can be manipulated like a `LIST` (its
686 "primitive type" is `LIST` -- chapter 6). The application of the
687 function to the arguments is done by `EVAL`. The usual meaning of
688 "function" (uncapitalized) in this document will be anything
689 applicable to arguments.
690
691 3.2. Evaluation \[1\]
692 ---------------------
693
694 `EVAL` applied to a `FORM` acts as if following these directions:
695
696 First, example the *func* (first element) of the `FORM`. If it is an
697 `ATOM`, look at its "value" (global or local, in that order -- see
698 next chapter). If it is not an `ATOM`, `EVAL` it and look at the
699 result of the evaluation. If what you are looking at is not something
700 which can be applied to arguments, complain (via the `ERROR`
701 function). Otherwise, inspect what you are looking at and follow its
702 directions in evaluating or not evaluating the arguments (chapters 9
703 and 19) and then "apply the function" -- that is, `EVAL` the body of
704 the object gotten from *func*.
705
706 3.3. Built-in Functions (TYPE SUBR, TYPE FSUBR) \[1\]
707 -----------------------------------------------------
708
709 The built-in functions of Muddle come in two varieties: those which
710 have all their arguments `EVAL`ed before operating on them (`TYPE`
711 `SUBR`, for "subroutine", pronounced "subber") and those which have
712 none of their arguments `EVAL`ed (`TYPE` `FSUBR`, historically from
713 Lisp (Moon, 1974), pronounced "effsubber"). Collectively they will be
714 called `F/SUBR`s, although that term is not meaningful to the
715 interpreter. See appendix 2 for a listing of all `F/SUBR`s and short
716 descriptions. The term "Subroutine" will be used herein to mean both
717 `F/SUBR`s and compiled user programs (`RSUBR`s and `RSUBR-ENTRY`s --
718 chapter 19).
719
720 Unless otherwise stated, **every** Muddle built-in Subroutine is of
721 `TYPE` **`SUBR`**. Also, when it is stated that an argument of a
722 `SUBR` must be of a particular `TYPE`, note that this means that
723 `EVAL` of what is there must be of the particular `TYPE`.
724
725 Another convenient abbreviation which will be used is "the `SUBR`
726 *pname*" in place of "the `SUBR` which is initially the 'value' of the
727 `ATOM` of `PNAME` *pname*". "The `FSUBR` *pname*" will be used with a
728 similar meaning.
729
730 3.4. Examples (+ and FIX; Arithmetic) \[1\]
731 -------------------------------------------
732
733     <+ 2 4 6>$
734     12
735
736 The `SUBR` `+` adds numbers. Most of the usual arithmetic functions
737 are Muddle `SUBR`s: `+`, `-`, `*`, `/`, `MIN`, `MAX`, `MOD`, `SIN`,
738 `COS`, `ATAN`, `SQRT`, `LOG`, `EXP`, `ABS`. (See appendix 2 for short
739 descriptions of these.) All except `MOD`, which wants `FIX`es, are
740 indifferent as to whether their arguments are `FLOAT` or `FIX` or a
741 mixture. In the last case they exhibit "contagious `FLOAT`ing": one
742 argument of `TYPE` `FLOAT` forces the result to be of `TYPE` `FLOAT`.
743
744     <FIX 1.0>$
745     1
746
747 The `SUBR` `FIX` explicitly returns a `FIX`ed-point number
748 corresponding to a `FLOAT`ing-point number. `FLOAT` does the opposite.
749
750     <+ 5 <* 2 3>>$
751     11
752     <SQRT <+ <* 3 3> <* 4 4>>>$
753     5.0
754     <- 5 3 2>$
755     0
756     <- 5>$
757     -5
758     <MIN 1 2.0>$
759     1.0
760     </ 11 7 2.0>$
761     0.5
762
763 Note this last result: the division of two `FIX`es gives a `FIX` with
764 truncation, not rounding, of the remainder: the intermediate result
765 remains a `FIX` until a `FLOAT` argument is encountered.
766
767 3.5. Arithmetic Details
768 -----------------------
769
770 `+`, `-`, `*`, `/`, `MIN`, and `MAX` all take any number of arguments,
771 doing the operation with the first argument and the second, then with
772 that result and the third argument, etc. If called with no arguments,
773 each returns the identity for its operation (`0`, `0`, `1`, `1`, the
774 greatest `FLOAT`, and the least `FLOAT`, respectively); if called with
775 one argument, each acts as if the identity and the argument has been
776 supplied. They all will cause an overflow or underflow error if any
777 result, intermediate or final, is too large or too small for the
778 machine's capacity. (That error can be disabled if necessary --
779 section 16.9).
780
781 One arithmetic function that always requires some discussion is the
782 pseudo-random-number generator. Muddle's is named `RANDOM`, and it
783 always returns a `FIX`, uniformly distributed over the whole range of
784 `FIX`es. If `RANDOM` is never called with arguments, it always returns
785 the exact same sequence of numbers, for convenience in debugging.
786 "Debugged" programs should give `RANDOM` two arguments on the first
787 call, which become seeds for a new sequence. Popular choices of new
788 seeds are the numbers given by `TIME` (which see), possibly with bits
789 modified (chapter 18). Example ("pick a number from one to ten"):
790
791     <+ 1 <MOD <RANDOM> 10>>$
792     4
793
794 Chapter 4. Values of Atoms
795 ==========================
796
797 4.1. General \[1\]
798 ------------------
799
800 There are two kinds of "value" which can be attached to an `ATOM`. An
801 `ATOM` can have either, both, or neither. They interact in no way
802 (except that alternately referring to one and then the other is
803 inefficient). These two values are referred to as the **local value**
804 and the **global value** of an `ATOM`. The terms "local" and "global"
805 are relative to `PROCESS`es (chapter 20), not functions or programs.
806 The `SUBR`s which reference the local and global values of an `ATOM`,
807 and some of the characteristics of local versus global values, follow.
808
809 4.2. Global Values
810 ------------------
811
812 ### 4.2.1. SETG \[1\]
813
814 A global value can be assigned to an `ATOM` by the `SUBR` `SETG` ("set
815 global"), as in
816
817     <SETG atom any>
818
819 where *atom* must `EVAL` to an `ATOM`, and *any* can `EVAL` to
820 anything. `EVAL` of the second argument becomes the global value of
821 `EVAL` of the first argument. The value returned by the `SETG` is its
822 second argument, namely the new global value of *atom*.
823
824 Examples:
825
826     <SETG FOO <SETG BAR 500>>$
827     500
828
829 The above made the global values of both the `ATOM` `FOO` and the
830 `ATOM` `BAR` equal to the `FIX`ed-point number 500.
831
832     <SETG BAR FOO>$
833     FOO
834
835 That made the global value of the `ATOM` `BAR` equal to the `ATOM`
836 `FOO`.
837
838 ### 4.2.2. GVAL \[1\]
839
840 The `SUBR` `GVAL` ("global value") is used to reference the global
841 value of an `ATOM`.
842
843     <GVAL atom>
844
845 returns as a value the global value of *atom*. If *atom* does not
846 evaluate to an `ATOM`, or if the `ATOM` to which it evaluates has no
847 global value, an error occurs.
848
849 `GVAL` applied to an `ATOM` anywhere, in any `PROCESS`, in any
850 function, will return the same value. Any `SETG` anywhere changes the
851 global value for everybody. Global values are context-independent.
852
853 `READ` understands the character `,` (comma) as an abbreviation for an
854 application of `GVAL` to whatever follows it. `PRINT` always
855 translates an application of `GVAL` into the comma format. The
856 following are absolutely equivalent:
857
858     ,atom        <GVAL atom>
859
860 Assuming the examples in section 4.2.1 were carried out in the order
861 given, the following will evaluate as indicated:
862
863     ,FOO$
864     500
865     <GVAL FOO>$
866     500
867     ,BAR$
868     FOO
869     ,,BAR$
870     500
871
872 ### 4.2.3. Note on SUBRs and FSUBRs
873
874 The initial `GVAL`s of the `ATOM`s used to refer to Muddle "built-in"
875 Subroutines are the `SUBR`s and `FSUBR`s which actually get applied
876 when those `ATOM`s are referenced. If you don't like the way those
877 supplied routines work, you are perfectly free to `SETG` the `ATOM`s
878 to your own versions.
879
880 ### 4.2.4. GUNASSIGN
881
882     <GUNASSIGN atom>
883
884 ("global unassign") causes *atom* to have no assigned global value,
885 whether or not it had one previously. The storage used for the global
886 value can become free for other uses.
887
888 4.3. Local Values
889 -----------------
890
891 ### 4.3.1. SET \[1\]
892
893 The `SUBR` `SET` is used to assign a local value to an `ATOM`.
894 Applications of `SET` are of the form
895
896     <SET atom any>
897
898 `SET` returns `EVAL` of *any* just like `SETG`.
899
900 Examples:
901
902     <SET BAR <SET FOO 100>>$
903     100
904
905 Both `BAR` and `FOO` have been given local values equal to the
906 `FIX`ed-point number 100.
907
908     <SET FOO BAR>$
909     BAR
910
911 `FOO` has been given the local value `BAR`.
912
913 Note that neither of the above did anything to any global values `FOO`
914 and `BAR` might have had.
915
916 ### 4.3.2. LVAL \[1\]
917
918 The `SUBR` used to extract the local value of an `ATOM` is named
919 `LVAL`. As with `GVAL`, `READ` understands an abbreviation for an
920 application of `LVAL`: the character `.` (period), and `PRINT`
921 produces it. The following two representations are equivalent, and
922 when `EVAL` operates on the corresponding Muddle object, it returns
923 the current local value of *atom*:
924
925     <LVAL atom>        .atom
926
927 The local value of an `ATOM` is unique within a `PROCESS`. `SET`ting
928 an `ATOM` in one `PROCESS` has no effect on its `LVAL` in another
929 `PROCESS`, because each `PROCESS` has its own "control stack"
930 (chapters 20 and 22).
931
932 Assume **all** of the previous examples in this chapter have been
933 done. Then the following evaluate as indicated:
934
935     .BAR$
936     100
937     <LVAL BAR>$
938     100
939     .FOO$
940     BAR
941     ,.FOO$
942     FOO
943
944 ### 4.3.3. UNASSIGN
945
946     <UNASSIGN atom>
947
948 causes *atom* to have no assigned local value, whether or not it had
949 one previously.
950
951 4.4. VALUE
952 ----------
953
954 `VALUE` is a `SUBR` which takes an `ATOM` as an argument, and then:
955
956 1.  if the `ATOM` has an `LVAL`, returns the `LVAL`;
957 2.  if the `ATOM` has no `LVAL` but has a `GVAL`, returns the `GVAL`;
958 3.  if the `ATOM` has neither a `GVAL` nor an `LVAL`, calls the
959     `ERROR` function.
960
961 This order of seeking a value is the **opposite** of that used when an
962 `ATOM` is the first element of a `FORM`. The latter will be called the
963 G/LVAL, even though that name is not used in Muddle.
964
965 Example:
966
967     <UNASSIGN A>$
968     A
969     <SETG A 1>$
970     1
971     <VALUE A>$
972     1
973     <SET A 2>$
974     2
975     <VALUE A>$
976     2
977     ,A$
978     1
979
980 Chapter 5. Simple Functions
981 ===========================
982
983 5.1. General \[1\]
984 ------------------
985
986 The Muddle equivalent of a "program" (uncompiled) is an object of
987 `TYPE` `FUNCTION`. Actually, full-blown "programs" are usually
988 composed of sets of `FUNCTION`s, with most `FUNCTION`s in the set
989 acting as "subprograms".
990
991 A `FUNCTION` may be considered to be a `SUBR` or `FSUBR` which you
992 yourself define. It is "run" by using a `FORM` to apply it to
993 arguments (for example, &lt;*function arg-1 arg-2 ...*&gt;), and it
994 always "returns" a single object, which is used as the value of the
995 `FORM` that applied it. The single object may be ignored by whatever
996 "ran" the `FUNCTION` -- equivalent to "returning no value" -- or it
997 may be a structured object containing many objects -- equivalent to
998 "returning many values". Muddle is an "applicative" language, in
999 contrast to "imperative" languages like Fortran. In Muddle it is
1000 impossible to return values through arguments in the normal case; they
1001 can be returned only as the value of the `FORM` itself, or as side
1002 effects to structured objects or global values.
1003
1004 In this chapter a simple subset of the `FUNCTION`s you can write is
1005 presented, namely `FUNCTION`s which "act like" `SUBR`s with a fixed
1006 number of arguments. While this class corresponds to about 90% of the
1007 `FUNCTION`s ever written, you won't be able to do very much with them
1008 until you read further and learn more about Muddle's control and
1009 manipulatory machinery. However, all that machinery is just a bunch of
1010 `SUBR`s and `FSUBR`s, and you already know how to "use" them; you just
1011 need to be told what they do. Once you have `FUNCTION`s under your
1012 belt, you can immediately make use of everything presented from this
1013 point on in the document. In fact, we recommend that you do so.
1014
1015 5.2. Representation \[1\]
1016 -------------------------
1017
1018 A `FUNCTION` is just another data object in Muddle, of `TYPE`
1019 `FUNCTION`. It can be manipulated like any other data object. `PRINT`
1020 represents a `FUNCTION` like this:
1021
1022     #FUNCTION (elements)
1023
1024 that is, a number sign, the `ATOM` `FUNCTION`, a left parenthesis,
1025 each of the elements of the `FUNCTION`, and a right parenthesis. Since
1026 `PRINT` represents `FUNCTION`s like this, you can type them in to
1027 `READ` this way. (But there are a few `TYPE`s for which that
1028 implication is false.)
1029
1030 The elements of a `FUNCTION` can be "any number of anythings";
1031 however, when you **use** a `FUNCTION` (apply it with a `FORM`),
1032 `EVAL` will complain if the `FUNCTION` does not look like
1033
1034     #FUNCTION (act:atom arguments:list decl body)
1035
1036 where *act* and *decl* are optional (section 9.8 and chapter 14);
1037 *body* is **at least one** Muddle object -- any old Muddle object;
1038 and, in this simple case, *arguments* is
1039
1040     (any number of ATOMs)
1041
1042 that is, something `READ` and `PRINT`ed as: left parenthesis, any
1043 number -- including zero -- of `ATOM`s, right parenthesis. (This is
1044 actually a normal Muddle object of `TYPE` `LIST`, containing only
1045 `ATOM`s.)
1046
1047 Thus, these `FUNCTION`s will cause errors -- but only **when used**:
1048
1049   Input                       Explanation
1050   --------------------------- ----------------------------------
1051   `#FUNCTION ()`              -- no argument `LIST` or body
1052   `#FUNCTION ((1) 2 7.3)`     -- non-`ATOM` in argument `LIST`
1053   `#FUNCTION ((A B C D))`     -- no body
1054   `#FUNCTION (<+ 1 2> A C)`   -- no argument `LIST`
1055
1056 These `FUNCTION`s will never cause errors because of format:
1057
1058     #FUNCTION (() 1 2 3 4 5)
1059     #FUNCTION ((A) A)
1060     #FUNCTION (()()()()()()()())
1061     #FUNCTION ((A B C D EE F G H HIYA) <+ .A .HIYA>)
1062     #FUNCTION ((Q) <SETG C <* .Q ,C>> <+ <MOD ,C 3> .Q>)
1063
1064 and the last two actually do something which might be useful. (The
1065 first three are rather pathological, but legal.)
1066
1067 5.3. Application of FUNCTIONs: Binding \[1\]
1068 --------------------------------------------
1069
1070 `FUNCTION`s, like `SUBR`s and `FSUBR`s, are applied using `FORM`s. So,
1071
1072     <#FUNCTION ((X) <* .X .X>) 5>$
1073     25
1074
1075 applied the indicated `FUNCTION` to 5 and returned 25.
1076
1077 What `EVAL` does when applying a `FUNCTION` is the following:
1078
1079 1.  Create a "world" in which the `ATOM`s of the argument `LIST` have
1080     been **`SET`** to the values applied to the `FUNCTION`, and all
1081     other `ATOM`s have their original values. This is called
1082     "binding".
1083
1084 -   In the above, this is a "world" in which `X` is `SET` to `5`.
1085
1086 2.  In that new "world", evaluate all the objects in the body of the
1087     `FUNCTION`, one after the other, from first to last.
1088
1089 -   In the above, this means evaluate `<* .X .X>` in a "world" where
1090     `X` is `SET` to `5`.
1091
1092 3.  Throw away the "world" created, and restore the `LVAL`s of all
1093     `ATOM`s bound in this application of the `FUNCTION` to their
1094     originals (if any). This is called "unbinding".
1095
1096 -   In the above, this simply gives `X` back the local value, if any,
1097     that it had before binding.
1098
1099 4.  Return as a value the **last value obtained** when the
1100     `FUNCTION`'s body was evaluated in step (2).
1101
1102 -   In the above, this means return `25` as the value.
1103
1104 The "world" mentioned above is actually an object of `TYPE`
1105 `ENVIRONMENT`. The fact that such "worlds" are separate from the
1106 `FUNCTION`s which cause their generation means that **all** Muddle
1107 `FUNCTION`s can be used recursively.
1108
1109 The only thing that is at all troublesome in this sequence is the
1110 effect of creating these new "worlds", in particular, the fact that
1111 the **previous** world is completely restored. This means that if,
1112 inside a `FUNCTION`, you `SET` one of its argument `ATOM`s to
1113 something, that new `LVAL` will **not** be remembered when `EVAL`
1114 leaves the `FUNCTION`. However, if you `SET` an `ATOM` which is
1115 **not** in the argument `LIST` (or `SETG` **any** `ATOM`) the new
1116 local (or global) value **will** be remembered. Examples:
1117
1118     <SET X 0>$
1119     0
1120     <#FUNCTION ((X) <SET X <* .X .X>>) 5>$
1121     25
1122     .X$
1123     0
1124
1125 On the other hand,
1126
1127     <SET Y 0>$
1128     0
1129     <#FUNCTION ((X) <SET Y <* .X .X>>) 5>$
1130     25
1131     .Y$
1132     25
1133
1134 By using `PRINT` as a `SUBR`, we can "see" that an argument's `LVAL`
1135 really is changed while `EVAL`uating the body of a `FUNCTION`:
1136
1137     <SET X 5>$
1138     5
1139     <#FUNCTION ((X) <PRINT .X> <+ .X 10>) 3>$
1140     3 13
1141     .X$
1142     5
1143
1144 The first number after the application `FORM` was typed out by the
1145 `PRINT`; the second is the value of the application.
1146
1147 Remembering that `LVAL`s of `ATOM`s **not** in argument `LIST`s are
1148 not changed, we can reference them within `FUNCTION`s, as in
1149
1150     <SET Z 100>$
1151     100
1152     <#FUNCTION ((Y) </ .Z .Y>) 5>$
1153     20
1154
1155 `ATOM`s used like `Z` or `Y` in the above examples are referred to as
1156 "free variables". The use of free variables, while often quite
1157 convenient, is rather dangerous unless you know **exactly** how a
1158 `FUNCTION` will **always** be used: if a `FUNCTION` containing free
1159 variables is used within a `FUNCTION` within a `FUNCTION` within ...,
1160 one of those `FUNCTION`s might just happen to use your free variable
1161 in its argument `LIST`, binding it to some unknown value and possibly
1162 causing your use of it to be erroneous. Please note that "dangerous",
1163 as used above, really means that it may be effectively **impossible**
1164 (1) for other people to use your `FUNCTION`s, and (2) for **you** to
1165 use your `FUNCTION`s a month (two weeks?) later.
1166
1167 5.4. Defining FUNCTIONs (FUNCTION and DEFINE) \[1\]
1168 ---------------------------------------------------
1169
1170 Obviously, typing `#FUNCTION (...)` all the time is neither reasonable
1171 nor adequate for many purposes. Normally, you just want a `FUNCTION`
1172 to be the `GVAL` of some `ATOM` -- the way `SUBR`s and `FSUBR`s are --
1173 so you can use it repeatedly (and recursively). Note that you
1174 generally do **not** want a `FUNCTION` to be the `LVAL` of an `ATOM`;
1175 this has the same problems as free variables. (Of course, there are
1176 always cases where you are being clever and **want** the `ATOM` to be
1177 re-bound....)
1178
1179 One way to "name" a `FUNCTION` is
1180
1181     <SETG SQUARE #FUNCTION ((X) <* .X .X>)>$
1182     #FUNCTION ((X) <* .X .X>)
1183
1184 So that
1185
1186     <SQUARE 5>$
1187     25
1188     <SQUARE 100>$
1189     10000
1190
1191 Another way, which is somewhat cleaner in its typing:
1192
1193     <SETG SQUARE <FUNCTION (X) <* .X .X>>>$
1194     #FUNCTION ((X) <* .X .X>)
1195
1196 `FUNCTION` is an `FSUBR` which simply makes a `FUNCTION` out of its
1197 arguments and returns the created `FUNCTION`.
1198
1199 This, however, is generally the **best** way:
1200
1201     <DEFINE SQUARE (X) <* .X .X>>$
1202     SQUARE
1203     ,SQUARE$
1204     #FUNCTION ((X) <* .X .X>
1205
1206 The last two lines immediately above are just to prove that `DEFINE`
1207 did the "right thing".
1208
1209 `DEFINE` is an `FSUBR` which `SETG`s `EVAL` of its first argument to
1210 the `FUNCTION` it makes from the rest of its arguments, and then
1211 returns `EVAL` of its first argument. `DEFINE` obviously requires the
1212 least typing of the above methods, and is "best" from that standpoint.
1213 However, the real reason for using `DEFINE` is the following: If
1214 `EVAL` of `DEFINE`'s first argument **already has** a `GVAL`, `DEFINE`
1215 produces an error. This helps to keep you from accidentally redefining
1216 things -- like Muddle `SUBR`s and `FSUBR`s. The `SETG` constructions
1217 should be used only when you really do want to redefine something.
1218 `DEFINE` will be used in the rest of this document.
1219
1220 \[Actually, if it is absolutely necessary to use `DEFINE` to
1221 "redefine" things, there is a "switch" which can be used: if the
1222 `LVAL` of the `ATOM` `REDEFINE` is `T` (or anything not of `TYPE`
1223 `FALSE`), `DEFINE` will produce no errors. The normal state can be
1224 restored by evaluating `<SET REDEFINE <>>`. See chapter 8.\]
1225
1226 5.5. Examples (Comments) \[1\]
1227 ------------------------------
1228
1229 Using `SQUARE` as defined above:
1230
1231     <DEFINE HYPOT (SIDE-1 SIDE-2)
1232             ;"This is a comment. This FUNCTION finds the
1233               length of the hypotenuse of a right triangle
1234               of sides SIDE-1 and SIDE-2."
1235         <SQRT <+ <SQUARE .SIDE-1> <SQUARE .SIDE-2>>>>$
1236     HYPOT
1237     <HYPOT 3 4>$
1238     5.0
1239
1240 Note that carriage-returns, line-feeds, tabs, etc. are just
1241 separators, like spaces. A comment is **any single** Muddle object
1242 which follows a `;` (semicolon). A comment can appear between any two
1243 Muddle objects. A comment is totally ignored by `EVAL` but remembered
1244 and associated by `READ` with the place in the `FUNCTION` (or any
1245 other structured object) where it appeared. (This will become clearer
1246 after chapter 13.) The `"`s (double-quotes) serve to make everything
1247 between them a single Muddle object, whose `TYPE` is `STRING` (chapter
1248 7). (`SQRT` is the `SUBR` which returns the square root of its
1249 argument. It always returns a `FLOAT`.)
1250
1251 A whimsical `FUNCTION`:
1252
1253     <DEFINE ONE (THETA) ;"This FUNCTION always returns 1."
1254             <+ <SQUARE <SIN .THETA>>
1255                <SQUARE <COS .THETA>>>>$
1256     ONE
1257     <ONE 5>$
1258     0.99999994
1259     <ONE 0.23>$
1260     0.99999999
1261
1262 `ONE` always returns (approximately) one, since the sum of the squares
1263 of sin(x) and cos(x) is unity for any x. (`SIN` and `COS` always
1264 return `FLOAT`s, and each takes its argument in radians. `ATAN`
1265 (arctangent) returns its value in radians. Any other trigonometric
1266 function can be compounded from these three.)
1267
1268 Muddle doesn't have a general "to the power" `SUBR`, so let's define
1269 one using `LOG` and `EXP` (log base e, and e to a power, respectively;
1270 again, they return `FLOAT`s).
1271
1272     <DEFINE ** (NUM PWR) <EXP <* .PWR <LOG .NUM>>>>$
1273     **
1274     <** 2 2>$
1275     4.0000001
1276     <** 5 3>$
1277     125.00000
1278     <** 25 0.5>$
1279     5.0000001
1280
1281 Two `FUNCTION`s which use a single global variable (Since the `GVAL`
1282 is used, it cannot be rebound.):
1283
1284     <DEFINE START () <SETG GV 0>>$
1285     START
1286     <DEFINE STEP () <SETG GV <+ ,GV 1>>>$
1287     STEP
1288     <START>$
1289     0
1290     <STEP>$
1291     1
1292     <STEP>$
1293     2
1294     <STEP>$
1295     3
1296
1297 `START` and `STEP` take no arguments, so their argument `LIST`s are
1298 empty.
1299
1300 An interesting, but pathological, `FUNCTION`:
1301
1302     <DEFINE INC (ATM) <SET .ATM <+ ..ATM 1>>>$
1303     INC
1304     <SET A 0>$
1305     0
1306     <INC A>$
1307     1
1308     <INC A>$
1309     2
1310     .A$
1311     2
1312
1313 `INC` takes an **`ATOM`** as an argument, and `SET`s that `ATOM` to
1314 its current `LVAL` plus `1`. Note that inside `INC`, the `ATOM` `ATM`
1315 is `SET` to the `ATOM` which is its argument; thus `..ATM` returns the
1316 `LVAL` of the **argument**. However, there is a problem:
1317
1318     <SET ATM 0>$
1319     0
1320     <INC ATM>$
1321
1322     *ERROR*
1323     ARG-WRONG-TYPE
1324     +
1325     LISTENING-AT-LEVEL 2 PROCESS 1
1326     <ARGS <FRAME <FRAME>>>$
1327     [ATM 1]
1328
1329 The error occurred because `.ATM` was `ATM`, the argument to `INC`,
1330 and thus `..ATM` was `ATM` also. We really want the outermost `.` in
1331 `..ATM` to be done in the "world" (`ENVIRONMENT`) which existed **just
1332 before** `INC` was entered -- and this definition of `INC` does both
1333 applications of `LVAL` in its own "world". Techniques for doing `INC`
1334 "correctly" will be covered below. Read on.
1335
1336 Chapter 6. Data Types
1337 =====================
1338
1339 6.1. General \[1\]
1340 ------------------
1341
1342 A Muddle object consists of two parts: its `TYPE` and its "data part"
1343 (appendix 1). The interpretation of the "data part" of an object
1344 depends of course on its `TYPE`. The structural organization of an
1345 object, that is, the way it is organized in storage, is referred to as
1346 its "primitive type". While there are many different `TYPE`s of
1347 objects in Muddle, there are fewer primitive types.
1348
1349 All structured objects in Muddle are ordered sequences of elements. As
1350 such, there are `SUBR`s which operate on all of them uniformly, as
1351 ordered sequences. On the other hand, the reason for having different
1352 primitive types of structured objects is that there are useful
1353 qualities of structured objects which are mutually incompatible. There
1354 are, therefore, `SUBR`s which do not work on all structured objects:
1355 these `SUBR`s exist to take full advantage of those mutually
1356 incompatible qualities. The most-commonly-used primitive types of
1357 structured objects are discussed in chapter 7, along with those
1358 special `SUBR`s operating on them.
1359
1360 It is very easy to make a new Muddle object that differs from an old
1361 one only in `TYPE`, as long as the primitive type is unchanged. It is
1362 relatively difficult to make a new structured object that differs from
1363 an old one in primitive type, even if it has the same elements.
1364
1365 Before talking any more about structured objects, some information
1366 needs to be given about `TYPE`s in general.
1367
1368 6.2. Printed Representation \[1\]
1369 ---------------------------------
1370
1371 There are many `TYPE`s for which Muddle has no specific
1372 representation. There aren't enough different kinds of brackets. The
1373 representation used for `TYPE`s without any special representation is
1374
1375     #type representation-as-if-it-were-its-primitive-type
1376
1377 `READ` will understand that format for **any** `TYPE`, and `PRINT`
1378 will use it by default. This representational format will be referred
1379 to below as "\# notation". It was used above to represent `FUNCTION`s.
1380
1381 6.3. SUBRs Related to TYPEs
1382 ---------------------------
1383
1384 ### 6.3.1. TYPE \[1\]
1385
1386     <TYPE any>
1387
1388 returns an **`ATOM`** whose `PNAME` corresponds to the `TYPE` of
1389 *any*. There is no `TYPE` "TYPE". To type a `TYPE` (aren't homonyms
1390 wonderful?), just type the appropriate `ATOM`, like `FIX` or `FLOAT`
1391 or `ATOM` etc. However, in this document we will use the convention
1392 that a metasyntactic variable can have *type* for a "data type": for
1393 example, *foo:type* means that the `TYPE` of *foo* is `ATOM`, but the
1394 `ATOM` must be something that the `SUBR` `TYPE` can return.
1395
1396 Examples:
1397
1398     <TYPE 1>$
1399     FIX
1400     <TYPE 1.0>$
1401     FLOAT
1402     <TYPE +>$
1403     ATOM
1404     <TYPE ,+>$
1405     SUBR
1406     <TYPE GEORGE>$
1407     ATOM
1408
1409 ### 6.3.2. PRIMTYPE \[1\]
1410
1411     <PRIMTYPE any>
1412
1413 evaluates to the primitive type of *any*. The `PRIMTYPE` of *any* is
1414 an `ATOM` which also represents a `TYPE`. The way an object can be
1415 **manipulated** depends solely upon its `PRIMTYPE`; the way it is
1416 **evaluated** depends upon its `TYPE`.
1417
1418 Examples:
1419
1420     <PRIMTYPE 1>$
1421     WORD
1422     <PRIMTYPE 1.0>$
1423     WORD
1424     <PRIMTYPE ,+>$
1425     WORD
1426     <PRIMTYPE GEORGE>$
1427     ATOM
1428
1429 ### 6.3.3. TYPEPRIM \[1\]
1430
1431     <TYPEPRIM type>
1432
1433 returns the `PRIMTYPE` of an object whose `TYPE` is *type*. *type* is,
1434 as usual, an `ATOM` used to designate a `TYPE`.
1435
1436 Examples:
1437
1438     <TYPEPRIM FIX>$
1439     WORD
1440     <TYPEPRIM FLOAT>$
1441     WORD
1442     <TYPEPRIM SUBR>$
1443     WORD
1444     <TYPEPRIM ATOM>$
1445     ATOM
1446     <TYPEPRIM FORM>$
1447     LIST
1448
1449 ### 6.3.4. CHTYPE \[1\]
1450
1451     <CHTYPE any type>
1452
1453 ("change type") returns a new object that has `TYPE` *type* and the
1454 same "data part" as *any* (appendix 1).
1455
1456     <CHTYPE (+ 2 2) FORM>$
1457     <+ 2 2>
1458
1459 An error is generated if the `PRIMTYPE` of *any* is not the same as
1460 the `TYPEPRIM` of *type*. An error will also be generated if the
1461 attempted `CHTYPE` is dangerous and/or senseless, for example,
1462 `CHTYPE`ing a `FIX` to a `SUBR`. Unfortunately, there are few useful
1463 examples we can do at this point.
1464
1465 \[`CHTYPE`ing a `FIX` to a `FLOAT` or vice versa produces, in general,
1466 nonsense, since the bit formats for `FIX`es and `FLOAT`s are
1467 different. The `SUBR`s `FIX` and `FLOAT` convert between those
1468 formats. Useful obscurity: because of their internal representations
1469 on the PDP-10, `<CHTYPE <MAX> FIX>` gives the least possible `FIX`,
1470 and analogously for `MIN`.\]
1471
1472 Passing note: "\# notation" is just an instruction to `READ` saying
1473 "`READ` the representation of the `PRIMTYPE` normally and (literally)
1474 `CHTYPE` it to the specified `TYPE`". \[Or, if the `PRIMTYPE` is
1475 `TEMPLATE`, "apply the `GVAL` of the `TYPE` name (which should be a
1476 `TEMPLATE` constructor) to the given elements of the `PRIMTYPE`
1477 `TEMPLATE` as arguments."\]
1478
1479 6.4. More SUBRs Related to TYPEs
1480 --------------------------------
1481
1482 ### 6.4.1. ALLTYPES
1483
1484     <ALLTYPES>
1485
1486 returns a `VECTOR` (chapter 7) containing just those `ATOM`s which can
1487 currently be returned by `TYPE` or `PRIMTYPE`. This is the very
1488 "`TYPE` vector" (section 22.1) that the interpreter uses: look, but
1489 don't touch. No examples: try it, or see appendix 3.
1490
1491 ### 6.4.2. VALID-TYPE?
1492
1493     <VALID-TYPE? atom>
1494
1495 returns `#FALSE ()` if *atom* is not the name of a `TYPE`, and the
1496 same object that `<TYPE-C atom>` (section 19.5) returns if it is.
1497
1498 ### 6.4.3. NEWTYPE
1499
1500 Muddle is a type-extensible language, in the sense that the programmer
1501 can invent new `TYPE`s and use them in every way that the predefined
1502 `TYPE`s can be used. A program-defined `TYPE` is called a `NEWTYPE`.
1503 New `PRIMTYPE`s cannot be invented except by changing the interpreter;
1504 thus the `TYPEPRIM` of a `NEWTYPE` must be chosen from those already
1505 available. But the name of a `NEWTYPE` (an `ATOM` of course) can be
1506 chosen freely -- so long as it does not conflict with an existing
1507 `TYPE` name. More importantly, the program that defines a `NEWTYPE`
1508 can be included in a set of programs for manipulating objects of the
1509 `NEWTYPE` in ways that are more meaningful than the predefined `SUBR`s
1510 of Muddle.
1511
1512 Typically an object of a `NEWTYPE` is a structure that is a model of
1513 some entity in the real world -- or whatever world the program is
1514 concerned with -- and the elements of the structure are models of
1515 parts or aspects of the real-world entity. A `NEWTYPE` definition is a
1516 convenient way of formalizing this correspondence, of writing it down
1517 for all to see and use rather than keeping it in your head. If the
1518 defining set of programs provides functions for manipulating the
1519 `NEWTYPE` objects in all ways that are meaningful for the intended
1520 uses of the `NEWTYPE`, then any other program that wants to use the
1521 `NEWTYPE` can call the manipulation functions for all its needs, and
1522 it need never know or care about the internal details of the `NEWTYPE`
1523 objects. This technique is a standard way of providing modularity and
1524 abstraction.
1525
1526 For example, suppose you wanted to deal with airline schedules. If you
1527 were to construct a set of programs that define and manipulate a
1528 `NEWTYPE` called `FLIGHT`, then you could make that set into a
1529 standard package of programs and call on it to handle all information
1530 pertaining to scheduled airline flights. Since all `FLIGHT`s would
1531 have the same quantity of information (more or less) and you would
1532 want quick access to individual elements, you would not want the
1533 `TYPEPRIM` to be `LIST`. Since the elements would be of various
1534 `TYPE`s, you would not want the `TYPEPRIM` to be `UVECTOR` -- nor its
1535 variations `STRING` or `BYTES`. The natural choice would be a
1536 `TYPEPRIM` of `VECTOR` (although you could gain space and lose time
1537 with `TEMPLATE` instead).
1538
1539 Now, the individual elements of a `FLIGHT` would, no doubt, have
1540 `TYPE`s and meanings that don't change. The elements of a `FLIGHT`
1541 might be airline code, flight number, originating-airport code, list
1542 of intermediate stops, destination-airport code, type of aircraft,
1543 days of operation, etc. Each and every `FLIGHT` would have the airline
1544 code for its first element (say), the flight number for its second,
1545 and so on. It is natural to invent names (`ATOM`s) for these elements
1546 and always refer to the elements by name. For example, you could
1547 `<SETG AIRLINE 1>` or `<SETG AIRLINE <OFFSET 1 FLIGHT>>` -- and in
1548 either case `<MANIFEST AIRLINE>` so the compiler can generate more
1549 efficient code. Then, if the local value of `F` were a `FLIGHT`,
1550 `<AIRLINE .F>` would return the airline code, and `<AIRLINE .F AA>`
1551 would set the airline code to `AA`. Once that is done, you can forget
1552 about which element comes first: all you need to know are the names of
1553 the offsets.
1554
1555 The next step is to notice that, outside the package of `FLIGHT`
1556 functions, no one needs to know whether `AIRLINE` is just an offset or
1557 in fact a function of some kind. For example, the scheduled duration
1558 of a flight might not be explicitly stored in a `FLIGHT`, just the
1559 scheduled times of departure and arrival. But, if the package had the
1560 proper `DURATION` function for calculating the duration, then the call
1561 `<DURATION .F>` could return the duration, no matter how it is found.
1562 In this way the internal details of the package are conveniently
1563 hidden from view and abstracted away.
1564
1565 The form of `NEWTYPE` definition allows for the `TYPE`s of all
1566 components of a `NEWTYPE` to be declared (chapter 14), for use both by
1567 a programmer while debugging programs that use the `NEWTYPE` and by
1568 the compiler for generating faster code. It is very convenient to have
1569 the type declaration in the `NEWTYPE` definition itself, rather than
1570 replicating it everywhere the `NEWTYPE` is used. (If you think this
1571 declaration might be obtrusive while debugging the programs in the
1572 `NEWTYPE` package, when inconsistent improvements are being made to
1573 various programs, you can either dissociate any declaration from the
1574 `NEWTYPE` or turn off Muddle type-checking completely. Actually this
1575 declaration is typically more useful to a programmer during
1576 development than it is to the compiler.)
1577
1578     <NEWTYPE atom type>
1579
1580 returns *atom*, after causing it to become the representation of a
1581 brand-new `TYPE` whose `PRIMTYPE` is `<TYPEPRIM type>`. What `NEWTYPE`
1582 actually does is make *atom* a legal argument to `CHTYPE` and
1583 `TYPEPRIM`. (Note that names of new `TYPE`s can be blocked lexically
1584 to prevent collision with other names, just like any other `ATOM`s --
1585 chapter 15.) Objects of a `NEWTYPE`-created `TYPE` can be generated by
1586 creating an object of the appropriate `PRIMTYPE` and using `CHTYPE`.
1587 They will be `PRINT`ed (initially), and can be directly typed in, by
1588 the use of "\# notation" as described above. `EVAL` of any object
1589 whose `TYPE` was created by `NEWTYPE` is initially the object itself,
1590 and, initially, you cannot `APPLY` something of a generated `TYPE` to
1591 arguments. But see below.
1592
1593 Examples:
1594
1595     <NEWTYPE GARGLE FIX>$
1596     GARGLE
1597     <TYPEPRIM GARGLE>$
1598     WORD
1599     <SET A <CHTYPE 1 GARGLE>>$
1600     #GARGLE *000000000001*
1601     <SET B #GARGLE 100>$
1602     #GARGLE *000000000144*
1603     <TYPE .B>$
1604     GARGLE
1605     <PRIMTYPE .B>$
1606     WORD
1607
1608 ### 6.4.4. PRINTTYPE, EVALTYPE and APPLYTYPE
1609
1610     <PRINTTYPE type how>
1611
1612     <EVALTYPE type how>
1613
1614     <APPLYTYPE type how>
1615
1616 all return *type*, after specifying *how* Muddle is to deal with it.
1617
1618 These three `SUBR`s can be used to make newly-generated `TYPE`s behave
1619 in arbitrary ways, or to change the characteristics of standard Muddle
1620 `TYPE`s. `PRINTTYPE` tells Muddle how to print *type*, `EVALTYPE` how
1621 to evaluate it, and `APPLYTYPE` how to apply it in a `FORM`.
1622
1623 *how* can be either a `TYPE` or something that can be applied to
1624 arguments.
1625
1626 If *how* is a `TYPE`, Muddle will treat *type* just like the `TYPE`
1627 given as *how*. *how* must have the same `TYPEPRIM` as *type*.
1628
1629 If *how* is applicable, it will be used in the following way:
1630
1631 For `PRINTTYPE`, *how* should take one argument: the object being
1632 output. *how* should output something without formatting
1633 (`PRIN1`-style); its result is ignored. (Note: *how* cannot use an
1634 output `SUBR` on *how*'s own *type*: endless recursion will result.
1635 `OUTCHAN` is bound during the application to the `CHANNEL` in use, or
1636 to a pseudo-internal channel for `FLATSIZE` -- chapter 11.) If *how*
1637 is the `SUBR` `PRINT`, *type* will receive no special treatment in
1638 printing, that is, it will be printed as it was in an initial Muddle
1639 or immediately after its defining `NEWTYPE`.
1640
1641 For `EVALTYPE`, *how* should take one argument: the object being
1642 evaluated. The value returned by *how* will be used as `EVAL` of the
1643 object. If *how* is the `SUBR` `EVAL`, *type* will receive no special
1644 treatment in its evaluation.
1645
1646 For `APPLYTYPE`, *how* should take at least one argument. The first
1647 argument will be the object being applied: the rest will be the
1648 objects it was given as arguments. The result returned by *how* will
1649 be used as the result of the application. If *how* is the `SUBR`
1650 `APPLY`, *type* will receive no special treatment in application to
1651 arguments.
1652
1653 If any of these `SUBR`s is given only one argument, that is if *how*
1654 is omitted, it returns the currently active *how* (a `TYPE` or an
1655 applicable object), or else `#FALSE ()` if *type* is receiving no
1656 special treatment in that operation.
1657
1658 Unfortunately, these examples are fully understandable only after you
1659 have read through chapter 11.
1660
1661     <DEFINE ROMAN-PRINT (NUMB)
1662     <COND (<OR <L=? .NUMB 0> <G? .NUMB 3999>>
1663            <PRINC <CHTYPE .NUMB TIME>>)
1664           (T
1665            <RCPRINT </ .NUMB 1000> '![!\M]>
1666            <RCPRINT </ .NUMB  100> '![!\C !\D !\M]>
1667            <RCPRINT </ .NUMB   10> '![!\X !\L !\C]>
1668            <RCPRINT    .NUMB       '![!\I !\V !\X]>)>>$
1669     ROMAN-PRINT
1670
1671     <DEFINE RCPRINT (MODN V)
1672     <SET MODN <MOD .MODN 10>>
1673     <COND (<==? 0 .MODN>)
1674           (<==? 1 .MODN> <PRINC <1 .V>>)
1675           (<==? 2 .MODN> <PRINC <1 .V>> <PRINC <1 .V>>)
1676           (<==? 3 .MODN> <PRINC <1 .V>> <PRINC <1 .V>> <PRINC <1 .V>>)
1677           (<==? 4 .MODN> <PRINC <1 .V>> <PRINC <2 .V>>)
1678           (<==? 5 .MODN> <PRINC <2 .V>>)
1679           (<==? 6 .MODN> <PRINC <2 .V>> <PRINC <1 .V>>)
1680           (<==? 7 .MODN> <PRINC <2 .V>> <PRINC <1 .V>> <PRINC <1 .V>>)
1681           (<==? 8 .MODN>
1682            <PRINC <2 .V>>
1683            <PRINC <1 .V>>
1684            <PRINC <1 .V>>
1685            <PRINC <1 .V>>)
1686           (<==? 9 .MODN> <PRINC <1 .V>> <PRINC <3 .V>>)>>$
1687     RCPRINT
1688
1689     <PRINTTYPE TIME FIX> ;"fairly harmless but necessary here"$
1690     TIME
1691     <PRINTTYPE FIX ,ROMAN-PRINT>    ;"hee hee!"$
1692     FIX
1693     <+ 2 2>$
1694     IV
1695     1984$
1696     MCMLXXXIV
1697     <PRINTTYPE FIX ,PRINT>$
1698     FIX
1699
1700     <NEWTYPE GRITCH LIST>   ;"a new TYPE of PRIMTYPE LIST"$
1701     GRITCH
1702     <EVALTYPE GRITCH>$
1703     #FALSE ()
1704     <EVALTYPE GRITCH LIST>  ;"evaluated like a LIST"$
1705     GRITCH
1706     <EVALTYPE GRITCH>$
1707     LIST
1708     #GRITCH (A <+ 1 2 3> !<SET A "ABC">)    ;"Type in one."$
1709     #GRTICH (A 6 !\A !\B !\C)
1710
1711     <NEWTYPE HARRY VECTOR>  ;"a new TYPE of PRIMTYPE VECTOR"$
1712     HARRY
1713     <EVALTYPE HARRY #FUNCTION ((X) <1 .X>)>
1714         ;"When a HARRY is EVALed, return its first element."$
1715     HARRY
1716     #HARRY [1 2 3 4]$
1717     1
1718
1719     <NEWTYPE WINNER LIST>   ;"a TYPE with funny application"$
1720     WINNER
1721     <APPLYTYPE WINNER>$
1722     #FALSE ()
1723     <APPLYTYPE WINNER <FUNCTION (W "TUPLE" T) (!.W !.T)>>$
1724     WINNER
1725     <APPLYTYPE WINNER>$
1726     #FUNCTION ((W "TUPLE" T (!.W !.T))
1727     <#WINNER (A B C) <+ 1 2> q>$
1728     (A B C 3 q)
1729
1730 The following sequence makes Muddle look just like Lisp. (This example
1731 is understandable only if you know Lisp (Moon, 1974); it is included
1732 only because it is so beautiful.)
1733
1734     <EVALTYPE LIST FORM>$
1735     LIST
1736     <EVALTYPE ATOM ,LVAL>$
1737     ATOM
1738
1739 So now:
1740
1741     (+ 1 2)$
1742     3
1743     (SET 'A 5)$
1744     5
1745     A$
1746     5
1747
1748 To complete the job, of course, we would have to do some `SETG`'s:
1749 `car` is `1`, `cdr` is `,REST`, and `lambda` is `,FUNCTION`. If you
1750 really do this example, you should "undo" it before continuing:
1751
1752     <EVALTYPE 'ATOM ,EVAL>$
1753     ATOM
1754     <EVALTYPE LIST ,EVAL>$
1755     LIST
1756
1757 Chapter 7. Structured Objects
1758 =============================
1759
1760 This chapter discusses structured objects in general and the five
1761 basic structured `PRIMTYPE`s. \[We defer detailed discussion of the
1762 structured `PRIMTYPE`s `TUPLE` (section 9.2) and `STORAGE` (section
1763 22.2.2).\]
1764
1765 7.1. Manipulation
1766 -----------------
1767
1768 The following `SUBR`s operate uniformly on all structured objects and
1769 generate an error if not applied to a structured object. Hereafter,
1770 *structured* represents a structured object.
1771
1772 ### 7.1.1. LENGTH \[1\]
1773
1774     <LENGTH structured>
1775
1776 evaluates to the number of elements in *structured*.
1777
1778 ### 7.1.2. NTH \[1\]
1779
1780     <NTH structured fix>
1781
1782 evaluates to the *fix*'th element of *structured*. An error occurs if
1783 *fix* is less than 1 or greater than `<LENGTH structured>`. *fix* is
1784 optional, 1 by default.
1785
1786 ### 7.1.3. REST \[1\]
1787
1788     <REST structured fix>
1789
1790 evaluates to *structured* without its first *fix* elements. *fix* is
1791 optional, 1 by default.
1792
1793 Obscure but important side effect: `REST` actually returns
1794 *structured* "`CHTYPE`d" (but not through application of `CHTYPE`) to
1795 its `PRIMTYPE`. For example, `REST` of a `FORM` is a `LIST`. `REST`
1796 with an explicit second argument of `0` has no effect except for this
1797 `TYPE` change.
1798
1799 ### 7.1.4. PUT \[1\]
1800
1801     <PUT structured fix anything-legal>
1802
1803 first makes *anything-legal* the *fix*'th element of *structured*,
1804 then evaluates to *structured*. *anything-legal* is anything which can
1805 legally be an element of *structured*; often, this is synonymous with
1806 "any Muddle object", but see below. An error occurs if *fix* is less
1807 than 1 or greater than `<LENGTH structured>`. (`PUT` is actually more
1808 general than this -- chapter 13.)
1809
1810 ### 7.1.5. GET
1811
1812     <GET structured fix>
1813
1814 evaluates the same as `<NTH structured fix>`. It is more general than
1815 `NTH`, however (chapter 13), and is included here only for symmetry
1816 with `PUT`.
1817
1818 ### 7.1.6. APPLYing a FIX \[1\]
1819
1820 `EVAL` understands the application of an object of `TYPE` `FIX` as a
1821 "shorthand" call to `NTH` or `PUT`, depending on whether it is given
1822 one or two arguments, respectively \[unless the `APPLYTYPE` of `FIX`
1823 is changed\]. That is, `EVAL` considers the following two to be
1824 identical:
1825
1826     <fix structured>
1827     <NTH structured fix>
1828
1829 and these:
1830
1831     <fix structured object>
1832     <PUT structured fix object>
1833
1834 \[However, the compiler (Lebling, 1979) cannot generate efficient code
1835 from the longer forms unless it is sure that *fix* is a `FIX` (section
1836 9.10). The two constructs are not identical even to `EVAL`, if the
1837 order of evaluation is significant: for example, these two:
1838
1839     <NTH .X <LENGTH <SET X .Y>>>        <<LENGTH <SET X .Y>> .X>
1840
1841 are **not** identical.\]
1842
1843 ### 7.1.7. SUBSTRUC
1844
1845 `SUBSTRUC` ("substructure") facilitates the construction of structures
1846 that are composed of sub-parts of existing structures. A special case
1847 of this would be a "substring" function.
1848
1849     <SUBSTRUC from:structured rest:fix amount:fix to:structured>
1850
1851 copies the first *amount* elements of `<REST from rest>` into another
1852 object and returns the latter. All arguments are optional except
1853 *from*, which must be of `PRIMTYPE` `LIST`, `VECTOR`, `TUPLE` (treated
1854 like a `VECTOR`), `STRING`, `BYTES`, or `UVECTOR`. *rest* is `0` by
1855 default, and *amount* is all the elements by default. *to*, if given,
1856 receives the copied elements, starting at its beginning; it must be an
1857 object whose `TYPE` is the `PRIMTYPE` of *from* (a `VECTOR` if *from*
1858 is a `TUPLE`). If *to* is not given, a new object is returned, of
1859 `TYPE` `<PRIMTYPE from>` (a `VECTOR` if *from* is a `TUPLE`), which
1860 **never** shares with *from*. The copying is done in one fell swoop,
1861 not an element at a time. Note: due to an implementation restriction,
1862 if *from* is of `PRIMTYPE` `LIST`, it must not share any elements with
1863 *to*.
1864
1865 7.2. Representation of Basic Structures
1866 ---------------------------------------
1867
1868 ### 7.2.1. LIST \[1\]
1869
1870     ( element-1 element-2 ... element-N )
1871
1872 represents a `LIST` of *N* elements.
1873
1874 ### 7.2.2. VECTOR \[1\]
1875
1876     [ element-1 element-2 ... element-N ]
1877
1878 represents a `VECTOR` of *N* elements. \[A `TUPLE` is just like a
1879 `VECTOR`, but it lives on the control stack.\]
1880
1881 ### 7.2.3. UVECTOR \[1\]
1882
1883     ![ element-1 element-2 ... element-N !]
1884
1885 represents a `UVECTOR` (uniform vector) of *N* elements. The second
1886 `!` (exclamation-point) is optional for input. \[A `STORAGE` is an
1887 archaic kind of `UVECTOR` that is not garbage-collected.\]
1888
1889 ### 7.2.4. STRING \[1\]
1890
1891     "characters"
1892
1893 represents a `STRING` of ASCII text. A `STRING` containing the
1894 character `"` (double-quote) is represented by placing a `\`
1895 (backslash) before the double-quote inside the `STRING`. A `\` in a
1896 `STRING` is represented by two consecutive backslashes.
1897
1898 ### 7.2.5. BYTES
1899
1900     #n {element-1 element-2 ... element-N}
1901
1902 represents a string of *N* uniformly-sized bytes of size *n* bits.
1903
1904 ### 7.2.6. TEMPLATE
1905
1906     { element-1 element-2 ... element-N }
1907
1908 represents a `TEMPLATE` of *N* elements when output, not input -- when
1909 input, a `#` and a `TYPE` must precede it.
1910
1911 7.3. Evaluation of Basic Structures
1912 -----------------------------------
1913
1914 This section and the next two describe how `EVAL` treats the basic
1915 structured `TYPE`s \[in the absence of any modifying `EVALTYPE` calls
1916 (section 6.4.4)\].
1917
1918 `EVAL` of a `STRING` \[or `BYTES` or `TEMPLATE`\] is just the original
1919 object.
1920
1921 `EVAL` acts exactly the same with `LIST`s, `VECTOR`s, and `UVECTOR`s:
1922 it generates a **new** object with elements equal to `EVAL` of the
1923 elements it is given. This is one of the simplest means of
1924 constructing a structure. However, see section 7.7.
1925
1926 7.4. Examples \[1\]
1927 -------------------
1928
1929     (1 2 <+ 3 4>)$
1930     (1 2 7)
1931     <SET FOO [5 <- 3> <TYPE "ABC">]>$
1932     [5 -3 STRING]
1933     <2 .FOO>$
1934     -3
1935     <TYPE <3 .FOO>>$
1936     ATOM
1937     <SET BAR ![("meow") (.FOO)]>$
1938     ![("meow") ([5 -3 STRING])!]
1939     <LENGTH .BAR>$
1940     2
1941     <REST <1 <2 .BAR>>>$
1942     [-3 STRING]
1943     [<SUBSTRUC <1 <2 .BAR>> 0 2>]$
1944     [[5 -3]]
1945     <PUT .FOO 1 SNEAKY>          ;"Watch out for .BAR !"$
1946     [SNEAKY -3 STRING]
1947     .BAR$
1948     ![("meow") ([SNEAKY -3 STRING])!]
1949     <SET FOO <REST <1 <1 .BAR>> 2>>$
1950     "ow"
1951     .BAR$
1952     ![("meow") ([SNEAKY -3 STRING])!]
1953
1954 7.5. Generation of Basic Structures
1955 -----------------------------------
1956
1957 Since `LIST`s, `VECTOR`s, `UVECTOR`s, and `STRING`s \[and `BYTES`es\]
1958 are all generated in a fairly uniform manner, methods of generating
1959 them will be covered together here. \[`TEMPLATE`s cannot be generated
1960 by the interpreter itself: see Lebling (1979).\]
1961
1962 ### 7.5.1. Direct Representation \[1\]
1963
1964 Since `EVAL` of a `LIST`, `VECTOR`, or `UVECTOR` is a new `LIST`,
1965 `VECTOR`, or `UVECTOR` with elements which are `EVAL` of the original
1966 elements, simply evaluating a representation of the object you want
1967 will generate it. (Care must be taken when representing a `UVECTOR`
1968 that all elements have the same `TYPE`.) This method of generation was
1969 exclusively used in the examples of section 7.4. Note that new
1970 `STRING`s \[and `BYTES`es\] will not be generated in this manner,
1971 since the contents of a `STRING` are not interpreted or copied by
1972 `EVAL`. The same is true of any other `TYPE` whose `TYPEPRIM` happens
1973 to be `LIST`, `VECTOR`, or `UVECTOR` \[again, assuming it neither has
1974 been `EVALTYPE`d nor has a built-in `EVALTYPE`, as do `FORM` and
1975 `SEGMENT`\].
1976
1977 ### 7.5.2. QUOTE \[1\]
1978
1979 `QUOTE` is an `FSUBR` of one argument which returns its argument
1980 unevaluated. `READ` and `PRINT` understand the character `'`
1981 (single-quote) as an abbreviation for a call to `QUOTE`, the way
1982 period and comma work for `LVAL` and `GVAL`. Examples:
1983
1984     <+ 1 2>$
1985     3
1986     '<+ 1 2>$
1987     <+ 1 2>
1988
1989 Any `LIST`, `VECTOR`, or `UVECTOR` in a program that is constant and
1990 need not have its elements evaluated should be represented directly
1991 and **inside a call to `QUOTE`.** This technique prevents the
1992 structure from being copied each time that portion of the program is
1993 executed. Examples hereafter will adhere to this dictum. (Note: one
1994 should **never** modify a `QUOTE`d object. The compiler will one day
1995 put it in read-only (pure) storage.)
1996
1997 ### 7.5.3. LIST, VECTOR, UVECTOR, and STRING (the SUBRs) \[1\]
1998
1999 Each of the `SUBR`s `LIST`, `VECTOR`, `UVECTOR`, and `STRING` takes
2000 any number of arguments and returns an object of the appropriate
2001 `TYPE` whose elements are `EVAL` of its arguments. There are
2002 limitations on what the arguments to `UVECTOR` and `STRING` may `EVAL`
2003 to, due to the nature of the objects generated. See sections 7.6.5 and
2004 7.6.6.
2005
2006 `LIST`, `VECTOR`, and `UVECTOR` are generally used only in special
2007 cases, since Direct Representation usually produces exactly the same
2008 effect (in the absence of errors), and the intention is more apparent.
2009 \[Note: if `.L` is a `LIST`, `<LIST !.L>` makes a copy of `.L` whereas
2010 `(!.L)` doesn't; see section 7.7.\] `STRING`, on the other hand,
2011 produces effect very different from literal `STRING`s.
2012
2013 Examples:
2014
2015     <LIST 1 <+ 2 3> ABC>$
2016     (1 5 ABC)
2017     (1 <+ 2 3> ABC)$
2018     (1 5 ABC)
2019     <STRING "A" <2 "QWERT"> <REST "ABC"> "hello">$
2020     "AWBChello"
2021     "A <+ 2 3> (5)"$
2022     "A <+ 2 3> (5)"
2023
2024 ### 7.5.4. ILIST, IVECTOR, IUVECTOR, and ISTRING \[1\]
2025
2026 Each of the `SUBR`s `ILIST`, `IVECTOR`, `IUVECTOR`, and `ISTRING`
2027 ("implicit" or "iterated" whatever) creates and returns an object of
2028 the obvious `TYPE`. The format of an application of any of them is
2029
2030     < Ithing number-of-elements:fix expression:any >
2031
2032 where *Ithing* is one of `ILIST`, `IVECTOR`, `IUVECTOR`, or `ISTRING`.
2033 An object of `LENGTH` *number-of-elements* is generated, whose
2034 elements are `EVAL` of *expression*.
2035
2036 *expression* is optional. When it is not specified, `ILIST`,
2037 `IVECTOR`, and `IUVECTOR` return objects filled with objects of `TYPE`
2038 `LOSE` (`PRIMTYPE` `WORD`) as place holders, a `TYPE` which can be
2039 passed around and have its `TYPE` checked, but otherwise is an illegal
2040 argument. If *expression* is not specified in `ISTRING`, you get a
2041 `STRING` made up of `^@` characters.
2042
2043 When *expression* is supplied as an argument, it is re-`EVAL`uated
2044 each time a new element is generated. (Actually, `EVAL` of
2045 *expression* is re-`EVAL`uated, since all of these are `SUBR`s.) See
2046 the last example for how this argument may be used.
2047
2048 \[By the way, in a construct like `<IUVECTOR 9 '.X>`, even if the
2049 `LVAL` of `X` evaluates to itself, so that the `'` could be omitted
2050 without changing the result, the compiler is much happier with the `'`
2051 in place.\]
2052
2053 `IUVECTOR` and `ISTRING` again have limitations on what *expression*
2054 may `EVAL` to; again, see sections 7.6.5 and 7.6.6.
2055
2056 Examples:
2057
2058     <ILIST 5 6>$
2059     (6 6 6 6 6)
2060     <IVECTOR 2>$
2061     [#LOSE *000000000000* #LOSE *000000000000*]
2062
2063     <SET A 0>$
2064     0
2065     <IUVECTOR 9 '<SET A <+ .A 1>>>$
2066     ![1 2 3 4 5 6 7 8 9!]
2067
2068 ### 7.5.5. FORM and IFORM
2069
2070 Sometimes the need arises to create a `FORM` without `EVAL`ing it or
2071 making it the body of a `FUNCTION`. In such cases the `SUBR`s `FORM`
2072 and `IFORM` ("implicit form") can be used (or `QUOTE` can be used).
2073 They are entirely analogous to `LIST` and `ILIST`. Example:
2074
2075     <DEFINE INC-FORM (A)
2076             <FORM SET .A <FORM + 1 <FORM LVAL .A>>>>$
2077     INC-FORM
2078     <INC-FORM FOO>$
2079     <SET FOO <+ 1 .FOO>>
2080
2081 7.6. Unique Properties of Primitive TYPEs
2082 -----------------------------------------
2083
2084 ### 7.6.1. LIST (the PRIMTYPE) \[1\]
2085
2086 An object of `PRIMTYPE` `LIST` may be considered as a "pointer chain"
2087 (appendix 1). Any Muddle object may be an element of a `PRIMTYPE`
2088 `LIST`. It is easy to add and remove elements of a `PRIMTYPE` `LIST`,
2089 but the higher N is, the longer it takes to refer to the Nth element.
2090 The `SUBR`s which work only on objects of `PRIMTYPE` `LIST` are these:
2091
2092 #### 7.6.1.1. PUTREST \[1\]
2093
2094     <PUTREST head:primtype-list tail:primtype-list>
2095
2096 changes *head* so that `<REST head>` is *tail* (actually
2097 `<CHTYPE tail LIST>`), then evaluates to *head*. Note that this
2098 actually changes *head*; it also changes anything having *head* as an
2099 element or a value. For example:
2100
2101     <SET BOW [<SET ARF (B W)>]>$
2102     [(B W)]
2103     <PUTREST .ARF '(3 4)>$
2104     (B 3 4)
2105     .BOW$
2106     [(B 3 4)]
2107
2108 `PUTREST` is probably most often used to splice lists together. For
2109 example, given that `.L` is of `PRIMTYPE` `LIST`, to leave the first
2110 *m* elements of it intact and take out the next *n* elements of it,
2111 `<PUTREST <REST .L <- m 1>> <REST .L <+ m n>>>`. Specifically,
2112
2113     <SET NUMS (1 2 3 4 5 6 7 8 9)>$
2114     (1 2 3 4 5 6 7 8 9)
2115     <PUTREST <REST .NUMS 3> <REST .NUMS 7>>$
2116     (4 8 9)
2117     .NUMS$
2118     (1 2 3 4 8 9)
2119
2120 #### 7.6.1.2. CONS
2121
2122     <CONS new list>
2123
2124 ("construct") adds *new* to the front of *list*, without copying
2125 *list*, and returns the resulting `LIST`. References to *list* are not
2126 affected.
2127
2128 \[Evaluating `<CONS .E .LIST>` is equivalent to evaluating
2129 `(.E !.LIST)` (section 7.7) but is less preferable to the compiler
2130 (Lebling, 1979).\]
2131
2132 ### 7.6.2. "Array" PRIMTYPEs \[1\]
2133
2134 `VECTORS`, `UVECTOR`s, and `STRING`s \[and `BYTES`es and `TEMPLATE`s\]
2135 may be considered as "arrays" (appendix 1). It is easy to refer to the
2136 Nth element irrespective of how large N is, and it is relatively
2137 difficult to add and delete elements. The following `SUBR`s can be
2138 used only with an object of `PRIMTYPE` `VECTOR`, `UVECTOR`, or
2139 `STRING` \[or `BYTES` or `TEMPLATE`\]. (In this section *array*
2140 represents an object of such a `PRIMTYPE`.)
2141
2142 #### 7.6.2.1. BACK \[1\]
2143
2144     <BACK array fix>
2145
2146 This is the opposite of `REST`. It evaluates to *array*, with *fix*
2147 elements put back onto its front end, and changed to its `PRIMTYPE`.
2148 *fix* is optional, 1 by default. If *fix* is greater than the number
2149 of elements which have been `REST`ed off, an error occurs. Example:
2150
2151     <SET ZOP <REST '![1 2 3 4] 3>>$
2152     ![4!]
2153     <BACK .ZOP 2>$
2154     ![2 3 4!]
2155     <SET S <REST "Right is might." 15>>$
2156     ""
2157     <BACK .S 6>$
2158     "might."
2159
2160 #### 7.6.2.2. TOP \[1\]
2161
2162     <TOP array>
2163
2164 "`BACK`s up all the way" -- that is, evaluates to *array*, with all
2165 the elements which have been `REST`ed off put back onto it, and
2166 changed to its `PRIMTYPE`. Example:
2167
2168     <TOP .ZOP>$
2169     ![1 2 3 4!]
2170
2171 ### 7.6.3. "Vector" PRIMTYPEs
2172
2173 #### 7.6.3.1. GROW
2174
2175     <GROW vu end:fix beg:fix>
2176
2177 adds/removes elements to/from either or both ends of *vu*, and returns
2178 the entire (`TOP`ped) resultant object. *vu* can be of `PRIMTYPE`
2179 `VECTOR` or `UVECTOR`. *end* specifies a lower bound for the number of
2180 elements to be added to the **end** of *vu*; *beg* specifies the same
2181 for the **beginning**. A negative *fix* specifies removal of elements.
2182
2183 The number of elements added to each respective end is *end* or *beg*
2184 **increased** to an integral multiple of *X*, where *X* is 32 for
2185 `PRIMTYPE` `VECTOR` and 64 for `PRIMTYPE` `UVECTOR` (`1` produces 32
2186 or 64; `-1` produces 0). The elements added will be `LOSE`s if *vu* is
2187 of `PRIMTYPE` `VECTOR`, and "empty" whatever-they-are's if *vu* is of
2188 `PRIMTYPE` `UVECTOR`. An "empty" object of `PRIMTYPE` `WORD` contains
2189 zero. An "empty" object of any other `PRIMTYPE` has zero in its "value
2190 word" (appendix 1) and is not safe to play with: it should be replaced
2191 via `PUT`.
2192
2193 Note that, if elements are added to the beginning of *vu*,
2194 previously-existing references to *vu* will have to use `TOP` or
2195 `BACK` to get at the added elements.
2196
2197 **Caution:** `GROW` is a **very** expensive operation; it **requires**
2198 a garbage collection (section 22.4) **every** time it is used. It
2199 should be reserved for **very special** circumstances, such as where
2200 the pattern of shared elements is terribly important.
2201
2202 Example:
2203
2204     <SET A '![1]>$
2205     ![1!]
2206     <GROW .A 0 1>$
2207     ![0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2208     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2209     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1!]
2210     .A$
2211     ![1!]
2212
2213 #### 7.6.3.2. SORT
2214
2215 This `SUBR` will sort `PRIMTYPE`s `VECTOR`, `UVECTOR` and `TUPLE`
2216 (section 9.2). It works most efficiently if the sort keys are of
2217 `PRIMTYPE` `WORD`, `ATOM` or `STRING`. However, the keys may be of any
2218 `TYPE`, and `SORT` will still work. `SORT` acts on fixed-length
2219 records which consist of one or more contiguous elements in the
2220 structure being sorted. One element in the record is declared to be
2221 the sort key. Also, any number of additional structures can be
2222 rearranged based on how the main structure is sorted.
2223
2224     <SORT pred s1 l1 off s2 l2 s3 l3 sN lN>
2225
2226 where:
2227
2228 *pred* is either (see chapter 8 for information about predicates):
2229
2230 1.  `TYPE` `FALSE`, in which case the `TYPE`s of all the sort keys
2231     must be the same; they must be of `PRIMTYPE` `WORD`, `STRING` or
2232     `ATOM`; and a radix-exchange sort is used; or
2233 2.  something applicable to two sort keys which returns `TYPE` `FALSE`
2234     if the first is not bigger than the second, in which case a shell
2235     sort is used. For example, `,G?` sorts numbers in ascending order,
2236     `,L?` in descending order. Note: if your *pred* is buggy, the
2237     `SORT` may never terminate.
2238
2239 *s1* ... *sN* are the (`PRIMTYPE`) `VECTOR`s, `UVECTOR`s or `TUPLE`s
2240 being sorted, and *s1* contains the sort keys;
2241
2242 *l1* ... *lN* are the corresponding lengths of sort records (optional,
2243 one by default); and
2244
2245 *off* is the offset from start of record to sort key (optional, zero
2246 by default).
2247
2248 `SORT` returns the sorted *s1* as a value.
2249
2250 Note: the `SUBR` `SORT` calls the `RSUBR` (chapter 19) `SORTX`; if the
2251 `RSUBR` must be loaded, you may see some output from the loader on
2252 your terminal.
2253
2254 Examples:
2255
2256     <SORT <> <SET A <IUVECTOR 500 '<RANDOM>>>>$
2257     ![...!]
2258
2259 sorts a `UVECTOR` of random integers.
2260
2261     <SET V [1 MONEY 2 SHOW 3 READY 4 GO]>$
2262     [...]
2263     <SORT <> .V 2 1>$
2264     [4 GO 1 MONEY 3 READY 2 SHOW]
2265
2266     <SORT ,L? .V 2>$
2267     [4 GO 3 READY 2 SHOW 1 MONEY]
2268     .V$
2269     [4 GO 3 READY 2 SHOW 1 MONEY]
2270
2271     <SORT <> ![2 1 4 3 6 5 8 7] 1 0 .V>$
2272     ![1 2 3 4 5 6 7 8!]
2273     .V$
2274     [GO 4 READY 3 SHOW 2 MONEY 1]
2275
2276 The first sort was based on the `ATOM`s' `PNAME`s, considering records
2277 to be two elements. The second one sorted based on the `FIX`es. The
2278 third interchanged pairs of elements of each of its structured
2279 arguments.
2280
2281 ### 7.6.4. VECTOR (the PRIMTYPE) \[1\]
2282
2283 Any Muddle object may be an element of a `PRIMTYPE` `VECTOR`. A
2284 `PRIMTYPE` `VECTOR` takes two words of storage more than an equivalent
2285 `PRIMTYPE` `LIST`, but takes it all in a contiguous chunk, whereas a
2286 `PRIMTYPE` `LIST` may be physically spread out in storage (appendix
2287 1). There are no `SUBR`s or `FSUBR`s which operate only on `PRIMTYPE`
2288 `VECTOR`.
2289
2290 ### 7.6.5. UVECTOR (the PRIMTYPE) \[1\]
2291
2292 The difference between `PRIMTYPE`s `UVECTOR` and `VECTOR` is that
2293 every element of a `PRIMTYPE` `UVECTOR` must be of the same `TYPE`. A
2294 `PRIMTYPE` `UVECTOR` takes approximately half the storage of a
2295 `PRIMTYPE` `VECTOR` or `PRIMTYPE` `LIST` and, like a `PRIMTYPE`
2296 `VECTOR`, takes it in a contiguous chunk (appendix 1).
2297
2298 \[Note: due to an implementation restriction (appendix 1), `PRIMTYPE`
2299 `STRING`s, `BYTES`es, `LOCD`s (chapter 12), and objects on the control
2300 stack (chapter 22) may **not** be elements of `PRIMTYPE` `UVECTOR`s.\]
2301
2302 The "same `TYPE`" restriction causes an equivalent restriction to
2303 apply to `EVAL` of the arguments to either of the `SUBR`s `UVECTOR` or
2304 `IUVECTOR`. Note that attempting to say
2305
2306     ![1 .A!]
2307
2308 will cause `READ` to produce an error, since you're attempting to put
2309 a `FORM` and a `FIX` into the same `UVECTOR`. On the other hand,
2310
2311     <UVECTOR 1 .A>
2312
2313 is legal, and will `EVAL` to the appropriate `UVECTOR` without error
2314 if `.A` `EVAL`s to a `TYPE` `FIX`.
2315
2316 The following `SUBR`s work on `PRIMTYPE` `UVECTOR`s along.
2317
2318 #### 7.6.5.1. UTYPE \[1\]
2319
2320     <UTYPE primtype-uvector>
2321
2322 ("uniform type") evaluates to the `TYPE` of every element in its
2323 argument. Example:
2324
2325     <UTYPE '![A B C]>$
2326     ATOM
2327
2328 #### 7.6.5.2. CHUTYPE \[1\]
2329
2330     <CHUTYPE uv:primtype-uvector type>
2331
2332 ("change uniform type") changes the `UTYPE` of *uv* to *type*,
2333 simultaneously changing the `TYPE` of all elements of *uv*, and
2334 returns the new, changed, *uv*. This works only when the `PRIMTYPE` of
2335 the elements of *uv* can remain the same through the whole procedure.
2336 (Exception: a *uv* of `UTYPE` `LOSE` can be `CHUTYPE`d to any *type*
2337 (legal in a `UVECTOR` of course); the resulting elements are "empty",
2338 as for `GROW`.)
2339
2340 `CHUTYPE` actually changes *uv*; hence **all** references to that
2341 object will reflect the change. This is quite different from `CHTYPE`.
2342
2343 Examples:
2344
2345     <SET LOST <IUVECTOR 2>>$
2346     ![#LOSE *000000000000* #LOSE *000000000000*!]
2347     <UTYPE .LOST>$
2348     LOSE
2349     <CHUTYPE .LOST FORM>$
2350     ![<> <>!]
2351     .LOST$
2352     ![<> <>!]
2353     <CHUTYPE .LOST LIST>$
2354     ![() ()!]
2355
2356 ### 7.6.6. STRING (the PRIMTYPE) and CHARACTER \[1\]
2357
2358 The best mental image of a `PRIMTYPE` `STRING` is a `PRIMTYPE`
2359 `UVECTOR` of `CHARACTER`s -- where `CHARACTER` is the Muddle `TYPE`
2360 for a single ASCII character. The representation of a `CHARACTER`, by
2361 the way, is
2362
2363     !\any-ASCII-character
2364
2365 That is, the characters `!\` (exclamation-point backslash) preceding a
2366 single ASCII character represent the corresponding object of `TYPE`
2367 `CHARACTER` (`PRIMTYPE` `WORD`). (The characters `!"`
2368 (exclamation-point double-quote) preceding a character are also
2369 acceptable for inputting a `CHARACTER`, for historical reasons.)
2370
2371 The `SUBR` `ISTRING` will produce an error if you give it an argument
2372 that produces a non-`CHARACTER`. `STRING` can take either `CHARACTER`s
2373 or `STRING`s.
2374
2375 There are no `SUBR`s which uniquely manipulate `PRIMTYPE` `STRING`s,
2376 but some are particularly useful in connection with them:
2377
2378 #### 7.6.6.1. ASCII \[1\]
2379
2380     <ASCII fix-or-character>
2381
2382 If its argument is of `TYPE` `FIX`, `ASCII` evaluates to the
2383 `CHARACTER` with the 7-bit ASCII code of its argument. Example:
2384 `<ASCII 65>` evaluates to `!\A`.
2385
2386 If its argument is of `TYPE` `CHARACTER`, `ASCII` evaluates to the
2387 `FIX`ed-point number which is its argument's 7-bit ASCII code.
2388 Example: `<ASCII !\Z>` evaluates to `90`.
2389
2390 \[Actually, a `FIX` can be `CHTYPE`d to a `CHARACTER` (or vice versa)
2391 directly, but `ASCII` checks in the former case that the `FIX` is
2392 within the permissible range.\]
2393
2394 #### 7.6.6.2. PARSE \[1\]
2395
2396     <PARSE string radix:fix>
2397
2398 `PARSE` applies to its argument `READ`'s algorithm for converting
2399 ASCII representations to Muddle objects and returns the **first**
2400 object created. The remainder of *string*, after the first object
2401 represented, is ignored. *radix* (optional, ten by default) is used
2402 for converting any `FIX`es that occur. \[See also sections 15.7.2 and
2403 17.1.3 for additional arguments.\]
2404
2405 #### 7.6.6.3. LPARSE \[1\]
2406
2407 `LPARSE` ("list parse") is exactly like `PARSE` (above), except that
2408 it parses the **entire** *string* and returns a `LIST` of **all**
2409 objects created. If given an empty `STRING` or one containing only
2410 separators, `LPARSE` returns an empty `LIST`, whereas `PARSE` gets an
2411 error.
2412
2413 #### 7.6.6.4. UNPARSE \[1\]
2414
2415     <UNPARSE any radix:fix>
2416
2417 `UNPARSE` applies to its argument `PRINT`'s algorithm for converting
2418 Muddle objects to ASCII representations and returns a `STRING` which
2419 contains the `CHARACTER`s `PRINT` would have typed out. \[However,
2420 this `STRING` will **not** contain any of the gratuitous
2421 carriage-returns `PRINT` adds to accommodate a `CHANNEL`'s finite
2422 line-width (section 11.2.8).\] *radix* (optional, ten by default) is
2423 used for converting any `FIX`es that occur.
2424
2425 ### 7.6.7. BYTES
2426
2427 A (`PRIMTYPE`) `BYTES` is a string of uniformly-sized bytes. The bytes
2428 can be any size between 1 and 36 bits inclusive. A `BYTES` is similar
2429 in some ways to a `UVECTOR` of `FIX`es and in some ways to a `STRING`
2430 of non-seven-bit bytes. The elements of a `BYTES` are always of `TYPE`
2431 `FIX`.
2432
2433 The `SUBR`s `BYTES` and `IBYTES` are similar to `STRING` and
2434 `ISTRING`, respectively, except that each of the former takes a first
2435 argument giving the size of the bytes in the generated `BYTES`.
2436 `BYTES` takes one required argument which is a `FIX` specifying a byte
2437 size and any number of `PRIMTYPE` `WORD`s. It returns an object of
2438 `TYPE` `BYTES` with that byte size containing the objects as elements.
2439 These objects will be `ANDB`ed with the appropriate mask of 1-bits to
2440 fit in the byte size. `IBYTES` takes two required `FIX`es and one
2441 optional argument. It uses the first `FIX` to specify the byte size
2442 and the second to specify the number of elements. The third argument
2443 is repeatedly evaluated to generate `FIX`es that become elements of
2444 the `BYTES` (if it is omitted, bytes filled with zeros are generated).
2445 The analog to `UTYPE` is `BYTE-SIZE`. Examples:
2446
2447     <BYTES 3 <+ 2 2> 9 -1>$
2448     #3 {4 1 7}
2449     <SET A 0>$
2450     0
2451     <IBYTES 3 9 '<SET A <+ .A 1>>>$
2452     #3 {1 2 3 4 5 6 7 0 1}
2453     <IBYTES 3 4>$
2454     #3 {0 0 0 0}
2455     <BYTE-SIZE <BYTES 1>>$
2456     1
2457
2458 ### 7.6.8. TEMPLATE
2459
2460 A `TEMPLATE` is similar to a PL/I "structure" of one level: the
2461 elements are packed together and reduced in size to save storage
2462 space, while an auxiliary internal data structure describes the
2463 packing format and the elements' real `TYPE`s (appendix 1). The
2464 interpreter is not able to create objects of `PRIMTYPE` `TEMPLATE`
2465 (Lebling, 1979); however, it can apply the standard built-in
2466 Subroutines to them, with the same effects as with other "arrays".
2467
2468 7.7. SEGMENTs \[1\]
2469 -------------------
2470
2471 Objects of `TYPE` `SEGMENT` (whose `TYPEPRIM` is `LIST`) look very
2472 much like `FORM`s. `SEGMENT`s, however, undergo a non-standard
2473 evaluation designed to ease the construction of structured objects
2474 from elements of other structured objects.
2475
2476 ### 7.7.1. Representation \[1\]
2477
2478 The representation of an object of `TYPE` `SEGMENT` is the following:
2479
2480     !< func arg-1 arg-2 ... arg-N !>
2481
2482 where the second `!` (exclamation-point) is optional, and *fun* and
2483 *arg-1* through *arg-N* are any legal constituents of a `FORM` (that
2484 is, anything). The pointed brackets can be implicit, as in the period
2485 and comma notation for `LVAL` and `GVAL`.
2486
2487 All of the following are `SEGMENT`s:
2488
2489     !<3 .FOO>    !.FOO    !,FOO
2490
2491 ### 7.7.2. Evaluation \[1\]
2492
2493 A `SEGMENT` is evaluated in exactly the same manner as a `FORM`, with
2494 the following three exceptions:
2495
2496 1.  It had better be done inside an `EVAL` of a structure; otherwise
2497     an error occurs. (See special case of `FORM`s in section 7.7.5.)
2498 2.  It had better `EVAL` to a structured object; otherwise an error
2499     occurs.
2500 3.  What actually gets inserted into the structure being built are the
2501     elements of the structure returned by the `FORM`-like evaluation.
2502
2503 ### 7.7.3 Examples \[1\]
2504
2505     <SET ZOP '![2 3 4]>$
2506     ![2 3 4!]
2507     <SET ARF (B 3 4)>$
2508     (B 3 4)
2509     (.ARF !.ZOP)$
2510     ((B 3 4) 2 3 4)
2511     ![!.ZOP !<REST .ARF>!]$
2512     ![2 3 4 3 4!]
2513
2514     <SET S "STRUNG.">$
2515     "STRUNG."
2516     (!.S)$
2517     (!\S !\T !\R !\U !\N !\G !\.)
2518
2519     <SET NIL ()>$
2520     ()
2521     [!.NIL]$
2522     []
2523
2524 ### 7.7.4. Note on Efficiency \[1\]
2525
2526 Most of the cases in which is is possible to use `SEGMENT`s require
2527 `EVAL` to generate an entire new object. Naturally, this uses up both
2528 storage and time. However, there is one case which it is possible to
2529 handle without copying, and `EVAL` uses it. When the structure being
2530 built is a `PRIMTYPE` `LIST`, and the segment value of a `PRIMTYPE`
2531 `LIST` is the last (rightmost) element being concatenated, that last
2532 `PRIMTYPE` `LIST` is not copied. This case is similar to `CONS` and is
2533 the principle reason why `PRIMTYPE` `LIST`s have their structures more
2534 easily varied than `PRIMTYPE` `VECTOR` or `UVECTOR`.
2535
2536 Examples:
2537
2538     .ARF$
2539     (B 3 4)
2540
2541 This does not copy ARF:
2542
2543     (1 2 !.ARF)$
2544     (1 2 B 3 4)
2545
2546 These do:
2547
2548     (1 !.ARF 2)              ;"not last element"$
2549     (1 B 3 4 2)
2550     [1 2 !.ARF]              ;"not PRIMTYPE LIST"$
2551     [1 2 B 3 4]
2552     (1 2 !.ARF !<REST '(1)>) ;"still not last element"$
2553     (1 2 B 3 4)
2554
2555 Note the following, which occurs because copying does **not** take
2556 place:
2557
2558     <SET DOG (A !.ARF)>$
2559     (A B 3 4)
2560     <PUT .ARF 1 "BOWOW">$
2561     ("BOWOW" 3 4)
2562     .DOG$
2563     (A "BOWOW" 3 4)
2564     <PUT .DOG 3 "WOOF">$
2565     (A "BOWOW" "WOOF" 4)
2566     .ARF$
2567     ("BOWOW" "WOOF" 4)
2568
2569 Since `ARF` was not copied, it was literally part of `DOG`. Hence,
2570 when an element of `ARF` was changed, `DOG` was changed. Similarly,
2571 when an element of `DOG` which `ARF` shared was changed, `ARF` was
2572 changed too.
2573
2574 ### 7.7.5. SEGMENTs in FORMs \[1\]
2575
2576 When a `SEGMENT` appears as an element of a `FORM`, the effect is
2577 approximately the same as if the elements of the `EVAL` of the
2578 `SEGMENT` were in the `FORM`. Example:
2579
2580     <SET A '![1 2 3 4]>$
2581     ![1 2 3 4!]
2582     <+ !.A 5>$
2583     15
2584
2585 Note: the elements of the structure segment-evaluated in a `FORM` are
2586 **not** re-evaluated if the thing being applied is a `SUBR`. Thus if
2587 `.A` were `(1 2 <+ 3 4> 5)`, the above example would produce an error:
2588 you can't add up `FORM`s.
2589
2590 You could perform the same summation of `5` and the elements of `A` by
2591 using
2592
2593     <EVAL <CHTYPE (+ !.A 5) FORM>>
2594
2595 (Note that `EVAL` must be explicitly called as a `SUBR`; if it were
2596 not so called, you would just get the `FORM` `<+ 1 2 3 4 5>` -- not
2597 its "value".) However, the latter is more expensive both in time and
2598 in storage: when you use the `SEGMENT` directly in the `FORM`, a new
2599 `FORM` is, in fact, **not** generated as it is in the latter case.
2600 (The elements are put on "the control stack" with the other
2601 arguments.)
2602
2603 7.8. Self-referencing Structures
2604 --------------------------------
2605
2606 It is possible for a structured object to "contain" itself, either as
2607 a subset or as an element, as an element of a structured element, etc.
2608 Such an object cannot be `PRINT`ed, because recursion begins and never
2609 terminates. Warning: if you try the examples in this section with a
2610 live Muddle, be sure you know how to use `^S` (section 1.2) to save
2611 `PRINT` from endless agony. (Certain constructs with `ATOM`s can give
2612 `PRINT` similar trouble: see chapters 12 and 15.)
2613
2614 ### 7.8.1. Self-subset
2615
2616     <PUTREST head:primtype-list tail:primtype-list>
2617
2618 If *head* is a subset of *tail*, that is, if `<REST tail fix>` is the
2619 same object as `<REST head 0>` for some *fix*, then both *head* and
2620 *tail* will be "circular" (and this self-referencing) after the
2621 `PUTREST`. Example:
2622
2623     <SET WALTZ (1 2 3)>$
2624     (1 2 3)
2625     <PUTREST <REST .WALTZ 2> .WALTZ>$
2626     (3 1 2 3 1 2 3 1 2 3 1 2 3 ...
2627
2628 ### 7.8.2. Self-element
2629
2630     <PUT s1:structured fix s2:structured>
2631
2632 If *s1* is the same object as *s2*, then it will "contain" itself (and
2633 thus be self-referencing) after the `PUT`. Examples:
2634
2635     <SET S <LIST 1 2 3>>        ;"or VECTOR"$
2636     (1 2 3)
2637     <PUT .S 3 .S>$
2638     (1 2 (1 2 (1 2 (1 2 ...
2639     <SET U ![![]]>$
2640     ![![!]!]
2641     <PUT .U 1 .U>$
2642     ![![![![![![...
2643
2644 Test your reaction time or your terminal's bracket-maker. Amaze your
2645 friends.
2646
2647 Chapter 8. Truth
2648 ================
2649
2650 8.1. Truth Values \[1\]
2651 -----------------------
2652
2653 Muddle represents "false" with an object of a particular `TYPE`:
2654 `TYPE` `FALSE` (unsurprisingly). `TYPE` `FALSE` is structured: its
2655 `PRIMTYPE` is `LIST`. Thus, you can give reasons or excuses by making
2656 them elements of a `FALSE`. (Again, `EVAL`ing a `FALSE` neither copies
2657 it nor `EVAL`s its elements, so it is not necessary to `QUOTE` a
2658 `FALSE` appearing in a program.) Objects of `TYPE` `FALSE` are
2659 represented in "\# notation":
2660
2661     #FALSE list-of-its-elements
2662
2663 The empty `FORM` evaluates to the empty `FALSE`:
2664
2665     <>$
2666     #FALSE ()
2667
2668 Anything which is not `FALSE`, is, reasonably enough, true. In this
2669 document the "data type" *false-or-any* in metasyntactic variables
2670 means that the only significant attribute of the object in that
2671 context is whether its `TYPE` is `FALSE` or not.
2672
2673 8.2. Predicates \[1\]
2674 ---------------------
2675
2676 There are numerous Muddle F/SUBRs which can return a `FALSE` or a
2677 true. See appendix 2 to find them all. Most return either `#FALSE ()`
2678 or the `ATOM` with `PNAME` `T`. (The latter is for historical reasons,
2679 namely Lisp (Moon, 1974).) Some predicates which are meaningful now
2680 are described next.
2681
2682 ### 8.2.1. Arithmetic \[1\]
2683
2684     <0? fix-or-float>
2685
2686 evaluates to `T` only if its argument is identically equal to `0` or
2687 `0.0`.
2688
2689     <1? fix-or-float>
2690
2691 evaluates to `T` only if its argument is identically equal to `1` or
2692 `1.0`.
2693
2694     <G? n:fix-or-float m:fix-or-float>
2695
2696 evaluates to `T` only if *n* is algebraically greater than *m*. `L=?`
2697 is the Boolean complement of `G?`; that is, it is `T` only if *n* is
2698 not algebraically greater than *m*.
2699
2700     <L? n:fix-or-float m:fix-or-float>
2701
2702 evaluates to `T` only if *n* is algebraically less than *m*. `G=?` is
2703 the Boolean complement of `L?`.
2704
2705 ### 8.2.2. Equality and Membership \[1\]
2706
2707     <==? e1:any e2:any>
2708
2709 evaluates to `T` only if *e1* is the **same object** as *e2* (appendix
2710 1). Two objects that look the same when `PRINT`ed may not be `==?`.
2711 Two `FIX`es of the same "value" are "the same object"; so are two
2712 `FLOAT`s of **exactly** the same "value". Empty objects of `PRIMTYPE`
2713 `LIST` (and no other structured `PRIMTYPE`) are `==?` if their `TYPE`s
2714 are the same. Example:
2715
2716     <==? <SET X "RANDOM STRING"> <TOP <REST .X 6>>>$
2717     T
2718     <==? .X "RANDOM STRING">$
2719     #FALSE ()
2720
2721 `N==?` is the Boolean complement of `==?`.
2722
2723     <=? e1:any e2:any>
2724
2725 evaluates to `T` if *e1* and *e2* have the same `TYPE` and are
2726 structurally equal -- that is, they "look the same", their printed
2727 representations are the same. `=?` is much slower than `==?`. `=?`
2728 should be used only when its characteristics are necessary: they are
2729 not in any comparisons of unstructured objects. `==?` and `=?` always
2730 return the same value for `FIX`es, `FLOAT`s, `ATOM`s, etc.
2731 (Mnemonically, `==?` tests for "more equality" than `=?`; in fact, it
2732 tests for actual physical identity.)
2733
2734 Example, illustrating non-copying of a `SEGMENT` in Direct
2735 Representation of a `LIST`:
2736
2737     <SET A '(1 2 3)>$
2738     (1 2 3)
2739     <==? .A (!.A)>$
2740     T
2741     <==? .A <SET B <LIST !.A>>>$
2742     #FALSE ()
2743     <=? .A .B>$
2744     T
2745
2746 `N=?` is the Boolean complement of `=?`.
2747
2748     <MEMBER object:any structured>
2749
2750 runs down *structured* from first to last element, comparing each
2751 element of *structured* with *object*. If it finds an element of
2752 *structured* which is `=?` to *object*, it returns
2753 `<REST structured i>` (which is of `TYPE` `<PRIMTYPE structured>`),
2754 where the (*i*+1)th element of *structured* is `=?` to *object*. That
2755 is, the first element of what it returns is the **first** element of
2756 *structured* that is `=?` to *object*.
2757
2758 If no element of *structured* is `=?` to *object*, `MEMBER` returns
2759 `#FALSE ()`.
2760
2761 The search is more efficient if *structured* is of `PRIMTYPE` `VECTOR`
2762 (or `UVECTOR`, if possible) than if it is of `PRIMTYPE` `LIST`. As
2763 usual, if *structured* is constant, it should be `QUOTE`d.
2764
2765 If *object* and *structured* are of `PRIMTYPE` `STRING` \[or
2766 `BYTES`\], `MEMBER` does a substring search. Example:
2767
2768     <MEMBER "PART" "SUM OF PARTS">$
2769     "PARTS"
2770
2771 `<MEMQ object:any structured>` ("member quick") is exactly the same as
2772 `MEMBER`, except that the comparison test is `==?`.
2773
2774     <STRCOMP s1 s2>
2775
2776 ("string comparison") can be given either two `STRING`s or two `ATOM`s
2777 as arguments. In the latter case the `PNAME`s are used. It actually
2778 isn't a predicate, since it can return three possible values: `0` if
2779 *s1* is `=?` to *s2*; `1` if *s1* sorts alphabetically after *s2*; and
2780 `-1` if *s1* sorts alphabetically before *s2*. "Alphabetically" means,
2781 in this case, according to the numeric order of ASCII, with the
2782 standard alphabetizing rules.
2783
2784 \[A predicate suitable for an ascending `SORT` (which see) is
2785 `<G? <STRCOMP .ARG1 .ARG2> 0>`.\]
2786
2787 ### 8.2.3. Boolean Operators \[1\]
2788
2789     <NOT e:false-or-any>
2790
2791 evaluates to `T` only if *e* evaluates to a `FALSE`, and to
2792 `#FALSE ()` otherwise.
2793
2794     <AND e1 e2 ... eN>
2795
2796 `AND` is an `FSUBR`. It evaluates its arguments from first to last as
2797 they appear in the `FORM`. As soon as one of them evaluates to a
2798 `FALSE`, it returns that `FALSE`, ignoring any remaining arguments. If
2799 none of them evaluate to `FALSE`, it returns `EVAL` of its last
2800 argument. `<AND>` returns `T`. `AND?` is the `SUBR` equivalent to
2801 `AND`, that is, all its arguments are evaluated before any of them is
2802 tested.
2803
2804     <OR e1 e2 ... eN>
2805
2806 `OR` is an `FSUBR`. It evaluates its arguments from first to last as
2807 they appear in the `FORM`. As soon as one of them evaluates to a
2808 non-`FALSE`, it returns that non-`FALSE` value, ignoring any remaining
2809 arguments. If this never occurs, it returns the last `FALSE` it saw.
2810 `<OR>` returns `#FALSE ()`. `OR?` is the `SUBR` equivalent to `OR`.
2811
2812 ### 8.2.4. Object Properties \[1\]
2813
2814     <TYPE? any type-1 ... type-N>
2815
2816 evaluates to *type-i* only if `<==? type-i <TYPE any>>` is true. It is
2817 faster and gives more information than `OR`ing tests for each `TYPE`.
2818 If the test fails for all *type-i*'s, `TYPE?` returns `#FALSE ()`.
2819
2820     <APPLICABLE? e>
2821
2822 evaluates to `T` only if *e* is of a `TYPE` that can legally be
2823 applied to arguments in a `FORM`, that is, be (`EVAL` of) the first
2824 element of a `FORM` being evaluated (appendix 3).
2825
2826     <MONAD? e>
2827
2828 evaluates to `#FALSE ()` only if `NTH` and `REST` (with non-zero
2829 second argument) can be performed on its argument without error. An
2830 unstructured or empty structured object will cause `MONAD?` to return
2831 `T`.
2832
2833     <STRUCTURED? e>
2834
2835 evaluates to `T` only if *e* is a structured object. It is **not** the
2836 inverse of `MONAD?`, since each returns `T` if its argument is an
2837 empty structure.
2838
2839     <EMPTY? structured>
2840
2841 evaluates to `T` only if its argument, which must be a structured
2842 object, has no elements.
2843
2844     <LENGTH? structured fix>
2845
2846 evaluates to `<LENGTH structured>` only if that is less than or equal
2847 to *fix*; otherwise, it evaluates to `#FALSE ()`. Mnemonically, you
2848 can think of the first two letters of `LENGTH?` as signifying the
2849 "less than or equal to" sense of the test.
2850
2851 This `SUBR` was invented to use on lists, because Muddle can determine
2852 their lengths only by stepping along the list, counting the elements.
2853 If a program needs to know only how the length compares with a given
2854 number, `LENGTH?` will tell without necessarily stepping all the way
2855 to the end of the list, in contrast to `LENGTH`.
2856
2857 \[If *structured* is a circular `PRIMTYPE` `LIST`, `LENGTH?` will
2858 return a value, whereas `LENGTH` will execute forever. To see if you
2859 can do `<REST structured <+ 1 fix>>` without error, do the test
2860 `<NOT <LENGTH? structured fix>>`.\]
2861
2862 8.3. COND \[1\]
2863 ---------------
2864
2865 The Muddle Subroutine which is most used for varying evaluation
2866 depending on a truth value is the `FSUBR` `COND` ("conditional"). A
2867 call to `COND` has this format:
2868
2869     <COND clause-1:list ... clause-N:list>
2870
2871 where *N* is at least one.
2872
2873 `COND` always returns the result of the **last** evaluation it
2874 performs. The following rules determine the order of evaluations
2875 performed.
2876
2877 1.  Evaluate the first element of each clause (from first to last)
2878     until either a non-`FALSE` object results or the clauses are
2879     exhausted.
2880 2.  If a non-`FALSE` object is found in (1), immediately evaluate the
2881     remaining elements (if any) of that clause and ignore any
2882     remaining clauses.
2883
2884 In other words, `COND` goes walking down its clauses, `EVAL`ing the
2885 first element of each clause, looking for a non-`FALSE` result. As
2886 soon as it finds a non-`FALSE`, it forgets about all the other clauses
2887 and evaluates, in order, the other elements of the current clause and
2888 returns the last thing it evaluates. If it can't find a non-`FALSE`,
2889 it returns the last `FALSE` it saw.
2890
2891 ### 8.3.1. Examples
2892
2893     <SET F '(1)>$
2894     (1)
2895     <COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> ONE)>$
2896     ONE
2897     <SET F ()>$
2898     ()
2899     <COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> ONE)>$
2900     EMP
2901     <SET F '(1 2 3)>$
2902     (1 2 3)
2903     <COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> ONE)>$
2904     #FALSE ()
2905     <COND (<LENGTH? .F 2> SMALL) (BIG)>$
2906     BIG
2907
2908     <DEFINE FACT (N)        ;"the standard recursive factorial"
2909             <COND (<0? .N> 1)
2910                   (ELSE <* .N <FACT <- .N 1>>>)>>$
2911     FACT
2912     <FACT 5>$
2913     120
2914
2915 8.4. Shortcuts with Conditionals
2916 --------------------------------
2917
2918 ### 8.4.1. AND and OR as Short CONDs
2919
2920 Since `AND` and `OR` are `FSUBR`s, they can be used as miniature
2921 `COND`s. A construct of the form
2922
2923     <AND pre-conditions action(s)>
2924
2925 or
2926
2927     <OR pre-exclusions action(s)>
2928
2929 will allow *action(s)* to be evaluated only if all the
2930 *pre-conditions* are true or only if all the *pre-exclusions* are
2931 false, respectively. By nesting and using both `AND` and `OR`, fairly
2932 powerful constructs can be made. Of course, if *action(s)* are more
2933 than one thing, you must be careful that none but the last returns
2934 false or true, respectively. Watch out especially for `TERPRI`
2935 (chapter 11). Examples:
2936
2937     <AND <ASSIGNED? FLAG> .FLAG <FCN .ARG>>
2938
2939 applies `FCN` only if someone else has `SET` `FLAG` to true.
2940 (`ASSIGNED?` is true if its argument `ATOM` has an `LVAL`.) No error
2941 can occur in the testing of `FLAG` because of the order of evaluation.
2942
2943     <AND <SET C <OPEN "READ" "A FILE">> <LOAD .C> <CLOSE .C>>
2944
2945 effectively `FLOAD`s the file (chapter 11) without the possibility of
2946 getting an error if the file cannot be opened.
2947
2948 ### 8.4.2. Embedded Unconditionals
2949
2950 One of the disadvantages of `COND` is that there is no straightforward
2951 way to do things unconditionally in between tests. One way around this
2952 problem is to insert a dummy clause that never succeeds, because its
2953 only `LIST` element is an `AND` that returns a `FALSE` for the test.
2954 Example:
2955
2956     <COND   (<0? .N> <F0 .N>)
2957             (<1? .N> <F1 .N>)
2958             (<AND <SET N <* 2 <FIX </ .N 2>>>>
2959                             ;"Round .N down to even number."
2960                   <>>)
2961             (<LENGTH? .VEC .N> '[])
2962             (T <REST .VEC <+ 1 .N>>)>
2963
2964 A variation is to make the last `AND` argument into the test for the
2965 `COND` clause. (That is, the third and fourth clauses in the above
2966 example can be combined.) Of course, you must be careful that no other
2967 `AND` argument evaluates to a `FALSE`; most Subroutines do not return
2968 a `FALSE` without a very good reason for it. (A notable exception is
2969 `TERPRI` (which see).) Even safer is to use `PROG` (section 10.1)
2970 instead of `AND`.
2971
2972 Another variation is to increase the nesting with a new `COND` after
2973 the unconditional part. At least this method does not make the code
2974 appear to a human reader as though it does something other than what
2975 it really does. The above example could be done this way:
2976
2977     <COND   (<0? .N> <F0 .N>)
2978             (<1? .N> <F1 .N>)
2979             (T
2980              <SET N <* 2 <FIX </ .N 2>>>>
2981              <COND  (<LENGTH? .VEC .N> '[])
2982                     (T <REST .VEC <+ 1 .N>>)>)>
2983
2984 Chapter 9. Functions
2985 ====================
2986
2987 This chapter could be named "fun and games with argument `LIST`s". Its
2988 purpose is to explain the more complicated things which can be done
2989 with `FUNCTION`s, and this involves, basically, explaining all the
2990 various tokens which can appear in the argument `LIST` of a
2991 `FUNCTION`. Topics are covered in what is approximately an order of
2992 increasing complexity. This order has little to do with the order in
2993 which tokens can actually appear in an argument `LIST`, so what an
2994 argument `LIST` "looks like" overall gets rather lost in the shuffle.
2995 To alleviate this problem, section 9.9 is a summary of everything that
2996 can go into an argument `LIST`, in the correct order. If you find
2997 yourself getting lost, please refer to that summary.
2998
2999 9.1. "OPTIONAL" \[1\]
3000 ---------------------
3001
3002 Muddle provides very convenient means for allowing optional arguments.
3003 The `STRING` `"OPTIONAL"` (or `"OPT"` -- they're totally equivalent)
3004 in the argument `LIST` allows the specification of optional arguments
3005 with values to be assigned by default. The syntax of the `"OPTIONAL"`
3006 part of the argument `LIST` is as follows:
3007
3008     "OPTIONAL" al-1 al-2 ... al-N
3009
3010 First, there is the `STRING` `"OPTIONAL"`. Then there is any number of
3011 either `ATOM`s or two-element `LIST`s, intermixed, one per optional
3012 argument. The first element of each two-element `LIST` must be an
3013 `ATOM`; this is the dummy variable. The second element is an arbitrary
3014 Muddle expression. If there are required arguments, they must come
3015 before the `"OPTIONAL"`.
3016
3017 When `EVAL` is binding the variables of a `FUNCTION` and sees
3018 `"OPTIONAL"`, the following happens:
3019
3020 -   If an explicit argument was given in the position of an optional
3021     one, the explicit argument is bound to the corresponding dummy
3022     `ATOM`.
3023 -   If there is no explicit argument and the `ATOM` stands alone, that
3024     is, it is not the first element of a two-element `LIST`, that
3025     `ATOM` becomes "bound", but no local value is assigned to it \[see
3026     below\]. A local value can be assigned to it by using `SET`.
3027 -   If there is no explicit argument and the `ATOM` is the first
3028     element of a two-element `LIST`, the Muddle expression in the
3029     `LIST` with the `ATOM` is evaluated and bound to the `ATOM`.
3030
3031 \[Until an `ATOM` is assigned, any attempt to reference its `LVAL`
3032 will produce an error. The predicate `SUBR`s `BOUND?` and `ASSIGNED?`
3033 can be used to check for such situations. `BOUND?` returns `T` if its
3034 argument is currently bound via an argument `LIST` or has ever been
3035 `SET` while not bound via an argument `LIST`. The latter kind of
3036 binding is called "top-level binding", because it is done outside all
3037 active argument-`LIST` binding. `ASSIGNED?` will return `#FALSE ()` if
3038 its argument is **either** unassigned **or** unbound. By the way,
3039 there are two predicates for global values similar to `BOUND?` and
3040 `ASSIGNED?`, namely `GBOUND?` and `GASSIGNED?`. Each returns `T` only
3041 if its argument, which (as in `BOUND?` and `ASSIGNED?`) must be an
3042 `ATOM`, has a global value "slot" (chapter 22) or a global value,
3043 respectively.\]
3044
3045 Example:
3046
3047     <DEFINE INC1 (A "OPTIONAL" (N 1)) <SET .A <+ ..A .N>>>$
3048     INC1
3049     <SET B 0>$
3050     0
3051     <INC1 B>$
3052     1
3053     <INC1 B 5>$
3054     0
3055
3056 Here we defined another (not quite working) increment `FUNCTION`. It
3057 now takes an optional argument specifying how much to increment the
3058 `ATOM` it is given. If not given, the increment is `1`. Now, `1` is a
3059 pretty simple Muddle expression: there is no reason why the optional
3060 argument cannot be complicated -- for example, a call to a `FUNCTION`
3061 which reads a file on an I/O device.
3062
3063 9.2. TUPLEs
3064 -----------
3065
3066 ### 9.2.1. "TUPLE" and TUPLE (the TYPE) \[1\]
3067
3068 There are also times when you want to be able to have an arbitrary
3069 number of arguments. You can always do this by defining the `FUNCTION`
3070 as having a structure as its argument, with the arbitrary number of
3071 arguments as elements of the structure. This can, however, lead to
3072 inelegant-looking `FORM`s and extra garbage to be collected. The
3073 `STRING` `"TUPLE"` appearing in the argument `LIST` allows you to
3074 avoid that. It must follow explicit and optional dummy arguments (if
3075 there are any of either) and must be followed by an `ATOM`.
3076
3077 The effect of `"TUPLE"` appearing in an argument `LIST` is the
3078 following: any arguments left in the `FORM`, after satisfying explicit
3079 and optional arguments, are `EVAL`ed and made sequential elements of
3080 an object of `TYPE` and `PRIMTYPE` `TUPLE`. The `TUPLE` is the bound
3081 to the `ATOM` following `"TUPLE"` in the argument `LIST`. If there
3082 were no arguments left by the time the `"TUPLE"` was reached, an empty
3083 `TUPLE` is bound to the `ATOM`.
3084
3085 An object of `TYPE` `TUPLE` is exactly the same as a `VECTOR` except
3086 that a `TUPLE` is not held in garbage-collected storage. It is instead
3087 held with `ATOM` bindings in a control stack. This does not affect
3088 manipulation of the `TUPLE` within the function generating it or any
3089 function called within that one: it can be treated just like a
3090 `VECTOR`. Note, however, that a `TUPLE` ceases to exist when the
3091 function which generated it returns. Returning a `TUPLE` as a value is
3092 a good way to generate an error. (A copy of a `TUPLE` can easily be
3093 generated by segment-evaluating the `TUPLE` into something; that copy
3094 can be returned.) The predicate `LEGAL?` returns `#FALSE ()` if it is
3095 given a `TUPLE` generated by an `APPLICABLE` object which has already
3096 returned, and `T` if it is given a `TUPLE` which is still "good".
3097
3098 Example:
3099
3100     <DEFINE NTHARG (N "TUPLE" T)
3101                     ;"Get all but first argument into T."
3102         <COND (<==? 1 .N> 1)
3103                     ;"If N is 1, return 1st arg, i.e., .N,
3104                       i.e., 1.  Note that <1? .N> would be
3105                       true even if .N were 1.0."
3106               (<L? <LENGTH .T> <SET N <- .N 1>>>
3107                #FALSE ("DUMMY"))
3108                     ;"Check to see if there is an Nth arg,
3109                       and make N a good index into T while
3110                       you're at it.
3111                       If there isn't an Nth arg, complain."
3112               (ELSE <NTH .T .N>)>>
3113
3114 `NTHARG`, above, takes any number of arguments. Its first argument
3115 must be of `TYPE` `FIX`. It returns `EVAL` of its Nth argument, if it
3116 has an Nth argument. If it doesn't, it returns `#FALSE ("DUMMY")`.
3117 (The `ELSE` is not absolutely necessary in the last clause. If the Nth
3118 argument is a `FALSE`, the `COND` will return that `FALSE`.) Exercise
3119 for the reader: `NTHARG` will generate an error if its first argument
3120 is not `FIX`. Where and why? (How about `<NTHARG 1.5 2 3>`?) Fix it.
3121
3122 ### 9.2.2. TUPLE (the SUBR) and ITUPLE
3123
3124 These `SUBR`s are the same as `VECTOR` and `IVECTOR`, except that they
3125 build `TUPLE`s (that is, vectors on the control stack). They can be
3126 used only at top level in an `"OPTIONAL"` list or `"AUX"` list (see
3127 below). The clear advantage of `TUPLE` and `ITUPLE` ("implicit tuple")
3128 is in storage-management efficiency. They produce no garbage, since
3129 they are flushed automatically upon function return.
3130
3131 Examples:
3132
3133     <DEFINE F (A B "AUX" (C <ITUPLE 10 3>)) ...>
3134
3135 creates a 10-element `TUPLE` and `SET`s `C` to it.
3136
3137     <DEFINE H ("OPTIONAL" (A <ITUPLE 10 '<I>>)
3138                     "AUX" (B <TUPLE !.A 1 2 3>))
3139                     ...>
3140
3141 These are valid uses of `TUPLE` and `ITUPLE`. However, the following
3142 is **not** a valid use of `TUPLE`, because it is not called at top
3143 level of the `"AUX"`:
3144
3145     <DEFINE NO (A B "AUX" (C <REST <TUPLE !.A>>)) ...>
3146
3147 However, the desired effect could be achieved by
3148
3149     <DEFINE OK (A B "AUX" (D <TUPLE !.A>) (C <REST .D>)) ...>
3150
3151 9.3 "AUX" \[1\]
3152 ---------------
3153
3154 `"AUX"` (or `"EXTRA"` -- they're totally equivalent) are `STRING`s
3155 which, placed in an argument `LIST`, serve to dynamically allocate
3156 temporary variables for the use of a Function.
3157
3158 `"AUX"` must appear in the argument `LIST` after any information about
3159 explicit arguments. It is followed by `ATOM`s or two-element `LIST`s
3160 as if it were `"OPTIONAL"`. `ATOM`s in the two-element `LIST`s are
3161 bound to `EVAL` of the second element in the `LIST`. Atoms not in such
3162 `LIST`s are initially **unassigned**: they are explicitly given "no"
3163 `LVAL`.
3164
3165 All binding specified in an argument `LIST` is done sequentially from
3166 first to last, so initialization expressions for `"AUX"` (or
3167 `"OPTIONAL"`) can refer to objects which have just been bound. For
3168 example, this works:
3169
3170     <DEFINE AUXEX ("TUPLE" T
3171                      "AUX" (A <LENGTH .T>) (B <* 2 .A>))
3172             ![.A .B]>$
3173     AUXEX
3174     <AUXEX 1 2 "FOO">$
3175     ![3 6!]
3176
3177 9.4. QUOTEd arguments
3178 ---------------------
3179
3180 If an `ATOM` in an argument `LIST` which is to be bound to a required
3181 or optional argument is surrounded by a call to `QUOTE`, that `ATOM`
3182 is bound to the **unevaluated** argument. Example:
3183
3184     <DEFINE Q2 (A 'B) (.A .B)>$
3185     Q2
3186     <Q2 <+ 1 2> <+ 1 2>>$
3187     (3 <+ 1 2>)
3188
3189 It is not often appropriate for a function to take its arguments
3190 unevaluated, because such a practice makes it less modular and harder
3191 to maintain: it and the programs that call it tend to need to know
3192 more about each other, and a change in its argument structure would
3193 tend to require more changes in the programs that call it. And, since
3194 few functions, in practice, do take unevaluated arguments, users tend
3195 to assume that no functions do (except `FSUBR`s of course), and
3196 confusion inevitably results.
3197
3198 9.5. "ARGS"
3199 -----------
3200
3201 The indicator `"ARGS"` can appear in an argument `LIST` with precisely
3202 the same syntax as `"TUPLE"`. However, `"ARGS"` causes the `ATOM`
3203 following it to be bound to a `LIST` of the remaining **unevaluated**
3204 arguments.
3205
3206 `"ARGS"` does not cause any copying to take place. It simply gives you
3207
3208     <REST application:form fix>
3209
3210 with an appropriate *fix*. The `TYPE` change to `LIST` is a result of
3211 the `REST`. Since the `LIST` shares all its elements with the original
3212 `FORM`, `PUT`s into the `LIST` will change the calling program,
3213 however dangerous that may be.
3214
3215 Examples:
3216
3217     <DEFINE QIT (N "ARGS" L) <.N .L>>$
3218     QIT
3219     <QIT 2 <+ 3 4 <LENGTH ,QALL> FOO>$
3220     <LENGTH ,QALL>
3221
3222     <DEFINE FUNCT1 ("ARGS" ARGL-AND-BODY)
3223             <CHTYPE .ARGL-AND-BODY FUNCTION>>$
3224     FUNCT1
3225     <FUNCT1 (A B) <+ .A .B>>$
3226     #FUNCTION ((A B) <+ .A .B>)
3227
3228 The last example is a perfectly valid equivalent of the `FSUBR`
3229 `FUNCTION`.
3230
3231 9.6. "CALL"
3232 -----------
3233
3234 The indicator `"CALL"` is an ultimate `"ARGS"`. If it appears in an
3235 argument `LIST`, it must be followed by an `ATOM` and must be the only
3236 thing used to gather arguments. `"CALL"` causes the `ATOM` which
3237 follows it to become bound to the actual `FORM` that is being
3238 evaluated -- that is, you get the "function call" itself. Since
3239 `"CALL"` binds to the `FORM` itself, and not a copy, `PUT`s into that
3240 `FORM` will change the calling code.
3241
3242 `"CALL"` exists as a Catch-22 for argument manipulation. If you can't
3243 do it with `"CALL"`, it can't be done.
3244
3245 9.7. EVAL and "BIND"
3246 --------------------
3247
3248 Obtaining unevaluated arguments, for example, for `QUOTE` and
3249 `"ARGS"`, very often implies that you wish to evaluate them at some
3250 point. You can do this by explicitly calling `EVAL`, which is a
3251 `SUBR`. Example:
3252
3253     <SET F '<+ 1 2>>$
3254     <+ 1 2>
3255     <EVAL .F>$
3256     3
3257
3258 `EVAL` can take a second argument, of `TYPE` `ENVIRONMENT` (or others,
3259 see section 20.8). An `ENVIRONMENT` consists basically of a state of
3260 `ATOM` bindings; it is the "world" mentioned in chapter 5. Now, since
3261 binding changes the `ENVIRONMENT`, if you wish to use `EVAL` within a
3262 `FUNCTION`, you probably want to get hold of the environment which
3263 existed **before** that `FUNCTION`'s binding took place. The indicator
3264 `"BIND"`, which must, if it is used, be the first thing in an argument
3265 `LIST`, provides this information. It binds the `ATOM` immediately
3266 following it to the `ENVIRONMENT` existing "at call time" -- that is,
3267 just before any binding is done for its `FUNCTION`. Example:
3268
3269     <SET A 0>$
3270     0
3271     <DEFINE WRONG ('B "AUX" (A 1)) <EVAL .B>>$
3272     WRONG
3273     <WRONG .A>
3274     1
3275     <DEFINE RIGHT ("BIND" E 'B "AUX" (A 1)) <EVAL .B .E>>$
3276     RIGHT
3277     <RIGHT .A>$
3278     0
3279
3280 ### 9.7.1. Local Values versus ENVIRONMENTs
3281
3282 `SET`, `LVAL`, `VALUE`, `BOUND?`, `ASSIGNED?`, and `UNASSIGN` all take
3283 a final optional argument which has not previously been mentioned: an
3284 `ENVIRONMENT` (or other `TYPE`s, see section 20.8). If this argument
3285 is given, the `SET` or `LVAL` is done in the `ENVIRONMENT` specified.
3286 `LVAL` cannot be abbreviated by `.` (period) if it is given an
3287 explicit second argument.
3288
3289 This feature is just what is needed to cure the `INC` bug mentioned in
3290 chapter 5. A "correct" `INC` can be defined as follows:
3291
3292     <DEFINE INC ("BIND" OUTER ATM)
3293             <SET .ATM <+ 1 <LVAL .ATM .OUTER>> .OUTER>>
3294
3295 9.8. ACTIVATION, "NAME", "ACT", "AGAIN", and RETURN \[1\]
3296 ---------------------------------------------------------
3297
3298 `EVAL`uation of a `FUNCTION`, after the argument `LIST` has been taken
3299 care of, normally consists of `EVAL`uating each of the objects in the
3300 body in the order given, and returning the value of the last thing
3301 `EVAL`ed. If you want to vary this sequence, you need to know, at
3302 least, where the `FUNCTION` begins. Actually, `EVAL` normally hasn't
3303 the foggiest idea of where its current `FUNCTION` began. "Where'd I
3304 start" information is bundled up with a `TYPE` called `ACTIVATION`. In
3305 "normal" `FUNCTION` `EVAL`uation, `ACTIVATION`s are not generated: one
3306 can be generated, and bound to an `ATOM`, in either of the two
3307 following ways:
3308
3309 1.  Put an `ATOM` immediately before the argument `LIST`. The
3310     `ACTIVATION` of the Function will be bound to that `ATOM`.
3311 2.  As the last thing in the argument `LIST`, insert either of the
3312     `STRING`s `"NAME"` or `"ACT"` and follow it with an `ATOM`. The
3313     `ATOM` will be bound to the `ACTIVATION` of the Function.
3314
3315 In this document "Function" (capitalized) will designate anything that
3316 can generate an `ACTIVATION`; besides `TYPE` `FUNCTION`, this class
3317 includes the `FSUBR`s `PROG`, `BIND`, and `REPEAT`, yet to be
3318 discussed.
3319
3320 Each `ACTIVATION` refers explicitly to a particular evaluation of a
3321 Function. For example, if a recursive `FUNCTION` generates an
3322 `ACTIVATION`, a new `ACTIVATION` referring explicitly to each
3323 recursion step is generated on every recursion.
3324
3325 Like `TUPLE`s, `ACTIVATION`s are held in a control stack. Unlike
3326 `TUPLE`s, there is **no way** to get a copy of an `ACTIVATION` which
3327 can usefully be returned as a value. (This is a consequence of the
3328 fact that `ACTIVATION`s refer to evaluations; when the evaluation is
3329 finished, the `ACTIVATION` no longer exists.) `ACTIVATION`s can be
3330 tested, like `TUPLE`s, by `LEGAL?` for legality. They are used by the
3331 `SUBR`s `AGAIN` and `RETURN`.
3332
3333 `AGAIN` can take one argument: an `ACTIVATION`. It means "start doing
3334 this again", where "this" is specified by the `ACTIVATION`.
3335 Specifically, `AGAIN` causes `EVAL` to return to where it started
3336 working on the **body** of the Function in the evaluation specified by
3337 the `ACTIVATION`. The evaluation is not redone completely: in
3338 particular, no re-binding (of arguments, `"AUX"` variables, etc.) is
3339 done.
3340
3341 `RETURN` can take two arguments: an arbitrary expression and an
3342 `ACTIVATION`, in that order. It causes the Function evaluation whose
3343 `ACTIVATION` it is given to terminate and return `EVAL` of `RETURN`'s
3344 first argument. That is, `RETURN` means "quit doing this and return
3345 that", where "this" is the `ACTIVATION` -- its second argument -- and
3346 "that" is the expression -- its first argument. Example:
3347
3348     <DEFINE MY+ ("TUPLE" T "AUX" (M 0) "NAME" NM)
3349             <COND (<EMPTY? .T> <RETURN .M .NM>)>
3350             <SET M <+ .M <1 .T>>>
3351             <SET T <REST .T>>
3352             <AGAIN .NM>>$
3353     MY+
3354     <MY+ 1 3 <LENGTH "FOO">>$
3355     7
3356     <MY+>$
3357     0
3358
3359 Note: suppose an `ACTIVATION` of one Function (call it `F1`) is passed
3360 to another Function (call it `F2`) -- for example, via an application
3361 of `F2` within `F1` with `F1`'s `ACTIVATION` as an argument. If `F2`
3362 `RETURN`s to `F1`'s `ACTIVATION`, `F2` **and** `F1` terminate
3363 immediately, and **`F1`** returns the `RETURN`'s first argument. This
3364 technique is suitable for error exits. `AGAIN` can clearly pull a
3365 similar trick. In the following example, `F1` computes the sum of `F2`
3366 applied to each of its arguments; `F2` computes the product of the
3367 elements of its structured argument, but it aborts if it finds an
3368 element that is not a number.
3369
3370     <DEFINE F1 ACT ("TUPLE" T "AUX" (T1 .T))
3371             <COND (<NOT <EMPTY? .T1>>
3372                    <PUT .T1 1 <F2 <1 .T1> .ACT>>
3373                    <SET T1 <REST .T1>>
3374                    <AGAIN .ACT>)
3375                   (ELSE <+ !.T>)>>$
3376     F1
3377     <DEFINE F2 (S A "AUX" (S1 .S))
3378             <REPEAT MY-ACT ((PRD 1))
3379                <COND (<NOT <EMPTY? .S1>>
3380                       <COND (<NOT <TYPE? 1 .S1> FIX FLOAT>>
3381                              <RETURN #FALSE ("NON-NUMBER") .A>)
3382                             (ELSE <SET PRD <* .PRD <1 .S1>>>)>
3383                       <SET S1 <REST .S1>>)
3384                      (ELSE <RETURN .PRD>)>>>$
3385     F2
3386
3387     <F1 '(1 2) '(3 4)>$
3388     14
3389     <F1 '(T 2) '(3 4)>$
3390     #FALSE ("NON-NUMBER")
3391
3392 9.9. Argument List Summary
3393 --------------------------
3394
3395 The following is a listing of all the various tokens which can appear
3396 in the argument `LIST` of a `FUNCTION`, in the order in which they can
3397 occur. Short descriptions of their effects are included. **All** of
3398 them are **optional** -- that is, any of them (in any position) can be
3399 left out or included -- but the order in which they appear **must** be
3400 that of this list. "`QUOTE`d `ATOM`", "matching object", and "2-list"
3401 are defined below.
3402
3403 (1) `"BIND"`
3404
3405 must be followed by an `ATOM`. It binds that `ATOM` to the
3406 `ENVIRONMENT` which existed when the `FUNCTION` was applied.
3407
3408 (2) `ATOM`s and `QUOTE`d `ATOM`s (any number)
3409
3410 are required arguments. `QUOTE`d `ATOM`s are bound to the matching
3411 object. `ATOM`s are bound to `EVAL` of the matching object in the
3412 `ENVIRONMENT` existing when the `FUNCTION` was applied.
3413
3414 (3) `"OPTIONAL"` or `"OPT"` (they're equivalent)
3415
3416 is followed by any number of `ATOM`s, `QUOTE`d `ATOM`s, or 2-lists.
3417 These are optional arguments. If a matching object exists, an `ATOM`
3418 -- either standing alone or the first element of a 2-list -- is bound
3419 to `EVAL` of the object, performed in the `ENVIRONMENT` existing when
3420 the `FUNCTION` was applied. A `QUOTE`d `ATOM` -- alone or in a 2-list
3421 -- is bound to the matching object itself. If no such object exists,
3422 `ATOM`s and `QUOTE`d `ATOM`s are left unbound, and the first element
3423 of each 2-list is bound to `EVAL` of the corresponding second element.
3424 (This `EVAL` is done in the new `ENVIRONMENT` of the Function as it is
3425 being constructed.)
3426
3427 (4) `"ARGS"` (and **not** `"TUPLE"`)
3428
3429 must be followed by an `ATOM`. The `ATOM` is bound to a `LIST` of
3430 **all** the remaining arguments, **unevaluated**. (If there are no
3431 more arguments, the `LIST` is empty.) This `LIST` is actually a `REST`
3432 of the `FORM` applying the `FUNCTION`. If `"ARGS"` appears in the
3433 argument `LIST`, `"TUPLE"` should not appear.
3434
3435 (4) `"TUPLE"` (and **not** `"ARGS"`)
3436
3437 must be followed by an `ATOM`. The `ATOM` is bound to a `TUPLE`
3438 ("`VECTOR` on the control stack") of all the remaining arguments,
3439 **evaluated** in the environment existing when the `FUNCTION` was
3440 applied. (If no arguments remain, the `TUPLE` is empty.) If `"TUPLE"`
3441 appears in the argument `LIST`, `"ARGS"` should not appear.
3442
3443 (5) `"AUX"` or `"EXTRA"` (they're equivalent)
3444
3445 is followed by any number of `ATOM`s or 2-lists. These are auxiliary
3446 variables, bound away from the previous environment for the use of
3447 this Function. `ATOM`s are bound in the `ENVIRONMENT` of the Function,
3448 but they are unassigned; the first element of each 2-list is both
3449 bound and assigned to `EVAL` of the corresponding second element.
3450 (This `EVAL` is done in the new `ENVIRONMENT` of the Function as it is
3451 being constructed.)
3452
3453 (6) `"NAME"` or `"ACT"` (they're equivalent)
3454
3455 must be followed by an `ATOM`. The `ATOM` is bound to the `ACTIVATION`
3456 of the current evaluation of the Function.
3457
3458 **ALSO** -- in place of sections (2) (3) **and** (4), you can have
3459
3460 (2-3-4) `"CALL"`
3461
3462 which must be followed by an `ATOM`. The `ATOM` is bound to the `FORM`
3463 which caused application of this `FUNCTION`.
3464
3465 The special terms used above mean this:
3466
3467 "`QUOTE`d `ATOM`" -- a two-element `FORM` whose first element is the
3468 `ATOM` `QUOTE`, and whose second element is any `ATOM`. (Can be typed
3469 -- and will be `PRINT`ed -- as `'atom`.)
3470
3471 "Matching object" -- that element of a `FORM` whose position in the
3472 `FORM` matches the position of a required or optional argument in an
3473 argument `LIST`.
3474
3475 "2-list" -- a two-element `LIST` whose first element is an `ATOM` (or
3476 `QUOTE`d `ATOM`: see below) and whose second element can be anything
3477 but a `SEGMENT`. `EVAL` of the second element is assigned to a new
3478 binding of the first element (the `ATOM`) as the "value by default" in
3479 `"OPTIONAL"` or the "initial value" in `"AUX"`. In the case of
3480 `"OPTIONAL"`, the first element of a 2-list can be a `QUOTE`d `ATOM`;
3481 in this case, an argument which is supplied is not `EVAL`ed, but if it
3482 is not supplied the second element of the `LIST` **is** `EVAL`ed and
3483 assigned to the `ATOM`.
3484
3485 9.10. APPLY \[1\]
3486 -----------------
3487
3488 Occasionally there is a valid reason for the first element of a `FORM`
3489 not to be an `ATOM`. For example, the object to be applied to
3490 arguments may be chosen at run time, or it may depend on the arguments
3491 in some way. While `EVAL` is perfectly happy in this case to
3492 `EVAL`uate the first element and go on from there, the compiler
3493 (Lebling, 1979) can generate more efficient code if it knows whether
3494 the result of the evaluation will (1) always be of `TYPE` `FIX`, (2)
3495 always be an applicable non-`FIX` object that evaluates all its
3496 arguments, or (3) neither. The easiest way to tell the compiler if (1)
3497 or (2) is true is to use the `ATOM` `NTH` (section 7.1.2) or `PUT`
3498 (section 7.1.4) in case (1) or `APPLY` in case (2) as the first
3499 element of the `FORM`. (Note: case (1) can compile into in-line code,
3500 but case (2) compiles into a fully mediated call into the
3501 interpreter.)
3502
3503     <APPLY object arg-1 ... arg-N>
3504
3505 evaluates *object* and all the *arg-i*'s and then applies the former
3506 to all the latter. An error occurs if *object* evaluates to something
3507 not applicable, or to an `FSUBR`, or to a `FUNCTION` (or user
3508 Subroutine -- chapter 19) with `"ARGS"` or `"CALL"` or `QUOTE`d
3509 arguments.
3510
3511 Example:
3512
3513     <APPLY <NTH .ANALYZERS
3514                 <LENGTH <MEMQ <TYPE .ARG> .ARGTYPES>>>
3515            .ARG>
3516
3517 calls a function to analyze `.ARG`. Which function is called depends
3518 on the `TYPE` of the argument; this represents the idea of a dispatch
3519 table.
3520
3521 9.11. CLOSURE
3522 -------------
3523
3524     <CLOSURE function a1 ... aN>
3525
3526 where *function* is a `FUNCTION`, and *a1* through *aN* are any number
3527 of `ATOM`s, returns an object of `TYPE` `CLOSURE`. This can be applied
3528 like any other function, but, whenever it is applied, the `ATOM`s
3529 given in the call to `CLOSURE` are **first** bound to the `VALUE`s
3530 they had when the `CLOSURE` was generated, then the *function* is
3531 applied as normal. This is a "poor man's `funarg`".
3532
3533 A `CLOSURE` is useful when a `FUNCTION` must have state information
3534 remembered between calls to it, especially in these two cases: when
3535 the `LVAL`s of external state `ATOM`s might be compromised by other
3536 programs, or when more than one distinct sequence of calls are active
3537 concurrently. Example of the latter: each object of a structured
3538 `NEWTYPE` might have an associated `CLOSURE` that coughs up one
3539 element at a time, with a value in the `CLOSURE` that is a structure
3540 containing all the relevant information.
3541
3542 Chapter 10. Looping
3543 ===================
3544
3545 10.1. PROG and REPEAT \[1\]
3546 ---------------------------
3547
3548 `PROG` and `REPEAT` are almost identical `FSUBR`s which make it
3549 possible to vary the order of `EVAL`uation arbitrarily -- that is, to
3550 have "jumps". The syntax of `PROG` ("program") is
3551
3552     <PROG act:atom aux:list body>
3553
3554 where
3555
3556 -   *act* is an optional `ATOM`, which is bound to the `ACTIVATION` of
3557     the `PROG`.
3558 -   *aux* is a `LIST` which looks exactly like that part of a
3559     `FUNCTION`'s argument `LIST` which follows an `"AUX"`, and serves
3560     exactly the same purpose. It is not optional. If you need no
3561     temporary variables of `"ACT"`, make it `()`.
3562 -   *body* is a non-zero number of arbitrary Muddle expressions.
3563
3564 The syntax of `REPEAT` is identical, except that, of course, `REPEAT`
3565 is the first element of the `FORM`, not `PROG`.
3566
3567 ### 10.1.1. Basic EVALuation \[1\]
3568
3569 Upon entering a `PROG`, an `ACTIVATION` is **always** generated. If
3570 there is an `ATOM` in the right place, the `ACTIVATION` is also bound
3571 to that `ATOM`. The variables in the *aux* (if any) are then bound as
3572 indicated in the *aux*. All of the expressions in *body* are then
3573 `EVAL`uated in their order of occurrence. If nothing untoward happens,
3574 you leave the `PROG` upon evaluating the last expression in *body*,
3575 returning the value of that last expression.
3576
3577 `PROG` thus provides a way to package together a group of things you
3578 wish to do, in a somewhat more limited way than can be done with a
3579 `FUNCTION`. But `PROG`s are generally used for their other properties.
3580
3581 `REPEAT` acts in all ways **exactly** like a `PROG` whose last
3582 expression is `<AGAIN>`. The only way to leave a `REPEAT` is to
3583 explicitly use `RETURN` (or `GO` with a `TAG` -- section 10.4).
3584
3585 ### 10.1.2. AGAIN and RETURN in PROG and REPEAT \[1\]
3586
3587 Within a `PROG` or `REPEAT`, you always have a defined `ACTIVATION`,
3588 whether you bind it to an `ATOM` or not. \[In fact the interpreter
3589 binds it to the `ATOM` `LPROG\ !-INTERRUPTS` ("last PROG"). The
3590 `FSUBR` `BIND` is identical to `PROG` except that `BIND` does not bind
3591 that `ATOM`, so that `AGAIN` and `RETURN` with no `ACTIVATION`
3592 argument will not refer to it. This feature could be useful within
3593 `MACRO`s.\]
3594
3595 If `AGAIN` is used with no arguments, it uses the `ACTIVATION` of the
3596 closest surrounding `PROG` or `REPEAT` **within the current function**
3597 (an error occurs if there is none) and re-starts the `PROG` or
3598 `REPEAT` without rebinding the *aux* variables, just the way it works
3599 in a `FUNCTION`. With an argument, it can of course re-start any
3600 Function (`PROG` or `REPEAT` or `FUNCTION`) within which it is
3601 embedded at run time.
3602
3603 As with `AGAIN`, if `RETURN` is given no `ACTIVATION` argument, it
3604 uses the `ACTIVATION` of the closest surrounding `PROG` or `REPEAT`
3605 within the current function and causes that `PROG` or `REPEAT` to
3606 terminate and return `RETURN`'s first argument. If `RETURN` is given
3607 **no** arguments, it causes the closest surrounding `PROG` or `REPEAT`
3608 to return the `ATOM` `T`. Also like `AGAIN`, it can, with an
3609 `ACTIVATION` argument, terminate any Function within which it is
3610 embedded at run time.
3611
3612 ### 10.1.3. Examples \[1\]
3613
3614 Examples of the use of `PROG` are difficult to find, since it is
3615 almost never necessary, and it slows down the interpreter (chapter
3616 24). `PROG` can be useful as a point of return from the middle of a
3617 computation, or inside a `COND` (which see), but we won't exemplify
3618 those uses. Instead, what follows is an example of a typically poor
3619 use of `PROG` which has been observed among Lisp (Moon, 1974)
3620 programmers using Muddle. Then, the same thing is done using `REPEAT`.
3621 In both cases, the example `FUNCTION` just adds up all its arguments
3622 and returns the sum. (The `SUBR` `GO` is discussed in section 10.4.)
3623
3624     ;"Lisp style"
3625         <DEFINE MY+ ("TUPLE" TUP)
3626                 <PROG (SUM)
3627                         <SET SUM 0>
3628                   LP    <COND (<EMPTY? .TUP> <RETURN .SUM>)>
3629                         <SET SUM <+ .SUM <1 .TUP>>>
3630                         <SET TUP <REST .TUP>>
3631                         <GO LP>>>
3632
3633     ;"Muddle style"
3634         <DEFINE MY+ ("TUPLE" TUP)
3635                 <REPEAT ((SUM 0))
3636                         <COND (<EMPTY? .TUP> <RETURN .SUM>)>
3637                         <SET SUM <+ .SUM <1 .TUP>>
3638                         <SET TUP <REST .TUP>>>>
3639
3640 Of course, neither of the above is optimal Muddle code for this
3641 problem, since `MY+` can be written using `SEGMENT` evaluation as
3642
3643     <DEFINE MY+ ("TUPLE" TUP) <+ !.TUP>>
3644
3645 There are, of course, lots of problems which can't be handled so
3646 simply, and lots of uses for `REPEAT`.
3647
3648 10.2. MAPF and MAPR: Basics \[1\]
3649 ---------------------------------
3650
3651 `MAPF` ("map first") and `MAPR` ("map rest") are two `SUBR`s which
3652 take care of a majority of cases which require loops over data. The
3653 basic idea is the following:
3654
3655 Suppose you have a `LIST` (or other structure) of data, and you want
3656 to apply a particular function to each element. That is exactly what
3657 `MAPF` does: you give it the function and the structure, and it
3658 applies the function to each element of the structure, starting with
3659 the first.
3660
3661 On the other hand, suppose you want to **change** each element of a
3662 structure according to a particular algorithm. This can be done only
3663 with great pain using `MAPF`, since you don't have easy access to the
3664 **structure** inside the function: you have only the structure's
3665 elements. `MAPR` solves the problem by applying a function to `REST`s
3666 of a structure: first to `<REST structure 0>`, then to
3667 `<REST structure 1>`, etc. Thus, the function can change the structure
3668 by changing its argument, for example, by a
3669 `<PUT argument 1 something>`. It can even `PUT` a new element farther
3670 down the structure, which will be seen by the function on subsequent
3671 applications.
3672
3673 Now suppose, in addition to applying a function to a structure, you
3674 want to record the results -- the values returned by the function --
3675 in another structure. Both `MAPF` and `MAPR` can do this: they both
3676 take an additional function as an argument, and, when the looping is
3677 over, apply the additional function to **all** the results, and then
3678 return the results of that application. Thus, if the additional
3679 function is `,LIST`, you get a `LIST` of the previous results; if it
3680 is `.VECTOR`, you get a `VECTOR` of results; etc.
3681
3682 Finally, it might be the case that you really want to loop a function
3683 over more than one structure simultaneously. For instance, consider
3684 creating a `LIST` whose elements are the element-by-element sum of the
3685 contents of two other `LIST`s. Both `MAPF` and `MAPR` allow this; you
3686 can, in fact, give each of them any number of structures full of
3687 arguments for your looping function.
3688
3689 This was all mentioned because `MAPF` and `MAPR` appear to be complex
3690 when seen baldly, due to the fact that the argument descriptions must
3691 take into account the general case. Simpler, degenerate cases are
3692 usually the ones used.
3693
3694 ### 10.2.1. MAPF \[1\]
3695
3696     <MAPF finalf loopf s1 s2 ... sN>
3697
3698 where (after argument evaluation)
3699
3700 -   *finalf* is something applicable that evaluates all its arguments,
3701     or a `FALSE`;
3702 -   *loopf* is something applicable to *N* arguments that evaluates
3703     all its arguments; and
3704 -   *s1* through *sN* are structured objects (any `TYPE`)
3705
3706 does the following:
3707
3708 1.  First, it applies *loopf* to *N* arguments: the first element of
3709     each of the structures. Then it `REST`s each of the structures,
3710     and does the application again, looping until **any** of the
3711     structures runs out of elements. Each of the values returned by
3712     *loopf* is recorded in a `TUPLE`.
3713 2.  Then, it applies *finalf* to all the recorded values
3714     simultaneously, and returns the result of that application. If
3715     *finalf* is a `FALSE`, the recorded values are "thrown away"
3716     (actually never recorded in the first place) and the `MAPF`
3717     returns only the last value returned by *loopf*. If any of the
3718     *si* structures is empty, to that *loopf* is never invoked,
3719     *finalf* is applied to **no** arguments; if *finalf* is a `FALSE`,
3720     `MAPF` returns `#FALSE ()`.
3721
3722 ### 10.2.2 MAPR \[1\]
3723
3724     <MAPR finalf loopf s1 s2 ... sN>
3725
3726 acts just like `MAPF`, but, instead of applying *loopf* to `NTH`s of
3727 the structures -- that is, `<NTH si 1>`, `<NTH si 2>`, etc. -- it
3728 applies it to `REST`s of the structures -- that is, `<REST si 0>`,
3729 `<REST si 1>`, etc.
3730
3731 ### 10.2.3. Examples \[1\]
3732
3733 Make the element-wise sum of two `LIST`s:
3734
3735     <MAPF .LIST .+ '(1 2 3 4) '(10 11 12 13)>$
3736     (11 13 15 17)
3737
3738 Change a `UVECTOR` to contain double its values:
3739
3740     <SET UV '![5 6 7 8 9]>$
3741     ![5 6 7 8 9!]
3742     <MAPR <>
3743            #FUNCTION ((L) <PUT .L 1 <* <1 .L> 2>>)
3744            .UV>$
3745     ![18!]
3746     .UV$
3747     ![10 12 14 16 18!]
3748
3749 Create a `STRING` from `CHARACTER`s:
3750
3751     <MAPF ,STRING 1 '["MODELING" "DEVELOPMENT" "LIBRARY"]>$
3752     "Muddle"
3753
3754 Sum the squares of the elements of a `UVECTOR`:
3755
3756     <MAPF ,+ #FUNCTION ((N) <* .N .N>) '![3 4]>$
3757     25
3758
3759 A parallel assignment `FUNCTION` (Note that the arguments to `MAPF`
3760 are of different lengths.):
3761
3762     <DEFINE PSET ("TUPLE" TUP)
3763             <MAPF <>
3764                   ,SET
3765                   .TUP
3766                   <REST .TUP </ <LENGTH .TUP> 2>>>>$
3767     PSET
3768     <PSET A B C 1 2 3>$
3769     3
3770     .A$
3771     1
3772     .B$
3773     2
3774     .C$
3775     3
3776
3777 Note: it is easy to forget that *finalf* **must** evaluate its
3778 arguments, which precludes the use of an `FSUBR`. It is primarily for
3779 this reason that the `SUBR`s `AND?` and `OR?` were invented. As an
3780 example, the predicate `=?` could have been defined this way:
3781
3782     <DEFINE =? (A B)
3783             <COND (<MONAD? .A> <==? .A .B>)
3784                   (<AND <NOT <MONAD? .B>>
3785                         <==? <TYPE .A> <TYPE .B>>
3786                         <==? <LENGTH .A> <LENGTH .B>>>
3787                    <MAPF ,AND? ,=? .A .B>)>>
3788
3789 \[By the way, the following shows how to construct a value that has
3790 the same `TYPE` as an argument.
3791
3792     <DEFINE MAP-NOT (S)
3793      <COND (<MEMQ <PRIMTYPE .S> '![LIST VECTOR UVECTOR STRING]>
3794             <CHTYPE <MAPF ,<PRIMTYPE .S> ,NOT .S>
3795                     <TYPE .S>>)>>
3796
3797 It works because the `ATOM`s that name the common `STRUCTURED`
3798 `PRIMTYPS`s (`LIST`, `VECTOR`, `UVECTOR` and `STRING`) have as `GVAL`s
3799 the corresponding `SUBR`s to build objects of those `TYPE`s.\]
3800
3801 10.3. More on MAPF and MAPR
3802 ---------------------------
3803
3804 ### 10.3.1. MAPRET
3805
3806 `MAPRET` is a `SUBR` that enables the *loopf* being used in a `MAPR`
3807 or `MAPF` (and lexically within it, that is, not separated from it by
3808 a function call) to return from zero to any number of values as
3809 opposed to just one. For example, suppose a `MAPF` of the following
3810 form is used:
3811
3812     <MAPF ,LIST <FUNCTION (E) ...> ...>
3813
3814 Now suppose that the programmer wants to add no elements to the final
3815 `LIST` on some calls to the `FUNCTION` and add many on other calls to
3816 the `FUNCTION`. To accomplish this, the `FUNCTION` simply calls
3817 `MAPRET` with the elements it wants added to the `LIST`. More
3818 generally, `MAPRET` causes its arguments to be added to the final
3819 `TUPLE` of arguments to which the *finalf* will be applied.
3820
3821 Warning: `MAPRET` is guaranteed to work only if it is called from an
3822 explicit `FUNCTION` which is the second argument to a `MAPF` or
3823 `MAPR`. In other words, the second argument to `MAPF` or `MAPR` must
3824 be `#FUNCTION (...)` or `<FUNCTION ...>` if `MAPRET` is to be used.
3825
3826 Example: the following returns a `LIST` of all the `ATOM`s in an
3827 `OBLIST` (chapter 15):
3828
3829     <DEFINE ATOMS (OB)
3830             <MAPF .LIST
3831                   <FUNCTION (BKT) <MAPRET !.BKT>>
3832                   .OB>>
3833
3834 ### 10.3.2. MAPSTOP
3835
3836 `MAPSTOP` is the same as `MAPRET`, except that, after adding its
3837 arguments, if any, to the final `TUPLE`, it forces the application of
3838 *finalf* to occur, whether or not the structured objects have run out
3839 of objects. Example: the following copies the first ten (or all)
3840 elements of its argument into a `LIST`:
3841
3842     <DEFINE FIRST-TEN (STRUC "AUX" (I 10))
3843      <MAPF ,LIST
3844           <FUNCTION (E)
3845               <COND (<0? <SET I <- .I 1>>> <MAPSTOP .E>)>
3846               .E>
3847           .STRUC>>
3848
3849 ### 10.3.3. MAPLEAVE
3850
3851 `MAPLEAVE` is analogous to `RETURN`, except that it works in
3852 (lexically within) `MAPF` or `MAPR` instead of `PROG` or `REPEAT`. It
3853 flushes the accumulated `TUPLE` of results and returns its argument
3854 (optional, `T` by default) as the value of the `MAPF` or `MAPR`. (It
3855 finds the MAPF/R that should returns in the current binding of the
3856 `ATOM` `LMAP\ !-INTERRUPTS` ("last map").) Example: the following
3857 finds and returns the first non-zero element of its argument, or
3858 `#FALSE ()` if there is none:
3859
3860     <DEFINE FIRST-N0 (STRUC)
3861             <MAPF <>
3862                   <FUNCTION (X)
3863                     <COND (<N==? .X 0> <MAPLEAVE .X>)>>
3864                   .STRUC>>
3865
3866 ### 10.3.4. Only two arguments
3867
3868 If `MAPF` or `MAPR` is given only two arguments, the iteration
3869 function *loopf* is applied to no arguments each time, and the looping
3870 continues indefinitely until a `MAPLEAVE` or `MAPSTOP` is invoked.
3871 Example: the following returns a `LIST` of the integers from one less
3872 than its argument to zero.
3873
3874     <DEFINE LNUM (N)
3875             <MAPF ,LIST
3876                   <FUNCTION ()
3877                     <COND (<=? <SET N <- .N 1>>> <MAPSTOP 0>)
3878                           (ELSE .N)>>>>
3879
3880 One principle use of this form of MAPF/R involves processing input
3881 characters, in cases where you don't know how many characters are
3882 going to arrive. The example below demonstrates this, using `SUBR`s
3883 which are more fully explained in chapter 11. Another example can be
3884 found in chapter 13.
3885
3886 Example: the following `FUNCTION` reads characters from the current
3887 input channel until an `$` (`ESC`) is read, and then returns what was
3888 read as one `STRING`. (The `SUBR` `READCHR` reads one character from
3889 the input channel and returns it. `NEXTCHR` returns the next
3890 `CHARACTER` which `READCHR` will return -- chapter 11.)
3891
3892     <DEFINE RDSTR ()
3893       <MAPF .STRING
3894             <FUNCTION () <COND (<NOT <==? <NEXTCHR> <ASCII 27>>>
3895                                 <READCHR>)
3896                                (T
3897                                 <MAPSTOP>)>>>>$
3898     RDSTR
3899
3900     <PROG () <READCHR> ;"Flush the ESC ending this input."
3901                  <RDSTR>>$
3902     ABC123<+ 3 4>$"ABC123<+ 3 4>"
3903
3904 ### 10.3.5. STACKFORM
3905
3906 The `FSUBR` `STACKFORM` is archaic, due to improvements in the
3907 implementation of MAPF/R, and it should not be used in new programs.
3908
3909     <STACKFORM function arg pred>
3910
3911 is exactly equivalent to
3912
3913     <MAPF function
3914           <FUNCTION () <COND (pred arg) (T <MAPSTOP>)>>>
3915
3916 In fact MAPF/R is more powerful, because `MAPRET`, `MAPSTOP`, and
3917 `MAPLEAVE` provide flexibility not available with `STACKFORM`.
3918
3919 10.4. GO and TAG
3920 ----------------
3921
3922 `GO` is provided in Muddle for people who can't recover from a
3923 youthful experience with Basic, Fortran, PL/I, etc. The `SUBR`s
3924 previously described in this chapter are much more tasteful for making
3925 good, clean, "structured" programs. `GO` just bollixes things.
3926
3927 `GO` is a `SUBR` which allows you to break the normal order of
3928 evaluation and re-start just before any top-level expression in a
3929 `PROG` or `REPEAT`. It can take two `TYPE`s of arguments: `ATOM` or
3930 `TAG`.
3931
3932 Given an `ATOM`, `GO` searches the *body* of the immediately
3933 surrounding `PROG` or `REPEAT` within the current Function, starting
3934 after *aux*, for an occurrence of that `ATOM` at the top level of
3935 *body*. (This search is effectively a `MEMQ`.) If it doesn't find the
3936 `ATOM`, an error occurs. If it does, evaluation is resumed at the
3937 expression following the `ATOM`.
3938
3939 The `SUBR` `TAG` generates and returns objects of `TYPE` `TAG`. This
3940 `SUBR` takes one argument: an `ATOM` which would be a legal argument
3941 for a `GO`. An object of `TYPE` `TAG` contains sufficient information
3942 to allow you to `GO` to any top-level position in a `PROG` or `REPEAT`
3943 from within any function called inside the `PROG` or `REPEAT`. `GO`
3944 with a `TAG` is vaguely like `AGAIN` with an `ACTIVATION`; it allows
3945 you to "go back" to the middle of any `PROG` or `REPEAT` which called
3946 you. Also like `ACTIVATION`s, `TAG`s into a `PROG` or `REPEAT` can no
3947 longer be used after the `PROG` or `REPEAT` has returned. `LEGAL?` can
3948 be used to see if a `TAG` is still valid.
3949
3950 10.5. Looping versus Recursion
3951 ------------------------------
3952
3953 Since any program in Muddle can be called recursively, champions of
3954 "pure Lisp" (Moon, 1974) or somesuch may be tempted to implement any
3955 repetitive algorithm using recursion. The advantage of the looping
3956 techniques described in this chapter over recursion is that the
3957 overhead of calls is eliminated. However, a long program (say, bigger
3958 than half a printed page) may be more difficult to write iteratively
3959 than recursively and hence more difficult to maintain. A program whose
3960 repetition is controlled by a structured object (for example, "walking
3961 a tree" to visit each monad in the object) often should use looping
3962 for covering one "level" of the structure and recursion to change
3963 "levels".
3964
3965 Chapter 11. Input/Output
3966 ========================
3967
3968 The Muddle interpreter can transmit information between an object in
3969 Muddle and an external device in three ways. Historically, the first
3970 way was to **convert** an object into a string of characters, or vice
3971 versa. The transformation is nearly one-to-one (although some Muddle
3972 objects, for example `TUPLE`s, cannot be input in this way) and is
3973 similar in style to Fortran's formatted I/O. It is what `READ` and
3974 `PRINT` do, and it is the normal method for terminal I/O.
3975
3976 The second way is used for the contents of Muddle objects rather than
3977 the objects themselves. Here an **image** of numbers or characters
3978 within an object is transmitted, similar in style to Fortran's
3979 unformatted I/O.
3980
3981 The third way is to **dump** an object in a clever format so that it
3982 can be reproduced exactly when input the next time. Exact reproduction
3983 means that any sharing between structures or self-reference is
3984 preserved: only the garbage collector itself can do I/O in this way.
3985
3986 11.1. Conversion I/O
3987 --------------------
3988
3989 All conversion-I/O `SUBR`s in Muddle take an optional argument which
3990 directs their attention to a specific I/O channel. This section will
3991 describe `SUBR`s without their optional arguments. In this situation,
3992 they all refer to a particular channel by default, initially the
3993 terminal running the Muddle. When given an optional argument, that
3994 argument follows any arguments indicated here. Some of these `SUBR`s
3995 also have additional optional arguments, relevant to conversion,
3996 discussion of which will be deferred until later.
3997
3998 ### 11.1.1. Input
3999
4000 All of the following input Subroutines, when directed at a terminal,
4001 hang until `$` (`ESC`) is typed and allow normal use of `rubout`,
4002 `^D`, `^L` and `^@`.
4003
4004 #### 11.1.1.1. READ
4005
4006     <READ>
4007
4008 This returns the entire Muddle object whose character representation
4009 is next in the input stream. Successive `<READ>`s return successive
4010 objects. This is precisely the `SUBR` `READ` mentioned in chapter 2.
4011 See also sections 11.3, 15.7.1, and 17.1.3 for optional arguments.
4012
4013 #### 11.1.1.2. READCHR
4014
4015     <READCHR>
4016
4017 ("read character") returns the next `CHARACTER` in the input stream.
4018 Successive `<READCHR>`s return successive `CHARACTER`s.
4019
4020 #### 11.1.1.3. NEXTCHR
4021
4022     <NEXTCHR>
4023
4024 ("next character") returns the `CHARACTER` which `READCHR` will return
4025 the next time `READCHR` is called. Multiple `<NEXTCHR>`s, with no
4026 input operations between them, all return the same thing.
4027
4028 ### 11.1.2. Output
4029
4030 If an object to be output requires (or can tolerate) separators within
4031 it (for example, between the elements in a structured object or after
4032 the `TYPE` name in "\# notation"), these conversion-output `SUBR`s
4033 will use a carriage-return/line-feed separator to prevent overflowing
4034 a line. Overflow is detected in advance from elements of the `CHANNEL`
4035 in use (section 11.2.8).
4036
4037 #### 11.1.2.1. PRINT
4038
4039     <PRINT any>
4040
4041 This outputs, in order,
4042
4043 1.  a carriage-return line-feed,
4044 2.  the character representation of `EVAL` of its argument (`PRINT` is
4045     a `SUBR`), and
4046 3.  a space
4047
4048 and then returns `EVAL` of its argument. This is precisely the `SUBR`
4049 `PRINT` mentioned in chapter 2.
4050
4051 #### 11.1.2.2. PRIN1
4052
4053     <PRIN1 any>
4054
4055 outputs just the representation of, and returns, `EVAL` of *any*.
4056
4057 #### 11.1.2.3. PRINC
4058
4059     <PRINC any>
4060
4061 ("print characters") acts exactly like `PRIN1`, except that
4062
4063 1.  if its argument is a `STRING` or a `CHARACTER`, it suppresses the
4064     surrounding `"`s or initial `!\` respectively; or
4065 2.  if its argument is an `ATOM`, it suppresses any `\`s or `OBLIST`
4066     trailers (chapter 15) which would otherwise be necessary.
4067
4068 If `PRINC`'s argument is a structure containing `STRING`s,
4069 `CHARACTER`s, or `ATOM`s, the service mentioned will be done for all
4070 of them. Ditto for the `ATOM` used to name the `TYPE` in "\#
4071 notation".
4072
4073 #### 11.1.2.4. TERPRI
4074
4075     <TERPRI>
4076
4077 ("terminate printing") outputs a carriage-return line-feed and then
4078 returns `# FALSE ()`!
4079
4080 #### 11.1.2.5. CRLF
4081
4082 ("carriage-return line-feed") outputs a carriage-return line-feed and
4083 then returns `T`.
4084
4085 #### 11.1.2.6. FLATSIZE
4086
4087     <FLATSIZE any max:fix radix:fix>
4088
4089 does not actually cause any output to occur and does not take a
4090 `CHANNEL` argument. Instead, or compares *max* with the number of
4091 characters `PRIN1` would take to print *any*. If *max* is less than
4092 the number of characters needed (including the case where *any* is
4093 self-referencing, `FLATSIZE` returns `#FALSE ()`; otherwise, it
4094 returns the number of characters needed by `PRIN1` *any*. *radix*
4095 (optional, ten by default) is used for converting any `FIX`es that
4096 occur.
4097
4098 This `SUBR` is especially useful in conjunction with (section 11.2.8)
4099 those elements of a `CHANNEL` which specify the number of characters
4100 per output line and the current position on an input line.
4101
4102 CHANNEL (the TYPE)
4103 ------------------
4104
4105 I/O channels are dynamically assigned in Muddle, and are represented
4106 by an object of `TYPE` `CHANNEL`, which is of `PRIMTYPE` `VECTOR`. The
4107 format of a `CHANNEL` will be explained later, in section 11.2.8.
4108 First, how to generate and use them.
4109
4110 ### 11.2.1. OPEN
4111
4112     <OPEN mode file-spec>
4113
4114 or
4115
4116     <OPEN mode name1 name2 device dir>
4117
4118 `OPEN` is a `SUBR` which creates and returns a `CHANNEL`. All its
4119 arguments must be of `TYPE` `STRING`, and **all** are optional. The
4120 preceding statement is false when the *device* is `"INT"` or `"NET"`;
4121 see sections 11.9 and 11.10. If the attempted opening of an
4122 operating-system I/O channel fails, `OPEN` returns
4123 `#FALSE (reason:string file-spec:string status:fix)`, where the
4124 *reason* and the *status* are supplied by the operating system, and
4125 the `file-spec` is the standard name of the file (after any name
4126 transformations by the operating system) that Muddle was trying to
4127 open.
4128
4129 The choice of *mode* is usually determined by which `SUBR`s will be
4130 used on the `CHANNEL`, and whether or not the *device* is a terminal.
4131 The following table tells which `SUBR`s can be used with which modes,
4132 where `OK` indicates an allowed use:
4133
4134   -------------------------------------------------------------------------
4135   "READ" "PRINT" "READB" "PRINTB", "PRINTO" mode / SUBRs
4136   ------ ------- ------- ------------------ ------------
4137   OK             OK                         `READ` `READCHR` `NEXTCHR`
4138                                             `READSTRING` `FILECOPY`
4139                                             `FILE-LENGTH LOAD`
4140
4141          OK              OK\*               `PRINT` `PRIN1` `PRINC` `IMAGE`
4142                                             `CRLF` `TERPRI` `FILECOPY`
4143                                             `PRINTSTRING` `BUFOUT` `NETS`
4144                                             `RENAME`
4145
4146                  OK                         `READB` `GC-READ`
4147
4148                          OK                 `PRINTB` `GC-DUMP`
4149
4150   OK             OK      OK                 `ACCESS`
4151
4152   OK     OK      OK      OK                 `RESET`
4153
4154   OK     OK                                 `ECHOPAIR`
4155
4156   OK                                        `TTYECHO` `TYI`
4157   -------------------------------------------------------------------------
4158
4159 `*` PRINTing (or `PRIN1`ing) an `RSUBR` (chapter 19) on a `"PRINTB"`
4160 or `"PRINTO"` `CHANNEL` has special effects.
4161
4162 `"PRINTB"` differs from `"PRINTO"` in that the latter mode is used to
4163 update a `"DSK"` file without copying it. `"READB"` and `"PRINTB"` are
4164 not used with terminals. `"READ"` is the mode used by default.
4165
4166 The next one to four arguments to `OPEN` specify the file involved. If
4167 only one `STRING` is used, it can contain the entire specification,
4168 according to standard operating-system syntax. Otherwise, the
4169 string(s) are interpreted as follows:
4170
4171 *name1* is the first file name, that part to the left of the space (in
4172 the ITS version) or period (in the Tenex and Tops-20 versions). The
4173 name used by default is `<VALUE NM1>`, if any, otherwise `"INPUT"`.
4174
4175 *name2* is the second fail name, that part to the right of the space
4176 (ITS) or period (Tenex and Tops-20). The name used by default is
4177 `<VALUE NM2>`, if any, otherwise `">"` or `"MUD"` and highest version
4178 number (Tenex) or generation number (Tops-20).
4179
4180 *device* is the device name. The name used by default is
4181 `<VALUE DEV>`, if any, otherwise `"DSK"`. (Devices about which Muddle
4182 has no special knowledge are assumed to behave like `"DSK"`.)
4183
4184 *dir* is the disk-directory name. The name used by default is
4185 `<VALUE SNM>`, if any, otherwise the "working-directory" name as
4186 defined by her operating system.
4187
4188 Examples:
4189
4190 `<OPEN "PRINT" "TPL:">` opens a conversion-output channel to the TPL
4191 device.
4192
4193 `<OPEN "PRINT" "DUMMY" "NAMES" "IPL">` does the same.
4194
4195 `<OPEN "PRINT" "TPL">` opens a `CHANNEL` to the file `DSK:TPL >` (ITS
4196 version) or `DSK:TPL.MUD` (Tenex and Tops-20 versions).
4197
4198 `<OPEN "READ" "FOO" ">" "DSK" "GUEST">` opens up a conversion-input
4199 `CHANNEL` to the given file.
4200
4201 `<OPEN "READ" "GUEST;FOO">` does the same in the ITS version.
4202
4203 ### 11.2.2. OPEN-NR
4204
4205 `OPEN-NR` is the same as `OPEN`, except that the date and time of last
4206 reference of the opened file are not changes.
4207
4208 ### 11.2.3. CHANNEL (the SUBR)
4209
4210 `CHANNEL` is called exactly like `OPEN`, but it **always** return an
4211 unopened `CHANNEL`, which can later be opened by `RESET` (below) just
4212 as if it had once been open.
4213
4214 ### 11.2.4. FILE-EXISTS?
4215
4216 `FILE-EXISTS?` tests for the existence of a file without creating a
4217 `CHANNEL`, which occupies about a hundred machine words of storage. It
4218 takes file-name arguments just like `OPEN` (but no *mode* argument)
4219 and returns either T, \`\#FALSE (reason:string status:fix),
4220
4221 ### 11.2.5. CLOSE
4222
4223     <CLOSE channel>
4224
4225 closes *channel* and returns its argument, with its "state" changed to
4226 "closed". If *channel* is for output, all buffered output is written
4227 out first. No harm is done if *channel* is already `CLOSE`d.
4228
4229 ### 11.2.6. CHANLIST
4230
4231     <CHANLIST>
4232
4233 returns a `LIST` whose elements are all the currently open `CHANNEL`s.
4234 The first two elements are usually `.INCHAN` and `.OUTCHAN` (see
4235 below). A `CHANNEL` not referenced by anything except `<CHANLIST>`
4236 will be `CLOSEd` during garbage collection.
4237
4238 ### 11.2.7. INCHAN and OUTCHAN
4239
4240 The channel used by default for input `SUBR`s is the local value of
4241 the `ATOM` `INCHAN`. The channel used by default for output SUBRs is
4242 the local value of the `ATOM` `OUTCHAN`.
4243
4244 You can direct I/O to a `CHANNEL` by `SET`ting `INCHAN` or `OUTCHAN`
4245 (remembering their old values somewhere), or by giving the `SUBR` you
4246 with to use an argument of `TYPE` `CHANNEL`. (These actually have the
4247 same effect, because `READ` binds `INCHAN` to an explicit argument,
4248 and `PRINT` binds `OUTCHAN` similarly. Thus the `CHANNEL` being used
4249 is available for `READ` macros (section 17.1), or by giving the `SUBR`
4250 you wish to use an argument of `TYPE` `CHANNEL`. Thus the `CHANNEL`
4251 being used is available for `READ` macros (section 17.1) and
4252 `PRINTTYPE`s (section 6.4.4).)
4253
4254 By the way, a good trick for playing with `INCHAN` and `OUTCHAN`
4255 values within a function is to use the `ATOM`s `INCHAN` and `OUTCHAN`
4256 as `"AUX"` variables, re-binding their local values to the `CHANNEL`
4257 you want. When you leave , of course, the old `LVAL`s are expanded
4258 (which is the whole point). The `ATOM`s must be declared `SPECIAL`
4259 (chapter 14) for this trick to compile correctly.
4260
4261 `INCHAN` and `OUTCHAN` also have global values, initially the
4262 `CHANNEL`s directed at the terminal running `Muddle`. Initially,
4263 `INCHAN`'s and `OUTCHAN`s local and global values are the same.
4264
4265 ### 11.2.8. Contents of CHANNELs
4266
4267 The contents of an object of `TYPE` `CHANNEL` are referred to by the
4268 I/O `SUBR`s each time such a `SUBR` is used. If you change the
4269 contents of a `CHANNEL` (for example, with `PUT`), the next use of
4270 that `CHANNEL` will be changed accordingly. Some elements of
4271 `CHANNEL`s, however, should be played with seldom, if ever, and only
4272 at your own peril. These are marked below with an `*` (asterisk).
4273 Caveat user.
4274
4275 There follows a table of the contents of a `CHANNEL`, the `TYPE` of
4276 each element, and an interpretation. The format used is the following:
4277
4278 *element-number: type interpretation*
4279
4280   -------------------------------------------------------------------------------------
4281   element-number   type          interpretation
4282   ---------------- ------------- ------------------------------------------------------
4283   -1               `LIST`        transcript channel(s) (see below)
4284
4285   \* 0             varies        device-dependent information
4286
4287   \* 1             `FIX`         channel number (ITS) or JFN (Tenex and Tops-20), `0`
4288                                  for internal or closed
4289
4290   \* 2             `STRING`      mode
4291
4292   \* 3             `STRING`      first file name argument
4293
4294   \* 4             `STRING`      second file name argument
4295
4296   \* 5             `STRING`      device name argument
4297
4298   \* 6             `STRING`      directory name argument
4299
4300   \* 7             `STRING`      real first file name
4301
4302   \* 8             `STRING`      real second file name
4303
4304   \* 9             `STRING`      real device name
4305
4306   \* 10            `STRING`      real directory name
4307
4308   \* 11            `FIX`         various status bits
4309
4310   \* 12            `FIX`         PDP-10 instruction used to do one I/O operation
4311
4312   13               `FIX`         number of characters per line of output
4313
4314   14               `FIX`         current character position on a line
4315
4316   15               `FIX`         number of lines per page
4317
4318   16               `FIX`         current line number on a page
4319
4320   17               `FIX`         access pointer for file-oriented devices
4321
4322   18               `FIX`         radix for `FIX` conversion
4323
4324   19               `FIX`         sink for an internal `CHANNEL`
4325   -------------------------------------------------------------------------------------
4326
4327 N.B.: The elements of a `CHANNEL` below number 1 are usually invisible
4328 but are obtainable via `<NTH <TOP channel> fix>`, for some appropriate
4329 *fix*.
4330
4331 The transcript-channels slot has this meaning: if this slot contains a
4332 `LIST` of `CHANNEL`s, then anything input or output on the original
4333 `CHANNEL` is output on these `CHANNEL`s. Caution: do not use a
4334 `CHANNEL` as its own transcript channel; you probably won't live to
4335 tell about it.
4336
4337 #### 11.2.8.2. Input CHANNELs
4338
4339 The contents of the elements up to number 12 of a `CHANNEL` used for
4340 input are the same as that for output. The remaining elements are as
4341 follows ((same) indicates that the use is the same as that for
4342 output):
4343
4344   element-number   type       interpretation
4345   ---------------- ---------- ---------------------------------------------------
4346   13               varies     object evaluated when end of file is reached
4347   \* 14            `FIX`      one "look-ahead" character, used by `READ`
4348   \* 15            `FIX`      PDP-10 instruction executed waiting for input
4349   16               `LIST`     queue of buffers for input from a terminal
4350   17               `FIX`      access pointer for file-oriented devices (same)
4351   18               `FIX`      radix for `FIX` conversion (same)
4352   19               `STRING`   buffer for input or source for internal `CHANNEL`
4353
4354 11.3. End-of-File "Routine"
4355 ---------------------------
4356
4357 As mentioned above, an explicit `CHANNEL` is the first optional
4358 argument of all `SUBR`s used for conversion I/O. The second optional
4359 argument for conversion-**input** `SUBR`s is an "end-of-file routine"
4360 -- that is, something for the input `SUBR` to `EVAL` and return, if it
4361 reaches the end of the file it is reading. A typical end-of-file
4362 argument is a `QUOTE`d `FORM` which applies a function of yours. The
4363 value of this argument used by default is a call to `ERROR`. Note: the
4364 `CHANNEL` has been `CLOSE`d by the time this argument is evaluated.
4365
4366 Example: the following `FUNCTION` counts the occurrences of a
4367 character in a file, according to its arguments. The file names,
4368 device, and directory are optional, with the usual names used by
4369 default.
4370
4371     <DEFINE COUNT-CHAR
4372             (CHAR "TUPLE" FILE "AUX" (CNT 0) (CHN <OPEN "READ" !.FILE>))
4373         <COND (.CHN                 ;"If CHN is FALSE, bad OPEN: return the FALSE
4374                                     so result can be tested by another FUNCTION."
4375                <REPEAT ()
4376                     <AND <==? .CHAR <READCHR .CHN '<RETURN>>>
4377                          <SET CNT <+ 1 .CNT>>>>
4378                     ;"Until EOF, keep reading and testing a character at a time."
4379                 .CNT                ;"Then return the count.")>>
4380
4381 11.4. Imaged I/O
4382 ----------------
4383
4384 ### 11.4.1. Input
4385
4386 #### 11.4.1.1. READB
4387
4388     <READB buffer:uvector-or-storage channel eof:any>
4389
4390 The *channel* must be open in `"READB"` mode. `READB` will read as
4391 many 36-bit binary words as necessary to fill the *buffer* (whose
4392 `UTYPE` must be of `PRIMTYPE` `WORD`), unless it hits the end of the
4393 file. `READB` returns the number of words actually read, as a
4394 `FIX`ed-point number. This will normally be the length of the
4395 *buffer*, unless the end of file was read, in which case it will be
4396 less, and only the beginning of *buffer* will have been filled
4397 (`SUBSTRUC` may help). An attempt to `READB` again, after *buffer* is
4398 not filled, will evaluate the end-of-file routine *eof*, which is
4399 optional, a call to `ERROR` by default.
4400
4401 #### 11.4.1.2. READSTRING
4402
4403     <READSTRING buffer:string channel stop:fix-or-string eof>
4404
4405 is the `STRING` analog to `READB`, where *buffer* and *eof* are as in
4406 `READB`, and *channel* is any input `CHANNEL` (`.INCHAN` by default).
4407 *stop* tells when to stop inputting: if a `FIX`, read this many
4408 `CHARACTER`s (fill up *buffer* by default); if a `STRING`, stop
4409 reading if any `CHARACTER` in this `STRING` is read (don't include
4410 this `CHARACTER` in final `STRING`).
4411
4412 ### 11.4.2. Output
4413
4414 #### 11.4.2.1. PRINTB
4415
4416     <PRINTB buffer:uvector-or-storage channel>
4417
4418 This call writes the entire contents of the *buffer* into the
4419 specified channel open in `"PRINTB"` or `"PRINTO"` mode. It returns
4420 *buffer*.
4421
4422 #### 11.4.2.2. PRINTSTRING
4423
4424     <PRINTSTRING buffer:string channel count:fix>
4425
4426 is analogous to `READSTRING`. It outputs *buffer* on *channel*, either
4427 the whole thing or the first *count* characters, and returns the
4428 number of characters output.
4429
4430 #### 11.4.2.3. IMAGE
4431
4432     <IMAGE fix channel>
4433
4434 is a rather special-purpose `SUBR`. When any conversion-output routine
4435 outputs an ASCII control character (with special exceptions like
4436 carriage-returns, line-feeds, etc.), it actually outputs two
4437 characters: `^` (circumflex), followed by the upper-case character
4438 which has been control-shifted. `IMAGE`, on the other hand, always
4439 outputs the real thing: that ASCII character whose ASCII 7-bit code is
4440 *fix*. It is guaranteed not to give any gratuitous linefeeds or such.
4441 *channel* is optional, `.OUTCHAN` by default, and its slots for
4442 current character position (number 14) and current line number (16)
4443 are not updated. `IMAGE` returns *fix*.
4444
4445 11.5 Dumped I/O
4446 ---------------
4447
4448 ### 11.5.1. Output: GC-DUMP
4449
4450     <GC-DUMP any printb:channel-or-false>
4451
4452 dumps *any* on *printb* in a clever format so that `GC-READ` (below)
4453 can reproduce *any* exactly, including sharing. *any* cannot live on
4454 the control stack, not can it be of `PRIMTYPE` `PROCESS` or `LOCD` or
4455 `ASOC` (which see). *any* is returned as a value.
4456
4457 If *printb* is a `CHANNEL`, it must be open in `"PRINTB"` or
4458 `"PRINTO"` mode. If *printb* is a `FALSE`, `GC-DUMP` instead returns a
4459 `UVECTOR` (of `UTYPE` `PRIMTYPE` `WORD`) that contains what it would
4460 have output on a `CHANNEL`. This `UVECTOR` can be `PRINTB`ed anywhere
4461 you desire, but, if it is changed **in any way**, `GC-READ` will not
4462 be able to input it. Probably the only reason to get it is to check
4463 its length before output.
4464
4465 Except for the miniature garbage collection required, `GC-DUMP` is
4466 about twice as fast as `PRINT`, but the amount of external storage
4467 used is two or three times as much.
4468
4469 ### 11.5.2. Input: GC-READ
4470
4471     <GC-READ readb:channel eof:any>
4472
4473 returns one object from the *channel*, which must be open in `"READB"`
4474 mode. The file must have been produced by `GC-DUMP`. *eof* is
4475 optional. `GC-READ` is about ten times faster than `READ`.
4476
4477 11.6. SAVE Files
4478 ----------------
4479
4480 The entire state of Muddle can be saved away in a file for later
4481 restoration: this is done with the `SUBR`s `SAVE` and `RESTORE`. This
4482 is a very different form of I/O from any mentioned up to now; the file
4483 used contains an actual image of your Muddle address space and is not,
4484 in general, "legible" to other Muddle routines. `RESTORE`ing a `SAVE`
4485 file is **much** faster than re-`READ`ing the objects it contains.
4486
4487 Since a `SAVE` file does not contain all extant Muddle objects, only
4488 the impure and `PURIFY`ed (section 22.9.2) ones, a change to the
4489 interpreter has the result of making all previous `SAVE` files
4490 unusable. To prevent errors from arising from this, the interpreter
4491 has a release number, which is incremented whenever changes are
4492 installed. The current release number is printed out on initially
4493 starting up the program and is available as the `GVAL` of the `ATOM`
4494 `MUDDLE`. This release number is written out as the very first part of
4495 each `SAVE` file. If `RESTORE` attempts to re-load a `SAVE` file whose
4496 release number is not the same as the interpreter being used, an error
4497 is produced. If desired, the release number of a `SAVE` file can be
4498 obtained by doing a `READ` of that file. Only that initial `READ` will
4499 work; the rest of the file is not ASCII.
4500
4501 ### 11.6.1. SAVE
4502
4503     <SAVE file-spec:string gc?:false-or-any>
4504
4505 or
4506
4507     <SAVE name1 name2 device dir gc?:false-or-any>
4508
4509 saves the entire state of your Muddle away in the file specified by
4510 its arguments, and then returns `"SAVED"`. All `STRING` arguments are
4511 optional, with `"MUDDLE"`, `"SAVE"`, `"DSK"`, and `<VALUE SNM>` used
4512 by default. *gc?* is optional and, if supplied and of `TYPE` `FALSE`,
4513 causes no garbage collection to occur before `SAVE`ing. (`FSAVE` is an
4514 alias for `SAVE` that may be seen in old programs.)
4515
4516 If, after restoring, `RESTORE` finds that `<VALUE SNM>` is the null
4517 `STRING` (`""`), it will ask the operating system for the name of the
4518 "working directory" and call `SNAME` with the result. This mechanism
4519 is handy for "public" `SAVE` files, which should not point the user at
4520 a particular disk directory.
4521
4522 In the ITS version, the file is actually written with the name
4523 `_MUDS_ >` and renamed to the argument(s) only when complete, to
4524 prevent losing a previous `SAVE` file if a crash occurs. In the Tenex
4525 and Tops-20 versions, version/generation numbers provide the same
4526 safety.
4527
4528 Example:
4529
4530     <DEFINE SAVE-IT ("OPTIONAL"
4531                      (FILE '("PUBLIC" "SAVE" "DSK" "GUEST"))
4532                      "AUX" (SNM ""))
4533             <SETUP>
4534             <COND (<=? "SAVED" <SAVE !.FILE>>   ;"See below."
4535                    <CLEANUP>
4536                    "Saved.")
4537                   (T
4538                    <CRLF>
4539                    <PRINC "Amazing program at your service.">
4540                    <CRLF>
4541                    <START-RUNNING>)>>
4542
4543 ### 11.6.2. RESTORE
4544
4545     <RESTORE file-spec>
4546
4547 or
4548
4549     <RESTORE name1 name2 device dir>
4550
4551 **replaces** the entire current state of your Muddle with that `SAVE`d
4552 in the file specified. All arguments are optional, with the same
4553 values used by default as by `SAVE`.
4554
4555 `RESTORE` completely replaces the contents of the Muddle, including
4556 the state of execution existing when the `SAVE` was done and the state
4557 of all open I/O `CHANNEL`s. If a file which was open when the `SAVE`
4558 was done does not exist when the `RESTORE` is done, a message to that
4559 effect will appear on the terminal.
4560
4561 A `RESTORE` **never** returns (unless it gets an error): it causes a
4562 `SAVE` done some time ago to return **again** (this time with the
4563 value `"RESTORED"`), even if the `SAVE` was done in the midst of
4564 running a program. In the latter case, the program will continue its
4565 execution upon `RESTORE`ation.
4566
4567 11.7. Other I/O Functions
4568 -------------------------
4569
4570 ### 11.7.1. LOAD
4571
4572     <LOAD input:channel look-up>
4573
4574 eventually returns `"DONE"`. First, however, it `READ`s and `EVAL`s
4575 every Muddle object in the file pointed to by *input*, and then
4576 `CLOSE`s *input*. Any occurrences of `rubout`, `^@`, `^D`, `^L`, etc.,
4577 in the file are given no special meaning; they are simply `ATOM`
4578 constituents.
4579
4580 *look-up* is optional, used to specify a `LIST` of `OBLIST`s for the
4581 `READ`. `.OBLIST` is used by default (chapter 15).
4582
4583 ### 11.7.2. FLOAD
4584
4585     <FLOAD file-spec look-up>
4586
4587 or
4588
4589     <FLOAD name1 name2 device dir look-up>
4590
4591 ("file load") acts just like `LOAD`, except that it takes arguments
4592 (with values used by default) like `OPEN`, `OPEN`s the `CHANNEL`
4593 itself for reading, and `CLOSE`s the `CHANNEL` when done. *look-up* is
4594 optional, as in `LOAD`. If the `OPEN` fails, an error occurs, giving
4595 the reason for failure.
4596
4597 ### 11.7.3. SNAME
4598
4599 `<SNAME string>` ("system name", a hangover from ITS) is identical in
4600 effect with `<SETG SNM string>`, that is, it causes *string* to become
4601 the *dir* argument used by default by all `SUBR`s which want file
4602 specifications (in the absence of a local value for `SNM`). `SNAME`
4603 returns its argument.
4604
4605 `<SNAME>` is identical in effect with `<GVAL SNM>`, that is, it
4606 returns the current *dir* used by default.
4607
4608 ### 11.7.4. ACCESS
4609
4610     <ACCESS channel fix>
4611
4612 returns *channel*, after making the next character or binary word
4613 (depending on the mode of *channel*, which should not be `"PRINT"`)
4614 which will be input from or output to *channel* the (*fix*+1)st one
4615 from the beginning of the file. *channel* must be open to a randomly
4616 accessible device (`"DSK"`, `"USR"`, etc.). A *fix* of `0` positions
4617 *channel* at the beginning of the file.
4618
4619 ### 11.7.5. FILE-LENGTH
4620
4621     <FILE-LENGTH input:channel>
4622
4623 returns a `FIX`, the length of the file open on *input*. This
4624 information is supplied by the operating system, and it may not be
4625 available, for example, with the `"NET"` device (section 11.10). If
4626 *input*'s mode is `"READ"`, the length is in characters (rounded up to
4627 a multiple of five); if `"READB"`, in binary words. If `ACCESS` is
4628 applied to *input* and this length or more, then the next input
4629 operation will detect the end of file.
4630
4631 ### 11.7.6. FILECOPY
4632
4633     <FILECOPY input:channel output:channel>
4634
4635 copies characters from *input* to *output* until the end of file on
4636 *input* (thus closing *input*) and returns the number of characters
4637 copied. Both arguments are optional, with `.INCHAN` and `.OUTCHAN`
4638 used by default, respectively. The operation is essentially a
4639 `READSTRING` -- `PRINTSTRING` loop. Neither `CHANNEL` need be freshly
4640 `OPEN`ed, and *output* need not be immediately `CLOSE`d. Restriction:
4641 internally a `<FILE-LENGTH input>` is done, which must succeed; thus
4642 `FILECOPY` might lose if *input* is a `"NET"` `CHANNEL`.
4643
4644 ### 11.7.7. RESET
4645
4646     <RESET channel>
4647
4648 returns *channel*, after "resetting" it. Resetting a `CHANNEL` is like
4649 `OPEN`ing it afresh, with only the file-name slots preserved. For an
4650 input `CHANNEL`, this means emptying all input buffers and, if it is a
4651 `CHANNEL` to a file, doing an `ACCESS` to `0` on it. For an output
4652 `CHANNEL`, this means returning to the beginning of the file -- which
4653 implies, if the mode is not `"PRINTO"`, destroying any output done to
4654 it so far. If the opening fails (for example, if the mode slot of
4655 *channel* says input, and if the file specified in its real-name slots
4656 does not exist), `RESET` (like `OPEN`) returns
4657 `#FALSE (reason:string file-spec:string status:fix)`.
4658
4659 ### 11.7.8. BUFOUT
4660
4661     <BUFOUT output:channel>
4662
4663 causes all internal Muddle buffers for *output* to be written out and
4664 returns its argument. This is helpful if the operating system or
4665 Muddle is flaky and you want to attempt to minimize your losses. The
4666 output may be padded with up to four extra spaces, if *output*'s mode
4667 is `"PRINT"`.
4668
4669 ### 11.7.9. RENAME
4670
4671 `RENAME` is for renaming and deleting files. It takes three kinds of
4672 arguments:
4673
4674 -   (a) two file names, in either single- or multi-`STRING` format,
4675         separated by the `ATOM` `TO`,
4676
4677 -   (b) one file name in either format, or
4678
4679 -   (c) a `CHANNEL` and a file name in either format (only in the ITS
4680         version).
4681
4682 Omitted file-name parts use the same values by default as does `OPEN`.
4683 If the operation is successful, `RENAME` returns `T`, otherwise
4684 `#FALSE (reason:string status:fix)`.
4685
4686 In case (a) the file specified by the first argument is renamed to the
4687 second argument. For example:
4688
4689     <RENAME "FOO 3" TO "BAR">       ;"Rename FOO 3 to BAR >."
4690
4691 In case (b) the single file name specifies a file to be deleted. For
4692 example:
4693
4694     <RENAME "FOO FOO DSK:HARRY;">  ;"Rename FOO 3 to BAR >."
4695
4696 In case (c) the `CHANNEL` must be open in either `"PRINT"` or
4697 `"PRINTB"` mode, and a rename while open for writing is attempted. The
4698 real-name slots in the `CHANNEL` are updated to reflect any successful
4699 change.
4700
4701 11.8. Terminal CHANNELs
4702 -----------------------
4703
4704 Muddle behaves like the ITS version of the text editor Teco with
4705 respect to typing in carriage-return, in that it automatically adds a
4706 line-feed. In order to type in a lone carriage-return, a
4707 carriage-return followed by a rubout must be typed. Also `PRINT`,
4708 `PRINT1` and `PRINC` do not automatically add a line-feed when a
4709 carriage-return is output. This enables overstriking on a terminal
4710 that lacks backspacing capability. It also means that what goes on a
4711 terminal and what goes in a file are more likely to look the same.
4712
4713 In the ITS version, Muddle's primary terminal output channel (usually
4714 `,OUTCHAN`) is normally not in "display" mode, except when `PRINC`ing
4715 a `STRING`. Thus errors will rarely occur when a user is typing in
4716 text containing display-mode control codes.
4717
4718 In the ITS version, Muddle can start up without a terminal, give
4719 control of the terminal away to an inferior operating-system process
4720 or get it back while running. Doing a `RESET` on either of the
4721 terminal channels causes Muddle to find out if it now has the
4722 terminal; if it does, the terminal is reopened and the current screen
4723 size and device parameters are updated. If it doesn't have the
4724 terminal, an internal flag is set, causing output to the terminal to
4725 be ignored and attempted input from the terminal to make the
4726 operating-system process go to sleep.
4727
4728 In the ITS version, there are some peculiarities associated with
4729 pseudo-terminals (`"STY"` and `"STn"` devices). If the `CHANNEL` given
4730 to `READCHR` is open in `"READ"` mode to a pseudo-terminal, and if no
4731 input is available, `READCHR` returns `-1`, `TYPE` `FIX`. If the
4732 `CHANNEL` given to `READSTRING` is open in `"READ"` mode to a
4733 pseudo-terminal, reading also stops if and when no more characters are
4734 available, that is, when `READCHR` would return `-1`.
4735
4736 11.8.1. ECHOPAIR
4737 ----------------
4738
4739     <ECHOPAIR terminal-in:channel terminal-out:channel>
4740
4741 returns its first argument, after making the two `CHANNEL`s "know
4742 about each other" so that `rubout`, `^@`, `^D` and `^L` on
4743 *terminal-in* will cause the appropriate output on *terminal-out*.
4744
4745 ### 11.8.2. TTYECHO
4746
4747     <TTYECHO terminal-input:channel pred>
4748
4749 turns the echoing of typed characters on *channel* off or on,
4750 according to whether or not *pred* is `TYPE` `FALSE`, and returns
4751 *channel*. It is useful in conjunction with `TYI` (below) for a
4752 program that wants to do character input and echoing in its own
4753 fashion.
4754
4755 ### 11.8.3. TYI
4756
4757     <TYI terminal-input:channel>
4758
4759 returns one `CHARACTER` from *channel* (optional, `.INCHAN` by
4760 default) when it is typed, rather than after `$` (`ESC`) is typed, as
4761 is the case with `READCHR`. The following example echos input
4762 characters as their ASCII values, until a carriage-return is typed:
4763
4764     <REPEAT ((FOO <TTYECHO .INCHAN <>>))
4765        <AND <==? 13 <PRINC <ASCII <TYI .INCHAN>>>>
4766             <RETURN <TTYECHO .INCHAN T>>>>
4767
4768 11.9. Internal CHANNELs
4769 -----------------------
4770
4771 If the *device* specified in an `OPEN` is `"INT"`, a `CHANNEL` is
4772 created which does not refer to any I/O device outside Muddle. In this
4773 case, the mode must be `"READ"` or `"PRINT"`, and there is another
4774 argument, which must be a function.
4775
4776 For a `"READ"` `CHANNEL`, the function must take no arguments.
4777 Whenever a `CHARACTER` is desired from this `CHANNEL`, the function
4778 will be applied to no arguments and must return a `CHARACTER`. This
4779 will occur once per call to `READCHR` using this `CHANNEL`, and
4780 several times per call to `READ`. In the ITS version, the function can
4781 signal that its "end-of-file" has been reached by returning
4782 `<CHTYPE *777777000003* CHARACTER>` (-1 in left half, control-C in
4783 right), which is the standard ITS end-of-file signal. In the Tenex and
4784 Tops-20 versions, the function should return either that or
4785 `<CHTYPE *777777000032* CHARACTER>` (-1 and control-Z), the latter
4786 being their standard end-of-file signal.
4787
4788 For a `"PRINT"` `CHANNEL`, the function must take one argument, which
4789 will be a `CHARACTER`. It can dispose of its argument in any way it
4790 pleases. The value returned by the function is ignored.
4791
4792 Example: `<OPEN "PRINT" "INT:" ,FCN>` opens an internal output
4793 `CHANNEL` with `,FCN` as its character-gobbler.
4794
4795 11.10. The "NET" Device: the ARPA Network
4796 -----------------------------------------
4797
4798 The `"NET"` device is different in many ways from conventional
4799 devices. In the ITS version, it is the only device besides `"INT"`
4800 that does not take all strings as its arguments to `OPEN`, and it must
4801 take an additional optional argument to specify the byte size of the
4802 socket. The format of a call to open a network socket is
4803
4804     <OPEN mode:string local-socket:fix "NET" foreign-host:fix byte-size:fix>
4805
4806 where:
4807
4808 -   *mode* is the mode of the desired `CHANNEL`. This must be either
4809     `"READ"`, `"PRINT"`, `"READB"` or `"PRINTB"`.
4810 -   *local-socket* is the local socket number. If it is `-1`, the
4811     operating system will generate a unique local socket number. If it
4812     is not, in the Tenex and Tops-20 versions, the socket number is
4813     "fork-relative".
4814 -   *foreign-socket* is the foreign socket number. If it is `-1`, this
4815     is an `OPEN` for "listening".
4816 -   *foreign-host* is the foreign host number. If it is an `OPEN` for
4817     listening, this argument is ignored.
4818 -   *byte-size* is the optional byte size. For `"READ"` or `"PRINT"`
4819     this must be either `7` (used by default) or `8`. For `"READB"` or
4820     `"PRINTB"`, it can be any integer from `1` to `36` (used by
4821     default).
4822
4823 In the Tenex and Tops-20 versions, `OPEN` can instead be given a
4824 `STRING` argument of the form `"NET:..."`. In this case the local
4825 socket number can be "directory-relative".
4826
4827 Like any other `OPEN`, either a `CHANNEL` or a `FALSE` is returned.
4828 Once open, a network `CHANNEL` can be used like any other `CHANNEL`,
4829 except that `FILE-LENGTH`, `ACCESS`, `RENAME`, etc., cannot be done.
4830 The "argument" first-name, second-name, and directory-name slots in
4831 the `CHANNEL` are used for local socket, foreign socket, and foreign
4832 host (as specified in the call to `OPEN`), respectively. The
4833 corresponding "real" slots are used somewhat differently. If a channel
4834 is `OPEN`ed with local socket `-1`, the "real" first-name slot will
4835 contain the unique socket number generated by the operating system. If
4836 a listening socket is `OPEN`ed, the foreign socket and host numbers of
4837 the answering host are stored in the "real" second-name and
4838 directory-name slots of the `CHANNEL` when the Request For Connection
4839 is received.
4840
4841 An interrupt (chapter 21) can be associated with a `"NET"`-device
4842 `CHANNEL`, so that a program will know that the `CHANNEL` has or needs
4843 data, according to its *mode*.
4844
4845 There also exist several special-purpose `SUBR`s for the `"NET"`
4846 device. These are described next.
4847
4848 ### 11.10.1. NETSTATE
4849
4850     <NETSTATE network:channel>
4851
4852 returns a `UVECTOR` of three `FIX`es. The first is the state of the
4853 connection, the second is a code specifying why a connection was
4854 closed, and the last is the number of bits available on the connection
4855 for input. The meaning of the state and close codes are
4856 installation-dependent and so are not included here.
4857
4858 ### 11.10.2. NETACC
4859
4860     <NETACC network:channel>
4861
4862 accepts a connection to a socket that is open for listening and
4863 returns its argument. It will return a `FALSE` if the connection is in
4864 the wrong state.
4865
4866 ### 11.10.3. NETS
4867
4868     <NETS network:channel>
4869
4870 returns its argument, after forcing any system-buffered network output
4871 to be sent. ITS normally does this every half second anyway. Tenex and
4872 Tops-20 do not do it unless and until `NETS` is called. `NETS` is
4873 similar to `BUFOUT` for normal `CHANNEL`s, except that even
4874 operating-system buffers are emptied **now**.
4875
4876 Chapter 12. Locatives
4877 =====================
4878
4879 There is in Muddle a facility for obtaining and working directly with
4880 objects which roughly correspond to "pointers" in assembly language or
4881 "lvals" in BCPL or PAL. In Muddle, these are generically known as
4882 **locatives** (from "location") and are of several `TYPE`s, as
4883 mentioned below. Locatives exist to provide efficient means for
4884 altering structures: direct replacement as opposed to re-copying.
4885
4886 Locatives **always** refer to elements in structures. It is not
4887 possible to obtain a locative to something (for example, an `ATOM`)
4888 which is not part of any structured. It is possible to obtain a
4889 locative to any element in any structured object in Muddle -- even to
4890 associations (chapter 13) and to the values of `ATOM`s, structurings
4891 which are normally "hidden".
4892
4893 In the following, the object occupying the structured position to
4894 which you have obtained a locative will be referred to as the object
4895 **pointed to** by the locative.
4896
4897 12.1. Obtaining Locatives
4898 -------------------------
4899
4900 ### 12.1.1. LLOC
4901
4902     <LLOC atom env>
4903
4904 returns a locative (`TYPE` `LOCD`, "locative to iDentifier") to the
4905 `LVAL` of *atom* in *env*. If *atom* is not bound in *env*, an error
4906 occurs. *env* is optional, with the current `ENVIRONMENT` used by
4907 default. The locative returned by `LLOC` is **independent of future
4908 re-bindings** of *atom*. That is, `IN` (see below) of that locative
4909 will return the same thing even if *atom* is re-bound to something
4910 else; `SETLOC` (see below) will affect only that particular binding of
4911 *atom*.
4912
4913 Since bindings are kept on a stack (tra la), any attempt to use a
4914 locative to an `LVAL` which has become unbound will fetch up an error.
4915 (It breaks just like a `TUPLE`....) `LEGAL?` can, once again, be used
4916 to see if a `LOCD` is valid. Caution: `<SET A <LLOC A>>` creates a
4917 self-reference and can make `PRINT` very unhappy.
4918
4919 ### 12.1.2. GLOC
4920
4921     <GLOC atom pred>
4922
4923 returns a locative (`TYPE` `LOCD`) to the `GVAL` of *atom*. If *atom*
4924 has no `GVAL` **slot**, an error occurs, unless *pred* (optional) is
4925 given and not `FALSE`, in which case a slot is created (chapter 22).
4926 Caution: `<SETG A <GLOC A>>` creates a self-reference and can make
4927 `PRINT` very unhappy.
4928
4929 ### 12.1.3. AT
4930
4931     <AT structured N:fix-or-offset>
4932
4933 returns a locative to the <em>N</em>th element in *structured*. *N* is
4934 optional, `1` by default. The exact `TYPE` of the locative returned
4935 depends on the `PRIMTYPE` of *structured*: `LOCL` for `LIST`, `LOCV`
4936 for `VECTOR`, `LOCU` for `UVECTOR`, `LOCS` for `STRING`, `LOCB` for
4937 `BYTES`, `LOCT` for `TEMPLATE`, and `LOCA` for `TUPLE`. If *N* is
4938 greater than `<LENGTH structured>` or less than `1`, or an `OFFSET`
4939 with a Pattern that doesn't match *structured*, an error occurs. The
4940 locative is unaffected by applications of `REST`, `BACK`, `TOP`,
4941 `GROW`, etc. to *structured*.
4942
4943 ### 12.1.4. GETPL and GETL
4944
4945     <GETPL item:any indicator:any default:any>
4946
4947 returns a locative (`TYPE` `LOCAS`) to the association of *item* under
4948 *indicator*. (See chapter 13 for information about associations.) If
4949 no such association exists, `GETPL` returns `EVAL` of *default*.
4950 *default* is optional, `#FALSE ()` by default.
4951
4952 `GETPL` corresponds to `GETPROP` amongst the association machinery.
4953 There also exists `GETL`, which corresponds to `GET`, returning either
4954 a `LOCAS` or a locative to the *indicator*th element of a structured
4955 *item*. `GETL` is like `AT` if *item* is a structure and *indicator*
4956 is a `FIX` or `OFFSET`, and like `GETPL` if not.
4957
4958 12.2. LOCATIVE?
4959 ---------------
4960
4961 This `SUBR` is a predicate that tells whether or not is argument is a
4962 locative. It is cheaper than
4963 `<MEMQ <PRIMTYPE arg> '![LOCD LOCL ...]>`.
4964
4965 12.3. Using Locatives
4966 ---------------------
4967
4968 The following two `SUBR`s provide the means for working with
4969 locatives. They are independent of the specific `TYPE` of the
4970 locative. The notation *locative* indicates anything which could be
4971 returned by `LLOC`, `GLOC`, `AT`, `GETPL` or `GETL`.
4972
4973 ### 12.3.1. IN
4974
4975     <IN locative>
4976
4977 returns the object to which *locative* points. The only way you can
4978 get an error using `IN` is when *locative* points to an `LVAL` which
4979 has become unbound from an `ATOM`. This is the same as the problem in
4980 referencing `TUPLE`s as mentioned in section 9.2, and it can be
4981 avoided by first testing `<LEGAL? locd>`.
4982
4983 Example:
4984
4985     <SET A 1>$
4986     1
4987     <IN <LLOC A>>$
4988     1
4989
4990 ### 12.3.2. SETLOC
4991
4992     <SETLOC locative any>
4993
4994 returns *any*, after having made *any* the contents of that position
4995 in a structure pointed to by *locative*. The structure itself is not
4996 otherwise disturbed. An error occurs if *locative* is to a
4997 non-`LEGAL?` `LVAL` or if you try to put an object of the wrong `TYPE`
4998 into a `PRIMTYPE` `UVECTOR`, `STRING`, `BYTES`, or `TEMPLATE`.
4999
5000 Example:
5001
5002     <SET A (1 2 3)>$
5003     (1 2 3)
5004     <SETLOC <AT .A 2> HI>$
5005     HI
5006     .A$
5007     (1 HI 3)
5008
5009 12.4. Note on Locatives
5010 -----------------------
5011
5012 You may have noticed that locatives are, strictly speaking,
5013 unnecessary; you can do everything locatives allow by appropriate use
5014 of, for example, `SET`, `LVAL`, `PUT`, `NTH`, etc. What locatives
5015 provide is generality.
5016
5017 Basically, how you obtained a locative is irrelevant to `SETLOC` and
5018 `IN`; thus the same program can play with `GVAL`s, `LVAL`s, object in
5019 explicit structures, etc., without being bothered by what function it
5020 should use to do so. This is particularly true with respect to
5021 locatives to `LVAL`s; the fact that they are independent of changes in
5022 binding can save a lot of fooling around with `EVAL` and
5023 `ENVIRONMENT`s.
5024
5025 Chapter 13. Association (Properties)
5026 ====================================
5027
5028 There is an "associative" data storage and retrieval system embedded
5029 in Muddle which allows the construction of data structures with
5030 arbitrary selectors. It is used via the `SUBR`s described in this
5031 chapter.
5032
5033 13.1. Associative Storage
5034 -------------------------
5035
5036 ### 13.1.1. PUTPROP
5037
5038     <PUTPROP item:any indicator:any value:any>
5039
5040 ("put property") returns *item*, having associated *value* with *item*
5041 under the indicator *indicator*.
5042
5043 ### 13.1.2. PUT
5044
5045     <PUT item:any indicator:any value:any>
5046
5047 is identical to `PUTPROP`, except that, if *item* is structured
5048 **and** *indicator* is of `TYPE` `FIX` or `OFFSET`, it does
5049 `<SETLOC <AT item indicator> value>`. In other words, an element with
5050 an integral selector is stored in the structure itself, instead of in
5051 association space. `PUT` (like `AT`) will get an error if *indicator*
5052 is out of range; `PUTPROP` will not.
5053
5054 ### 13.1.3. Removing Associations
5055
5056 If `PUTPROP` is used **without** its *value* argument, it removes any
5057 association existing between its *item* argument and its *indicator*
5058 argument. If an association did exist, using `PUTPROP` in this way
5059 returns the *value* which was associated. If no association existed,
5060 it returns `#FALSE ()`.
5061
5062 `PUT`, with arguments which refer to association, can be used in the
5063 same way.
5064
5065 If either *item* or *indicator* cease to exist (that is, no one was
5066 pointing to them, so they were garbage-collected), and no locatives to
5067 the association exist, then the association between them ceases to
5068 exist (is garbage-collected).
5069
5070 13.2. Associative Retrieval
5071 ---------------------------
5072
5073 ### 13.2.1. GETPROP
5074
5075     <GETPROP item:any indicator:any exp:any>
5076
5077 ("get property") returns the *value* associated with *item* under
5078 *indicator*, if any. If there is no such association, `GETPROP`
5079 returns `EVAL` of *exp* (that is, *exp* gets `EVAL`ed both at call
5080 time and later).
5081
5082 *exp* is optional. If not given, `GETPROP` returns `#FALSE ()` if it
5083 cannot return a *value*.
5084
5085 Note: *item* and *indicator* in `GETPROP` must be the **same Muddle
5086 objects** used to establish the association; that is, they must be
5087 `==?` to the objects used by `PUTPROP` or `PUT`.
5088
5089 ### 13.2.2. GET
5090
5091     <GET item:any indicator:any exp:any>
5092
5093 is the inverse of `PUT`, using `NTH` or `GETPROP` depending on the
5094 test outlined in section 13.1.2. *exp* is optional and used as in
5095 `GETPROP`.
5096
5097 13.3. Examples of Association
5098 -----------------------------
5099
5100     <SET L '(1 2 3 4)>$
5101     (1 2 3 4)
5102     <PUT .L FOO "L is a list.">$
5103     (1 2 3 4)
5104     <GET .L FOO>$
5105     "L is a list."
5106     <PUTPROP .L 3 '![4]>$
5107     (1 2 3 4)
5108     <GETPROP .L 3>$
5109     ![4!]
5110     <GET .L 3>$
5111     3
5112     <SET N 0>$
5113     0
5114     <PUT .N .L "list on a zero">$
5115     0
5116     <GET .N '(1 2 3 4)>$
5117     #FALSE ()
5118
5119 The last example failed because `READ` generated a new `LIST` -- not
5120 the one which is `L`'s `LVAL`. However,
5121
5122     <GET 0 .L>$
5123     "list on a zero"
5124
5125 works because `<==? .N 0>` is true.
5126
5127 To associate something with the Nth **position** in a structure, as
5128 opposed to its Nth **element**, associate it with
5129 `<REST structure N-1>`, as in the following:
5130
5131     <PUT <REST .L 3> PERCENT 0.3>$
5132     (3 4)
5133     <GET <2 .L> PERCENT>$
5134     #FALSE ()
5135     <GET <REST .L 2> PERCENT>$
5136     0.30000000
5137
5138 Remember comments?
5139
5140     <SET N '![A B C ;"third element" D E]>$
5141     ![A B C D E!]
5142     <GET <REST .N 2> COMMENT>$
5143     "third element"
5144
5145 The `'` in the `<SET N ... >` is to keep `EVAL` from generating a new
5146 `UVECTOR` ("Direct Representation"), which would not have the comment
5147 on it (and which would be a needless duplicate). A "top-level" comment
5148 -- one attached to the entire object returned by `READ` -- is `PUT` on
5149 the `CHANNEL` in use, since there is no position in any structure for
5150 it. If no top-level comment follows the object, `READ` removes the
5151 value (`<PUT channel COMMENT>`); so anybody that wants to see a
5152 top-level comment must look for it after each `READ`.
5153
5154 If you need to have a structure with selectors in more than one
5155 dimension (for example, a sparse matrix that does not deserve to be
5156 linearized), associations can be cascaded to achieve the desired
5157 result. In effect an extra level of indirection maps two indicators
5158 into one. For example, to associate *value* with *item* under
5159 *indicator-1* and *indicator-2* simultaneously:
5160
5161     <PUTPROP indicator-1 indicator-2 T>
5162     <PUTPROP item <GETPL indicator-1 indicator-2> value>
5163
5164 13.4. Examining Associations
5165 ----------------------------
5166
5167 Associations (created by `PUT` and `PUTPROP`) are chained together in
5168 a doubly-linked list, internal to Muddle. The order of associations in
5169 the chain is their order of creation, newest first. There are several
5170 `SUBR`s for examining the chain of associations. `ASSOCIATIONS`
5171 returns the first association in the chain, or `#FALSE ()` if there
5172 are none. `NEXT` takes an association as an argument and returns the
5173 next association in the chain, or `#FALSE ()` if there are no more.
5174 `ITEM`, `INDICATOR` and `AVALUE` all take an association as an
5175 argument and return the item, indicator and value, respectively.
5176 Associations print as:
5177
5178     #ASOC (item indicator value)
5179
5180 (sic: only one `S`). Example: the following gathers all the existing
5181 associations into a `LIST`.
5182
5183     <PROG ((A <ASSOCIATIONS>))
5184      <COND (<NOT .A> '())
5185            (T (.A !<MAPF ,LIST
5186                     <FUNCTION () <COND (<SET A <NEXT .A>> .A)
5187                                        (T <MAPSTOP>)>>>))>>
5188
5189 Chapter 14. Data-type Declarations
5190 ==================================
5191
5192 In Muddle, it is possible to declare the permissible range of "types"
5193 and/or structures that an `ATOM`'s values or a function's arguments or
5194 value may have. This is done using a special `TYPE`, the `DECL`
5195 ("declaration"). A `DECL` is of `PRIMTYPE` `LIST` but has a
5196 complicated internal structure. `DECL`s are used by the interpreter to
5197 find `TYPE` errors in function calling and by the compiler to generate
5198 more efficient code.
5199
5200 There are two kinds of `DECL`s. The first kind of `DECL` is the most
5201 common. It is called the `ATOM` `DECL` and is used most commonly to
5202 specify the type/structure of the `LVAL`s of the `ATOM`s in the
5203 argument `LIST` of a `FUNCTION` or *aux* `LIST` of a `PROG` or
5204 `REPEAT`. This `DECL` has the form:
5205
5206     #DECL (atoms:list Pattern ...)
5207
5208 where the pairing of a `LIST` of `ATOM`s and a "Pattern" can be
5209 repeated indefinitely. This declares the `ATOM`s in a *list* to be of
5210 the type/structure specified in the following *Pattern*. The special
5211 `ATOM` `VALUE`, if it appears, declares the result of a `FUNCTION`
5212 call or `PROG` or `REPEAT` evaluation to satisfy the Pattern
5213 specified. An `ATOM` `DECL` is useful in only one place: immediately
5214 following the argument `LIST` of a `FUNCTION`, `PROG`, or `REPEAT`. It
5215 normally includes `ATOM`s in the argument `LIST` and `ATOM`s whose
5216 `LVAL`s are otherwise used in the Function body.
5217
5218 The second kind of `DECL` is rarely seen by the casual Muddle user,
5219 except in appendix 2. It is called the `RSUBR` `DECL`. It is used to
5220 specify the type/structure of the arguments and result of an `RSUBR`
5221 or `RSUBR-ENTRY` (chapter 19). It is of the following form:
5222
5223     #DECL ("VALUE" Pattern Pattern ...)
5224
5225 where the `STRING` `"VALUE"` precedes the specification of the
5226 type/structure of the value of the call to the `RSUBR`, and the
5227 remaining *Patterns* specify the arguments to the `RSUBR` in order.
5228 The full specification of the `RSUBR` `DECL` will be given in section
5229 14.9. The `RSUBR` `DECL` is useful in only one place: as an element of
5230 an `RSUBR` or `RSUBR-ENTRY`.
5231
5232 14.1. Patterns
5233 --------------
5234
5235 The simplest possible Pattern is to say that a value is exactly some
5236 other object, by giving that object, `QUOTE`d. For example, to declare
5237 that a variable is a particular `ATOM`:
5238
5239     #DECL ((X) 'T)
5240
5241 declares that `.X` is always the `ATOM` `T`. When variables are
5242 `DECL`ed as "being" some other object in this way, the test used is
5243 `=?`, not `==?`. The distinction is usually not important, since
5244 `ATOM`s, which are most commonly used in this construction, are `==?`
5245 to each other is `=?` anyway.
5246
5247 It is more common to want to specify that a value must be of a given
5248 `TYPE`. This is done with the simplest non-specific Pattern, a `TYPE`
5249 name. For example,
5250
5251     #DECL ((X) FIX (Y) FLOAT)
5252
5253 declares `.X` to be of `TYPE` `FIX`, and `.Y` of `TYPE` `FLOAT`. In
5254 addition to the names of all of the built-in and created `TYPE`s, such
5255 as `FIX`, `FLOAT` and `LIST`, a few "compound" type names are allowed:
5256
5257 -   `ANY` allows any `TYPE`.
5258 -   `STRUCTURED` allows any structured `TYPE`, such as `LIST`,
5259     `VECTOR`, `FALSE`, `CHANNEL`, etc. (appendix 3).
5260 -   `LOCATIVE` allows any locative `TYPE`, such as are returned by
5261     `LLOC`, `GLOC`, `AT`, and so on (chapter 12).
5262 -   `APPLICABLE` allows any applicable `TYPE`, such as `FUNCTION`,
5263     `SUBR`, `FIX` (!), etc. (appendix 3).
5264 -   Any other `ATOM` can be used to stand for a more complex
5265     construct, if an association is established on that `ATOM` and the
5266     `ATOM` `DECL`. A common example is to
5267     `<PUT NUMBER DECL '<OR FIX FLOAT>>` (see below), so that `NUMBER`
5268     can be used as a "compound type name".
5269
5270 The single `TYPE` name can be generalized slightly, allowing anything
5271 of a given `PRIMTYPE`, using the following construction:
5272
5273     #DECL ((X) <PRIMTYPE WORD> (Y) <PRIMTYPE LIST>)
5274
5275 This construction consists of a two-element `FORM`, where the first
5276 element is the `ATOM` `PRIMTYPE`, and the second the name of a
5277 primitive type.
5278
5279 The next step is to specify the elements of a structure. This is done
5280 in the simplest way as follows:
5281
5282     < structured:type Pattern Pattern ...>
5283
5284 where there is a one-to-one correspondence between the *Pattern* and
5285 the elements of the structure. For example:
5286
5287     #DECL ((X) <VECTOR FIX FLOAT>)
5288
5289 declares `.X` to be a `VECTOR` having **at least** two elements, the
5290 first of which is a `FIX` and the second a `FLOAT`. It is often
5291 convenient to allow additional elements, so that only the elements
5292 being used in the local neighborhood of the `DECL` need to be
5293 declared. To disallow additional elements, a `SEGMENT` is used instead
5294 of a `FORM` (the "excl-ed" brackets make it look more emphatic). For
5295 example:
5296
5297     #DECL ((X) !<VECTOR FIX FLOAT>)
5298
5299 declares `.X` to be a `VECTOR` having **exactly** two elements, the
5300 first of which is a `FIX` and the second a `FLOAT`. Note that the
5301 *Patterns* given for elements can be any legal Pattern:
5302
5303     #DECL ((X) <VECTOR <VECTOR FIX FLOAT>> (Y) <<PRIMTYPE LIST> LIST>)
5304
5305 declares `.X` to be a `VECTOR` containing another `VECTOR` of at least
5306 two elements, and `.Y` to be of `PRIMTYPE LIST`, containing a `LIST`.
5307 In the case of a `BYTES`, the individual elements cannot be declared
5308 (they must be `FIX`es anyway), only the size and number of the bytes:
5309
5310     #DECL ((B) <BYTES 7 3>)
5311
5312 declares `.B` to be a `BYTES` with `BYTE-SIZE` 7 and at least three
5313 elements.
5314
5315 It is possible to say that some number of elements of a structure
5316 satisfy a given Pattern (or sequence of Patterns). This is called an
5317 "`NTH` construction".
5318
5319     [ number:fix Pattern Pattern ... ]
5320
5321 states that the sequence of *Patterns* which is `REST` of the `VECTOR`
5322 is repeated the *number* of times given. For example:
5323
5324     #DECL ((X) <VECTOR [3 FIX] FLOAT> (Y) <LIST [3 FIX FLOAT]>)
5325
5326 `.X` is declared to contain three `FIX`es and a `FLOAT`, perhaps
5327 followed by other elements. `.Y` is declared to repeat the sequence
5328 `FIX`-`FLOAT` three times. Note that there may be more repetitions of
5329 the sequence in `.Y` (but not in `.X`): the `DECL` specifies only the
5330 first six elements.
5331
5332 For indefinite repetition, the same construction is used, but, instead
5333 of the number of repetitions of the sequence of Patterns, the `ATOM`
5334 `REST` is given. This allows any number of repetitions, from zero on
5335 up. For example:
5336
5337     #DECL ((X) <VECTOR [REST FIX]> (Y) <LIST [3 FIX] [REST FIX]>)
5338
5339 A "`REST` construction" can contain any number of Patterns, just like
5340 an `NTH` construction:
5341
5342     #DECL ((X) <VECTOR [REST FIX FLOAT LIST]>)
5343
5344 declares that `.X` is a `VECTOR` wherein the sequence
5345 `FIX`-`FLOAT`-`LIST` repeats indefinitely. It does not declare that
5346 `<LENGTH .X>` is an even multiple of three: the `VECTOR` can end at
5347 any point.
5348
5349 A variation on `REST` is `OPT` (or `OPTIONAL`), which is similar to
5350 `REST` except that the construction is scanned once at most instead of
5351 indefinitely, and further undeclared elements can follow. For example:
5352
5353     #DECL ((X) <VECTOR [OPT FIX]>)
5354
5355 declares that `.X` is a `VECTOR` which is empty or whose first element
5356 is a `FIX`. Only a `REST` construction can follow an "`OPT`
5357 construction".
5358
5359 Note that the `REST` construction must always be the last element of
5360 the structure declaration, since it gives a Pattern for the rest of
5361 the structure. Thus, the `REST` construction is different from all
5362 others in that it has an unlimited range. No matter how many times the
5363 Pattern it gives is `REST`ed off of the structure, the remainder of
5364 the structure still has that Pattern.
5365
5366 This exhausts the possible single Patterns that can be given in a
5367 declaration. However, there is also a compound Pattern defined. It
5368 allows specification of several possible Patterns for one value:
5369
5370     <OR Pattern Pattern ... >
5371
5372 Any non-compound Pattern can be included as one of the elements of the
5373 compound Pattern. Finally, compound Patterns can be used as Patterns
5374 for elements of structures, and so on.
5375
5376     #DECL ((X) <OR FIX FLOAT>
5377            (Y) <OR FIX <UVECTOR [REST <OR FIX FLOAT>]>>)
5378
5379 The `OR` construction can be extended to any level of ridiculousness,
5380 but the higher the level of complexity and compoundedness the less
5381 likely the compiler will find the `DECL` useful.
5382
5383 At the highest level, any Pattern at top level in an `ATOM` `DECL` can
5384 be enclosed in the construction
5385
5386     < specialty:atom Pattern >
5387
5388 which explicitly declares the specialty of the `ATOM`(s) in the
5389 preceding `LIST`. *specialty* can be either `SPECIAL` or `UNSPECIAL`.
5390 Specialty is important only when the program is to be compiled. The
5391 word comes from the control stack, which is called "special" in Lisp
5392 (Moon, 1974) because the garbage collector finds objects on it and
5393 modifies their internal pointers when storage is compacted. (An
5394 internal stack is used within the interpreter and is not accessible to
5395 programs -- section 22.1) In an interpreted program all local values
5396 are inherently `SPECIAL`, because all bindings are put on the control
5397 stack (but see `SPECIAL-MODE` below). When the program is compiled,
5398 only values declared `SPECIAL` (which may or may not be the
5399 declaration used by default) remain in bindings on the control stack.
5400 All others are taken care of simply by storing objects on the control
5401 stack: the `ATOM`s involved are not needed and are not created on
5402 loading. So, a program that `SET`s an `ATOM`'s local value for another
5403 program to pick up must declare that `ATOM` to be `SPECIAL`. If it
5404 doesn't, the `ATOM`'s binding will go away during compiling, and the
5405 program that needs to refer to the `ATOM` will either get a no-value
5406 error or refer to an erroneous binding. Usually only `ATOM`s which
5407 have the opposite specialty from that of the current `SPECIAL-MODE`
5408 are explicitly declared. The usual `SPECIAL-MODE` is `UNSPECIAL`, so
5409 typically only `SPECIAL` declarations use this construction:
5410
5411     #DECL ((ACT)) <SPECIAL ACTIVATION>)
5412
5413 explicitly declares `ACT` to be `SPECIAL`.
5414
5415 Most well-written, modular programs get all their information from
5416 their arguments and from `GVAL`s, and thus they rarely use `SPECIAL`
5417 `ATOM`s, except perhaps for `ACTIVATION`s and the `ATOM`s whose
5418 `LVAL`s Muddle uses by default: `INCHAN`, `OUTCHAN`, `OBLIST`, `DEV`,
5419 `SNM`, `NM1`, `NM2`. `OUTCHAN` is a special case: the compiler thinks
5420 that all conversion-output `SUBR`s are called with an explicit
5421 `CHANNEL` argument, whether or not the program being compiled thinks
5422 so. For example, `<CRLF>` is compiled as though it were
5423 `<CRLF .OUTCHAN>`. So you may use (or see) the binding
5424 `(OUTCHAN .OUTCHAN)` in an argument `LIST`, however odd that may
5425 appear, because that -- coupled with the usual `UNSPECIAL` declaration
5426 by default -- makes only one reference to the current binding of
5427 `OUTCHAN` and stuffs the result in a slot on the stack for use within
5428 the Function.
5429
5430 14.2. Examples
5431 --------------
5432
5433     #DECL ((Q) <OR VECTOR CHANNEL>)
5434
5435 declares .Q to be either a `VECTOR` or a `CHANNEL`.
5436
5437     #DECL ((P Q R S) <PRIMTYPE LIST>)
5438
5439 declares `.P`, `.Q`, `.R`, and `.S` all to be of `PRIMTYPE` `LIST`.
5440
5441     #DECL ((F) <FORM [3 ANY]>)
5442
5443 declares `.F` to be a `FORM` whose length is at least three,
5444 containing objects of any old `TYPE`.
5445
5446     #DECL ((LL) <<PRIMTYPE LIST> [4 <LIST [REST FIX]>]>)
5447
5448 declares `.LL` to be of `PRIMTYPE` `LIST`, and to have at least four
5449 elements, each of which are `LIST`s of unspecified length (possibly
5450 empty) containing `FIX`es.
5451
5452     #DECL ((VV) <VECTOR FIX ATOM CHARACTER>)
5453
5454 declares `.VV` to be a `VECTOR` with at least three elements. Those
5455 elements are, in order, of `TYPE` `FIX`, `ATOM`, and `CHARACTER`.
5456
5457     #DECL ((EH) <LIST ATOM [REST FLOAT]>)
5458
5459 declares `.EH` to be a `LIST` whose first element is an `ATOM` and the
5460 rest of whose elements are `FLOAT`s. It also says that `.EH` is at
5461 least one element long.
5462
5463     #DECL ((FOO) <LIST [REST 'T FIX]>)
5464
5465 declares `.FOO` to be a `LIST` whose odd-positioned elements are the
5466 `ATOM` `T` and whose even-positioned elements are `FIX`es.
5467
5468     <MAPR <>
5469           <FUNCTION (X)
5470             #DECL ((X) <VECTOR [1 FIX]>)
5471             <PUT .X 1 0>>
5472           .FOO>
5473
5474 declares `.X` to be a `VECTOR` containing at least one `FIX`. The more
5475 restrictive `[REST FIX]` would take excessive checking time by the
5476 interpreter, because the `REST` of the `VECTOR` would be checked on
5477 each iteration of the `MAPR`. In this case both `DECL`s are equally
5478 powerful, because checking the first element of all the `REST`s of a
5479 structure eventually checks all the elements. Also, since the
5480 `FUNCTION` refers only to the first element of `X`, this is as much
5481 declaration as the compiler can effectively use. (If this `VECTOR`
5482 always contains only `FIX`es, it should be a `UVECTOR` instead, for
5483 space efficiency. Then a `[REST FIX]` `DECL` would make the
5484 interpreter check only the `UTYPE`. If the `FIX`es cover a small
5485 non-negative range, then a `BYTES` might be even better, with a `DECL`
5486 of `<BYTES n 0>`.)
5487
5488     <DEFINE FACT (N)
5489             #DECL ((N) <UNSPECIAL FIX>)
5490             <COND (<0? .N> 1) (ELSE <* .N <FACT <- .N 1>>>)>>
5491
5492 declares `.N` to be of `TYPE` `FIX` and `UNSPECIAL`. This specialty
5493 declaration ensures that, independent of `SPECIAL-MODE` during
5494 compiling, `.N` gets compiled into a fast control-stack reference.
5495
5496     <PROG ((L (0))
5497             #DECL ((L VALUE) <UNSPECIAL <LIST [REST FIX]>>
5498                    (N <UNSPECIAL FIX>))
5499             <COND (<0? .N> <RETURN .L>)>
5500             <SET L (<+ .N <1 .L>> !.L)>
5501             <SET N <- .N 1>>>
5502
5503 The above declares `L` and `N` to be `UNSPECIAL`, says that `.N` is a
5504 `FIX`, and says that `.L`, along with the value returned, is a `LIST`
5505 of any length composed entirely of `FIX`es.
5506
5507 14.3. The DECL Syntax
5508 ---------------------
5509
5510 This section gives quasi-BNF productions for the Muddle `DECL` syntax.
5511 In the following table Muddle type-specifiers are distinguished *in
5512 this way*.
5513
5514     decl    ::=     #DECL (declprs)
5515
5516     declprs ::=     (atlist) pattern | declprs declprs
5517
5518     atlist  ::=     atom | atom atlist
5519
5520     pattern ::=     pat | <UNSPECIAL pat> | <SPECIAL pat>
5521
5522     pat     ::=     unit | <OR unit ... unit>
5523
5524     unit    ::=     type | <PRIMTYPE type> | atom | 'any
5525                     | ANY | STRUCTURED | LOCATIVE |APPLICABLE
5526                     | <struc elts> | <<OR struc ... struc> elts>
5527                     | !<struc elts> | !<<OR struc ... struc> elts>
5528                     | <bstruc fix> | <bstruc fix fix>
5529                     | !<bstruc fix fix>
5530
5531     struc   ::=     structured-type | <PRIMTYPE structured-type>
5532
5533     bstruc  ::=     BYTES | <PRIMTYPE BYTES>
5534
5535     elts    ::=     pat | pat elts
5536                     | [fix pat ... pat]
5537                     | [fix pat ... pat] elts
5538                     | [opt pat ... pat] | [REST pat ... pat]
5539                     | [opt pat ... pat] [REST pat ... pat]
5540
5541     opt     ::=     OPT | OPTIONAL
5542
5543 14.4. Good DECLs
5544 ----------------
5545
5546 There are some rules of thumb concerning "good" `DECL`s. A "good"
5547 `DECL` is one that is minimally offensive to the `DECL`-checking
5548 mechanism as the compiler, but that gives the maximum amount of
5549 information. It is simple to state what gives offense to the compiler
5550 and `DECL`-checking mechanism: complexity. For example, a large
5551 compound `DECL` like:
5552
5553     #DECL ((X) <OR FIX LIST UVECTOR FALSE>)
5554
5555 is a `DECL` that the compiler will find totally useless. It might as
5556 well be `ANY`. The more involved the `OR`, the less information the
5557 compiler will find useful in it. For example, if the function takes
5558 `<OR LIST VECTOR UVECTOR>`, maybe you should really say `STRUCTURED`.
5559 Also, a very general `DECL` indicates a very general program, which is
5560 not likely to be efficient when compiled (of course there is a
5561 trade-off here). Narrowing the `DECL` to one `PRIMTYPE` gives a great
5562 gain in compiled efficiency, to one `TYPE` still more.
5563
5564 Another situation to be avoided is the ordinary large `DECL`, even if
5565 it is perfectly straightforward. If you have created a structure which
5566 has a very specific `DECL` and is used all over your code, it might be
5567 better as a `NEWTYPE` (see below). The advantage of a `NEWTYPE` over a
5568 large explicit `DECL` is twofold. First, the entire structure must be
5569 checked only when it is created, that is, `CHTYPE`d from its
5570 `PRIMTYPE`. As a full `DECL`, it is checked completely on entering
5571 each function and on each reassignment of `ATOM`s `DECL`ed to be it.
5572 Second, the amount of storage saved in the `DECL`s of `FUNCTION`s and
5573 so on is large, not to mention the effort of typing in and keeping up
5574 to date several instances of the full `DECL`.
5575
5576 14.5. Global DECLs
5577 ------------------
5578
5579 ### 15.4.1. GDECL and MANIFEST
5580
5581 There are two ways to declare `GVAL`s for the `DECL`-checking
5582 mechanism. These are through the `FSUBR` `GDECL` ("global
5583 declaration") and the `SUBR` `MANIFEST`.
5584
5585     <GDECL atoms:list Pattern ...>
5586
5587 `GDECL` allows the type/structure of global values to be declared in
5588 much the same way as local values. Example:
5589
5590     <GDECL (X) FIX (Y) <LIST FIX>>
5591
5592 declares `,X` to be a `FIX`, and `,Y` to be a `LIST` containing at
5593 least one `FIX`.
5594
5595     <MANIFEST atom atom ...>
5596
5597 `MANIFEST` takes as arguments `ATOM`s whose `GVAL`s are declared to be
5598 constants. It is used most commonly to indicate that certain `ATOM`s
5599 are the names of offsets in structures. For example:
5600
5601     <SETG X 1>
5602     <MANIFEST X>
5603
5604 allows the compiler to confidently open-compile applications of `X`
5605 (getting the first element of a structure), knowing that `,X` will not
5606 change. Any sort of object can be a `MANIFEST` value: if it does not
5607 get embedded in the compiled code, it is included in the `RSUBR`'s
5608 "reference vector", for fast access. However, as a general rule,
5609 structured objects should not be made `MANIFEST`: the `SETG` will
5610 instead refer to a **distinct** copy of the object in **each** `RSUBR`
5611 that does a `GVAL`. A structured object should instead be `GDECL`ed.
5612
5613 An attempt to `SETG` a `MANIFEST` atom will cause an error, unless
5614 either:
5615
5616 1.  the `ATOM` was previously globally unassigned;
5617 2.  the old value is `==?` to the new value; or
5618 3.  `.REDEFINE` is not `FALSE`.
5619
5620 ### 14.5.2. MANIFEST? and UNMANIFEST
5621
5622     <MANIFEST? atom>
5623
5624 returns `T` if *atom* is `MANIFEST`, `#FALSE ()` otherwise.
5625
5626     <UNMANIFEST atom atom ...>
5627
5628 removes the `MANIFEST` of the global value of each of its arguments so
5629 that the value can be changed.
5630
5631 ### 14.5.3. GBOUND?
5632
5633     <GBOUND? atom>
5634
5635 ("globally bound") returns `T` if *atom* has a global value slot (that
5636 is, if it has ever been `SETG`ed, `MANIFEST`, `GDECL`ed, or `GLOC`ed
5637 (chapter 12) with a true second argument), `#FALSE ()` otherwise.
5638
5639 14.6. NEWTYPE (again)
5640 ---------------------
5641
5642 `NEWTYPE` gives the programmer another way to `DECL` objects. The
5643 third (and optional) argument of `NEWTYPE` is a `QUOTE`d Pattern. If
5644 given, it will be saved as the value of an association (chapter 13)
5645 using the name of the `NEWTYPE` as the item and the `ATOM` `DECL` as
5646 the indicator, and it will be used to check any object that is about
5647 to be `CHTYPE`d to the `NEWTYPE`. For example:
5648
5649     <NEWTYPE COMPLEX-NUMBER VECTOR '<<PRIMTYPE VECTOR> FLOAT FLOAT>>
5650
5651 creates a new `TYPE`, with its first two elements declared to be
5652 `FLOAT`s. If later someone types:
5653
5654     #COMPLEX-NUMBER [1.0 2]
5655
5656 an error will result (the second element is not a `FLOAT`). The
5657 Pattern can be replaced by doing another `NEWTYPE` for the same
5658 `TYPE`, or by putting a new value in the association. Further
5659 examples:
5660
5661     <NEWTYPE FOO LIST '<<PRIMTYPE LIST> FIX FLOAT [REST ATOM]>>
5662
5663 causes `FOO`s to contain a `FIX` and a `FLOAT` and any number of
5664 `ATOM`s.
5665
5666     <NEWTYPE BAR LIST>
5667
5668     <SET A #BAR (#BAR () 1 1.2 GRITCH)>
5669
5670     <NEWTYPE BAR LIST '<<PRIMTYPE LIST> BAR [REST FIX FLOAT ATOM]>>
5671
5672 This is an example of a recursively `DECL`ed `TYPE`. Note that
5673 `<1 .A>` does not satisfy the `DECL`, because it is empty, but it was
5674 `CHTYPE`d before the `DECL` was associated with `BAR`. Now, even
5675 `<CHTYPE <1 .A> <TYPE <1 .A>>>` will cause an error.
5676
5677 In each of these examples, the `<<PRIMTYPE ...> ...>` construction was
5678 used, in order to permit `CHTYPE`ing an object into itself. See what
5679 happens otherwise:
5680
5681     <NEWTYPE OOPS LIST '<LIST ATOM FLOAT>>$
5682     OOPS
5683     <SET A <CHTYPE (E 2.71828) OOPS>>$
5684     #OOPS (E 2.71828)
5685
5686 Now `<CHTYPE .A OOPS>` will cause an error. Unfortunately, you must
5687
5688     <CHTYPE <CHTYPE .A LIST> OOPS>$
5689     #OOPS (E 2.71828)
5690
5691 14.7. Controlling DECL Checking
5692 -------------------------------
5693
5694 There are several `SUBR`s and `FSUBR`s in Muddle that are used to
5695 control and interact with the `DECL`-checking mechanism.
5696
5697 ### 14.7.1. DECL-CHECK
5698
5699 This entire complex checking mechanism can get in the way during
5700 debugging. As a result, the most commonly used `DECL`-oriented `SUBR`
5701 is `DECL-CHECK`. It is used to enable and disable the entire
5702 `DECL`-checking mechanism.
5703
5704     <DECL-CHECK false-or-any>
5705
5706 If its single argument is non-`FALSE`, `DECL` checking is turned on;
5707 if it is `FALSE`, `DECL` checking is turned off. The previous state is
5708 returned as a value. If no argument is given, `DECL-CHECK` returns the
5709 current state. In an initial Muddle `DECL` checking is on.
5710
5711 When `DECL` checking is on, the `DECL` of an `ATOM` is checked each
5712 time it is `SET`, the arguments and results of calls to `FUNCTION`s,
5713 `RSUBR`s, and `RSUBR-ENTRY`s are checked, and the values returned by
5714 `PROG` and `REPEAT` are checked. The same is done for `SETG`s and, in
5715 particular, attempts to change `MANIFEST` global values. Attempts to
5716 `CHTYPE` an object to a `NEWTYPE` (if the `NEWTYPE` has the optional
5717 `DECL`) are also checked. When `DECL` checking is off, none of these
5718 checks is performed.
5719
5720 ### 14.7.2. SPECIAL-CHECK and SPECIAL-MODE
5721
5722     <SPECIAL-CHECK false-or-any>
5723
5724 controls whether or not `SPECIAL` checking is performed at run time by
5725 the interpreter. It is initially off. Failure to declare an `ATOM` to
5726 be `SPECIAL` when it should be will produce buggy compiled code.
5727
5728     <SPECIAL-MODE specialty:atom>
5729
5730 sets the declaration used by default (for `ATOM`s not declared either
5731 way) and returns the previous such declaration, or the current such
5732 declaration if no argument is given. The initial declaration used by
5733 default is `UNSPECIAL`.
5734
5735 ### 14.7.3. GET-DECL and PUT-DECL
5736
5737 `GET-DECL` and `PUT-DECL` are used to examine and change the current
5738 `DECL` (of either the global or the local value) of an `ATOM`.
5739
5740     <GET-DECL locd>
5741
5742 returns the `DECL` Pattern (if any, otherwise `#FALSE ()`) associated
5743 with the global or local value slot of an `ATOM`. For example:
5744
5745     <PROG (X)
5746           #DECL ((X) <OR FIX FLOAT>)
5747           ...
5748           <GET-DECL <LLOC X>>
5749           ...>
5750
5751 would return `<OR FIX FLOAT>` as the result of the application of
5752 `GET-DECL`. Note that because of the use of `LLOC` (or `GLOC`, for
5753 global values) the `ATOM` being examined must be bound; otherwise you
5754 will get an error! This can be gotten around by testing first with
5755 `BOUND?` (or `GBOUND?`, or by giving `GLOC` a second argument which is
5756 not `FALSE`).
5757
5758 If the slot being examined is the global slot and the value is
5759 `MANIFEST`, then the `ATOM` `MANIFEST` is returned. If the value being
5760 examined is not `DECL`ed, `#FALSE ()` is returned.
5761
5762     <PUT-DECL locd Pattern>
5763
5764 makes *Pattern* be the `DECL` for the value and returns *locd*. If
5765 `<DECL-CHECK>` is true, the current value must satisfy the new
5766 Pattern. `PUT-DECL` is normally used in debugging, to change the
5767 `DECL` of an object to correspond to changes in the program. Note that
5768 it is not legal to `PUT-DECL` a "Pattern" of `MANIFEST` or
5769 `#FALSE ()`.
5770
5771 ### 14.7.4. DECL?
5772
5773     <DECL? any Pattern>
5774
5775 specifically checks *any* against *Pattern*. For example:
5776
5777     <DECL? '[1 2 3] '<VECTOR [REST FIX]>>$
5778     T
5779     <DECL? '[1 2.0 3.0] '<VECTOR [REST FIX]>>$
5780     #FALSE ()
5781
5782 14.8. OFFSET
5783 ------------
5784
5785 An `OFFSET` is essentially a `FIX` with a Pattern attached, considered
5786 as an `APPLICABLE` rather than a number. An `OFFSET` allows a program
5787 to specify the type of structure that its `FIX` applies to. `OFFSET`s,
5788 like `DECL`s -- if used properly -- can make debugging considerably
5789 easier; they will eventually also help the compiler generate more
5790 efficient code.
5791
5792 The `SUBR` `OFFSET` takes two arguments, a `FIX` and a Pattern, and
5793 returns an object of `TYPE` and `PRIMTYPE` `OFFSET`. An `OFFSET`, like
5794 a `FIX`, may be given as an argument to `NTH` or `PUT` and may be
5795 applied to arguments. The only difference is that the `STRUCTURED`
5796 argument must match the Pattern contained in the `OFFSET`, or an error
5797 will result. Thus:
5798
5799     <SETG FOO <OFFSET 1 '<CHANNEL FIX>>>$
5800     %<OFFSET 1 '<CHANNEL FIX>>
5801     <FOO ,INCHAN>$
5802     1
5803     <FOO <ROOT>>$
5804     *ERROR*
5805     ARG-WRONG-TYPE
5806     NTH
5807     LISTENING-AT-LEVEL 2 PROCESS 1
5808
5809 Note: when the compiler gets around to understanding `OFFSET`s, it
5810 will not do the right thing with them unless they are `MANIFEST`.
5811 Since there's no good reason not to `MANIFEST` them, this isn't a
5812 problem.
5813
5814 The `SUBR` `INDEX`, given an `OFFSET`, returns its `FIX`:
5815
5816     <INDEX ,FOO>$
5817     1
5818
5819 `GET-DECL` of an `OFFSET` returns the associated Pattern; `PUT-DECL`
5820 of an `OFFSET` and a Pattern returns a new `OFFSET` with the same
5821 `INDEX` as the argument, but with a new Pattern:
5822
5823     <GET-DECL ,FOO>$
5824     <CHANNEL FIX>
5825     <PUT-DECL ,FOO OBLIST>$
5826     %<OFFSET 1 OBLIST>
5827     ,FOO$
5828     %<OFFSET 1 '<CHANNEL FIX>>
5829
5830 An `OFFSET` is not a structured object, as this example should make
5831 clear.
5832
5833 14.9. The RSUBR DECL
5834 --------------------
5835
5836 The `RSUBR` `DECL` is similar to the `ATOM` `DECL`, except that the
5837 declarations are of argument positions and value rather than of
5838 specific `ATOM`s. Patterns can be preceded by `STRING`s which further
5839 describe the argument (or value).
5840
5841 The simplest `RSUBR` `DECL` is for an `RSUBR` or `RSUBR-ENTRY`
5842 (chapter 19) which has all of its arguments evaluated and returns a
5843 `DECL`ed value. For example:
5844
5845     #DECL ("VALUE" FIX FIX FLOAT)
5846
5847 declares that there are two arguments, a `FIX` and a `FLOAT`, and a
5848 result which is a `FIX`. While the `STRING` `"VALUE"` is not
5849 constrained to appear at the front of the `DECL`, it does appear there
5850 by custom. It need not appear at all, if the result is not to be
5851 declared, but (again by custom) in this case it is usually declared
5852 `ANY`.
5853
5854 If any arguments are optional, the `STRING` `"OPTIONAL"` (or `"OPT"`)
5855 is placed before the Pattern for the first optional argument:
5856
5857     #DECL ("VALUE" FIX FIX "OPTIONAL" FLOAT)
5858
5859 If any of the arguments is not to be evaluated, it is preceded by the
5860 `STRING` `"QUOTE"`:
5861
5862     #DECL ("VALUE" FIX "QUOTE" FORM)
5863
5864 declares one argument, which is not `EVAL`ed.
5865
5866 If the arguments are to be evaluated and gathered into a `TUPLE`, the
5867 Pattern for it is preceded by the `STRING` `"TUPLE"`:
5868
5869     #DECL ("VALUE" FIX "TUPLE" <TUPLE [REST FIX]>)
5870
5871 If the arguments are to be unevaluated and gathered into a `LIST`, or
5872 if the calling `FORM` is the only "argument", the Pattern is preceded
5873 by the appropriate `STRING`:
5874
5875     #DECL ("VALUE" FIX "ARGS" LIST)
5876
5877     #DECL ("VALUE" FIX "CALL" <PRIMTYPE LIST>)
5878
5879 In every case the special indicator `STRING` is followed by a Pattern
5880 which describes the argument, even though it may sometimes produce
5881 fairly ludicrous results, since the pattern for `"TUPLE"` always must
5882 be a `TUPLE`; for `"ARGS"`, a `LIST`; and for `"CALL"`, a `FORM` or
5883 `SEGMENT`.
5884
5885 Chapter 15. Lexical Blocking
5886 ============================
5887
5888 Lexical, or static, blocking is another means of preventing identifier
5889 collisions in Muddle. (The first was dynamic blocking -- binding and
5890 `ENVIRONMENT`s.) By using a subset of the Muddle lexical blocking
5891 facilities, the "block structure" of such languages as Algol, PL/I,
5892 SAIL, etc., can be simulated, should you wish to do so.
5893
5894 15.1. Basic Considerations
5895 --------------------------
5896
5897 Since what follows appears to be rather complex, a short discussion of
5898 the basic problem lexical blocking solves and Muddle's basic solution
5899 will be given first.
5900
5901 `ATOM`s are identifiers. It is thus essential that whenever you type
5902 an `ATOM`, `READ` should respond with the unique identifier you wish
5903 to designate. The problem is that it is unreasonable to expect the
5904 `PNAME`s of all `ATOM`s to be unique. When you use an `ATOM` `A` in a
5905 program, do you mean the `A` you typed two minutes ago, the `A` you
5906 used in another one of your programs, or the `A` used by some library
5907 program?
5908
5909 Dynamic blocking (pushing down of `LVAL`s) solves many such problems.
5910 However, there are some which it does not solve -- such as state
5911 variables (whether they are impure or pure). Major problems with a
5912 system having only dynamic blocking usually arise only when attempts
5913 are made to share large numbers of significant programs among many
5914 people.
5915
5916 The solution used in Muddle is basically as follows: `READ` must
5917 maintain at least one table of `ATOM`s to guarantee any uniqueness.
5918 So, Muddle allows many such tables and makes it easy for the user to
5919 specify which one is wanted. Such a table is an object of `TYPE`
5920 `OBLIST` ("object list"). All the complication which follows arises
5921 out of a desire to provide a powerful, easily used method of working
5922 with `OBLIST`s, with reasonable values used by default.
5923
5924 15.2. OBLISTs
5925 -------------
5926
5927 An `OBLIST` is of `PRIMTYPE` `UVECTOR` with `UTYPE` `LIST`; the `LIST`
5928 holds `ATOM`s. The `ATOM`s are ordered by a hash coding on their
5929 `PNAME`s: each `LIST` is a hashing bucket.) What follows is
5930 information about `OBLIST`s as such.
5931
5932 ### 15.2.1. OBLIST Names
5933
5934 Every normally constituted `OBLIST` has a name. The name of an
5935 `OBLIST` is an `ATOM` associated with the `OBLIST` under the indicator
5936 `OBLIST`. Thus,
5937
5938     <GETPROP oblist OBLIST>
5939
5940 or
5941
5942     <GET oblist OBLIST>
5943
5944 returns the name of *oblist*.
5945
5946 Similarly, every name of an `OBLIST` is associated with its `OBLIST`,
5947 again under the indicator `OBLIST`, so that
5948
5949     <GETPROP oblist-name:atom OBLIST>
5950
5951 or
5952
5953     <GET oblist-name:atom OBLIST>
5954
5955 returns the `OBLIST` whose name is *oblist-name*.
5956
5957 Since there is nothing special about the association of `OBLIST`s and
5958 their names, the name of an `OBLIST` can be changed by the use of
5959 `PUTPROP`, both on the `OBLIST` and its name. It is not wise to change
5960 the `OBLIST` association without changing the name association, since
5961 you are likely to confuse `READ` and `PRINT` terribly.
5962
5963 You can also use `PUT` or `PUTPROP` to remove the association between
5964 an `OBLIST` and its name completely. If you want the `OBLIST` to go
5965 away (be garbage collected), **and** you want to keep its name around,
5966 this must be done: otherwise the association will force it to stay,
5967 even if there are no other references to it. (If you have no
5968 references to either the name or the `OBLIST` (an `ATOM` -- including
5969 a `TYPE` name -- points to its `OBLIST`), both of them -- and their
5970 association -- will go away without your having to remove the
5971 association, of course.) It is not recommended that you remove the
5972 name of an `OBLIST` without having it go away, since then `ATOM`s in
5973 that `OBLIST` will `PRINT` the name as if they were in no `OBLIST` --
5974 which is defeating the purpose of this whole exercise.
5975
5976 ### 15.2.2. MOBLIST
5977
5978     <MOBLIST atom fix>
5979
5980 ("make oblist") creates and returns a new `OBLIST`, containing no
5981 `ATOM`s, whose name is *atom*, unless there already exists an `OBLIST`
5982 of that name, in which case it returns the existing `OBLIST`. *fix* is
5983 the size of the `OBLIST` created -- the number of hashing buckets.
5984 *fix* is optional (ignored if the `OBLIST` already exists), 13 by
5985 default. If specified, *fix* should be a prime number, since that
5986 allows the hashing to work better.
5987
5988 ### 15.2.3. OBLIST?
5989
5990     <OBLIST? atom>
5991
5992 returns `#FALSE ()` if *atom* is not in any `OBLIST`. If *atom* is in
5993 an `OBLIST`, it returns that `OBLIST`.
5994
5995 15.3. READ and OBLISTs
5996 ----------------------
5997
5998 `READ` can be explicitly told to look up an `ATOM` in a particular
5999 `OBLIST` by giving the `ATOM` a **trailer**. A trailer consists of the
6000 characters `!-` (exclamation-point dash) following the `ATOM`,
6001 immediately followed by the name of the `OBLIST`. For example,
6002
6003     A!-OB
6004
6005 specifies the unique `ATOM` of `PNAME` `A` which is in the `OBLIST`
6006 whose name is the `ATOM` `OB`.
6007
6008 Note that the name of the `OBLIST` must follow the `!-` with **no**
6009 separators (like space, tab, carriage-return, etc.). There is a name
6010 used by default (section 15.5) which types out and is typed in as
6011 `!-`*separator*.
6012
6013 Trailers can be used recursively:
6014
6015     B!-A!-OB
6016
6017 specified the unique `ATOM` of `PNAME` `B` which is in the `OBLIST`
6018 whose name is the unique `ATOM` of `PNAME` `A` which is in the
6019 `OBLIST` whose name is `OB`. (Whew!) The repetition is terminated by
6020 the look-up and insertion described below.
6021
6022 If an `ATOM` with a given `PNAME` is not found in the `OBLIST`
6023 specified by a trailer, a new `ATOM` with that `PNAME` is created and
6024 inserted into that `OBLIST`.
6025
6026 If an `OBLIST` whose name is given in a trailer does not exist, `READ`
6027 creates one, of length 13 buckets.
6028
6029 If trailer notation is not used (the "normal" case), and for an `ATOM`
6030 that terminates a trailer, `READ` looks up the `PNAME` of the `ATOM`
6031 in a `LIST` of `OBLIST`s, the `LVAL` of the `ATOM` `OBLIST` by
6032 default. This look-up starts with `<1 .OBLIST>` and continues until
6033 `.OBLIST` is exhausted. If the `ATOM` is not found. `READ` usually
6034 inserts it into `<1 .OBLIST>`. (It is possible to force `READ` to use
6035 a different element of the `LIST` of `OBLIST`s for new insertions. If
6036 the `ATOM` `DEFAULT` is in that `LIST`, the `OBLIST` following that
6037 `ATOM` will be used.)
6038
6039 15.4. PRIN1 and OBLISTs
6040 -----------------------
6041
6042 When `PRINT` is given an `ATOM` to output, it outputs as little of the
6043 trailer as is necessary to specify the `ATOM` uniquely to `READ`. That
6044 is, if the `ATOM` is the **first** `ATOM` of that `PNAME` which `READ`
6045 would find in its normal look-up in the current `.OBLIST`, no trailer
6046 is output. Otherwise, `!-` is output and the name of the `OBLIST` is
6047 recursively `PRIN1`ed.
6048
6049 Warning: there are obscure cases, which do not occur in normal
6050 practice, for which the `PRINT` trailer does not terminate. For
6051 instance, if an `ATOM` must have a trailer printed, and the name of
6052 the `OBLIST` is an `ATOM` in that very same `OBLIST`, death. Any
6053 similar case will also give `PRINT` a hernia.
6054
6055 15.5. Initial State
6056 -------------------
6057
6058 In an initial Muddle, `.OBLIST` contains two `OBLIST`s. `<1 .OBLIST>`
6059 initially contains no `ATOM`s, and `<2 .OBLIST>` contains all the
6060 `ATOM`s whose `GVAL` are `SUBR`s or `FSUBR`s, as well as `OBLIST`,
6061 `DEFAULT`, `T`, etc. It is difficult to lose track of the latter; the
6062 specific trailer `!-`*separator* will **always** cause references to
6063 that `OBLIST`. In addition, the `SUBR` `ROOT`, which takes no
6064 arguments, always returns that `OBLIST`.
6065
6066 The name of `<ROOT>` is `ROOT`; this `ATOM` is in `<ROOT>` and would
6067 cause infinite recursion were it not for the use of `!-`*separator*.
6068 The name of the initial `<1 .OBLIST>` is `INITIAL` (really
6069 `INITIAL!-`).
6070
6071 The `ATOM` `OBLIST` also has a `GVAL`. `,OBLIST` is initially the same
6072 as `.OBLIST`; however, `,OBLIST` is not affected by the `SUBR`s used
6073 to manipulate the `OBLIST` structure. It is instead used only when
6074 errors occur.
6075
6076 In the case of an error, the current `.OBLIST` is checked to see if it
6077 is "reasonable" -- that is, contains nothing of the wrong `TYPE`. (It
6078 is reasonable, but not standard, for `.OBLIST` to be a single `OBLIST`
6079 instead of a `LIST` of them.) If it is reasonable, that value stays
6080 current. Otherwise, `OBLIST` is `SET` to `,OBLIST`. Note that changes
6081 made to the `OBLIST`s on `,OBLIST` -- for example, new `ATOM`s added
6082 -- remain. If even `,OBLIST` is unreasonable, `OBLIST` is `SET` and
6083 `SETG`ed to its initial value. `<ERRET>` (section 16.4) always assumes
6084 that `.OBLIST` is unreasonable.
6085
6086 Three other `OBLIST`s exist in a virgin Muddle: their names and
6087 purposes are as follows:
6088
6089 `ERRORS!-` contains `ATOM`s whose `PNAME`s are used as error messages.
6090 It is returned by `<ERRORS>`.
6091
6092 `INTERRUPTS!-` is used by the interrupt system (section 21.5.1). It is
6093 returned by `<INTERRUPTS>`.
6094
6095 `MUDDLE!-` is used infrequently by the interpreter when loading
6096 compiled programs to fix up references to locations within the
6097 interpreter.
6098
6099 The pre-loading of compiled programs may create other `OBLIST`s in an
6100 initialized Muddle (Lebling, 1979).
6101
6102 15.6. BLOCK and ENDBLOCK
6103 ------------------------
6104
6105 These `SUBR`s are analogous to **begin** and **end** in Algol, etc.,
6106 in the way they manipulate static blocking (and in **no** other way.)
6107
6108     <BLOCK look-up:list-of-oblists>
6109
6110 returns its argument after "pushing" the current `LVAL` of the `ATOM`
6111 `OBLIST` and making its argument the current `LVAL`. You usually want
6112 `<ROOT>` to be an element of *look-up*, normally its last.
6113
6114     <ENDBLOCK>
6115
6116 "pops" the LVAL of the `ATOM` `OBLIST` and returns the resultant
6117 `LIST` of `OBLIST`s.
6118
6119 Note that this "pushing" and "popping" of `.OBLIST` is entirely
6120 independent of functional application, binding, etc.
6121
6122 15.7. SUBRs Associated with Lexical Blocking
6123 --------------------------------------------
6124
6125 ### 15.7.1. READ (again)
6126
6127     <READ channel eof-routine look-up>
6128
6129 This is a fuller call to `READ`. *look-up* is an `OBLIST` or a `LIST`
6130 of them, used as stated in section 15.3 to look up `ATOM`s and insert
6131 them in `OBLIST`s. If not specified, `.OBLIST` is used. See also
6132 section 11.1.1.1, 11.3, and 17.1.3 for other arguments.
6133
6134 ### 15.7.2. PARSE and LPARSE (again)
6135
6136     <PARSE string radix:fix look-up>
6137
6138 as was previously mentioned, applies `READ`'s algorithm to *string*
6139 and returns the first Muddle object resulting. This **includes**
6140 looking up prospective `ATOM`s on *look-up*, if given, or `.OBLIST`.
6141 `LPARSE` can be called in the same way. See also section 7.6.6.2 and
6142 17.1.3 for other arguments.
6143
6144 ### 15.7.3. LOOKUP
6145
6146     <LOOKUP string oblist>
6147
6148 returns the `ATOM` of `PNAME` *string* in the `OBLIST` *oblist*, if
6149 there is such an `ATOM`; otherwise, it returns `#FALSE ()`. If
6150 *string* would `PARSE` into an `ATOM` anyway, `LOOKUP` is faster,
6151 although it looks in only one `OBLIST` instead of a `LIST` of them.
6152
6153 ### 15.7.4. ATOM
6154
6155     <ATOM string>
6156
6157 creates and returns a spanking new `ATOM` of `PNAME` *string* which is
6158 guaranteed not to be on **any** `OBLIST`.
6159
6160 An `ATOM` which is not on any `OBLIST` is `PRINT`ed with a trailer of
6161 `!-#FALSE ()`.
6162
6163 ### 15.7.5. REMOVE
6164
6165     <REMOVE string oblist>
6166
6167 removes the `ATOM` of `PNAME` *string* from *oblist* and returns that
6168 ATOM. If there is no such `ATOM`, `REMOVE` returns `#FALSE ()`. Also,
6169
6170     <REMOVE atom>
6171
6172 removes *atom* from its `OBLIST`, if it is on one. It returns *atom*
6173 if it was on an `OBLIST`; otherwise it returns `#FALSE ()`.
6174
6175 ### 15.7.6 INSERT
6176
6177     <INSERT string-or-atom oblist>
6178
6179 creates an `ATOM` of `PNAME` *string*, inserts it into *oblist* and
6180 returns it. If there is already an `ATOM` with the same `PNAME` as
6181 *atom* in *oblist*, an error occurs. The standard way to avoid the
6182 error and always get your *atom* is
6183
6184     <OR <LOOKUP string oblist> <INSERT string oblist>>
6185
6186 As with `REMOVE`, `INSERT` can also take an `ATOM` as its first
6187 argument; this `ATOM` must not be on any `OBLIST` -- it must have been
6188 `REMOVE`d, or just created by `ATOM` -- else an error occurs. The
6189 `OBLIST` argument is **never** optional. If you would like the new
6190 `ATOM` to live in the `OBLIST` that `READ` would have chosen, you can
6191 `<PARSE string>` instead.
6192
6193 ### 15.7.7. PNAME
6194
6195     <PNAME atom>
6196
6197 returns a `STRING` (newly created) which is *atom*'s `PNAME` ("printed
6198 name"). If trailers are not needed, `PNAME` is much faster than
6199 `UNPARSE` on *atom*. (In fact, `UNPARSE` has to go all the way through
6200 the `PRINT` algorithm **twice**, the first time to see how long a
6201 `STRING` is needed.)
6202
6203 ### 15.7.8. SPNAME
6204
6205 `SPNAME` ("shared printed name") is identical to `PNAME`, except that
6206 the `STRING` it returns shares storage with *atom* (appendix 1), which
6207 is more efficient if the `STRING` will not be modified. `PUT`ting into
6208 such a `STRING` will cause an error.
6209
6210 15.8. Example: Another Solution to the INC Problem
6211 --------------------------------------------------
6212
6213 What follows is an example of the way `OBLIST`s are "normally" used to
6214 provide "externally available" `ATOM`s and "local" `ATOM`s which are
6215 not so readily available externally. Lebling (1979) describes a
6216 systematic way to accomplish the same thing and more.
6217
6218     <MOBLIST INCO 1>
6219             ;"Create an OBLIST to hold your external symbols.
6220             Its name is INCO!-INITIAL!- ."
6221
6222     INC!-INCO
6223             ;"Put your external symbols into that OBLIST.
6224         If you have many, just write them successively."
6225
6226     <BLOCK (<MOBLIST INCI!-INCO 1> <GET INCO OBLIST> <ROOT>)>
6227         ;"Create a local OBLIST, naming it INCI!-INCO, and set up
6228         .OBLIST for reading in your program. The OBLIST INCO is
6229         included in the BLOCK so that as your external symbols are
6230         used, they will be found in the right place. Note that the
6231         ATOM INCO is not in any OBLIST of the BLOCK; therefore,
6232         trailer notation of !-INCO will not work within the current
6233         BLOCK-ENDBLOCK pair."
6234
6235     <DEFINE INC ;"INC is found in the INCO OBLIST."
6236         (A) ;"A is not found and is therefore put into INCI by
6237     READ."
6238         #DECL ((VALUE A) <OR FIX FLOAT>)
6239         <SET .A <+ ..A 1>>> ;"All other ATOMs are found in the
6240     ROOT."
6241     <ENDBLOCK>
6242
6243 This example is rather trivial, but it contains all of the issues, of
6244 which there are three.
6245
6246 The first idea is that you should create two `OBLIST`s, one to hold
6247 `ATOM`s which are to be known to other users (`INCO`), and the other
6248 to hold internal `ATOM`s which are not normally of interest to other
6249 (`INCI`). The case above has one `ATOM` in each category.
6250
6251 Second, `INCO` is explicitly used **without** trailers so that
6252 surrounding `BLOCK` and `ENDBLOCK`s will have an effect on it. Thus
6253 `INCO` will be in the `OBLIST` desired by the user; `INC` will be in
6254 `INCO`, and the user can refer to it by saying `INC!-INCO`; `INCI`
6255 will also be in `INCO`, and can be referred to in the same way;
6256 finally, `A` is really `A!-INCI!-INCO`. The point of all this is to
6257 structure the nesting of `OBLIST`s.
6258
6259 Finally, if for some reason (like saving storage space) you wish to
6260 throw `INCI` away, you can follow the `ENDBLOCK` with
6261
6262     <REMOVE "INCI" <GET INCO OBLIST>>
6263
6264 and thus remove all references to it. The ability to do such pruning
6265 is one reason for structuring `OBLIST` references.
6266
6267 Note that, even after removing `INCI`, you can "get `A` back" -- that
6268 is, be able to type it in -- by saying something of the form
6269
6270     <INSERT <1 <1 ,INC!-INCO>> <1 .OBLIST>>
6271
6272 thereby grabbing `A` out of the structure of `INC` and re-inserting it
6273 into an `OBLIST`. however, this resurrects the name collision caused
6274 by `<INC!-INCO A>`.
6275
6276 Chapter 16. Errors, Frames, etc.
6277 ================================
6278
6279 16.1. LISTEN
6280 ------------
6281
6282 This `SUBR` takes any number of arguments. It first checks the `LVAL`s
6283 of `INCHAN`, `OUTCHAN`, and `OBLIST` for reasonability and terminal
6284 usability. In each case, if the value is unreasonable, the `ATOM` is
6285 rebound to the corresponding `GVAL`, if reasonable, or to an invented
6286 reasonable value. `LISTEN` then does `<TTYECHO .INCHAN T>` and
6287 `<ECHOPAIR .INCHAN .OUTCHAN>`. Next, it `PRINT`s its arguments, then
6288 `PRINT`s
6289
6290     LISTENING-AT-LEVEL i PROCESS p
6291
6292 where *i* is an integer (`FIX`) which is incremented each time
6293 `LISTEN` is called recursively, and *p* is an integer identifying the
6294 `PROCESS` (chapter 20) in which the `LISTEN` was `EVAL`ed. `LISTEN`
6295 then does `<APPLY <VALUE REP>>`, if there is one, and if it is
6296 `APPLICABLE`. If not, it applies the `SUBR` `REP` (without making a
6297 new `FRAME` -- see below). This `SUBR` drops into an infinite
6298 `READ`-`EVAL`-`PRINT` loop, which can be left via `ERRET` (section
6299 16.4).
6300
6301 The standard `LISTEN` loop has two features for getting a handle on
6302 objects that you have typed in and Muddle has typed out. If the `ATOM`
6303 `L-INS` has a local value that is a `LIST`, `LISTEN` will keep recent
6304 inputs (what `READ` returns) in it, most recent first. Similarly, if
6305 the `ATOM` `L-OUTS` has a local value that is a `LIST`, `LISTEN` will
6306 keep recent outputs (what `EVAL` returns) in it, most recent first.
6307 The keeping is done before the `PRINT`ing, so that `^S` does not
6308 defeat its purpose. The user can decide how much to keep around by
6309 setting the length of each `LIST`. Even if `L-OUTS` is not used, the
6310 atom `LAST-OUT` is always `SET` to the last object returned by `EVAL`
6311 in the standard `LISTEN` loop. Example:
6312
6313     <SET L-INS (NEWEST NEWER NEW)>$
6314     (NEWEST NEWER NEW)
6315     .L-INS$
6316     (.L-INS NEWEST NEWER)
6317     <SET FOO 69>$
6318     69
6319     <SET FIXIT <2 .LINS>>   ;"grab the last input"$
6320     <SET FOO 69>
6321     .L-INS$
6322     (.L-INS <SET FIXIT <2 .L-INS>> <SET FOO 69>)
6323     <PUT .FIXIT 3 105>$
6324     <SET FOO 105>
6325     <EVAL .FIXIT>$
6326     105
6327     .L-INS$
6328     (.L-INS <EVAL .FIXIT> <PUT .FIXIT 3 105>)
6329     .FOO$
6330     105
6331
6332 16.2. ERROR
6333 -----------
6334
6335 This `SUBR` is the same as `LISTEN`, except that (1) it generates an
6336 interrupt (chapter 21), if enabled. and (2) it `PRINT`s `*ERROR*`
6337 before `PRINT`ing its arguments.
6338
6339 When any `SUBR` or `FSUBR` detects an anomalous condition (for
6340 example, its arguments are of the wrong `TYPE`), it calls `ERROR` with
6341 at least two arguments, including:
6342
6343 1.  an `ATOM` whose `PNAME` describes the problem, normally from the
6344     `OBLIST` `ERRORS!-` (appendix 4),
6345 2.  the `ATOM` that names the `SUBR` or `FSUBR`, and
6346 3.  any other information of interest, and **then returns whatever the
6347     call to `ERROR` returns**. Exception: a few (for example `DEFINE`)
6348     will take further action that depends on the value returned. This
6349     nonstandard action is specified in the error message (first
6350     `ERROR` argument).
6351
6352 16.3. FRAME (the TYPE)
6353
6354 A `FRAME` is the object placed on a `PROCESS`'s control stack (chapter
6355 20) whenever a `SUBR`, `FSUBR`, `RSUBR`, or `RSUBR-ENTRY` (chapter 19)
6356 is applied. (These objects are herein collectively called
6357 "Subroutines".) It contains information describing what was applied,
6358 plus a `TUPLE` whose elements are the arguments to the Subroutine
6359 applied. If any of the Subroutine's arguments are to be evaluated,
6360 they will have been by the time the `FRAME` is generated.
6361
6362 A `FRAME` is an anomalous `TYPE` in the following ways:
6363
6364 1.  It cannot be typed in. It can be generated only by applying a
6365     Subroutine.
6366 2.  It does not type out in any standard format, but rather as
6367     `#FRAME` followed by the `PNAME`of the Subroutine applied.
6368
6369 16.3.1. ARGS
6370
6371     <ARGS frame>
6372
6373 ("arguments") returns the argument `TUPLE` of *frame*.
6374
6375 16.3.2. FUNCT
6376
6377     <FUNCT frame>
6378
6379 ("function"} returns the `ATOM` whose `G/LVAL` is being applied in
6380 *frame*.
6381
6382 16.3.3. FRAME (the SUBR)
6383
6384     <FRAME frame>
6385
6386 returns the `FRAME` stacked **before** *frame* or, if there is none,
6387 it will generate an error. The oldest (lowest) `FRAME` that can be
6388 returned without error has a `FUNCT` of `TOPLEVEL`. If called with no
6389 arguments, `FRAME` returns the topmost `FRAME` used in an application
6390 of `ERROR` or `LISTEN`, which was bound by the interpreter to the
6391 `ATOM` `LERR\ I-INTERRUPTS` ("last error").
6392
6393 16.3.4. Examples
6394
6395 Say you have gotten an error. You can now type at `ERROR`'s `LISTEN`
6396 loop and get things `EVAL`ed. For example,
6397
6398     <FUNCT <FRAME>>$
6399     ERROR
6400     <FUNCT <FRAME <FRAME>>>$
6401     the-name-of-the-Subroutine-which-called-ERROR:atom
6402     <ARGS <FRAME <FRAME>>>$
6403     the-arguments-to-the-Subroutine-which-called-ERROR:tuple
6404
6405 16.4. ERRET
6406
6407     <ERRET any frame>
6408
6409 This `SUBR` ("error return") (1) causes the control stack to be
6410 stripped down to the level of *frame*, and (2) **then** returns *any*.
6411 The net result is that the application which generated *frame* is
6412 forced to return *any*. Additional side effects that would have
6413 happened in the absence of an error may not have happened.
6414
6415 The second argument to `ERRET` is optional, by default the `FRAME` of
6416 the last invocation of `ERROR` or `LISTEN`.
6417
6418 If `ERRET` is called with **no** arguments, it drops you **all** the
6419 way down to the **bottom** of the control stack -- **before** the
6420 level-1 `LISTEN` loop -- and then calls `LISTEN`. As always, `LISTEN`
6421 first ensures that Muddle is receptive.
6422
6423 Examples:
6424
6425     <* 3 <+ a 1>>$
6426     *ERROR*
6427     ARG-WRONG-TYPE
6428     +
6429     LISTENING-AT-LEVEL 2 PROCESS 1
6430     <ARGS <FRAME <FRAME>>>$
6431     [a 1]
6432     <ERRET 5>$  ;"This causes the + to return 5."
6433     15      ;"finally returned by the *"
6434
6435 Note that when you are in a call to `ERROR`, the most recent set of
6436 bindings is still in effect. This means that you can examine values of
6437 dummy variables while still in the error state. For example,
6438
6439     <DEFINE F (A "AUX" (B "a string"))
6440         #DECL ((VALUE) LIST (A) STRUCTURED (B) STRING)
6441         (.B <REST .A 2>)    ;"Return this LIST.">$
6442     F
6443     <F '(1)>$
6444
6445     *ERROR*
6446     OUT-OF-BOUNDS
6447     REST
6448     LISTENING-AT-LEVEL 2 PROCESS 1
6449     .A$
6450     (1)
6451     .B$
6452     "a string"
6453     <ERRET '(5)>    ; "Make the REST return (5)."$
6454     ("a string" (5))
6455
6456 16.5. RETRY
6457
6458     <RETRY frame>
6459
6460 causes the control stack to be stripped down just beyond *frame*, and
6461 then causes the Subroutine call that generated *frame* to be done
6462 again. *frame* is optional, by default the `FRAME` of the last
6463 invocation of `ERROR` or `LISTEN`. `RETRY` differs from `AGAIN` in
6464 that (1) it is not intended to be used in programs; (2) it can retry
6465 any old *frame* (any Subroutine call), whereas `AGAIN` requires an
6466 `ACTIVATION` (`PROG` or `REPEAT` or `"ACT"`); and (3) if it retries
6467 the `EVAL` of a `FORM` that makes an `ACTIVATION`, it will cause
6468 rebinding in the argument `LIST`, thus duplicating side effects.
6469
6470 16.6. UNWIND
6471
6472 `UNWIND` is an `FSUBR` that takes two arguments, usually `FORM`s. It
6473 `EVAL`s the first one, and, if the `EVAL` returns normally, the value
6474 of the `EVAL` call is the value of `UNWIND`. If, however, during the
6475 `EVAL` a non-local return attempts to return below the `UNWIND`
6476 `FRAME` in the control stack, the second argument is `EVAL`ed, its
6477 value is ignored, and the non-local return is completed. The second
6478 argument is evaluated in the environment that was present when the
6479 call to `UNWIND` was made. This facility is useful for cleaning up
6480 data bases that are in inconsistent states and for closing temporary
6481 `CHANNEL`s that may be left around. `FLOAD` sets up an `UNWIND` to
6482 close its `CHANNEL` if the user attempts to `ERRET` without finishing
6483 the `FLOAD`. Example:
6484
6485     <DEFINE CLEAN ACT ("AUX" (C <OPEN "READ" "A FILE">))
6486         #DECL ((C) <OR CHANNEL FALSE> ...)
6487         <COND (.C
6488             <UNWIND <PROG () ... <CLOSE .C>>
6489                 <CLOSE .C>>)>>
6490
6491 16.7. Control-G (\^G)
6492
6493 Typing control-G (`^G`, `<ASCII 7>`) at Muddle causes it to act just
6494 as if an error had occurred in whatever was currently being done. You
6495 can then examine the values of variables as above, continue by
6496 applying `ERRET` to one argument (which is ignored), `RETRY` a `FRAME`
6497 lower on the control stack, or flush everything by applying `ERRET` to
6498 no arguments.
6499
6500 16.8. Control-S (\^S)
6501
6502 Typing control-S (`^S`, `<ASCII 19>`) at Muddle causes it to stop what
6503 is happening and return to the `FRAME` `.LERR\ !-INTERRUPTS`,
6504 returning the `ATOM` `T`. (In the Tenex and Tops-20 versions, `^O`
6505 also has the same effect.)
6506
6507 16.9. OVERFLOW
6508
6509     <OVERFLOW false-or-any>
6510
6511 There is one error that can be disabled: numeric overflow and
6512 underflow caused by the arithmetic `SUBR`s (`+`, `-`, `*`, `/`). The
6513 `SUBR` `OVERFLOW` takes one argument: if it is of `TYPE` `FALSE`,
6514 under/overflow errors are disabled; otherwise they are enabled. The
6515 initial state is enabled. `OVERFLOW` returns `T` or `#FALSE ()`,
6516 reflecting the previous state. Calling it with no argument returns the
6517 current state.
6518
6519 Chapter 17. Macro-operations
6520 ============================
6521
6522 17.1. READ Macros
6523 -----------------
6524
6525 ### 17.1.1. % and %%
6526
6527 The tokens `%` and `%%` are interpreted by `READ` in such a way as to
6528 give a "macro" capability to Muddle similar to PL/I's.
6529
6530 Whenever `READ` encounters a single `%` -- anywhere, at any depth of
6531 recursion -- it **immediately**, without looking at the rest of the
6532 input, evaluates the object following the `%`. The result of that
6533 evaluation is used by `READ` in place of the object following the `%`.
6534 That is, `%` means "don't really `READ` this, use `EVAL` of it
6535 instead." `%` is often used in files in front of calls to `ASCII`,
6536 `BITS` (which see), etc., although when the `FUNCTION` is compiled the
6537 compiler will do the evaluation if the arguments are constant. Also
6538 seen is `%.INCHAN`, read as the `CHANNEL` in use during `LOAD` or
6539 `FLOAD`; for example, `<PUT %.INCHAN 18 8>` causes succeeding `FIX`es
6540 to be read as octal.
6541
6542 Whenever `READ` encounters `%%`, it likewise immediately evaluates the
6543 object following the `%%`. However, it completely ignores the result
6544 of that evaluation. Side effects of that evaluation remain, of course.
6545
6546 Example:
6547
6548     <DEFINE SETUP () <SET A 0>>$
6549     SETUP
6550     <DEFINE NXT () <SET A <+ .A 1>>>$
6551     NXT
6552     [%%<SETUP> %<NXT> %<NXT> (%%<SETUP>) %<NXT>]$
6553     [1 2 () 1]
6554
6555 ### 17.1.2. LINK
6556
6557     <LINK exp:any string oblist>
6558
6559 creates an object of `TYPE` `LINK`, `PRIMTYPE` `ATOM`. A `LINK` looks
6560 vaguely like an `ATOM`; it has a `PNAME` (the *string* argument),
6561 resides in an `OBLIST` (the *oblist* argument) and has a "value" (the
6562 *exp* argument). A `LINK` has the strange property that, whenever it
6563 is encountered by `READ` (that is, its `PNAME` is read, just like an
6564 `ATOM`, possibly with `OBLIST` trailers), `READ` substitutes the
6565 `LINK`'s "value" for the `LINK` immediately. The effect of `READ`ing a
6566 `LINK`'s `PNAME` is exactly the same as the effect of reading its
6567 "value".
6568
6569 The *oblist* argument is optional, `<1 .OBLIST>` by default. `LINK`
6570 returns its first argument. The `LINK` is created via `INSERT`, so an
6571 error results if there is already an `ATOM` or `LINK` in *oblist* with
6572 the same `PNAME`.
6573
6574 The primary use of `LINK`s is in interactive work with Muddle:
6575 expressions which are commonly used, but annoyingly long to type, can
6576 be "linked" to `PNAME`s which are shorter. The standard example is the
6577 following:
6578
6579     <LINK '<ERRET> "^E" <ROOT>>
6580
6581 which links the `ATOM` of `PNAME` `^E` in the `ROOT` `OBLIST` to the
6582 expression `<ERRET>`.
6583
6584 ### 17.1.3. Program-defined Macro-characters
6585
6586 During `READ`ing from an input `CHANNEL` or `PARSE`ing a `STRING`, any
6587 character can be made to have a special meaning. A character can cause
6588 an arbitrary routine to be invoked, which can then return any number
6589 of elements to be put into the object being built by `READ`, `PARSE`,
6590 or `LPARSE`. Translation of characters is also possible. This facility
6591 was designed for those persons who want to use Muddle `READ` to do
6592 large parts of their input but have to modify its actions for some
6593 areas: for example, one might want to treat left and right parentheses
6594 as tokens, rather than as delimiters indicating a `LIST`.
6595
6596 #### 17.1.3.1. READ (finally)
6597
6598 Associated with `READ` is an `ATOM`, `READ-TABLE!-`, whose local
6599 value, if any, must be a `VECTOR` of elements, one for each character
6600 up to and including all characters to be treated specially. Each
6601 element indicates, if not `0`, the action to be taken upon `READ`'s
6602 encounter with that character. A similar `VECTOR`, the local value of
6603 `PARSE-TABLE!-`, if any, is used to find the action to take for
6604 characters encountered when `PARSE` or `LPARSE` is applied to a
6605 `STRING`.
6606
6607 These tables can have up to 256 elements, one for each ASCII character
6608 and one for each possible exclamation-point/ASCII-character pair. In
6609 Muddle, the exclamation-point is used as a method of expanding the
6610 ASCII character set, and an exclamation-point/character pair is
6611 treated as one logical character when not reading a `STRING`.
6612
6613 The element corresponding to a character is
6614 `<NTH table <+ 1 <ASCII char>>>`. The element corresponding to an
6615 exclamation-point/ASCII-character pair is
6616 `<NTH table <+ 129 <ASCII char>>>`. The table can be shorter than 256
6617 elements, in which case it is treated as if it were 256 long with `0`
6618 elements beyond its actual length.
6619
6620 An element of the tables must satisfy one of the following `DECL`
6621 Patterns:
6622
6623 > `'0` indicates that no special action is to be taken when this
6624 > character is encountered.
6625 >
6626 > `CHARACTER` indicates that the encountered character is to be
6627 > translated into the given `CHARACTER` whenever it appears, except
6628 > when as an object of `TYPE` `CHARACTER`, or in a `STRING`, or
6629 > immediately following a `\`.
6630 >
6631 > `FIX` indicates that the character is to be given the same treatment
6632 > as the character with the ASCII value of the `FIX`. This allows you
6633 > to cause other characters to be treated in the same way as A-Z for
6634 > example. The same exceptions apply as for a `CHARACTER`.
6635 >
6636 > `<LIST FIX>` indicates the same thing, except that the character
6637 > does not by itself cause a break. Therefore, if it occurs when
6638 > reading an `ATOM` or number, it will be treated as part of that
6639 > `ATOM` or number.
6640 >
6641 > `APPLICABLE` (to one argument) indicates that the character is to be
6642 > a break character. Whenever it is encountered, the reading of the
6643 > current object is finished, and the corresponding element of the
6644 > table is `APPLY`ed to the ASCII `CHARACTER`. (If `READ` is called
6645 > during the application, the end-of-file slot of the `CHANNEL`
6646 > temporarily contains a special kind of `ACTIVATION` (`TYPE` `READA`)
6647 > so that end-of-file can be signalled properly to the original
6648 > `READ`. Isn't that wonderful?) The value returned is taken to be
6649 > what was read, unless an object of `TYPE` `SPLICE` is returned. If
6650 > so, the elements of this object, which is of `PRIMTYPE` `LIST`, are
6651 > spliced in at the point where Muddle is reading. An empty `SPLICE`
6652 > allows one to return nothing. If a structured object is not being
6653 > built, and a `SPLICE` is returned, elements after the first will be
6654 > ignored. A `SPLICE` says "expand me", whereas the structure
6655 > containing a `SEGMENT` says "I will expand you".
6656 >
6657 > `<LIST APPLICABLE>` indicates the same thing, except that the
6658 > character does not by itself cause a break. Therefore, if it occurs
6659 > when reading an `ATOM` or number, it will be treated as part of that
6660 > `ATOM` or number.
6661
6662 `READ` takes an additional optional argument, which is what to use
6663 instead of the local value of the `ATOM` `READ-TABLE` as the `VECTOR`
6664 of read-macro characters. If this argument is supplied, `READ-TABLE`
6665 is rebound to it within the call to `READ`. `READ` takes from zero to
6666 four arguments. The fullest call to `READ` is thus:
6667
6668     <READ channel eof-routine look-up read-table:vector>
6669
6670 The other arguments are explained in sections 11.1.1.1, 11.3, and
6671 15.7.1.
6672
6673 `ERROR` and `LISTEN` rebind `READ-TABLE` to the `GVAL` of
6674 `READ-TABLE`, if any, else `UNASSIGN` it.
6675
6676 #### 17.1.3.2. Examples
6677
6678 Examples of each of the different kinds of entries in macro tables:
6679
6680     <SET READ-TABLE <IVECTOR 256 0>>$
6681     [...]
6682
6683     <PUT .READ-TABLE <+ 1 <ASCII !\a>> !\A>
6684                     ;"CHARACTER: translate a to A."$
6685     [...]
6686     abc$
6687     Abc
6688
6689     <PUT .READ-TABLE <+ 1 <ASCII !\%>> <ASCII !\A>>
6690             ;"FIX: make % just a normal ASCII character."$
6691     [...]
6692     A%BC$
6693     A\%BC
6694
6695     <PUT .READ-TABLE <+ 1 <ASCII !\.>> (<ASCII !\.>)>
6696             ;"<LIST FIX>: make comma no longer a break
6697               character, but still special if at a break."$
6698     [...]
6699     A,B$
6700     A\,B
6701     ;"That was an ATOM with PNAME A,B ."
6702     ',B$
6703     ,B
6704     ;"That was the FORM <GVAL B> ."
6705
6706     <PUT .READ-TABLE <+ 1 <ASCII !\:>>
6707         #FUNCTION ((X) <LIST COLON <READ>>)>
6708             ;"APPLICABLE: make a new thing like ( < and [ ."$
6709     [...]
6710     B:A$
6711     B
6712     (COLON A)
6713     :::FOO$
6714     (COLON (COLON (COLON FOO)))
6715
6716     <PUT .READ-TABLE <+ 1 <ASCII !\:>>
6717         '(#FUNCTION ((X) <LIST COLON <READ>>))>
6718             ;"<LIST APPLICABLE>: like above, but not a break
6719               now."$
6720     [...]
6721     B:A$
6722     B:A
6723     ;"That was an ATOM."
6724     :::FOO$
6725     (COLON (COLON (COLON FOO)))
6726
6727 #### 17.1.3.3. PARSE and LPARSE (finally)
6728
6729     <PARSE string radix look-up parse-table:vector look-ahead:character>
6730
6731 is the fullest call to `PARSE`. `PARSE` can take from zero to five
6732 arguments. If `PARSE` is given no arguments, it returns the first
6733 object parsed from the local value of the `STRING` `PARSE-STRING` and
6734 additionally `SET`s `PARSE-STRING` to the `STRING` having those
6735 `CHARACTER`s which were parsed `REST`ed off. If `PARSE` is given a
6736 `STRING` to parse, the `ATOM` `PARSE-STRING` is rebound to the
6737 `STRING` within that call. If the *parse-table* argument is given to
6738 `PARSE`, `PARSE-TABLE` is rebound to it within that call to `PARSE`.
6739 Finally, `PARSE` can take a *look-ahead* `CHARACTER`, which is treated
6740 as if it were logically concatenated to the front of the *string*
6741 being parsed. Other arguments are described in sections 7.6.6.2 and
6742 15.7.2.
6743
6744 `LPARSE` is exactly like `PARSE`, except that it tries to parse the
6745 whole `STRING`, returning a `LIST` of the objects created.
6746
6747 17.2. EVAL Macros
6748 -----------------
6749
6750 An `EVAL` macro provides the convenience of a `FUNCTION` without the
6751 overhead of calling, `SPECIAL`s, etc. in the **compiled** version. A
6752 special-purpose function that is called often by `FUNCTION`s that will
6753 be compiled is a good candidate for an `EVAL` macro.
6754
6755 ### 17.2.1. DEFMAC and EXPAND
6756
6757 `DEFMAC` ("define macro") is syntactically exactly the same as
6758 `DEFINE`. However, instead of creating a `FUNCTION`, `DEFMAC` creates
6759 a `MACRO`. A `MACRO` is of `PRIMTYPE` `LIST` and in fact has a
6760 `FUNCTION` (or other `APPLICABLE` `TYPE`) as its single element.
6761
6762 A `MACRO` can itself be applied to arguments. A `MACRO` is applied in
6763 a funny way, however: it is `EVAL`ed twice. The first `EVAL` causes
6764 the `MACRO`'s element to be applied to the `MACRO`'s arguments.
6765 Whatever that application returns (usually another `FORM`) is also
6766 `EVAL`ed. The result of the second `EVAL`uation is the result of
6767 applying the `MACRO`. `EXPAND` is used to perform the first `EVAL`
6768 without the second.
6769
6770 To avoid complications, the first `EVAL` (by `EXPAND`, to create the
6771 object to be `EVAL`ed the second time around) is done in a top-level
6772 environment. The result of this policy is that two syntactically
6773 identical invocations of a `MACRO` always return the same expansion to
6774 be `EVAL`ed in the second step. The first `EVAL` generates two extra
6775 `FRAME`s: one for a call to `EXPAND`, and one for a call to `EVAL` the
6776 `MACRO` application in a top-level environment.
6777
6778 Example:
6779
6780     <DEFMAC INC (ATM "OPTIONAL" (N 1))
6781             #DECL ((VALUE) FORM (ATM) ATOM (N) <OR FIX FLOAT>)
6782             <FORM SET .ATM <FORM + <FORM LVAL .ATM> .N>>>$
6783     INC
6784     ,INC$
6785     #MACRO (#FUNCTION ((ATM "OPTIONAL" (N 1)) ...))
6786     <SET X 1>$
6787     1
6788     <INC X>$
6789     2
6790     .X$
6791     2
6792     <EXPAND '<INC X>>$
6793     <SET X <+ .X 1>>
6794
6795 Perhaps the intention is clearer if `PARSE` and `%` are used:
6796
6797     <DEFMAC INC (ATM "OPTIONAL" (N 1))
6798             #DECL (...)
6799             <PARSE "<SET %.ATM <+ %.ATM %.N>>">>
6800
6801 `MACRO`s really exhibit their advantages when they are compiled. The
6802 compiler will simply cause the first `EVAL`uation to occur (via
6803 `EXPAND`) and compile the result. The single element of a compiled
6804 `MACRO` is an `RSUBR` or `RSUBR-ENTRY`.
6805
6806 ### 17.2.2. Example
6807
6808 Suppose you want to change the following simple `FUNCTION` to a
6809 `MACRO`:
6810
6811     <DEFINE DOUBLE (X) #DECL ((X) FIX) <+ .X .X>>
6812
6813 You may be tempted to write:
6814
6815     <DEFMAC DOUBLE (X) #DECL ((X) FIX) <FORM + .X .X>>
6816
6817 This `MACRO` works, but only when the argument does not use temporary
6818 bindings. Consider
6819
6820     <DEFINE TRIPLE (Y) <+ .Y <DOUBLE .Y>>>
6821
6822 If this `FUNCTION` is applied, the top-level binding of `Y` is used,
6823 not the binding just created by the application. Compilation of this
6824 `FUNCTION` would probably fail, because the compiler probably would
6825 have no top-level binding for `Y`. Well, how about
6826
6827     <DEFMAC DOUBLE ('X) <FORM + .X .X>>  ;"The DECL has to go."
6828
6829 Now this is more like the original `FUNCTION`, because no longer is
6830 the argument evaluated and the result evaluated again. And `TRIPLE`
6831 works. But now consider
6832
6833     <DEFINE INC-AND-DOUBLE (Y) <DOUBLE <SET Y <+ 1 .Y>>>>
6834
6835 You might hope that
6836
6837     <INC-AND-DOUBLE 1> -> <DOUBLE <SET Y <+ 1 1>>>
6838                        -> <DOUBLE 2>
6839                        -> <+ 2 2>
6840                        -> 4
6841
6842 But, when `DOUBLE` is applied to that `FORM`, the argument is
6843 `QUOTE`d, so:
6844
6845     <INC-AND-DOUBLE 1> -> <DOUBLE <SET Y <+ 1 1>>>
6846                        -> <FORM + <SET Y <+ 1 .Y>> <SET Y <1 .Y>>>
6847                        -> <+ 2 3>
6848                        -> 5
6849
6850 So, since the evaluation of `DOUBLE`'s argument has a side effect, you
6851 should ensure that the evaluation is done exactly once, say by `FORM`:
6852
6853     <DEFMAC DOUBLE ('ANY)
6854             <FORM PROG ((X .ANY)) #DECL ((X) FIX) '<+ .X .X>>>
6855
6856 As a bonus, the `DECL` can once more be used.
6857
6858 This example is intended to show that writing good `MACRO`s is a
6859 little trickier than writing good `FUNCTION`s. But the effort may be
6860 worthwhile if the compiled program must be speedy.
6861
6862 Chapter 18. Machine Words and Bits
6863 ==================================
6864
6865 The Muddle facility for dealing with uninterpreted machine words and
6866 bits involves two data TYPEs: WORD and BITS. A WORD is simply an
6867 uninterpreted machine word, while a BITS is a "pointer" to a set of
6868 bits within a WORD. Operating on WORDs is usually done only when
6869 compiled programs are used (chapter 19).
6870
6871 18.1. WORDs
6872 -----------
6873
6874 A `WORD` in Muddle is a PDP-10 machine word of 36 bits. A `WORD`
6875 always `PRINT`s in "\# format", and its contents are always printed in
6876 octal (hence preceded and followed by `*`). Examples:
6877
6878     #WORD 0                  ;"all 0s"$
6879     #WORD *000000000000*
6880
6881     #WORD *2000*             ;"one bit 1"$
6882     #WORD *000000002000*
6883
6884     #WORD *525252525252*     ;"every other bit 1"$
6885     #WORD *525252525252*
6886
6887 `WORD` is its own `PRIMTYPE`; it is also the `PRIMTYPE` of `FIX`,
6888 `FLOAT`, `CHARACTER`, and any other `TYPE` which can fit its data into
6889 one machine word.
6890
6891 A `WORD` cannot be an argument to `+`, `-`, or indeed any `SUBR`s
6892 except for `CHTYPE`, `GETBITS`, `PUTBITS` and several bit-manipulating
6893 functions, all to be described below. Thus any arithmetic bit
6894 manipulation must be done by `CHTYPE`ing a `WORD` to `FIX`, doing the
6895 arithmetic, and then `CHTYPE`ing back to `WORD`. However, bit
6896 manipulation can be done without `CHTYPE`ing the thing to be played
6897 with to a `WORD`, so long as it is of `PRIMTYPE` `WORD`; the result of
6898 the manipulation will be of the same `TYPE` as the original object or
6899 can be `CHTYPE`d to it.
6900
6901 18.2. BITS
6902 ----------
6903
6904 An object of `TYPE` `BITS` is of `PRIMTYPE` `WORD`, and `PRINT`s just
6905 like a `WORD`. The internal form of a `BITS` is precisely that of a
6906 PDP-10 "byte pointer", which is, in fact, just what a `BITS` is.
6907
6908 For purposes of explaining what a `BITS` is, assume that the bits in a
6909 `WORD` are numbered from **right** to **left**, with the rightmost bit
6910 numbered 0 and the leftmost numbered 35, as in
6911
6912     35 34 33 ... 2 1 0
6913
6914 (This is not the "standard" ordering: the "standard" one goes from
6915 left to right.)
6916
6917 A `BITS` is most conveniently created via the `SUBR` `BITS`:
6918
6919     <BITS width:fix right-edge:fix>
6920
6921 returns a `BITS` which "points to" a set of bits *width* wide, with
6922 rightmost bit *right-edge*. Both arguments must be of `TYPE` `FIX`,
6923 and the second is optional, 0 by default.
6924
6925 Examples: the indicated application of `BITS` returns an object of
6926 `TYPE` `BITS` which points to the indicated set of bits in a `WORD`:
6927
6928   Example         Returns
6929   --------------- ------------------------------------
6930   `<BITS 7>`      35 ... 7 **6 ... 0**
6931   `<BITS 4 18>`   35 ... 22 **21 20 19 18** 17 ... 0
6932   `<BITS 36>`     ***35 ... 0***
6933
6934 18.3. GETBITS
6935 -------------
6936
6937     <GETBITS from:primtype-word bits>
6938
6939 where *from* is an object of `PRIMTYPE` `WORD`, returns a **new**
6940 object whose `TYPE` is `WORD`. This object is constructed in the
6941 following way: the set of bits in *from* pointed to by *bits* is
6942 copied into the new object, right-adjusted, that is, lined up against
6943 the right end (bit number 0) of the new object. All those bits of the
6944 new object which are not copied are set to zero. In other words,
6945 `GETBITS` takes bits from an arbitrary place in *from* and puts them
6946 at the right of a new object. The *from* argument to `GETBITS` is not
6947 affected.
6948
6949 Examples:
6950
6951     <GETBITS #WORD *777777777777* <BITS 3>>$
6952     #WORD *000000000007*
6953     <GETBITS *012345670123* <BITS 6 18>>$
6954     #WORD *000000000045*
6955
6956 18.4. PUTBITS
6957 -------------
6958
6959     <PUTBITS to:primtype-word bits from:primtype-word>
6960
6961 where *to* and *from* are of `PRIMTYPE` `WORD`, returns a **copy** of
6962 *to*, modified as follows: the set of bits in *to* which are pointed
6963 to by *bits* are replaced by the appropriate number of rightmost bits
6964 copied from *from* (optional, 0 by default). In other words: `PUTBITS`
6965 takes bits from the right of *from* and stuffs them into an arbitrary
6966 position in a copy of *to*. **None** of the arguments to `PUTBITS` is
6967 affected.
6968
6969 Examples:
6970
6971     <PUTBITS #WORD *777777777777* <BITS 6 3>>$
6972     #WORD *777777777007*
6973     <PUTBITS #WORD *666777000111* <BITS 5 15> #WORD *123*>$
6974     #WORD *666776300111*
6975     <PUTBITS #WORD *765432107654* <BITS 18>>$
6976     #WORD *765432000000*
6977
6978 18.5. Bitwise Boolean Operations
6979 --------------------------------
6980
6981 Each of the `SUBR`s `ANDB`, `ORB`, `XORB`, and `EQVB` takes arguments
6982 of `PRIMTYPE` `WORD` and returns a `WORD` which is the bitwise Boolean
6983 "and", inclusive "or", exclusive "or", or "equivalence" (inverse of
6984 exclusive "or"), respectively, of its arguments. Each takes any number
6985 of arguments. If no argument is given, a `WORD` with all bits off
6986 (`ORB` and `XORB`) or on (`ANDB` and `EQVB`) is returned. If only one
6987 argument is given, it is returned unchanged but `CHTYPE`d to a `WORD`.
6988 If more than two arguments are given, the operator is applied to the
6989 first two, then applied to that result and the third, etc. Be sure not
6990 to confuse `AND` and `OR` with `ANDB` and `ORB`.
6991
6992 18.6. Bitwise Shifting Operations
6993 ---------------------------------
6994
6995     <LSH from:primtype-word amount:fix>
6996
6997 returns a **new** `WORD` containing the bits in *from*, shifted the
6998 number of bits specified by *amount* (mod 256, says the hardware).
6999 Zero bits are brought in at the end being vacated; bits shifted out at
7000 the other end are lost. If *amount* is positive, shifting is to the
7001 left; if *amount* is negative, shifting is to the right. Examples:
7002
7003     <LSH 8 6>$
7004     #WORD *000000001000*
7005     <LSH 8 -6>$
7006     #WORD *000000000000*
7007
7008     <ROT from:primtype-word amount:fix>
7009
7010 returns a **new** `WORD` containing the bits from *from*, rotated the
7011 number of bits specified by *amount* (mod 256, says the hardware).
7012 Rotation is a cyclic bitwise shift where bits shifted out at one end
7013 are put back in at the other. If *amount* is positive, rotation is to
7014 the left; if *amount* is negative, rotation is to the right. Examples:
7015
7016     <ROT 8 6>$
7017     #WORD *000000001000*
7018     <ROT 8 -6>$
7019     #WORD *100000000000*
7020
7021 Chapter 19. Compiled Programs
7022 =============================
7023
7024 19.1. RSUBR (the TYPE)
7025 ----------------------
7026
7027 `RSUBR`s ("relocatable subroutines") are machine-language programs
7028 written to run in the Muddle environment. They are usually produced by
7029 the Muddle assembler (often from output produced by the compiler)
7030 although this is not necessary. All `RSUBR`s have two components: the
7031 "reference vector" and the "code vector". In some cases the code
7032 vector is in pure storage. There is also a set of "fixups" associated
7033 with every `RSUBR`, although it may not be available in the running
7034 Muddle.
7035
7036 19.2. The Reference Vector
7037 --------------------------
7038
7039 An `RSUBR` is basically a `VECTOR` that has been `CHTYPE`d to `TYPE`
7040 `RSUBR` via the `SUBR` `RSUBR` (see below). This ex-`VECTOR` is the
7041 reference vector. The first three elements of the reference vector
7042 have predefined meanings:
7043
7044 -   The first element is of `TYPE` `CODE` or `PCODE` and is the impure
7045     or pure code vector respectively.
7046 -   The second element is an `ATOM` and specifies the name of the
7047     `RSUBR`.
7048 -   The third element is of `TYPE` `DECL` and declares the
7049     type/structure of the `RSUBR`'s arguments and result.
7050
7051 The rest of the elements of the reference vector are objects in
7052 garbage-collected storage that the `RSUBR` needs to reference and any
7053 impure slots that the `RSUBR` needs to use.
7054
7055 When the `RSUBR` is running, one of the PDP-10 accumulators (with
7056 symbolic name `R`) is always pointing to the reference vector, to
7057 permit rapid access to the various elements.
7058
7059 19.3. RSUBR Linking
7060 -------------------
7061
7062 `RSUBR`s can call any `APPLICABLE` object, all in a uniform manner. In
7063 general, a call to an F/SUBR is linked up at assembly/compile time so
7064 that the calling instruction (UUO) points directly at the code in the
7065 interpreter for the F/SUBR. However, the locations of most other
7066 `APPLICABLE`s are not known at assembly/compile time. Therefore, the
7067 calling UUO is set up to point at a slot in the reference vector (by
7068 indexing off accumulator `R`). This slot initially contains the `ATOM`
7069 whose G/LVAL is the called object. The calling mechanism (UUO handler)
7070 causes control to be transferred to the called object and, depending
7071 on the state of the `RSUBR`-link flag, the `ATOM` will be replaced by
7072 its G/LVAL. (If the call is of the "quick" variety, the called `RSUBR`
7073 or `RSUBR-ENTRY` will be `CHTYPE`d to a `QUICK-RSUBR` or
7074 `QUICK-ENTRY`, respectively, before replacement.) Regardless of the
7075 `RSUBR`-link flag's state, calls to `FUNCTION`s are never permanently
7076 linked. A call to a non-Subroutine generates an extra `FRAME`, whose
7077 `FUNCT` is the dummy `ATOM` `CALLER`.
7078
7079 `RSUBR`s are linked together for faster execution, but linking may not
7080 be desirable if the `RSUBR`s are being debugged, and various revisions
7081 are being re-loaded. A linked call will forever after go to the same
7082 code, regardless of the current G/LVAL of the called `ATOM`. Thus,
7083 while testing `RSUBR`s, you may want to disable linking, by calling
7084 the `RSUBR-LINK` `SUBR` with a `FALSE` argument. Calling it with a
7085 non-`FALSE` argument enables linking thereafter. It returns the
7086 previous state of the link flag, either `T` or `#FALSE ()`. Calling it
7087 with no argument returns the current state.
7088
7089 19.4. Pure and Impure Code
7090 --------------------------
7091
7092 The first element of an `RSUBR` is the code vector, of `TYPE` `CODE`
7093 or `PCODE`. `TYPE` `CODE` is of `PRIMTYPE` `UVECTOR`, and the `UTYPE`
7094 should be of `PRIMTYPE` `WORD`. The code vector is simply a block of
7095 words that are the instructions which comprise the `RSUBR`. Since the
7096 code vector is stored just like a standard `UVECTOR`, it will be moved
7097 around by the garbage collector. Therefore, all `RSUBR` code is
7098 required to be location-insensitive. The compiler guarantees the
7099 location-insensitivity of its output. The assembler helps to make the
7100 code location-insensitive by defining all labels as offsets relative
7101 to the beginning of the code vector and causing instructions that
7102 refer to labels to index automatically off the PDP-10 accumulator
7103 symbolically named `M`. `M`, like `R`, is set up by the UUO handler,
7104 but it points to the code vector instead of the reference vector. The
7105 code vector of an `RSUBR` can be frozen (using the `FREEZE` `SUBR`) to
7106 prevent it from moving during debugging by DDT in the superior
7107 operating-system process.
7108
7109 If the first element of an `RSUBR` is of `TYPE` `PCODE` ("pure code"),
7110 the code vector of the `RSUBR` is pure and sharable. `TYPE` `PCODE` is
7111 of `PRIMTYPE` `WORD`. The left half of the word specifies an offset
7112 into an internal table of pure `RSUBR`s, and the right half specifies
7113 an offset into the block of code where this `RSUBR` starts. The
7114 `PCODE` prints out as:
7115
7116     %<PCODE name:string offset:fix>
7117
7118 where *name* names the entry in the user's pure-`RSUBR` table, and
7119 *offset* is the offset. (Obviously, `PCODE` is also the name of a
7120 `SUBR`, which generates a pure code vector.) Pure `RSUBR`s may also
7121 move around, but only by being included in Muddle's page map at
7122 different places. Once again `M` can be used exactly as before to do
7123 location-independent address referencing. Individual pure code vectors
7124 can be "unmapped" (marked as being not in primary storage but in their
7125 original pure-code disk files) if the space in storage allocated for
7126 pure code is exhausted. An unmapped `RSUBR` is mapped in again
7127 whenever needed. All pure `RSUBR`s are unmapped before a `SAVE` file
7128 is written, so that the code is not duplicated on disk. A purified
7129 `RSUBR` must use `RGLOC` ("relative GLOC") instead of `GLOC`. `RGLOC`
7130 produces objects of `TYPE` `LOCR` instead of `LOCD`.
7131
7132 19.5. TYPE-C and TYPE-W
7133 =======================
7134
7135 In order to handle user `NEWTYPE`s reasonably, the internal `TYPE`
7136 codes for them have to be able to be different from one Muddle run to
7137 another. Therefore, references to the `TYPE` codes must be in the
7138 reference vector rather than the code vector. To help handle this
7139 problem, two `TYPE`s exist, `TYPE-C` ("type code") and `TYPE-W` ("type
7140 word"), both of `PRIMTYPE` `WORD`. They print as:
7141
7142     %<TYPE-C type primtype:atom>
7143     %<TYPE-W type primtype:atom>
7144
7145 The `SUBR` `TYPE-C` produces an internal `TYPE` code for the *type*,
7146 and `TYPE-W` produces a prototype "`TYPE` word" (appendix 1) for an
7147 object of that `TYPE`. The *primtype* argument is optional, included
7148 only as a check against the call to `NEWTYPE`. `TYPE-W` can also take
7149 a third argument, of `PRIMTYPE` `WORD`, whose right half is included
7150 in the generated "`TYPE` word". If *type* is not a valid `TYPE`, a
7151 `NEWTYPE` is automatically done.
7152
7153 To be complete, a similar `SUBR` and `TYPE` should be mentioned here.
7154
7155     <PRIMTYPE-C type>
7156
7157 produces an internal "storage allocation code" (appendix 1) for the
7158 *type*. The value is of `TYPE` `PRIMTYPE-C`, `PRIMTYPE` `WORD`. In
7159 almost all cases the `SUBR` `TYPEPRIM` gives just as much information,
7160 except in the case of `TEMPLATE`s: all `TYPE`s of `TEMPLATE`s have the
7161 same `TYPEPRIM`, but they all have different `PRIMTYPE-C`s.
7162
7163 19.6. RSUBR (the SUBR)
7164 ----------------------
7165
7166     <RSUBR [code name decl ref ref ...]>
7167
7168 `CHTYPE`s its argument to an `RSUBR`, after checking it for legality.
7169 `RSUBR` is rarely called other than in the Muddle Assembler (Lebling,
7170 1979). It can be used if changes must be made to an `RSUBR` that are
7171 prohibited by Muddle's built-in safety mechanisms. For example, if the
7172 `GVAL` of *name* is an `RSUBR`:
7173
7174     <SET FIXIT <CHTYPE ,name VECTOR>>$
7175     [...]
7176
7177     ...(changes to .FIXIT)...
7178
7179     <SETG name <RSUBR .FIXIT>>$
7180     #RSUBR [...]
7181
7182 19.7. RSUBR-ENTRY
7183 -----------------
7184
7185 `RSUBR`s can have multiple entry points. An `RSUBR-ENTRY` can be
7186 applied to arguments exactly like an `RSUBR`.
7187
7188     <RSUBR-ENTRY [rsubr-or-atom name:atom decl] offset:fix>
7189
7190 returns the `VECTOR` argument `CHTYPE`d to an `RSUBR-ENTRY` into the
7191 *rsubr* at the specified *offset*. If the `RSUBR-ENTRY` is to have a
7192 `DECL` (`RSUBR` style), it should come as shown.
7193
7194     <ENTRY-LOC rsubr-entry>
7195
7196 ("entry location") returns the *offset* into the `RSUBR` of this
7197 entry.
7198
7199 19.8. RSUBRs in Files
7200 ---------------------
7201
7202 There are three kinds of files that can contain `RSUBR`s, identified
7203 by second names `BINARY`, `NBIN` and `FBIN`. There is nothing magic
7204 about these names, but they are used by convention.
7205
7206 A `BINARY` file is a completely ASCII file containing complete impure
7207 `RSUBR`s in character representation. Even a code vector appears as
7208 `#CODE` followed by a `UVECTOR` of `PRIMTYPE` `WORD`s. `BINARY` files
7209 are generally slow to load, because of all the parsing that must be
7210 done.
7211
7212 An `NBIN` file contains a mixture of ASCII characters and binary code.
7213 The start of a binary portion is signalled to `READ` by the character
7214 control-C, so naive readers of an `NBIN` file under ITS may
7215 incorrectly assume that it ends before any binary code appears. An
7216 `NBIN` file cannot be edited with a text editor. An `RSUBR` is written
7217 in `NBIN` format by being `PRINT`ed on a `"PRINTB"` `CHANNEL`. The
7218 `RSUBR`s in `NBIN` files are not purified either.
7219
7220 An `FBIN` file is actually part of a triad of files. The `FBIN`
7221 file(s) itself is the impure part of a collection of purified
7222 `RSUBR`s. It is simply ASCII and can be edited at will. (Exception: in
7223 the ITS and Tops-20 versions, the first object in the file should not
7224 be removed or changed in any way, lest a "grim reaper" program for
7225 `FBIN` files think that the other files in the triad are obsolete and
7226 delete them.) The pure code itself resides (in the ITS and Tops-20
7227 versions) in a special large file that contains all currently-used
7228 pure code, or (in the Tenex version) in a file in a special disk
7229 directory with first name the same as the *name* argument to `PCODE`
7230 for the `RSUBR`. The pure-code file is page-mapped directly into
7231 Muddle storage in read-only mode. It can be unmapped when the pure
7232 storage must be reclaimed, and it can be mapped at a different storage
7233 address when pure storage must be compacted. There is also a "fixup"
7234 file (see below) or portion of a file associated with the `FBIN` to
7235 round out the triad.
7236
7237 An initial Muddle can have pure `RSUBR`s in it that were "loaded"
7238 during the initialization procedure. The files are not page-mapped in
7239 until they are actually needed. The "loading" has other side effects,
7240 such as the creation of `OBLIST`s (chapter 15). Exactly what is
7241 pre-loaded is outside the scope of this document.
7242
7243 19.9. Fixups
7244 ------------
7245
7246 The purpose of "fixups" is to correct references in the `RSUBR` to
7247 parts of the interpreter that change from one release of Muddle to the
7248 next. The reason the fixups contain a release number is so that they
7249 can be completely ignored when an `RSUBR` is loaded into the same
7250 release of Muddle as that from which it was last written out.
7251
7252 There are three forms of fixups, corresponding to the three kinds of
7253 `RSUBR` files. ASCII `RSUBR`s, found in `BINARY` files, have ASCII
7254 fixups. The fixups are contained in a `LIST` that has the following
7255 format:
7256
7257     (Muddle-release:fix
7258         name:atom value:fix (use:fix use:fix ...)
7259         name:atom value:fix (use:fix use:fix ...)
7260         ...)
7261
7262 The fixups in `NBIN` files and the fixup files associated with `FBIN`
7263 files are in a fast internal format that looks like a `UVECTOR` of
7264 `PRIMTYPE` `WORD`s.
7265
7266 Fixups are usually discarded after they are used during the loading
7267 procedure. However, if, while reading a `BINARY` or `NBIN` file the
7268 `ATOM` `KEEP-FIXUPS!-` has a non-`FALSE` `LVAL`, the fixups will be
7269 kept, via an association between the `RSUBR` and the `ATOM` `RSUBR`.
7270 It should be noted that, besides correcting the code, the fixups
7271 themselves are corrected when `KEEP-FIXUPS` is bound and true. Also,
7272 the assembler and compiler make the same association when they first
7273 create an `RSUBR`, so that it can be written out with its fixups.
7274
7275 In the case of pure `RSUBR`s (`FBIN` files), things are a little
7276 different. If a pure-code file exists for this release of Muddle, it
7277 is used immediately, and the fixups are completely ignored. If a
7278 pure-code file for this release doesn't exist, the fixup file is used
7279 to create a new copy of the file from an old one, and also a new
7280 version of the fixup file is created to go with the new pure-code
7281 file. This all goes on automatically behind the user's back.
7282
7283 Chapter 20. Coroutines
7284 ======================
7285
7286 This chapter purports to explain the coroutine primitives of Muddle.
7287 It does make some attempt to explain coroutines as such, but only as
7288 required to specify the primitives. If you are unfamiliar with the
7289 basic concepts, confusion will probably reign.
7290
7291 A coroutine in Muddle is implemented by an object of `TYPE` `PROCESS`.
7292 In this manual, this use of the word "process" is distinguished by a
7293 capitalization from its normal use of denoting an operating-system
7294 process (which various systems call a process, job, fork, task, etc.).
7295
7296 Muddle's built-in coroutine primitives do not include a "time-sharing
7297 system". Only one `PROCESS` is ever running at a time, and control is
7298 passed back and forth between `PROCESS`es on a coroutine-like basis.
7299 The primitives are sufficient, however, to allow the writing of a
7300 "time-sharing system" **in Muddle**, with the additional use of the
7301 Muddle interrupt primitives. This has, in fact, been done.
7302
7303 20.1. PROCESS (the TYPE)
7304 ------------------------
7305
7306 A `PROCESS` is an object which contains the "current state" of a
7307 computation. This includes the `LVAL`s of `ATOM`s ("bindings"),
7308 "depth" of functional application, and "position" within the
7309 application of each applied function. Some of the things which are
7310 **not** part of any specific `PROCESS` are the `GVAL`s of `ATOM`s,
7311 associations (`ASOC`s), and the contents of `OBLIST`s. `GVAL`s (with
7312 `OBLIST`s) are a chief means of communication and sharing between
7313 `PROCESS`es (all `PROCESS`es can refer to the `SUBR` which is the
7314 `GVAL` of `+`, for instance.) Note that an `LVAL` in one `PROCESS`
7315 cannot easily be directly referenced from another `PROCESS`.
7316
7317 A `PROCESS` `PRINT`s as `#PROCESS` *p*, where *p* is a `FIX` which
7318 uniquely identifies the `PROCESS`; *p* is the "`PROCESS` number" typed
7319 out by `LISTEN`. A `PROCESS` cannot be read in by `READ`.
7320
7321 The term "run a `PROCESS`" will be used below to mean "perform some
7322 computation, using the `PROCESS` to record the intermediate state of
7323 that computation".
7324
7325 N.B.: A `PROCESS` is a rather large object; creating one will often
7326 cause a garbage collection.
7327
7328 20.2. STATE of a PROCESS
7329 ------------------------
7330
7331     <STATE process>
7332
7333 returns an `ATOM` (in the `ROOT` `OBLIST`) which indicates the "state"
7334 of the `PROCESS` *process*. The `ATOM`s which `STATE` can return, and
7335 their meanings, are as follows:
7336
7337 -   `RUNABLE` (sic) -- *process* has never ever been run.
7338 -   `RUNNING` -- *process* is currently running, that is, it did the
7339     application of `STATE`.
7340 -   `RESUMABLE` -- *process* has been run, is not currently running,
7341     and can run again.
7342 -   `DEAD` -- *process* has been run, but it can **not** run again; it
7343     has "terminated".
7344
7345 In addition, an interrupt (chapter 21) can be enabled to detect the
7346 time at which a `PROCESS` becomes "blocked" (waiting for terminal
7347 input) or "unblocked" (terminal input arrived). (The `STATE` `BLOCKED`
7348 has not been implemented.)
7349
7350 20.3. PROCESS (the SUBR)
7351 ------------------------
7352
7353     <PROCESS starter:applicable>
7354
7355 creates and returns a new `PROCESS` but does **not** run it; the
7356 `STATE` of the returned `PROCESS` is `RUNABLE` (sic).
7357
7358 *starter* is something applicable to **one** argument, which must be
7359 evaluated. *starter* is used both in starting and "terminating" a
7360 `PROCESS`. In particular, if the *starter* of a `PROCESS` **ever**
7361 returns a value, that `PROCESS` becomes `DEAD`.
7362
7363 20.4. RESUME
7364 ------------
7365
7366 The `SUBR` `RESUME` is used to cause a computation to start or to
7367 continue running in another `PROCESS`. An application of `RESUME`
7368 looks like this:
7369
7370     <RESUME retval:any process>
7371
7372 where *retval* is the "returned value" (see below) of the `PROCESS`
7373 that does the `RESUME`, and *process* is the `PROCESS` to be started
7374 or continued.
7375
7376 The *process* argument to `RESUME` is optional, by default the last
7377 `PROCESS`, if any, to `RESUME` the `PROCESS` in which this `RESUME` is
7378 applied. If and when the current `PROCESS` is later `RESUME`d by
7379 another `PROCESS`, that `RESUME`'s *retval* is returned as the value
7380 of this `RESUME`.
7381
7382 20.5. Switching PROCESSes
7383 -------------------------
7384
7385 ### 20.5.1. Starting Up a New PROCESS
7386
7387 Let us say that we are running in some `PROCESS`, and that this
7388 original `PROCESS` is the `GVAL` of `P0`. Somewhere, we have evaluated
7389
7390     <SETG P1 <PROCESS ,STARTER>>
7391
7392 where `,STARTER` is some appropriate function. Now, **in `,P0`** we
7393 evaluate
7394
7395     <RESUME .A ,P1>
7396
7397 and the following happens:
7398
7399 1.  **In `,P0`** the arguments of the `RESUME` are evaluated: that is,
7400     we get that `LVAL` of `A` which is current in `,P0` and the `GVAL`
7401     of `P1`.
7402 2.  The `STATE` of `,P0` is changed to `RESUMABLE` and `,P0` is
7403     "frozen" right where it is, in the middle of the `RESUME`.
7404 3.  The `STATE` of `,P1` is changed to `RUNNING`, and `,STARTER` is
7405     applied to `,P0`'s `LVAL` of `A` **in `,P1`**. `,P1` now continues
7406     on its way, evaluating the body of `,STARTER.`
7407
7408 The `.A` in the `RESUME` could have been anything, of course. The
7409 important point is that, whatever it is, it is evaluated in `,P0`.
7410
7411 What happens next depends, of course, on what `,STARTER` does.
7412
7413 ### 20.5.2. Top-level Return
7414
7415 Let us initially assume that `,STARTER` does nothing relating to
7416 `PROCESS`es, but instead simply returns a value -- say *starval*. What
7417 happens when `,STARTER` returns is this:
7418
7419 1.  The `STATE` of `,P1` is changed to `DEAD`. `,P1` can never again
7420     be `RESUME`d.
7421 2.  The last `PROCESS` to `RESUME` `,P1` is found, namely `,P0`, and
7422     its `STATE` is changed to `RUNNING`.
7423 3.  *starval* is returned in `,P0` as the value of the original
7424     `RESUME`, and `,P0` continues where it left off.
7425
7426 All in all, this simple case looks just like an elaborate version of
7427 applying `,STARTER` to `.A` in `,P0`.
7428
7429 ### 20.5.3. Symmetric RESUMEing
7430
7431 Now suppose that while still in `,P1`, the following is evaluated,
7432 either in `,STARTER` or in something called by `,STARTER`:
7433
7434     <RESUME .BAR ,P0>
7435
7436 This is what happens:
7437
7438 1.  The arguments of the `RESUME` are evaluated **in `,P1`**.
7439 2.  The `STATE` of `,P1` is changed to `RESUMABLE`, and `,P1` is
7440     "frozen" right in the middle of the `RESUME`.
7441 3.  The `STATE` of `,P0` is changed to `RUNNING`, and `,P1`'s `LVAL`
7442     of `BAR` is returned as the value of **`,P0'`s** original `RESUME`
7443     `,P0` then continues right where it left off.
7444
7445 This is **the** interesting case, because `,P0` can now do **another**
7446 `RESUME` of `,P1`; this will "turn off" `,P0`, pass a value to `,P1`
7447 and "turn on" `,P1`. `,P1` can now again `RESUME` `,P0`. which can
7448 `RESUME` `,P1` back again, etc. **ad nauseam**, with everything done
7449 in a perfectly symmetric manner. This can obviously also be done with
7450 three or more `PROCESS`es in the same manner.
7451
7452 Note how this differs from normal functional application: you cannot
7453 "return" from a function without destroying the state that function is
7454 in. The whole point of `PROCESS`es is that you can "return"
7455 (`RESUME`), remembering your state, and later continue where you left
7456 off.
7457
7458 20.6. Example
7459 -------------
7460
7461     ;"Initially, we are in LISTEN in some PROCESS.
7462     <DEFINE SUM3 (A)
7463             #DECL ((A) (OR FIX FLOAT>)
7464             <REPEAT ((S .A))
7465                     #DECL ((S) <OR FIX FLOAT>)
7466                     <SET S <+ .S <RESUME "GOT 1">>>
7467                     <SET S <+ .S <RESUME "GOT 2">>>
7468                     <SET S <RESUME .S>>>>$
7469     SUM3
7470     ;"SUM3, used as the startup function of another PROCESS,
7471     gets RESUMEd with numbers. It returns the sum of the last
7472     three numbers it was given every third RESUME."
7473     <SETG SUMUP <PROCESS ,SUM3>>$
7474     ;"Now we start SUMUP and give SUM3 its three numbers."
7475     <RESUME 5 ,SUMUP>$
7476     "GOT 1"
7477     <RESUME 1 ,SUMUP>$
7478     "GOT 2"
7479     <RESUME 2 ,SUMUP>$
7480     8
7481
7482 Just as a note, by taking advantage of Muddle's order of evaluation,
7483 SUM3 could be have been written as:
7484
7485     <DEFINE SUM3 (A)
7486             <REPEAT ((S .A))
7487                #DECL ((A S0 <OR FIX FLOAT>)
7488                <SET S <RESUME <+ .S <RESUME "GOT 1"> <RESUME "GOT 2">>>>>>
7489
7490 20.7. Other Coroutining Features
7491 --------------------------------
7492
7493 ### 20.7.1. BREAK-SEQ
7494
7495     <BREAK-SEQ any process>
7496
7497 ("break evaluation sequence") returns *process*, which must be
7498 `RESUMABLE`, after having modified it so that when it is next
7499 `RESUME`d, it will **first** evaluate *any* and **then** do an
7500 absolutely normal `RESUME`; the value returned by any is thrown away,
7501 and the value given by the `RESUME` is used normally.
7502
7503 If a `PROCESS` is `BREAK-SEQ`ed more than once between `RESUME`s,
7504 **all** of the *any*s `BREAK-SEQ`ed onto it will be remembered and
7505 evaluated when the `RESUME` is finally done. The *any*s will be
7506 evaluated in "last-in first-out" order. The `FRAME` generated by
7507 `EVAL`ing more than one *any* will have as its `FUNCT` the dummy
7508 `ATOM` `BREAKER`.
7509
7510 ### 20.7.2. MAIN
7511
7512 When you initially start up Muddle, the `PROCESS` in which you are
7513 running is slightly "special" in these two ways:
7514
7515 1.  Any attempt to cause it become `DEAD` will be met with an error.
7516 2.  `<MAIN>` always returns that `PROCESS`.
7517
7518 The `PROCESS` number of `<MAIN>` is always `1`. The initial `GVAL` of
7519 `THIS-PROCESS` is what `MAIN` always returns, `#PROCESS 1`.
7520
7521 ### 20.7.3. ME
7522
7523     <ME>
7524
7525 returns the `PROCESS` in which it is evaluated. The `LVAL` of
7526 `THIS-PROCESS` in a `RUNABLE` (new) `PROCESS` is what `ME` always
7527 returns.
7528
7529 ### 20.7.4. RESUMER
7530
7531     <RESUMER process>
7532
7533 returns the `PROCESS` which last `RESUME`d *process*. If no `PROCESS`
7534 has ever `RESUME`d process, it returns `#FALSE ()`. *process* is
7535 optional, `<ME>` by default. Note that `<MAIN>` does not ever have any
7536 resumer. Example:
7537
7538     <PROG ((R <RESUMER>))           ;"not effective in <MAIN>"
7539        #DECL ((R) <OR PROCESS FALSE>)
7540        <AND .R
7541             <==? <STATE .R> RESUMABLE>
7542             <RESUME T .R>>>
7543
7544 ### 20.7.5. SUICIDE
7545
7546     <SUICIDE retval process>
7547
7548 acts just like `RESUME`, but clobbers the `PROCESS` (which cannot be
7549 `<MAIN>`) in which it is evaluated to the `STATE` `DEAD`.
7550
7551 ### 20.7.6. 1STEP
7552
7553     <1STEP process>
7554
7555 returns *process*, after putting it into "single-step mode".
7556
7557 A `PROCESS` in single-step mode, whenever `RESUME`d, runs only until
7558 an application of `EVAL` in it begins or finishes. At that point in
7559 time, the `PROCESS` that did the `1STEP` is `RESUME`d, with a *retval*
7560 which is a `TUPLE`. If an application of `EVAL` just began, the
7561 `TUPLE` contains the `ATOM` `EVLIN` and the arguments to `EVAL`. If an
7562 application of `EVAL` just finished, the `TUPLE` contains the `ATOM`
7563 `EVLOUT` and the result of the evaluation.
7564
7565 *process* will remain in single-step mode until `FREE-RUN` (below) is
7566 applied to it. Until then, it will stop before and after each `EVAL`
7567 in it. Exception: if it is `RESUME`d from an `EVLIN` break with a
7568 *retval* of `TYPE` `DISMISS` (`PRIMTYPE` `ATOM`), it will leave
7569 single-step mode only until the current call to EVAL is about to
7570 return. Thus lower-level `EVAL`s are skipped over without leaving the
7571 mode. The usefulness of this mode in debugging is obvious.
7572
7573 ### 20.7.7. FREE-RUN
7574
7575     <FREE-RUN process>
7576
7577 takes its argument out of single-step mode. Only the `PROCESS` that
7578 put *process* into single-step mode can take it out of the mode; if
7579 another `PROCESS` tries, `FREE-RUN` returns a `FALSE`.
7580
7581 20.8. Sneakiness with PROCESSes
7582 -------------------------------
7583
7584 `FRAME`s, `ENVIRONMENT`s, `TAG`s, and `ACTIVATION`s are specific to
7585 the `PROCESS` which created them, and each "knows its own father".
7586 **Any** `SUBR` which takes these objects as arguments can take one
7587 which was generated by **any** `PROCESS`, no matter where the `SUBR`
7588 is really applied. This provides a rather sneaky means of crossing
7589 between `PROCESS`es. The various cases are as follows:
7590
7591 `GO`, `RETURN`, `AGAIN`, and `ERRET`, given arguments which lie in
7592 another `PROCESS`, each effectively "restarts" the `PROCESS` of its
7593 argument and acts as if it were evaluated over there. If the `PROCESS`
7594 in which it was executed is later `RESUME`d, it **returns** a value
7595 just like `RESUME`!
7596
7597 `SET`, `UNASSIGN`, `BOUND?`, `ASSIGNED?`, `LVAL`, `VALUE`, and `LLOC`,
7598 given optional `ENVIRONMENT` arguments which lie in another `PROCESS`,
7599 will gleefully change, or return, the local values of `ATOM`s in the
7600 other `PROCESS`. The optional argument can equally well be a
7601 `PROCESS`, `FRAME`, or `ACTIVATION` in another `PROCESS`; in those
7602 cases, each uses the `ENVIRONMENT` which is current in the place
7603 specified.
7604
7605 `FRAME`, `ARGS`, and `FUNCT` will be glad to return the `FRAME`s,
7606 argument `TUPLE`s, and applied Subroutine names of another `PROCESS`.
7607 If one is given a `PROCESS` (including `<ME>`) as an argument instead
7608 of a `FRAME`, it returns all or the appropriate part of the topmost
7609 `FRAME` on that `PROCESS`'s control stack.
7610
7611 If `EVAL` is applied in `PROCESS` `P1` with an `ENVIRONMENT` argument
7612 from a `PROCESS` `P2`, it will do the evaluation **in `P1`** but with
7613 `P2`'s `ENVIRONMENT` (!). That is, the other `PROCESS`'s `LVAL`s, etc.
7614 will be used, but (1) any **new** `FRAME`s needed in the course of the
7615 evaluation will be created in `P1`; and (2) **`P1`** will be `RUNNING`
7616 -- not `P2`. Note the following: if the `EVAL` in `P1` eventually
7617 causes a `RESUME` of `P2`, `P2` could functionally return to below the
7618 point where the `ENVIRONMENT` used in `P1` is defined; a `RESUME` of
7619 `P1` at this point would cause an `ERROR` due to an invalid
7620 `ENVIRONMENT`. (Once again, `LEGAL?` can be used to forestall this.)
7621
7622 20.9. Final Notes
7623 -----------------
7624
7625 1.  A `RESUMABLE` `PROCESS` can be used in place of an `ENVIRONMENT`
7626     in any application. The "current" `ENVIRONMENT` of the `PROCESS`
7627     is effectively used.
7628 2.  `FRAME`s and `ENVIRONMENT`s can be `CHTYPE`d arbitrarily to one
7629     another, or an `ACTIVATION` can be `CHTYPE`d to either of them,
7630     and the result "works". Historically, these different `TYPE`s were
7631     first used with different `SUBR`s -- `FRAME` with `ERRET`,
7632     `ENVIRONMENT` with `LVAL`, `ACTIVATION` with `RETURN` -- hence the
7633     invention of different `TYPE`s with similar properties.
7634 3.  Bugs in multi-`PROCESS` programs usually exhibit a degree of
7635     subtlety and nastiness otherwise unknown to the human mind. If
7636     when attempting to work with multiple processes you begin to feel
7637     that you are rapidly going insane, you are in good company.
7638
7639 Chapter 21. Interrupts
7640 ======================
7641
7642 The Muddle interrupt handling facilities provide the ability to say
7643 the following: whenever "this event" occurs, stop whatever is being
7644 done at the time and perform "this action"; when "this action" is
7645 finished, continue with whatever was originally being done. "This
7646 event" can be things like the typing of a character at a terminal, a
7647 time interval ending, a `PROCESS` becoming blocked, or a
7648 program-defined and -generated "event". "This action" is the
7649 application of a specified `APPLICABLE` object to arguments provided
7650 by the Muddle interrupt system. The sets of events and actions can be
7651 changed in extremely flexible ways, which accounts for both the
7652 variety of `SUBR`s and arguments, and the rich interweaving of the
7653 topics in this chapter. Interrupt handling is a kind of parallel
7654 processing: a program can be divided into a "main-level" part and one
7655 or more interrupt handlers that execute only when conditions are ripe.
7656
7657 21.1. Definitions of Terms
7658 --------------------------
7659
7660 An **interrupt** is not an object in Muddle, but rather a class of
7661 events, for example, "ticks" of a clock, garbage collections, the
7662 typing of a character at a terminal, etc.
7663
7664 An interrupt is said to **occur** when one of the events in its class
7665 takes place.
7666
7667 An **external** interrupt is one whose occurrences are signaled to
7668 Muddle by the operating system, for example, "ticks" of a clock. An
7669 **internal** interrupt is one whose occurrences are detected by Muddle
7670 itself, for example, garbage collections. Muddle can arrange for the
7671 operating system to not signal occurrences of an external interrupt to
7672 it; then, as far as Muddle is concerned, that interrupt does not
7673 occur.
7674
7675 Each interrupt has a **name** which is either a `STRING` (for example,
7676 `"GC"`, `"CHAR"`, `"WRITE"`) or an `ATOM` with that `PNAME` in a
7677 special `OBLIST`, named `INTERRUPTS!-`. (This `OBLIST` is returned by
7678 `<INTERRUPTS>`.) Certain names must always be further specified by a
7679 `CHANNEL` or a `LOCATIVE` to tell **which** interrupt by that name is
7680 meant.
7681
7682 When an interrupt occurs, the interpreter looks for an association on
7683 the interrupt's name. If there is an association, its `AVALUE` should
7684 be an `IHEADER`, which heads a list of actions to be performed. In
7685 each `IHEADER` is the name of the interrupt with which the `IHEADER`
7686 is or was associated.
7687
7688 In each `IHEADER` is an element telling whether it is disabled. If an
7689 `IHEADER` is **disabled**, then none of its actions is performed. The
7690 opposite of disabled is **enabled**. It is sometimes useful to disable
7691 an `IHEADER` temporarily, but removing its association with the
7692 interrupt's name is better than long-term disabling. There are `SUBR`s
7693 for creating an `IHEADER`, associating it with an interrupt, and later
7694 removing the association.
7695
7696 In each `IHEADER` is a **priority**, a `FIX` greater than `0` which
7697 specifies the interrupt's "importance". The processing of a
7698 higher-priority (larger-numbered) interrupt will supersede the
7699 processing of a lower-priority (smaller-numbered) interrupt until the
7700 high-priority interrupt has been handled.
7701
7702 In each `IHEADER` is a (possibly empty) list of `HANDLER`s. (This list
7703 is not a Muddle `LIST`.) Each `HANDLER` corresponds to an action to
7704 perform. There are `SUBR`s for creating a `HANDLER`, adding it to an
7705 `IHEADER`'s list, and later removing it.
7706
7707 In each `HANDLER` is a function that we will call a **handler** (in
7708 lower case), despite possible confusion, because that is really the
7709 best name for it. An **action** consists of applying a handler to
7710 arguments supplied by the interrupt system. The number and meaning of
7711 the arguments depend on the name of the interrupt. In each `HANDLER`
7712 is an element telling in which `PROCESS` the action should be
7713 performed.
7714
7715 21.2. EVENT
7716 -----------
7717
7718     <EVENT name priority which>
7719
7720 creates and returns an enabled `IHEADER` with no `HANDLER`s. The
7721 *name* may be an `ATOM` in the `INTERRUPTS` `OBLIST` or a `STRING`; if
7722 it is a `STRING`, `EVENT` does a `LOOKUP` or `INSERT` in
7723 `<INTERRUPTS>`. If there already is an `IHEADER` associated with
7724 *name*, `EVENT` just returns it, ignoring the given *priority*.
7725
7726 *which* must be given only for certain *name*s:
7727
7728 -   It must be a `CHANNEL` if and only if *name* is `"CHAR"` (or
7729     `CHAR!-INTERRUPTS`). In this case it is the input `CHANNEL` from
7730     the (pseudo-)terminal or Network socket whose received characters
7731     will cause the interrupt to occur, or the output `CHANNEL` to the
7732     pseudo-terminal or Network socket whose desired characters will
7733     cause the interrupt to occur. (See below. Pseudo-terminals are not
7734     available in the Tenex and Tops-20 versions.)
7735 -   The argument must be a `LOCATIVE` if and only if *name* is
7736     `"READ"` (or `READ!-INTERRUPTS`) or `"WRITE"` (or
7737     `WRITE!-INTERRUPTS`). In this case it specifies an object to be
7738     "monitored" for usage by (interpreted) Muddle programs (section
7739     21.8.9).
7740
7741 If the interrupt is external, Muddle arranges for the operating system
7742 to signal its occurrences.
7743
7744 21.3. HANDLER (the SUBR)
7745 ------------------------
7746
7747     <HANDLER iheader applicable process>
7748
7749 creates a `HANDLER`, adds it to the front of *iheader*'s `HANDLER`
7750 list (first action to be performed), and returns it as a value.
7751 *applicable* may be any `APPLICABLE` object that takes the proper
7752 number of arguments. (None of the arguments can be `QUOTE`d; they must
7753 all be evaluated at call time.) *process* is the `PROCESS` in which
7754 the handler will be applied, by default whatever `PROCESS` was running
7755 when the interrupt occurred.
7756
7757 The value returned by the handler is ignored, unless it is of `TYPE`
7758 `DISMISS` (`PRIMTYPE` `ATOM`), in which case none of the remaining
7759 actions in the list will be performed.
7760
7761 The processing of an interrupt's actions can terminate prematurely if
7762 a handler calls the `SUBR` `DISMISS` (see below.)
7763
7764 21.4. OFF
7765 ---------
7766
7767     <OFF iheader>
7768
7769 removes the association between *iheader* and the name of its
7770 interrupt, and then disables *iheader* and returns it. (An error
7771 occurs if there is no association.) If the interrupt is external,
7772 Muddle arranges for the operating system not to signal its
7773 occurrences.
7774
7775     <OFF name which>
7776
7777 finds the `IHEADER` associated with *name* and proceeds as above,
7778 returning the `IHEADER`. *which* must be given only for certain
7779 *names*, as for `EVENT`. Caution: if you `<OFF "CHAR" ,INCHAN>`,
7780 Muddle will become deaf.
7781
7782     <OFF handler>
7783
7784 returns *handler* after removing it from its list of actions. There is
7785 no effect on any other `HANDLER`s in the list.
7786
7787 Now that you know how to remove `IHEADER`s and `HANDLER`s from their
7788 normal places, you need to know how to put them back:
7789
7790     <EVENT iheader>
7791
7792 If *iheader* was previously disabled or disassociated from its name,
7793 `EVENT` will associate and enable it.
7794
7795     <HANDLER iheader handler>
7796
7797 If *handler* was previously removed from its list, `HANDLER` will add
7798 it to the front of *iheader*'s list of actions. Note that *process*
7799 cannot be specified.
7800
7801 21.5. IHEADER and HANDLER (the TYPEs)
7802 -------------------------------------
7803
7804 Both these `TYPE`s are of `PRIMTYPE` `VECTOR`, but they do not `PRINT`
7805 that way, since they are self-referencing. Instead they `PRINT` as
7806
7807     #type most-interesting-component
7808
7809 The contents of `IHEADER`s and `HANDLER`s can be changed by `PUT`, and
7810 the new values will then determine the behavior of Muddle.
7811
7812 Before describing the elements of these `TYPE`s in detail, here are a
7813 picture and a Pattern, both purporting to show how they look:
7814
7815     #IHEADER [name:atom or which
7816               disabled?
7817               *-----------> #HANDLER [*-----------> #HANDLER [#HANDLER []
7818               priority] <-------------*                +------*
7819                                       applicable       |      applicable
7820                                       process] <-------+      process]
7821
7822     <IHEADER <OR ATOM CHANNEL LOCATIVE>
7823              <OR '#LOSE 0 '#LOSE -1>
7824              <HANDLER HANDLER <OR HANDLER IHEADER> APPLICABLE PROCESS>
7825              FIX>
7826
7827 ### 21.5.1. IHEADER
7828
7829 The elements of an `IHEADER` are as follows:
7830
7831 1.  name of interrupt (`ATOM`, or `CHANNEL` if the name is `"CHAR"`,
7832     or `LOCATIVE` if the name is `"READ"` or `"WRITE"`)
7833 2.  non-zero if and only if disabled
7834 3.  first `HANDLER`, if any, else a zero-length `HANDLER`
7835 4.  priority
7836
7837 If you lose track of an `IHEADER`, you can get it via the association:
7838
7839 -   For `"CHAR"` interrupts, `<GET channel INTERRUPT>` returns the
7840     `IHEADER` or `#FALSE ()` if there is no association;
7841     `<EVENT "CHAR" 0 channel>` returns the `IHEADER`, creating it if
7842     there is no association.
7843 -   For `"READ"` interrupts, `<GET locative READ!-INTERRUPTS>` returns
7844     the `IHEADER` or `#FALSE ()` if there is no association;
7845     `<EVENT "READ" 0 locative>` returns the `IHEADER`, creating it if
7846     there is no association.
7847 -   For `"WRITE"` interrupts, `<GET locative WRITE!-INTERRUPTS>`
7848     returns the `IHEADER` or `#FALSE ()` if there is no association:
7849     `<EVENT "WRITE" 0 locative>` returns the `IHEADER`, creating it if
7850     there is no association.
7851 -   Otherwise, the `IHEADER` is `PUT` on the name `ATOM` with the
7852     indicator `INTERRUPT`. Thus, for example,
7853     `<GET CLOCK!-INTERRUPTS INTERRUPT>` returns the `IHEADER` for the
7854     clock interrupt or `#FALSE ()` if there is no association;
7855     `<EVENT "CLOCK" 0>` returns the `IHEADER`, creating it if there is
7856     no association.
7857
7858 ### 21.5.2. HANDLER
7859
7860 A `HANDLER` specifies a **particular** action for a **particular**
7861 interrupt. The elements of a `HANDLER` are as follows:
7862
7863 1.  next `HANDLER` if any, else a zero-length `HANDLER`
7864 2.  previous `HANDLER` or the `IHEADER` (Thus the `HANDLER`s of a
7865     given interrupt form a "doubly-linked list" chaining between each
7866     other and back to the `IHEADER`.)
7867 3.  handler to be applied (anything but `APPLICABLE` that evaluates
7868     its arguments -- the application is done not by `APPLY` but by
7869     `RUNINT`, which can take a `PROCESS` argument: see next line)
7870 4.  `PROCESS` in which the handler will be applied, or `#PROCESS 0`,
7871     meaning whatever `PROCESS` was running when the interrupt occurred
7872     (In the former case, `RUNINT` is applied to the handler and its
7873     arguments in the currently running `PROCESS`, which causes an
7874     `APPLY` in the `PROCESS` stored in the `HANDLER`, which `PROCESS`
7875     must be `RESUMABLE`. The running `PROCESS` becomes `RESUMABLE`,
7876     and the stored `PROCESS` becomes `RUNNING`, but no other `PROCESS`
7877     variables (for example `RESUMER`) are changed.)
7878
7879 21.6. Other SUBRs
7880 -----------------
7881
7882     <ON name applicable priority:fix process which>
7883
7884 is equivalent to
7885
7886     <HANDLER <EVENT name priority which>
7887              applicable process>
7888
7889 `ON` is a combination of `EVENT` and `HANDLER`: it creates (or finds)
7890 the `IHEADER`, associates and enables it, adds a `HANDLER` to the
7891 front the list (first to be performed), and returns the `HANDLER`.
7892
7893     <DISABLE iheader>
7894
7895 is effectively `<PUT iheader 2 #LOSE -1>`. Actually the `TYPE` `LOSE`
7896 is unimportant, but the `-1` signifies that *iheader* is disabled.
7897
7898     <ENABLE iheader>
7899
7900 is effectively `<PUT iheader 2 #LOSE 0>`. Actually the `TYPE` `LOSE`
7901 is unimportant, but the `0` signfies that *iheader* is enabled.
7902
7903 21.7. Priorities and Interrupt Levels
7904 -------------------------------------
7905
7906 At any given time there is a defined **interrupt level**. This is a
7907 `FIX` which determines which interrupts can really "interrupt" -- that
7908 is, cause the current processing to be suspended while their wants are
7909 satisfied. Normal, non-interrupt programs operate at an interrupt
7910 level of 0 (zero.) An interrupt is processed at an interrupt level
7911 equal to the interrupt's priority.
7912
7913 ### 21.7.1. Interrupt Processing
7914
7915 Interrupts "actually" only occur at well-defined points in time:
7916 during a call to a Subroutine, or at critical places within
7917 Subroutines (for example, during each iteration of `MAPF` on a `LIST`,
7918 which may be circular), or while a `PROCESS` is `"BLOCKED"` (see
7919 below). No interrupts can occur during garbage collection.
7920
7921 What actually happens when an enabled interrupt occurs is that the
7922 priority of the interrupt is compared with the current interrupt
7923 level, and the following is done:
7924
7925 If the priority is **greater than** the current interrupt level, the
7926 current processing is "frozen in its tracks" and processing of the
7927 action(s) specified for that interrupt begins.
7928
7929 If the priority is less than or equal to the current interrupt level,
7930 the interrupt occurrence is **queued** -- that is, the fact that it
7931 occurred is saved away for processing when the interrupt level becomes
7932 low enough.
7933
7934 When the processing of an interrupt's actions is completed, Muddle
7935 usually (1) "acts as if" the previously-existing interrupt level is
7936 restored, and processing continues on what was left off (perhaps for
7937 no time duration); and (2) "acts as if" any queued interrupt
7938 occurrences actually occurred right then, in their original order of
7939 occurrence.
7940
7941 ### 21.7.2. INT-LEVEL
7942
7943 The `SUBR` `INT-LEVEL` is used to examine and change the current
7944 interrupt level directly.
7945
7946     <INT-LEVEL>
7947
7948 simply returns the current interrupt level.
7949
7950     <INT-LEVEL fix>
7951
7952 changes the interrupt level to its argument and returns the
7953 **previously**-existing interrupt level.
7954
7955 If `INT-LEVEL` lowers the priority of the interrupt level, it does not
7956 "really" return until all queued occurrences of interrupts of higher
7957 priority than the target priority have been processed.
7958
7959 Setting the `INT-LEVEL` extremely high (for example,
7960 `<INT-LEVEL <CHTPE <MIN> FIX>>`) effectively disables all interrupts
7961 (but occurrences of enabled interrupts will still be queued).
7962
7963 If `LISTEN` or `ERROR` is called when the `INT-LEVEL` is not zero,
7964 then the typeout will be
7965
7966     LISTENING-AT-LEVEL I PROCESS p INT-LEVEL i
7967
7968 ### 21.7.3. DISMISS
7969
7970 `DISMISS` permits a handler to return an arbitrary value for an
7971 arbitrary `ACTIVATION` at an arbitrary interrupt level. The call is as
7972 follows:
7973
7974     <DISMISS value:any activation int-level:fix>
7975
7976 where only the *value* is required. If *activation* is omitted, return
7977 is to the place interrupted from, and *value* is ignored. If
7978 *int-level* is omitted, the `INT-LEVEL` prior to the current interrupt
7979 is restored.
7980
7981 21.8. Specific Interrupts
7982 -------------------------
7983
7984 Descriptions of the characteristics of particular "built-in" Muddle
7985 interrupts follow. Each is named by its `STRING` name. Expect this
7986 list to be incomplete yesterday.
7987
7988 `"CHAR"` is currently the most complex built-in interrupt, because it
7989 serves duty in several ways. These different ways will be described in
7990 several different sections. All ways are concerned with characters or
7991 machine words that arrive or depart at unpredictable times, because
7992 Muddle is communicating with a person or another processor. Each
7993 `"CHAR"` `IHEADER` has a `CHANNEL` for the element that names the
7994 interrupt, and the mode of the `CHANNEL` tells what kinds of `"CHAR"`
7995 interrupts occur to be handled through that `IHEADER`.
7996
7997 1.  If the `CHANNEL` is for `INPUT`, "CHAR" occurs every time an
7998     "interesting" character (see below) is received from the
7999     `CHANNEL`'s real terminal, or any character is received from the
8000     `CHANNEL`'s pseudo-terminal, or a character or word is received
8001     from the `CHANNEL`'s Network socket, or indeed (in the ITS
8002     version) the operating system generates an interrupt for any
8003     reason.
8004 2.  If the `CHANNEL` is for output to a pseudo-terminal or Network
8005     socket, `"CHAR"` occurs every time a character or word is wanted.
8006 3.  If the `CHANNEL` is for output to a terminal, `"CHAR"` occurs
8007     every time a line-feed character is output or (in the ITS version)
8008     the operating system generates a screen-full interrupt for the
8009     terminal.
8010
8011 ### 21.8.1. "CHAR" received
8012
8013 A handler for an input `"CHAR"` interrupt on a real terminal must take
8014 two arguments: the `CHARACTER` which was typed, and the `CHANNEL` on
8015 which it was typed.
8016
8017 In the ITS version, the "interesting" characters are those "enabled
8018 for interrupts" on a real terminal, namely `^@` through `^G`, `^K`
8019 through `^_`, and `DEL` (that is, ASCII codes 0-7, 13-37, and 177
8020 octal.)
8021
8022 In the Tenex and Tops-20 versions, the operating system can be told
8023 which characters typed on a terminal should cause this interrupt to
8024 occur, by calling the `SUBR` `ACTIVATE-CHARS` with a `STRING` argument
8025 containing those characters (no more than six, all with ASCII codes
8026 less than 33 octal). If called with no argument, `ACTIVATE-CHARS`
8027 returns a `STRING` containing the characters that currently interrupt.
8028 Initially, only `^G`, `^S`, and `^O` interrupt.
8029
8030 An initial Muddle already has `"CHAR"` enabled on `,INCHAN` with a
8031 priority 8 (eight), the `SUBR` `QUITTER` for a handler to run in
8032 `#PROCESS 0` (the running `PROCESS`); this is how `^G` and `^S` are
8033 processed. In addition, every time a new `CHANNEL` is `OPEN`ed in
8034 `"READ"` mode to a terminal, a similar `IHEADER` and `HANDLER` are
8035 associated with that new `CHANNEL` automatically. These
8036 automatically-generated `IHEADER`s and `HANDLER`s use the standard
8037 machinery, and they can be `DISABLE`d or `OFF`ed at will. **However**,
8038 the `IHEADER` for `,INCHAN` should not be `OFF`ed: Muddle knows that
8039 `$` is typed only by an interrupt!
8040
8041 Example: the following causes the given message to be printed out
8042 whenever a `^Y` is typed on `.INCHAN`:
8043
8044     <SET H <HANDLER <GET .INCHAN INTERRUPT>
8045          #FUNCTION ((CHAR CHAN)
8046           #DECL ((VALUE) ANY (CHAR) CHARACTER (CHAN) CHANNEL)
8047           <AND <==? .CHAR !\^Y>
8048                <PRINC " [Some of the best friends are ^Ys.] ">>)>>$
8049     #HANDLER #FUNCTION **CHAR CHAN) ...)
8050     <+ 2 ^Y [Some of my best friends are ^Ys.] 2>$
8051     4
8052     <OFF .H>$
8053     #HANDLER #FUNCTION (...)
8054
8055 Note that occurrences of `"CHAR"` do **not** wait for the `$` to be
8056 typed, and the interrupting character is omitted from the input
8057 stream.
8058
8059 A `"CHAR"` interrupt can also be associated with an input `CHANNEL`
8060 open to a Network socket (`"NET"` device). A handler gets applied to a
8061 `NETSTATE` array (which see) and the `CHANNEL`.
8062
8063 In the ITS version, a `"CHAR"` interrupt can also be associated with
8064 an input `CHANNEL` open to a pseudo-terminal ("STY" device and
8065 friends). An interrupt occurs when a character is available for input.
8066 These interrupts are set up in exactly the same way as real-terminal
8067 interrupts, except that a handler gets applied to only **one**
8068 argument, the `CHANNEL`. Pseudo-terminal are not available in the
8069 Tenex and Tops-20 versions.
8070
8071 For any other flavor of ITS channel interrupt, a handler gets applied
8072 to only **one** argument, the `CHANNEL`.
8073
8074 ### 21.8.2. "CHAR" wanted
8075
8076 A `"CHAR"` interrupt can be associated with an output `CHANNEL` open
8077 to a Network socket (`"NET"` device). A handlers gets applied to a
8078 `NETSTATE` array (which see) and the `CHANNEL`.
8079
8080 In the ITS version, a `"CHAR"` interrupt can also be associated with
8081 an output `CHANNEL` open to a pseudo-terminal (`"STY"` device and
8082 friends). An interrupt occurs when the program at the other end needs
8083 a character (and the operating-system buffer is empty). A handler gets
8084 applied to one argument, the `CHANNEL`. Pseudo-terminals are not
8085 available in the Tenex and Tops-20 versions.
8086
8087 ### 21.8.3. "CHAR" for new line
8088
8089 A handler for an output `"CHAR"` interrupt on a real terminal must
8090 take **one or two** arguments (using `"OPTIONAL"` or `"TUPLE"`): if
8091 two arguments are supplied by the interrupt system, they are the line
8092 number (`FIX`) and the `CHANNEL`, respectively, and the interrupt is
8093 for a line-feed; if only one argument is supplied (only in the ITS
8094 version), it is the `CHANNEL`, and the interrupt is for a full
8095 terminal screen. Note: the supplied line number comes from the
8096 `CHANNEL`, and it may not be accurate if the program alters it in
8097 subtle ways, for example, via `IMAGE` calls or special control
8098 characters. (The program can compensate by putting the proper line
8099 number into the `CHANNEL`.)
8100
8101 ### 21.8.4. "GC"
8102
8103 `"GC"` occurs just **after** every garbage collection. Enabling this
8104 interrupt is the only way a program can know that a garbage collection
8105 has occurred. A handler for `"GC"` takes three arguments. The first is
8106 a FLOAT indicating the number of seconds the garbage collection took.
8107 The second argument is a FIX indicating the cause of the garbage
8108 collection, as follows (chapter 22):
8109
8110 0.  Program called GC.
8111 1.  Movable storage was exhausted.
8112 2.  Control stack overflowed.
8113 3.  Top-level LVALs overflowed.
8114 4.  GVAL vector overflowed.
8115 5.  TYPE vector overflowed.
8116 6.  Immovable garbage-collected storage was exhausted.
8117 7.  Internal stack overflowed.
8118 8.  Both control and internal stacks overflowed (rare).
8119 9.  Pure storage was exhausted.
8120 10. Second, exhaustive garbage collection occurred.
8121
8122 The third argument is an ATOM indicating what initiated the garbage
8123 collection: `GC-READ`, `BLOAT`, `GROW`, `LIST`, `VECTOR`, `SET`,
8124 `SETG`, `FREEZE`, `GC`, `NEWTYPE`, `PURIFY`, `PURE-PAGE-LOADER` (pure
8125 storage was exhausted), or `INTERRUPT-HANDLER` (stack overflow,
8126 unfortunately).
8127
8128 ### 21.8.5. "DIVERT-AGC"
8129
8130 `"DIVERT-AGC"` ("Automatic Garbage Collection") occurs just **before**
8131 a deferrable garbage collection that is needed because of exhausted
8132 movable garbage-collected storage. Enabling this interrupt is the only
8133 way a program can know that a garbage collection is about to occur. A
8134 handler takes two arguments: A `FIX` telling the number of machine
8135 words needed and an `ATOM` telling what initiated the garbage
8136 collection (see above). If it wishes, a handler can try to prevent a
8137 garbage collection by calling `BLOAT` with the `FIX` argument. If the
8138 pending request for garbage-collected storage cannot then be
8139 satisfied, a garbage collection occurs anyway. `AGC-FLAG` is `SET` to
8140 `T` while the handler is running, so that new storage requests do not
8141 try to cause a garbage collection.
8142
8143 ### 21.8.6. "CLOCK"
8144
8145 `"CLOCK"`, when enabled, occurs every half second (the ITS
8146 "slow-clock" tick.) It is not available in the Tenex or Tops-20
8147 versions. It wants handlers which take no arguments. Example:
8148
8149     <ON "CLOCK" <FUNCTION () <PRINC "TICK ">> 1>
8150
8151 ### 21.8.7. "BLOCKED"
8152
8153 `"BLOCKED"` occurs whenever **any** `PROCESS` (not only the `PROCESS`
8154 which may be in a `HANDLER`) starts waiting or terminal input: that
8155 is, an occurrence indicates that somewhere, somebody did a `READ`,
8156 `READCHR`, `NEXTCHR`, `TYI`, etc. to a console. The handler for a
8157 `"BLOCKED"` interrupt should take one argument, namely the `PROCESS`
8158 which started waiting (which will also be the `PROCESS` in which the
8159 handler runs, if no specific one is in the `HANDLER`).
8160
8161 Example: the following will cause Muddle to acquire a `*` prompting
8162 character.
8163
8164     <ON "BLOCKED" #FUNCTION ((IGNORE) <PRINC !\*>) 5>
8165
8166 ### 21.8.8. "UNBLOCKED"
8167
8168 `"UNBLOCKED"` occurs whenever a `$` (`ESC`) is typed on a terminal if
8169 a program was hanging and waiting for input, or when a TYI call (which
8170 see) is satisfied. A handler takes one argument: the `CHANNEL` via
8171 which the `$` or character is input.
8172
8173 ### 21.8.9. "READ" and "WRITE"
8174
8175 `"READ"` and `"WRITE"` are associated with read or write references to
8176 Muddle objects. These interrupts are often called "monitors", and
8177 enabling the interrupt is often called "monitoring" the associated
8178 object. A "read reference" to an `ATOM`'s local value includes
8179 applying `BOUND?` or `ASSIGNED?` to the `ATOM`; similarly for a global
8180 value and `GASSIGNED?`. If the `INT-LEVEL` is too high when `"READ"`
8181 or `"WRITE"` occurs, an error occurs, because occurrences of these
8182 interrupts cannot be queued.
8183
8184 Monitors are set up with `EVENT` or `ON`, using a locative to the
8185 object being monitored as the extra *which* argument, just as a
8186 `CHANNEL` is given for `"CHAR"`. A handler for `"READ"` takes two
8187 arguments: the locative and the `FRAME` of the function application
8188 that make the reference. A handler for `"WRITE"` takes three
8189 arguments: the locative, the new value, and the `FRAME`. For example:
8190
8191     <SET A (1 2 3)>$
8192     (1 2 3)
8193     <SET B <AT .A 2>>$
8194     #LOCL 2
8195     <ON "WRITE" <FUNCTION (OBJ VAL FRM)
8196             #DECL ((VALUE VAL ANY (OBJ) LOCATIVE (FRM) FRAME)
8197             <CRLF>
8198             <PRINC "Program changed ">
8199             <PRIN1 .OBJ>
8200             <PRINC " to ">
8201             <PRIN1 .VAL>
8202             <PRINC " via ">
8203             <PRINC .FRM>
8204             <CRLF>>
8205             4 0 .B>$
8206     #HANDLER FUNCTION (...)
8207     <1 .A 10>$
8208     (10 2 3)
8209     <2 .A 20>$
8210     Program changed #LOCL 2 to 20 via #FRAME PUT
8211     (10 20 3)
8212     <OFF "WRITE" .B>$
8213     #IHEADER #LOCL 20
8214
8215 ### 21.8.10. "SYSDOWN"
8216
8217 `"SYSDOWN"` occurs when a system-going-down or system-revived signal
8218 is received from ITS. It is not available in the Tenex or Tops-20
8219 versions. If no `IHEADER` is associated and enabled, a warning message
8220 is printed on the terminal. A handler takes one argument: a `FIX`
8221 giving the number of thirtieths of a second until the shutdown (-1 for
8222 a reprieve).
8223
8224 ### 21.8.11. "ERROR"
8225
8226 In an effort to simplify error handling by programs, Muddle has a
8227 facility allowing errors to be handled like interrupts. `SETG`ing
8228 `ERROR` to a user function is a distasteful method, not safe if any
8229 bugs are around. An `"ERROR"` interrupt wants a handler that takes any
8230 number of arguments, via `"TUPLE"`. When an error occurs, handlers are
8231 applied to the `FRAME` of the `ERROR` call and the `TUPLE` of `ERROR`
8232 arguments. If a given handler "takes care of the error", it can
8233 `ERRET` with a value from the `ERROR` `FRAME`, after having done
8234 `<INT-LEVEL 0>`. If no handler takes care of the error, it falls into
8235 the normal `ERROR`.
8236
8237 If an error occurs at an `INT-LEVEL` greater than or equal to that of
8238 the `"ERROR"` interrupt, real `ERROR` will be called, because
8239 `"ERROR"`interrupts cannot be queued.
8240
8241 ### 21.8.12. "IPC"
8242
8243 `"IPC"` occurs when a message is received on the ITS IPC device
8244 (chapter 23). It is not available in the Tenex and Tops-20 versions.
8245
8246 ### 21.8.13. "INFERIOR"
8247
8248 `"INFERIOR"` occurs when an inferior ITS process interrupts the Muddle
8249 process. It is not available in the Tenex and Tops-20 versions. A
8250 handler takes one argument: A `FIX` between `0` and `7` inclusive,
8251 telling which inferior process is interrupting.
8252
8253 ### 21.8.14. "RUNT and "REALT"
8254
8255 These are not available in the Tenex and Tops-20 versions.
8256
8257 `"RUNT"`, if enabled, occurs **once**, *N* seconds of Muddle running
8258 time (CPU time) after calling `<RUNTIMER N:fix-or-float>`, which
8259 returns its argument. A handler takes no arguments. If `RUNTIMER` is
8260 called with no argument, it returns a `FIX`, the number of run-time
8261 seconds left until the interrupt occurs, or `#FALSE ()` if the
8262 interrupt is not going to occur.
8263
8264 `"REALT"`, if enabled, occurs **every** *N* seconds of real-world time
8265 after calling `<REALTIMER N:fix-or-float>`, which returns its
8266 argument. A handler takes no arguments. `<REALTIMER 0>` tells the
8267 operating system not to generate real-time interrupts. If `REALTIMER`
8268 is called with no argument, it returns a `FIX`, the number of
8269 real-time seconds given in the most recent call to `REALTIMER` with an
8270 argument, or `#FALSE ()` if `REALTIMER` has not been called.
8271
8272 ### 21.8.15. "Dangerous" Interrupts
8273
8274 `"MPV"` ("memory protection violation") occurs if Muddle tries to
8275 refer to a storage address not in its address space. `"PURE"` occurs
8276 if Muddle tries to alter read-only storage. `"ILOPR"` occurs if Muddle
8277 executes and illegal instruction ("operator"). `"PARITY"` occurs if
8278 the CPU detects a parity error in Muddle's address space. All of these
8279 require a handler that takes one argument: the address (`TYPE` `WORD`)
8280 following the instruction that was being executed at the time.
8281
8282 `"IOC"` occurs if Muddle tries to deal illegally with an I/O channel.
8283 A handler must take two arguments: a three-element `FALSE` like one
8284 that `OPEN` might return, and the `CHANNEL` that got the error.
8285
8286 Ideally these interrupts should never occur. In fact, in the Tenex and
8287 Tops-20 versions, these interrupts always go to the superior operating
8288 system process instead of to Muddle. In the ITS version, if and when a
8289 "dangerous" interrupt does occur:
8290
8291 -   If no `IHEADER` is associated with the interrupt, then the
8292     interrupt goes to the superior operating system process.
8293 -   If an `IHEADER` is associated but disabled, the error
8294     `DANGEROUS-INTERRUPT-NOT-HANDLED` occurs (`FILE-SYSTEM-ERROR` for
8295     \`"IOC").
8296 -   If an `IHEADER` is associated and enabled, but the `INT-LEVEL` is
8297     too high, the error `ATTEMPT-TO-DEFER-UNDEFERABLE-INTERRUPT`
8298     occurs.
8299
8300 21.9. User-Defined Interrupts
8301 -----------------------------
8302
8303 If the interrupt name given to `EVENT` or `ON` is **not** one of the
8304 standard predefined interrupts of Muddle, they will gleefully create
8305 an `ATOM` in `<INTERRUPTS>` and an associated `IHEADER` anyway, making
8306 the assumption that you are setting up a "program-defined" interrupt.
8307
8308 Program-defined interrupts are made to occur by applying the `SUBR`
8309 `INTERRUPT`, as in
8310
8311     <INTERRUPT name arg1 ... argN>
8312
8313 where *name* is a `STRING`, `ATOM` or `IHEADER`, and *arg1* through
8314 *argN* are the arguments wanted by the handlers for the interrupt.
8315
8316 If the interrupt specified by `INTERRUPT` is enabled, `INTERRUPT`
8317 returns `T`; otherwise it returns `#FALSE ()`. All the usual priority
8318 and queueing rules hold, so that even if `INTERRUPT` returns `T`, it
8319 is possible that nothing "really happened" (yet).
8320
8321 `INTERRUPT` can also be used to cause "artificial" occurrences of
8322 standard predefined Muddle interrupts.
8323
8324 Making a program-defined interrupt occur is similar to calling a
8325 handler directly, but there are differences. The value returned by a
8326 handler is ignored, so side effects must be used in order to
8327 communicate information back to the caller, other than whether any
8328 handler ran or will run. One good use for a program-defined interrupt
8329 is to use the priority and queueing machinery of `INT-LEVEL` to
8330 control the execution of functions that must not run concurrently. For
8331 example, if a `"CHAR"` handler just deposits characters in a buffer,
8332 then a function to process the buffered characters should probably run
8333 at a higher priority level -- to prevent unpredictable changes to the
8334 buffer during the processing -- and it is natural to invoke the
8335 processing with `INTERRUPT`.
8336
8337 In more exotic applications, `INTERRUPT` can signal a condition to be
8338 handled by an unknown number of independent and "nameless" functions.
8339 The functions are "nameless" because the caller doesn't know their
8340 name, only the name of the interrupt. This programming style is
8341 modular and event-driven, and it is one way of implementing
8342 "heuristic" algorithms. In addition, each `HANDLER` has a `PROCESS` in
8343 which to run its handler, and so the different handlers for a given
8344 condition can do their thing in different environments quite easily,
8345 with less explicit control than when using `RESUME`.
8346
8347 21.10. Waiting for Interrupts
8348 -----------------------------
8349
8350 ### 21.10.1. HANG
8351
8352     <HANG pred>
8353
8354 hangs interruptibly, without consuming any CPU time, potentially
8355 forever. `HANG` is nice for a program that cannot do anything until an
8356 interrupt occurs. If the optional *pred* is given, it is evaluated
8357 every time an interrupt occurs and is dismissed back into the `HANG`;
8358 if the result of evaluation is not `FALSE`, `HANG` unhangs and returns
8359 it as a value. If *pred* is not given, there had better be a named
8360 `ACTIVATION` somewhere to which a handler can return.
8361
8362 ### 21.10.2. SLEEP
8363
8364     <SLEEP time:fix-or-float pred>
8365
8366 suspends execution, interruptibly, without consuming any CPU time, for
8367 *time* seconds, where *time* is non-negative, and then returns `T`.
8368 *pred* is the same as for `HANG`.
8369
8370 Chapter 22. Storage Management
8371 ==============================
8372
8373 The reason this chapter comes so late in this document is that, except
8374 for special cases, Muddle programs have their storage needs handled
8375 automatically. There is usually no need even to consider storage
8376 management, except as it affects efficiency (chapter 24). This chapter
8377 gives some explanation of why this is so, and covers those special
8378 means by which a program can assume control of storage management.
8379
8380 The Muddle address space is divided into five parts, which are usually
8381 called
8382
8383 1.  movable garbage-collected space,
8384 2.  immovable space (both garbage-collected and not),
8385 3.  user pure/page space,
8386 4.  pure-`RSUBR` mapping space, and
8387 5.  internal storage.
8388
8389 Internal storage occupies both the highest and lowest addresses in the
8390 address space, and its size never changes as Muddle executes. The
8391 other spaces can vary in size according to the needs of the executing
8392 program. Generally the interpreter allocates a contiguous set of
8393 addresses for each space, and each space gradually fills up as new
8394 objects are created and as disk files are mapped in. The action taken
8395 when space becomes full varies, as discussed below.
8396
8397 22.1. Movable Garbage-collected Storage
8398 ---------------------------------------
8399
8400 Most storage used explicitly by Muddle programs is obtained from a
8401 pool of free storage managed by a "garbage collector". Storage is
8402 obtained from this pool by the `SUBR`s which construct objects. When a
8403 `SUBR` finds that the pool of available storage is exhausted, it
8404 automatically calls the garbage collector.
8405
8406 The garbage collector has two algorithms available to it: the
8407 "copying" algorithm, which is used by default, and the "mark-sweep"
8408 algorithm. Actually, one often speaks of two separate garbage
8409 collectors, the "copying" one and the "mark-sweep" one, because each
8410 is an independent module that is mapped in to the interpreter's
8411 internal storage from disk only during garbage collection. For
8412 simplicity, this document speaks of "the" garbage collector, which has
8413 two algorithms.
8414
8415 The garbage collector examines the storage pool and **marks** all the
8416 objects there, separating them into two classes: those which cannot
8417 possibly be referenced by a program, and those which can. The
8418 "copying" algorithm then copies the latter into one compact section of
8419 the pool, and the remainder of the pool is made available for newly
8420 constructed objects. The "mark-sweep" algorithm, instead, puts all
8421 objects in the former class (garbage) into "free lists", where the
8422 object-construction `SUBR`s can find them and re-use their storage.
8423
8424 If the request for more storage still cannot be satisfied from
8425 reclaimed storage, the garbage collector will attempt to obtain more
8426 total storage from the operating system under which Muddle runs.
8427 (Also, if there is a gross superfluity of storage space, the garbage
8428 collector will politely return some storage to the operating system.)
8429 Only when the total system resources are exhausted will you finally
8430 lose.
8431
8432 Thus, if you just "forget about" an object, that is, lose all possible
8433 means of referencing it, its storage is automatically reclaimed.
8434 "Object" in this context includes that stack-structured storage space
8435 used in `PROCESS`es for functional application.
8436
8437 ### 22.1.1. Stacks and Other Internal Vectors
8438
8439 Control stacks are used in Muddle to control the changes in
8440 environment caused by calling and binding. Each active `PROCESS` has
8441 its own control stack. On this stack are stored `LVAL`s for `ATOM`s;
8442 `PRIMTYPE` `TUPLE`s, which are otherwise like `VECTOR`s; `PRIMTYPE`
8443 `FRAME`s, which are generated by calling Subroutines; and
8444 `ACTIVATION`s, which are generated by calling `FUNCTION`s with named
8445 `ACTIVATION`s, `PROG`, and `REPEAT`. `TAG` and `LLOC` can make `TAG`s
8446 and `LOCD`s (respectively) that refer to a specific place on a
8447 specific control stack. (`LEGAL?` returns `T` if and only if the
8448 portion of the control stack in which its argument is found or to
8449 which its argument refers is still active, or if its argument doesn't
8450 care about the control stack. The garbage collector may change a
8451 non-`LEGAL?` object to `TYPE` `ILLEGAL` before reclaiming it.) As the
8452 word "stack" implies, things can be put on it and removed from it at
8453 only one end, called the top. It has a maximum size (or depth), and
8454 attempting to put too many things on it will cause overflow. A stack
8455 is stored like a `VECTOR`, and it must be `GROW`n if and when it
8456 overflows.
8457
8458 A control stack is actually two stacks in one. One section is used for
8459 "top-level" `LVAL`s -- those `SET` while the `ATOM` is not bound by
8460 any active Function's argument `LIST` or Subroutine's `SPECIAL`
8461 binding -- and the other section is used for everything else. Either
8462 section can overflow, of course. The top-level-`LVAL` section is below
8463 the other one, so that a top-level `LVAL` will be found only if the
8464 `ATOM` is not currently bound elsewhere, namely in the other section.
8465
8466 Muddle also has an internal stack, used for calling and temporary
8467 storage within the interpreter and compiled programs. It too is stored
8468 like a `VECTOR` and can overflow. There are other internal vectors
8469 that can overflow: the "global vector" holds pairs ("slots") of
8470 `ATOM`s and corresponding `GVAL`s ("globally bound" or `GBOUND?` means
8471 that the `ATOM` in question is in this vector, whether or not it
8472 currently has a global value), and the "`TYPE` vector" holds `TYPE`
8473 names (predefined and `NEWTYPE`s) and how they are to be treated.
8474
8475 22.2. Immovable Storage
8476 -----------------------
8477
8478 ### 22.2.1. Garbage-collected: FREEZE
8479
8480 In very special circumstances, such as debugging `RSUBR`s, you may
8481 need to prevent an object from being moved by the garbage collector.
8482 `FREEZE` takes one argument, of `PRIMTYPE` `VECTOR`, `UVECTOR`,
8483 `STRING`, `BYTES` or `TUPLE`. It copies its argument into non-moving
8484 garbage-collected space. `FREEZE` returns the copy `CHTYPE`d to its
8485 `PRIMTYPE`, except in the case of a `TUPLE`, which is changed to a
8486 `VECTOR`.
8487
8488 ### 22.2.2. Non-garbage-collected: STORAGE (the PRIMTYPE)
8489
8490 An object of `PRIMTYPE` `STORAGE` is really a frozen `UVECTOR` whose
8491 `UTYPE` is of `PRIMTYPE` `WORD`, but it is always pointed to by
8492 something internal to Muddle and thus is never garbage-collectible.
8493 The use of `FREEZE` is always preferable, except when for historical
8494 reasons a `STORAGE` is necessary.
8495
8496 22.3. Other Storage
8497 -------------------
8498
8499 User pure/page space serves two purposes. First, when a user program
8500 `PURIFY`s (see below) Muddle objects, they are copied into this space.
8501 Second, so-called hand-crafted `RSUBR`s (assembled but not compiled)
8502 can call on the interpreter to map pages of disk files into this space
8503 for arbitrary purposes.
8504
8505 Pure-`RSUBR` mapping space is used by the interpreter to dynamically
8506 map pages of pure compiled programs into and out of the Muddle address
8507 space. Pure code can refer to impure storage through the "transfer
8508 vector", another internal vector. This space is the most vulnerable to
8509 being compressed in size by the long-term growth of other spaces.
8510
8511 Internal storage has both pure and impure parts. The interpreter
8512 program itself is pure and sharable, while impure storage is used for
8513 internal pointers, counters, and flags, for example, pointers to the
8514 boundaries of other spaces. In the pure part of this space are most of
8515 the `ATOM`s in an initial Muddle, along with their `OBLIST` buckets
8516 (`LIST`s) and `GVAL` slots (a pure extension of the global vector),
8517 where possible. A `SET` or `SETG` of a pure `ATOM` automatically
8518 impurifies the `ATOM` and as much of its `OBLIST` bucket as needs to
8519 be impure.
8520
8521 22.4. Garbage Collection: Details
8522 ---------------------------------
8523
8524 When either of the garbage-collected spaces (movable or immovable)
8525 becomes full, Muddle goes through the following procedure:
8526
8527 1.  A `"DIVERT-AGC"` interrupt occurs if the garbage collection can be
8528     deferred temporarily by shifting boundaries between storage spaces
8529     slightly. The interrupt handler may postpone a garbage collection
8530     by moving boundaries itself with a call to `BLOAT` (below).
8531 2.  The garbage collector begins execution. The "copying" algorithm
8532     creates an inferior operating-system process (named `AGC` in the
8533     ITS version) whose address space is used to hold the new copies of
8534     non-garbage objects. Muddle accesses the inferior's address space
8535     through two pages ("frontier" and "window") in its internal space
8536     that are shared with the inferior. If the garbage collection
8537     occurred because movable garbage-collected space was exhausted,
8538     then the "mark-sweep" algorithm might be used instead (see below)
8539     and no inferior process is created.
8540 3.  The garbage collector marks and moves all objects that can
8541     possibly be referenced hereafter. It begins with the `<MAIN>`
8542     `PROCESS` and the currently running `PROCESS` `<ME>`, considered
8543     as vectors containing the control stacks, object pointers in live
8544     registers, etc. Every object in these "`PROCESS` vectors" is
8545     marked "accessible", and every element of these objects (bindings,
8546     etc.), and so on recursively. The "copying" algorithm moves
8547     objects into the inferior process's address space as it marks
8548     them.
8549 4.  If the garbage collection is "exhaustive" -- which is possible
8550     only in the "copying" algorithm -- then both the chain of
8551     associations and top-level local/global bindings are examined
8552     thoroughly, which takes more time but is more likely to uncover
8553     garbage therein. In a normal garbage collection these constructs
8554     are not treated specially.
8555 5.  Finally, the "mark-sweep" algorithm sweeps through the storage
8556     space, adding unmarked objects to the internal free lists for
8557     later re-use. The "copying" algorithm maps the inferior process's
8558     address space into Muddle's own, replacing old garbagey with the
8559     new compact storage, and the inferior process is destroyed.
8560
8561 22.5 GC
8562 -------
8563
8564     <GC min:fix exh?:false-or-any ms-freq:fix>
8565
8566 causes the garbage collector to run and returns the total number of
8567 words of storage reclaimed. All of its arguments are optional: if they
8568 are not supplied, a call to GC simply causes a "copying" garbage
8569 collection.
8570
8571 If *min* is explicitly supplied as an argument, a garbage-collection
8572 parameter is changed permanently before the garbage collector runs.
8573 *min* is the smallest number of words of "free" (unclaimed, available
8574 for use) movable garbage-collected storage the garbage collector will
8575 be satisfied with having after it is done. Initially it is 8192 words.
8576 If the total amount of reclaimed storage is less than *min*, the
8577 garbage collector will ask the operating system for enough storage (in
8578 1024 word blocks) to make it up. N.B.: the system may be incivil
8579 enough not to grant the request; in that case, the garbage collector
8580 will be content with what it has, **unless** that is not enough to
8581 satisfy a **pending** request for storage. Then it will inform you
8582 that it is losing. A large *min* will result in fewer total garbage
8583 collections, but they will take longer since the total quantity of
8584 storage to be dealt with will generally be larger. Smaller *min*s
8585 result in shorter, more frequent garbage collections.
8586
8587 22.6. BLOAT
8588 -----------
8589
8590 `BLOAT` is used to cause a temporary expansion of the available
8591 storage space with or without changing the garbage-collection
8592 parameters. `BLOAT` is particularly useful for avoiding unnecessary
8593 garbage collections when loading a large file. It will cause (at most)
8594 one garbage collection, at the end of which the available storage will
8595 be at least the amount specified in the call to `BLOAT`. (Unless, of
8596 course, the operating system is cranky and will not provide the
8597 storage. Then you will get an error. `<ERRET 1>` from this error will
8598 cause the `BLOAT` to return `1`, which usually just causes you to lose
8599 at a later time -- unless the operating system feels nicer when the
8600 storage is absolutely necessary.)
8601
8602 A call to BLOAT looks like this:
8603
8604     <BLOAT fre stk lcl glb typ sto pstk
8605            min plcl pglb ptyp imp pur dpstk dstk>
8606
8607 where all arguments on the first line above are `FIX`, optional (`0`
8608 by default), and indicate the following:
8609
8610 -   *fre*: number of words of free movable storage desired (for
8611     `LIST`s, `VECTOR`s, `ATOM`s, etc.)
8612 -   *stk*: number of words of free control-stack space desired (for
8613     functional applications and binding of `ATOM`s)
8614 -   *lcl*: number of new top-level `LVAL`s for which to leave space
8615     (`SET`s of `ATOM`s which are not currently bound)
8616 -   *glb*: number of new `GVAL`s for which to leave space (in the
8617     global vector)
8618 -   *typ*: number of new `TYPE` definitions for which to leave space
8619     (in the `TYPE` vector)
8620 -   *sto*: number of words of immovable garbage-collected storage
8621     desired
8622 -   *pstk*: number of words of free internal-stack space desired (for
8623     `READ`ing large `STRING`s, and calling routines within the
8624     interpreter and compiled programs)
8625
8626 Arguments on the second line are also `FIX` and optional, but they set
8627 garbage-collection parameters permanently, as follows:
8628
8629 -   *min*: as for `GC`
8630 -   *plcl*: number of slots for `LVAL`s added when the space for
8631     top-level `LVAL`s is expanded (initially 64)
8632 -   *pglb*: number of slots for `GVAL`s added when the global vector
8633     is grown (initially 64)
8634 -   *ptyp*: number of slots for `TYPE`s added when the `TYPE` vector
8635     is grown (initially 32)
8636 -   *imp*: number of words of immovable garbage-collected storage
8637     added when it is expanded (initially 1024)
8638 -   *pur*: number of words reserved for pure compiled programs, if
8639     possible (initially 0)
8640 -   *dpstk*: most desirable size for the internal stack, to prevent
8641     repeated shrinking and `GROW`ing (initially 512)
8642 -   *dstk*: most desirable size for the control stack (initially 4096)
8643
8644 `BLOAT` returns the actual number of words of free movable
8645 garbage-collected storage available when it is done.
8646
8647 22.7. BLOAT-STAT
8648 ----------------
8649
8650 `BLOAT-STAT` can be used with `BLOAT` to "tune" the garbage collector
8651 to particular program requirements.
8652
8653     <BLOAT-STAT length-27:uvector>
8654
8655 fills the *uvector* with information about the state of storage of
8656 Muddle. The argument should be a `UVECTOR` of length 27 and `UTYPE`
8657 `FIX`. If `BLOAT-STAT` does not get an argument, it will provide its
8658 own `UVECTOR`. The information returned is as follows: the first 8
8659 elements indicate the number of garbage collections that are
8660 attributable to certain causes, and the other 19 give information
8661 about certain areas of storage. In detail:
8662
8663 1.  number of garbage collections caused by exhaustion of movable
8664     garbage-collected storage
8665 2.  ditto by overflow of control stack(s)
8666 3.  ditto by overflow of top-level-`LVAL` section of control stack(s)
8667 4.  ditto by overflow of global vector
8668 5.  ditto by overflow of `TYPE` vector
8669 6.  ditto by exhaustion of immovable garbage-collected storage
8670 7.  ditto by overflow of internal stack
8671 8.  ditto by overflow of both stacks at the same time (rare)
8672
8673 9.  number of words of movable storage
8674 10. number of words of movable storage used since last `BLOAT-STAT`
8675 11. maximum number of words of movable storage ever existing
8676 12. number of words of movable storage used since Muddle began running
8677 13. maximum size of control stack
8678 14. number of words on control stack in use
8679 15. maximum size of control stack(s) ever reached
8680 16. number of slots for top-level `LVAL`s
8681 17. number of top-level `LVAL`s existing
8682 18. number of slots for `GVAL`s in global vector
8683 19. number of `GVAL`s existing
8684 20. number of slots for `TYPE`s in `TYPE` vector
8685 21. number of `TYPE`s existing
8686 22. number of words of immovable garbage-collected storage
8687 23. number of words of immovable storage unused
8688 24. size of largest unused contiguous immovable-storage block
8689 25. number of words on internal stack
8690 26. number of words on internal stack in use
8691 27. maximum size of internal stack ever reached
8692
8693 22.8. GC-MON
8694 ------------
8695
8696     <GC-MOND pred>
8697
8698 ("garbage-collector monitor") determines whether or not the
8699 interpreter will hereafter print information on the terminal when a
8700 garbage collection starts and finishes, according to whether or not
8701 its argument is true. It returns the previous state. Calling it with
8702 no argument returns the current state. The initial state is false.
8703
8704 When typing is enabled, the "copying" garbage collector prints, when
8705 it starts:
8706
8707     GIN reason subr-that-caused:atom
8708
8709 and, when it finishes:
8710
8711     GOUT seconds-needed
8712
8713 The "mark-sweep" garbage collector prints `MSGIN` and `MSGOUT` instead
8714 of `GIN` and `GOUT`.
8715
8716 22.9. Related Subroutines
8717 -------------------------
8718
8719 Two `SUBR`s, described next, use only part of the garbage-collector
8720 algorithm, in order to find all pointers to an object. `GC-DUMP` and
8721 `GC-READ`, as their names imply, also use part in order to translate
8722 between Muddle objects and binary representation thereof.
8723
8724 ### 22.9.1. SUBSTITUTE
8725
8726     <SUBSTITUTE new:any old:any>
8727
8728 returns *old*, after causing a miniature garbage collection to occur,
8729 during which **all** references to *old* are changed so as to refer to
8730 *new*. Neither argument can be of `PRIMTYPE` `STRING` or `BYTES` or
8731 `LOCD` or live on the control stack, unless both are of the same
8732 `PRIMTYPE`. One `TYPE` name cannot be substituted for another. One of
8733 the few legitimate uses for it is to substitute the "right" `ATOM` for
8734 the "wrong" one, after `OBLIST`s have been in the wrong state. This is
8735 more or less the way `ATOM`s are impurified. It is also useful for
8736 unlinking `RSUBR`s. `SUBSTITUTE` returns *old* as a favor: unless you
8737 hang onto *old* at that point, it will be garbage-collected.
8738
8739 22.9.2 PURIFY
8740 -------------
8741
8742     <PURIFY any-1 ... any-N>
8743
8744 returns its last argument, after causing a miniature garbage
8745 collection that results in all the arguments becoming pure and
8746 sharable, and ignored afterward by the garbage collector. No argument
8747 can live on the control stack or be of `PRIMTYPE` `PROCESS` or `LOCD`
8748 or `ASOC`. Sharing between operating-system processes actually occurs
8749 after a `SAVE`, if and when the `SAVE` file is `RESTORE`d.
8750
8751 Chapter 23. Muddle as a System Process
8752 ======================================
8753
8754 This chapter treats Muddle considered as executing in an
8755 operating-system process, and interactions between Muddle and other
8756 operating-system processes. See also section 21.8.13.
8757
8758 23.1. TIME
8759 ----------
8760
8761 `TIME` takes any number of arguments, which are evaluated but ignored,
8762 and returns a `FLOAT` giving the number of seconds of CPU time the
8763 Muddle process has used so far. `TIME` is often used in machine-level
8764 debugging to examine the values of its arguments, by having Muddle's
8765 superior process (say, DDT) plant a breakpoint in the code for `TIME`.
8766
8767 23.2. Names
8768 -----------
8769
8770     <UNAME>
8771
8772 returns a `STRING` which is the "user name" of Muddle's process. This
8773 is the "uname" process-control variable in the ITS version and the
8774 logged-in directory in the Tenex and Tops-20 versions.
8775
8776     <XUNAME>
8777
8778 returns a `STRING` which is the "intended user name" of Muddle's
8779 process. This is the "xuname" process-control variable in the ITS
8780 version and identical to `<UNAME>` in the Tenex and Tops-20 versions.
8781
8782     <JNAME>
8783
8784 returns a `STRING` which is the "job name" of Muddle's process. This
8785 is the "jname" process-control variable in the ITS version and the
8786 `SETNM` name in the Tenex and Tops-20 versions. The characters belong
8787 to the "sixbit" or "printing" subset of ASCII, namely those between
8788 `<ASCII *40*>` and `<ASCII *137*>` inclusive.
8789
8790     <XJNAME>
8791
8792 returns a `STRING` which is the "intended job name" of Muddle's
8793 process. This is the "xjname" process-control variable in the ITS
8794 version and identical to `<JNAME>` in the Tenex and Tops-20 versions.
8795
8796 23.3. Exits
8797 -----------
8798
8799     <LOGOUT>
8800
8801 attempts to log out the process in which it is executed. It will
8802 succeed only if the Muddle is the top-level process, that is, it is
8803 running disowned or as a daemon. If it succeeds, it of course never
8804 returns. If it does not, it returns `#FALSE ()`.
8805
8806     <QUIT>
8807
8808 causes Muddle to stop running, in an orderly manner. In the ITS
8809 version, it is equivalent to a `.LOGOUT 1` instruction. In the Tenex
8810 and Tops-20 versions, it is equivalent to a control-C signal, and
8811 control passes to the superior process.
8812
8813     <VALRET string-or-fix>
8814
8815 ("value return") seldom returns. It passes control back up the process
8816 tree to the superior of Muddle, passing its argument as a message to
8817 that superior. If it does return, the value is `#FALSE ()`. If the
8818 argument is a `STRING`, it is passed to the superior as a command to
8819 be executed, via `.VALUE` in the ITS version and `RSCAN` in the
8820 Tops-20 version. If the argument is a `FIX`, it is passed to the
8821 superior as the "effective address" of a `.BREAK 16`, instruction in
8822 the ITS version and ignored in other versions.
8823
8824 23.4. Inter-process Communication
8825 ---------------------------------
8826
8827 All of the `SUBR`s in this section are available only in the ITS
8828 version.
8829
8830 The IPC ("inter-process communication") device is treated as an I/O
8831 device by ITS but not explicitly so by Muddle: that is, it is never
8832 `OPEN`ed. It allows Muddle to communicate with other ITS processes by
8833 means of sending and receiving messages. A process identifies itself
8834 as sender or recipient of a message with an ordered pair of "sixbit"
8835 `STRING`s, which are often but not always `<UNAME>` and `<JNAME>`. A
8836 message has a "body" and a "type".
8837
8838 ### 23.4.1. SEND and SEND-WAIT
8839
8840     <SEND othern1 othern2 body type mynamel myname2>
8841
8842     <SEND-WAIT othern1 othern2 body type mynamel myname2>
8843
8844 both send an IPC message to any job that is listening for it as
8845 *othern1* *othern2*. *body* must be either a `STRING`, or a `UVECTOR`
8846 of objects of `PRIMTYPE` `WORD`. *type* is an optional `FIX`, `0` by
8847 default, which is part of the information the other guy receives. The
8848 last two arguments are from whom the message is to be sent. These are
8849 optional, and `<UNAME>` and `<JNAME>` respectively are used by
8850 default. `SEND` returns a `FALSE` if no one is listening, while
8851 `SEND-WAIT` hangs until someone wants it. Both return `T` if someone
8852 accepts the message.
8853
8854 ### 23.4.2. The "IPC" Interrupt
8855
8856 When your Muddle process receives an IPC message, `"IPC"` occurs
8857 (chapter 21). A handler is called with either four or six arguments
8858 gleaned from the message. *body*, *type*, *othern1*, and *othern2* are
8859 supplied only if they are not this process's `<UNAME>` and `<JNAME>`.
8860
8861 There is a built-in `HANDLER` for the `"IPC"` interrupt, with a
8862 handler named `IPC-HANDLER` and `0` in the `PROCESS` slot. The handler
8863 prints out on the terminal the *body*, whom it is from, the *type* if
8864 not `0`, and whom it is to if not `<UNAME>` `<JNAME>`. If the *type*
8865 is `1` and the *body* is a `STRING`, then, after the message
8866 information is printed out, the `STRING` is `PARSE`d and `EVAL`uated.
8867
8868 ### 23.4.3. IPC-OFF
8869
8870 `<IPC-OFF>` stops all listening on the IPC device.
8871
8872 ### 23.4.4. IPC-ON
8873
8874     <IPC-ON myname1 myname2>
8875
8876 causes listening on the IPC device as *myname1* *myname2*. If no
8877 arguments are provided, listening is on `<UNAME>` `<JNAME>`. When a
8878 message arrives, `"IPC"` occurs.
8879
8880 Muddle is initially listening as `<UNAME>` `<JNAME>` with the built-in
8881 `HANDLER` set up on the `"IPC"` interrupt with a priority of `1`.
8882
8883 ### 23.4.5. DEMSIG
8884
8885     <DEMSIG daemon:string>
8886
8887 signals to ITS (directly, not via the IPC device) that the daemon
8888 named by its argument should run now. It returns `T` if the daemon
8889 exists, `#FALSE ()` otherwise.
8890
8891 Chapter 24. Efficiency and Tastefulness
8892 =======================================
8893
8894 24.1. Efficiency
8895 ----------------
8896
8897 Actually, you make Muddle programs efficient by thinking hard about
8898 what they really make the interpreter **do**, and making them do less.
8899 Some guidelines, in order of decreasing expense:
8900
8901 1.  Free storage is expensive.
8902 2.  Calling functions is expensive.
8903 3.  `PROG` and `REPEAT` are expensive, except when compiled.
8904
8905 Explanation:
8906
8907 1.  Unnecessary use of free storage (creating needless `LIST`s,
8908     `VECTOR`s, `UVECTOR`s, etc.) will cause the garbage collector to
8909     run more often. This is **expensive!** A fairly large Muddle (for
8910     example, 60,000 36-bit words) can take ten seconds of PDP-10 CPU
8911     time for a garbage collection. Be especially wary of constructions
8912     like `(0)`. Every time that is evaluated, it creates a new
8913     one-element `LIST`; it is too easy to write such things when they
8914     aren't really necessary. Unless you are doing `PUT`s or `PUTREST`s
8915     on it, use `'(0)` instead.
8916 2.  Sad, but true. Also generally ignored. If you call a function only
8917     once, or if it is short (less than one line), you are much better
8918     off in speed if you substitute its body in by hand. On the other
8919     hand, you may be much worse off in modularity. There are
8920     techniques for combining several `FUNCTION`s into one `RSUBR`
8921     (with `RSUBR-ENTRY`s), either during or after compilation, and for
8922     changing `FUNCTION`s into `MACRO`s.
8923 3.  `PROG` is almost never necessary, given (a) `"AUX"` in
8924     `FUNCTION`s; (b) the fact that `FUNCTION`s can contain any number
8925     of `FORM`s; (c) the fact that `COND` clauses can contain any
8926     number of `FORM`s; and (d) the fact that new variables can be
8927     generated and initialized by `REPEAT`. However, `PROG` may be
8928     useful when an error occurs, to establish bindings needed for
8929     cleaning things up or interacting with a human.
8930
8931 The use of `PROG` may be sensible when the normal flow of control can
8932 be cut short by unusual conditions, so that the program wants to
8933 `RETURN` before reaching the end of `PROG`. Of course, nested `COND`s
8934 can accomplish the same end, but deep nesting may tend to make the
8935 program unreadable. For example:
8936
8937     <PROG (TEMP)
8938           <OR <SET TEMP <OK-FOR-STEP-1?>>
8939               <RETURN .TEMP>>
8940           <STEP-1>
8941           <OR <SET TEMP <OK-FOR-STEP-2?>>
8942               <RETURN .TEMP>>
8943           <STEP-2>>
8944
8945 could instead be written
8946
8947     <COND (<OK-FOR-STEP-1?>
8948            <STEP-1>
8949            <COND (<OK-FOR-STEP-2?>
8950                   <STEP-2>)>)>
8951
8952 By the way, `REPEAT` is faster than `GO` in a `PROG`. The `<GO x>`
8953 `FORM` has to be separately interpreted, right? In fact, if you
8954 organize things properly you **very** seldom need a `GO`; using `GO`
8955 is generally considered "bad style", but in some cases it's needed.
8956 Very few.
8957
8958 In many cases, a `REPEAT` can be replaced with a `MAPF` or `MAPR`, or
8959 an `ILIST`, `IVECTOR`, etc. of the form
8960
8961     <ILIST .N '<SET X <+ .X 1>>
8962
8963 which generates an `N`-element `LIST` of successive numbers starting
8964 at `X+1`.
8965
8966 Whether a program is interpreted or compiled, the first two
8967 considerations mentioned above hold: garbage collection and function
8968 calling remain expensive. Garbage collection is, clearly, exactly the
8969 same. Function calling is relatively more expensive. However, the
8970 compiler careth not whether you use `REPEAT`, `GO`, `PROG`, `ILIST`,
8971 `MAPF`, or whatnot: it all gets compiled into practically the same
8972 thing. However, the `REPEAT` or `PROG` will be slower if it has an
8973 `ACTIVATION` that is `SPECIAL` or used other than by `RETURN` or
8974 `AGAIN`.
8975
8976 ### 24.1.1. Example
8977
8978 There follows an example of a `FUNCTION` that does many things wrong.
8979 It is accompanied by commentary, and two better versions of the same
8980 thing. (This function actually occurred in practice. Needless to say,
8981 names are withheld to protect the guilty.)
8982
8983 Blunt comment: this is terrible. Its purpose is to output the
8984 characters needed by a graphics terminal to draw lines connecting a
8985 set of points. The points are specified by two input lists: `X` values
8986 and `Y` values. The output channel is the third argument. The actual
8987 characters for each line are returned in a `LIST` by the function
8988 `TRANS`.
8989
8990     <DEFINE PLOTVDSK (X Y CHN "AUX" L LIST)
8991        <COND (<NOT <==? <SET L <LENGTH .X>><LENGTH .Y> >>
8992               <ERROR "LENGTHS NOT EQUAL">)>
8993        <SET LIST (29)>
8994        <REPEAT ((N 1))
8995            <SET LIST (!.LIST !<TRANS <.N .X> <.N .Y>>)>
8996            <COND (<G? <SET N <+ .N 1>> .L><RETURN .N>)> >
8997        <REPEAT ((N 1) (L1 <LENGTH .LIST>))
8998            <PRINC <ASCII <.N .LIST>> .CHN>
8999            <COND (<G? <SET N <+ .N 1>> .L1>
9000                   <RETURN "DONE">)> >>
9001
9002 Comments:
9003
9004 1.  `LIST` is only temporarily necessary. It is just created and then
9005     thrown away.
9006 2.  Worse, the construct `(!.LIST !<TRANS ...>)` **copies** the
9007     previous elements of `LIST` every time it is executed!
9008 3.  Indexing down the elements of `LIST` as in `<.N .LIST>` takes a
9009     long time, if the `LIST` is long. `<3 ...>` or `<4 ...>` is not
9010     worth worrying about, but `<10 ...>` is, and `<100 ...>` takes
9011     quite a while. Even if the indexing were not phased out, the
9012     compiler would be happier with `<NTH .LIST .N>`.
9013 4.  The variable `CHN` is unnecessary if `OUTCHAN` is bound to the
9014     argument `CHANNEL`.
9015 5.  It is tasteful to call `ERROR` in the same way that F/SUBRs do.
9016     This includes using an `ATOM` from the `ERRORS` `OBLIST` (if one
9017     is appropriate) to tell what is wrong, and it includes identifying
9018     yourself.
9019
9020 So, do it this way:
9021
9022     <DEFINE PLOTVDSK (X Y OUTCHAN)
9023     #DECL ((OUTCHAN <SPECIAL CHANNEL>)
9024     <COND (<NOT <==? <LENGTH .X> <LENGTH .Y>>>
9025             <ERROR VECTOR-LENGTHS-DIFFER!-ERRORS PLOTVDSK>)>
9026     <PRINC <ASCII 29>>
9027     <REPEAT ()
9028             <COND (<EMPTY? .X> <RETURN "DONE">)>
9029             <REPEAT ((OL <TRANS <1 .X> <1 .Y>>))
9030                     <PRINC <ASCII <1 .OL>>>
9031                     <COND (<EMPTY? <SET OL <REST .OL>>>
9032                            <RETURN>)>>
9033             <SET X <REST .X>>
9034             <SET Y <REST .Y>>>>
9035
9036 Of course, if you know how long is the `LIST` that `TRANS` returns,
9037 you can avoid using the inner `REPEAT` loop and have explicit `PRINC`s
9038 for each element. This can be done even better by using `MAPF`, as in
9039 the next version, which does exactly the same thing as the previous
9040 one, but uses `MAPF` to do the `REST`ing and the end conditional:
9041
9042     <DEFINE PLOTVDSK (X Y OUTCHAN)
9043     #DECL ((OUTCHAN <SPECIAL CHANNEL>)
9044     <COND (<NOT <==? <LENGTH .X> <LENGTH .Y>>>
9045             <ERROR VECTOR-LENGTHS-DIFFER!-ERRORS PLOTVDSK>)>
9046     <PRINC <ASCII 29>> <MAPF <>
9047           #FUNCTION ((XE YE)
9048                     <MAPF <> #FUNCTION ((T) <PRINC <ASCII .T>>) <TRANS
9049     .XE .YE>>)
9050           .X
9051           .Y>
9052     "DONE">
9053
9054 24.2. Creating a LIST in Forward Order
9055 --------------------------------------
9056
9057 If you must create the elements of a `LIST` in sequence from first to
9058 last, you can avoid copying earlier ones when adding a later one to
9059 the end. One way is to use `MAPF` or `MAPR` with a first argument of
9060 `,LIST`: the elements are put on the control stack rather than in free
9061 storage, until the final call to `LIST`. If you know how many elements
9062 there will be, you can put them on the control stack yourself, in a
9063 `TUPLE` built for that purpose. Another way is used when `REPEAT` is
9064 necessary:
9065
9066     <REPEAT ((FIRST (T)) (LAST .FIRST) ...)
9067             #DECL ((VALUE FIRST LAST) LIST ...)
9068             ...
9069             <SET LAST <REST <PUTREST .LAST (.NEW)>>>
9070             ...
9071             <RETURN <REST .FIRST>>>
9072             ...>
9073
9074 Here, `.LAST` always points to the current last element of the `LIST`.
9075 Because of the order of evaluation, the `<SET LAST ...>` could also be
9076 written `<PUTREST .LAST (SET LAST (.NEW)>>`.
9077
9078 24.3. Read-only Free Variables
9079 ------------------------------
9080
9081 If a Function uses the value of a free variable
9082 (`<GVAL unmanifest:atom>` or `<LVAL special:atom>`) without changing
9083 it, the compiled version may be more efficient if the value is
9084 assigned to a dummy `UNSPECIAL` `ATOM` in the Function's `"AUX"` list.
9085 This is true because an `UNSPECIAL` `ATOM` gets compiled into a slot
9086 on the control stack, which is accessible very quickly. The tradeoff
9087 is probably worthwhile if a *special* is referenced more than once, or
9088 if an *unmanifest* is referenced more than twice. Example:
9089
9090     <DEFINE MAP-LOOKUP (THINGS "AUX" (DB ,DATA-BASE))
9091             #DECL ((VALUE) VECTOR (THINGS DB) <UNSPECIAL <PRIMTYPE LIST>>)
9092             <MAPF ,VECTOR <FUNCTION (T) <MEMQ .T .DB>> .THINGS>>
9093
9094 24.4. Global and Local Values
9095 -----------------------------
9096
9097 In the interpreter the sequence `,X .X ,X .X` is slower than
9098 `,X ,X .X .X` because of interference between the `GVAL` and `LVAL`
9099 mechanisms (appendix 1). Thus it is not good to use both the `GVAL`
9100 and `LVAL` of the same `ATOM` frequently, unless references to the
9101 `LVAL` will be compiled away (made into control stack references).
9102
9103 24.5. Making Offsets for Arrays
9104 -------------------------------
9105
9106 It is often the case that you want to attach some meaning to each
9107 element of an array and access it independently of other elements.
9108 Firstly, it is a good idea to use names (`ATOM`s) rather than integers
9109 (`FIX`es or even `OFFSET`s) for offsets into the array, to make future
9110 changes easier. Secondly, it is a good idea to use the `GVAL`s of the
9111 name `ATOM`s to remember the actual `FIX`es, so that the `ATOM`s can
9112 be `MANIFEST` for the compiler's benefit. Thirdly, to establish the
9113 `GVAL`s, both the interpreter and the compiler will be happier with
9114 `<SETG name offset>` rather than
9115 `<DEFINE name ("TUPLE" T) <offset !.T>>`.
9116
9117 24.6. Tables
9118 ------------
9119
9120 There are several ways in Muddle to store a table, that is, a
9121 collection of (names and) values that will be searched.
9122 Unsurprisingly, choosing the best way is often dictated by the size of
9123 the table and/or the nature of the (names and) values.
9124
9125 For a small table, the names and values can be put in (separate)
9126 structures -- the choice of `LIST` or array being determined by
9127 volatility and limitability -- which are searched using `MEMQ` or
9128 `MEMBER`. This method is very space-efficient. If the table gets
9129 larger, and if the elements are completely orderable, a (uniform)
9130 vector can be used, kept sorted, and searched with a binary search.
9131
9132 For a large table, where reasonably efficient searches are required, a
9133 hashing scheme is probably best. Two methods are available in Muddle:
9134 associations and `OBLIST`s.
9135
9136 In the first method, `PUTPROP` and `GETPROP` are used, which are very
9137 fast. The number of hashing buckets is fixed. Duplicates are
9138 eliminated by `==?` testing. If it is necessary to use `=?` testing,
9139 or to find all the entries in the table, you can duplicate the table
9140 in a `LIST` or array, to be used only for those purposes.
9141
9142 In the second method, `INSERT` and `LOOKUP` on a specially-built
9143 `OBLIST` are used. (If the names are not `STRING`s, they can be
9144 converted to `STRING`s using `UNPARSE`, which takes a little time.)
9145 The number of hashing buckets can be chosen for best efficiency.
9146 Duplicates are eliminated by `=?` testing. MAPF/R can be used to find
9147 all the entries in the table.
9148
9149 24.7. Nesting
9150 -------------
9151
9152 The beauty of deeply-nested control structures in a single `FUNCTION`
9153 is definitely in the eye of the beholder. (`PPRINT`, a preloaded
9154 `RSUBR`, finds them trying. However, the compiler often produces
9155 better code from them.) **If** you don't like excessive nesting, then
9156 you will agree that
9157
9158     <SET X ...>
9159     <COND (<0? .X> ...) ...>
9160
9161 looks better than
9162
9163     <COND (<0? <SET X ...>> ...) ...>
9164
9165 and that
9166
9167     <REPEAT ...
9168             <COND ...
9169                   (... <RETURN ...>)>
9170             ...
9171             ...>
9172
9173 looks better than
9174
9175     <REPEAT ...
9176             <COND ...
9177                   (... <RETURN ...>)
9178                   (ELSE ...)>
9179             ...>
9180
9181 You can see the nature of the choices. Nesting is still and all better
9182 than `GO`.
9183
9184 Appendix 1. A Look Inside
9185 =========================
9186
9187 This appendix tells about the mapping between Muddle objects and
9188 PDP-10 storage -- in other words, the way things look "on the inside".
9189 None of this information is essential to knowing how to program in
9190 Muddle, but it does give some reasons for capabilities and
9191 restrictions that otherwise you have to memorize. The notation and
9192 terminology get a little awkward in this discussion, because we are in
9193 a twilight zone between the worlds of Muddle objects and of bit
9194 patterns. In general the words and phrases appearing in diagrams refer
9195 to bit patterns not Muddle objects. A lower-case word (like "tuple")
9196 refers to the storage occupied by an object of the corresponding
9197 `PRIMTYPE` (like `TUPLE`).
9198
9199 First some terminology needs discussion. The sine qua non of any
9200 Muddle object is a **pair** of 36-bit computer words. In general,
9201 lists consist of pairs chained together by pointers (addresses), and
9202 vectors consist of contiguous blocks of pairs. `==?` essentially tests
9203 two pairs to see whether they contain the same bit patterns.
9204
9205 The first (lower-addressed) word of a pair is called the **`TYPE`
9206 word**, because it contains a numeric **`TYPE` code** that represents
9207 the object's `TYPE`. The second (higher-addressed) word of a pair is
9208 called the **value word**, because it contains (part of or the
9209 beginning of) the "data part" of the object. The `TYPE` word (and
9210 sometimes the value word) is considered to be made of a left half and
9211 a right half. We will picture a pair like this:
9212
9213     ---------------------------------
9214     |      TYPE     |               |
9215     | - - - - - - - - - - - - - - - |
9216     |             value             |
9217     ---------------------------------
9218
9219 where a vertical bar in the middle of a word means the word's halves
9220 are used independently. You can see that the `TYPE` code is confined
9221 to the left half of the `TYPE` word. (Half-)words are sometimes
9222 subdivided into **fields** appropriate for the context; fields are
9223 also pictured as separated by vertical bars. The right half of the
9224 `TYPE` word is used for different purposes depending on the `TYPE` of
9225 the object and actual location of the value.
9226
9227 Actually the 18-bit `TYPE` field is further decoded. The high-order
9228 (leftmost) bit is the mark bit, used exclusively by the garbage
9229 collector when it runs. The next two bits are monitor bits, used to
9230 cause `"READ"` and `"WRITE"` interrupts on read and write references
9231 to the pair. The next bit is used to differentiate between list
9232 elements and vector dope words. The next bit is unused but could be
9233 used in the future for an "execute" monitor. The remaining 13 bits
9234 specify the actual `TYPE` code. What `CHTYPE` does is to copy the pair
9235 and put a new `TYPE` code into the new pair.
9236
9237 Each data `TYPE` (predefined and `NEWTYPE`s) must belong to one of
9238 about 25 "storage allocation classes" (roughly corresponding to Muddle
9239 `PRIMTYPE`s). These classes are characterized primarily by the manner
9240 in which the garbage collector treats them. Some of these classes will
9241 now be described.
9242
9243 "One Word"
9244
9245 This class includes all data that are not pointers to some kind of
9246 structure. All external (program-available) `TYPE`s in this class are
9247 of `PRIMTYPE` `WORD`. Example:
9248
9249     ---------------------------------
9250     |       FIX     |       0       |
9251     | - - - - - - - - - - - - - - - |
9252     |              105              |
9253     ---------------------------------
9254
9255 "Two Word"
9256
9257 The members of this class are all 18-bit pointers to list elements.
9258 All external `TYPE`s in this class are of `PRIMTYPE` `LIST`. Example:
9259
9260     ---------------------------------
9261     |      LIST     |       0       |
9262     | - - - - - - - - - - - - - - - |
9263     |       0       |    pointer    |
9264     ---------------------------------
9265
9266 where `pointer` is a pointer to the first list element. If there are
9267 no elements, `pointer` is zero; thus empty objects of `PRIMTYPE`
9268 `LIST` are `==?` if their `TYPE`s are the same.
9269
9270 "Two N Word"
9271
9272 Members of this class are all "counting pointers" to blocks of
9273 two-word pairs. The right half of a counting pointer is an address,
9274 and the left half is the negative of the number of 36-bit words in the
9275 block. (This format is tailored to the PDP-10 `AOBJN` instruction.)
9276 The number of pairs in the block (`LENGTH`) is half that number, since
9277 each pair is two words. All external `TYPE`s in this class are of
9278 `PRIMTYPE` `VECTOR`. Example:
9279
9280     ---------------------------------
9281     |     VECTOR    |       0       |
9282     | - - - - - - - - - - - - - - - |
9283     |   -2*length   |    pointer    |
9284     ---------------------------------
9285
9286 where `length` is the `LENGTH` of the `VECTOR` and `pointer` is the
9287 location of the start (the element selected by an `NTH` argument of 1)
9288 of the `VECTOR`.
9289
9290 "N word"
9291
9292 This class is the same as the previous one, except that the block
9293 contains objects all of the same `TYPE` without individual `TYPE`
9294 words. The `TYPE` code for all the elements is in vector dope words,
9295 which are at addresses just larger than the block itself. Thus, any
9296 object that carries information in its `TYPE` word cannot go into the
9297 block: `PRIMTYPE`s `STRING`, `BYTES`, `TUPLE` (and the corresponding
9298 locatives `LOCS`, `LOCB`, `LOCA`), `FRAME`, and `LOCD`. All external
9299 `TYPE`s in this class are of `PRIMTYPE` `UVECTOR`. Example:
9300
9301     ---------------------------------
9302     |    UVECTOR    |       0       |
9303     | - - - - - - - - - - - - - - - |
9304     |    -length    |    pointer    |
9305     ---------------------------------
9306
9307 where `length` is the `LENGTH` of the `UVECTOR` and `pointer` points
9308 to the beginning of the `UVECTOR`.
9309
9310 "Byte String" and "Character String"
9311
9312 These two classes are almost identical. Byte strings are byte pointers
9313 to strings of arbitrary-size bytes. `PRIMTYPE` `BYTES` is the only
9314 member of this class. Character strings are byte pointers to strings
9315 of ASCII characters. `PRIMTYPE` `STRING` is the only member of this
9316 class. Both of these classes consist of a length and a PDP-10 byte
9317 pointer. In the case of character strings, the byte-size field in the
9318 byte pointer is always seven bits per byte (hence five bytes per
9319 word). Example:
9320
9321     ---------------------------------
9322     |     STRING    |    length     |
9323     | - - - - - - - - - - - - - - - |
9324     |         byte-pointer          |
9325     ---------------------------------
9326
9327 where `length` is the `LENGTH` of the `STRING` (in bytes) and
9328 `byte-pointer` points to a byte just before the beginning of the
9329 string (an `ILDB` instruction is needed to get the first byte). A
9330 newly-created `STRING` always has `*010700*` in the left half of
9331 `byte-pointer`. Unless the string was created by `SPNAME`,
9332 `byte-pointer` points to a uvector, where the elements (characters) of
9333 the `STRING` are stored, packed together five to a word.
9334
9335 "Frame"
9336
9337 This class gives the user program a handle on its control and
9338 variable-reference structures. All external `TYPE`s in this class are
9339 of `PRIMTYPE` `FRAME`. Three numbers are needed to designate a frame:
9340 a unique 18-bit identifying number, a pointer to the frame's storage
9341 on a control stack, and a pointer to the `PROCESS` associated with the
9342 frame. Example:
9343
9344     ---------------------------------
9345     |     FRAME     |PROCESS-pointer|
9346     | - - - - - - - - - - - - - - - |
9347     |   unique-id   | frame-pointer |
9348     ---------------------------------
9349
9350 where `PROCESS-pointer` points to the dope words of a `PROCESS`
9351 vector, and `unique-id` is used for validating (testing `LEGAL?`) the
9352 `frame-pointer`, which points to a frame for some Subroutine call on
9353 the control stack.
9354
9355 "Tuple"
9356
9357 A tuple pointer is a counting pointer to a vector on the control
9358 stack. It may be a pointer to the arguments to a Subroutine or a
9359 pointer generated by the `"TUPLE"` declaration in a `FUNCTION`. Like
9360 objects in the previous class, these objects contain a unique
9361 identifying number used for validation. `PRIMTYPE` `TUPLE` is the only
9362 member of this class. Example:
9363
9364     ---------------------------------
9365     |     TUPLE     |   unique-id   |
9366     | - - - - - - - - - - - - - - - |
9367     |   -2*length   |    pointer    |
9368     ---------------------------------
9369
9370 Other Storage Classes
9371
9372 The rest of the storage classes include strictly internal `TYPE`s and
9373 pointers to special kinds of lists and vectors like locatives, `ATOM`s
9374 and `ASOC`s. A pair for any `LOCATIVE` except a `LOCD` looks like a
9375 pair for the corresponding structure, except of course that the `TYPE`
9376 is different. A `LOCD` pair looks like a tuple pair and needs a word
9377 and a half for its value; the `unique-id` refers to a binding on the
9378 control stack or to the "global stack" if zero. Thus `LOCD`s are in a
9379 sense "stack objects" and are more restricted than other locatives.
9380
9381 An `OFFSET` is stored with the `INDEX` in the right half of the value
9382 word and the Pattern in the left half. Since the Pattern can be either
9383 an `ATOM` or a `FORM`, the left half actually points to a pair, which
9384 points to the actual Pattern. The Patttern `ANY` is recognized as a
9385 special case: the left-half pointer is zero, and no pair is used.
9386 Thus, if you're making the production version of your program and want
9387 to save some storage, can do something like
9388 `<SETG FOO <PUT-DECL ,FOO ANY>>` for all `OFFSET`s.
9389
9390 Basic Data Structures
9391 ---------------------
9392
9393 Lists
9394
9395 List elements are pairs linked together by the right halves of their
9396 first words. The list is terminated by a zero in the right half of the
9397 last pair. For example the `LIST` `(1 2 3)` would look like this:
9398
9399     -------------
9400     | LIST | 0  |
9401     | - - - - - |   -----------     -----------     -----------
9402     |  0   | ------>| FIX | ------->| FIX | ------->| FIX | 0 |
9403     -------------   | - - - - |     | - - - - |     | - - - - |
9404                     |    1    |     |    2    |     |    3    |
9405                     -----------     -----------     -----------
9406
9407 The use of pointers to tie together elements explains why new elements
9408 can be added easily to a list, how sharing and circularity work, etc.
9409 The links go in only one direction through the list, which is why a
9410 list cannot be `BACK`ed or `TOP`ped: there's no way to find the
9411 `REST`ed elements.
9412
9413 Since some Muddle values require a word and a half for the value in
9414 the pair, they do not fit directly into list elements. This problem is
9415 solved by having "deferred pointers". Instead of putting the datum
9416 directly into the list element, a pointer to another pair is used as
9417 the value with the special internal `TYPE` `DEFER`, and the real datum
9418 is put in the deferred pair. For example the `LIST` `(1 "hello" 3)`
9419 would look like this:
9420
9421     -------------
9422     | LIST | 0  |
9423     | - - - - - |   -----------     -----------     -----------
9424     |  0   | ------>| FIX | ------->|DEFER| ------->| FIX | 0 |
9425     -------------   | - - - - |     | - - - - |     | - - - - |
9426                     |    1    |     |       -----   |    3    |
9427                     -----------     ----------- |   -----------
9428                                                 |
9429                                     ----------- |
9430                                     |STRING| 5|<-
9431                                     | - - - - |
9432                                     |byte-pntr|
9433                                     -----------
9434
9435 Vectors
9436
9437 A vector is a block of contiguous words. More than one pair can point
9438 to the block, possibly at different places in the block; this is how
9439 sharing occurs among vectors. Pointers that are different arise from
9440 `REST` or `GROW`/`BACK` operations. The block is followed by two "dope
9441 words", at addresses just larger than the largest address in the
9442 block. Dope words have the following format:
9443
9444     /                               /
9445     |                               |
9446     |                               |
9447     ---------------------------------
9448     |      type     |      grow     |
9449     | - - - - - - - - - - - - - - - |
9450     |     length    |       gc      |
9451     ---------------------------------
9452
9453 The various fields have the following meanings:
9454
9455 `type` -- The fourth bit from the left (the "vector bit", `40000`
9456 octal) is always one, to distinguish these vector dope words from a
9457 `TYPE`/value pair.
9458
9459 If the high-order bit is zero, then the vector is a `UVECTOR`, and the
9460 remaining bits specify the uniform `TYPE` of the elements. `CHUTYPE`
9461 just puts a new `TYPE` code in this field. Each element is limited to
9462 a one-word value: clearly `PRIMTYPE` `STRING`s and `BYTES`es and stack
9463 objects can't go in uniform vectors.
9464
9465 If the high-order bit is one and the `TYPE` bits are zero, then this
9466 is a regular `VECTOR`.
9467
9468 If the high-order bit is one and the `TYPE` bits are not all zero,
9469 then this is either an `ATOM`, a `PROCESS`, an `ASOC`, or a
9470 `TEMPLATE`. The special internal format of these objects will be
9471 described a little later in this appendix.
9472
9473 `length` -- The high-order bit is the mark bit, used by the garbage
9474 collector. The rest of this field specifies the number of words in the
9475 block, including the dope words. This differs from the length given in
9476 pairs pointing to this vector, since such pairs may be the result of
9477 `REST` operations.
9478
9479 `grow` -- This is actually two nine-bit fields, specifying either
9480 growth or shrinkage at both the high and low ends of the vector. The
9481 fields are usually set only when a stack must be grown or shrunk.
9482
9483 `gc` -- This is used by the garbage collector to specify where this
9484 vector is moving during compaction.
9485
9486 Examples (numbers in octal): the `VECTOR` `[1 "bye" 3]` looks like:
9487
9488     ---------------
9489     | VECTOR |  0 |
9490     | - - - - - - |         -----------------
9491     |   -6   |  ----------->|  FIX  |       |
9492     ---------------         | - - - - - - - |
9493                             |       1       |
9494                             -----------------
9495                             | STRING |  3   |
9496                             | - - - - - - - |
9497                             |  byte pointer |
9498                             -----------------
9499                             |  FIX  |       |
9500                             | - - - - - - - |
9501                             |       3       |
9502                             -----------------
9503                             | 440000 |  0   |
9504                             | - - - - - - - |
9505                             |   10   |      |
9506                             -----------------
9507
9508 The `UVECTOR` `![-1 7 -4!]` looks like:
9509
9510     ---------------
9511     | UVECTOR | 0 |
9512     | - - - - - - |         -----------------
9513     |   -3    | ----------->|       -1      |
9514     ---------------         -----------------
9515                             |        7      |
9516                             -----------------
9517                             |       -4      |
9518                             -----------------
9519                             | 40000+FIX | 0 |
9520                             | - - - - - - - |
9521                             |   5       |   |
9522                             -----------------
9523
9524 Atoms
9525
9526 Internally, atoms are special vector-like objects. An atom contains a
9527 value cell (the first two words of the block, filled in whenever the
9528 global or local value of the `ATOM` is referenced and is not already
9529 there), an `OBLIST` pointer, and a print name (`PNAME`), in the
9530 following format:
9531
9532     ---------------------------------
9533     |      type     |     bindid    |
9534     ---------------------------------
9535     |       pointer-to-value        |
9536     ---------------------------------
9537     |       pointer-to-oblist       |
9538     ---------------------------------
9539     |           print-name          |
9540     /                               /
9541     /                               /
9542     |(ASCII with NUL padding on end)|
9543     ---------------------------------
9544     |      ATOM     |   valid-type  |
9545     | - - - - - - - - - - - - - - - |
9546     |     length    |       gc      |
9547     ---------------------------------
9548
9549 If the type field corresponds to `TYPE` `UNBOUND`, then the `ATOM` is
9550 locally and globally unbound. (This is different from a pair, where
9551 the same `TYPE` `UNBOUND` is used to mean unassigned.) If it
9552 corresponds to `TYPE` `LOCI` (an internal `TYPE`), then the value cell
9553 points either to the global stack, if `bindid` is zero, or to a local
9554 control stack, if `bindid` is non-zero. The `bindid` field is used to
9555 verify whether the local value pointed to by the value cell is valid
9556 in the current environment. The `pointer-to-OBLIST` is either a
9557 counting pointer to an oblist (uvector). a positive offset into the
9558 "transfer vector" (for pure `ATOM`s), or zero, meaning that this
9559 `ATOM` is not on an `OBLIST`. The `valid-type` field tells whether or
9560 not the `ATOM` represents a `TYPE` and if so the code for that `TYPE`:
9561 `grow` values are never needed for atoms.
9562
9563 Associations
9564
9565 Associations are also special vector-like objects. The first six words
9566 of the block contain `TYPE`/value pairs for the `ITEM`, `INDICATOR`
9567 and `AVALUE` of the `ASOC`. The next word contains forward and
9568 backward pointers in the chain for that bucket of the association hash
9569 table. The last word contains forward and backward pointers in the
9570 chain of all the associations.
9571
9572     ---------------------------------
9573     |             ITEM              |
9574     | - - - - - - - - - - - - - - - |
9575     |             pair              |
9576     ---------------------------------
9577     |          INDICATOR            |
9578     | - - - - - - - - - - - - - - - |
9579     |             pair              |
9580     ---------------------------------
9581     |            AVALUE             |
9582     | - - - - - - - - - - - - - - - |
9583     |             pair              |
9584     ---------------------------------
9585     |     bucket-chain-pointers     |
9586     ---------------------------------
9587     |  association-chain-pointers   |
9588     ---------------------------------
9589     |      ASOC     |       0       |
9590     | - - - - - - - - - - - - - - - |
9591     |    12 octal   |       gc      |
9592     ---------------------------------
9593
9594 `PROCESS`es
9595
9596 A `PROCESS` vector looks exactly like a vector of `TYPE`/value pairs.
9597 It is different only in that the garbage collector treats it
9598 differently from a normal vector, and it contains extremely volatile
9599 information when the `PROCESS` is `RUNNING`.
9600
9601 Templates
9602
9603 In a template, the number in the type field (left half or first dope
9604 word) identifies to which "storage allocation class" this `TEMPLATE`
9605 belongs, and it is used to find PDP-10 instructions in internal tables
9606 (frozen uvectors) for performing `LENGTH`, `NTH`, and `PUT` operations
9607 on any object of this `TYPE`. The programs to build these tables are
9608 not part of the interpreter, but the interpreter does know how to use
9609 them properly. The compiler can put these instructions directly in
9610 compiled programs if a `TEMPLATE` is never `REST`ed; otherwise it must
9611 let the interpreter discover the appropriate instruction. The value
9612 word of a template pair contains, not a counting pointer, but the
9613 number of elements that have been `REST`ed off in the left half and a
9614 pointer to the first dope word in the right half.
9615
9616 The Control Stack
9617 -----------------
9618
9619 Accumulators with symbolic names `AB`, `TB`, and `TP` are all pointers
9620 into the `RUNNING` `PROCESS`'s control stack. `AB` ("argument base")
9621 is a pointer to the arguments to the Subroutine now being run. It is
9622 set up by the Subroutine-call mediator, and its old value is always
9623 restored after a mediated Subroutine call returns. `TB` ("temporaries
9624 base") points to the frame for the running Subroutine and also serves
9625 as a stack base pointer. The `TB` pointer is really all that is
9626 necessary to return from a Subroutine -- given a value to return, for
9627 example by `ERRET` -- since the frame specifies the entire state of
9628 the calling routine. `TP` ("temporaries pointer") is the actual stack
9629 pointer and always points to the current top of the control stack.
9630
9631 While we're on the subject of accumulators, we might as well be
9632 complete. Each accumulator contains the value word of a pair, the
9633 corresponding `TYPE` words residing in the `RUNNING` `PROCESS` vector.
9634 When a `PROCESS` is not `RUNNING` (or when the garbage collector is
9635 running), the accumulator contents are stored in the vector, so that
9636 the Objects they point to look like elements of the `PROCESS` and thus
9637 are not garbage-collectible.
9638
9639 Accumulators `A`, `B`, `C`, `D`, `E` and `O` are used almost entirely
9640 as scratch accumulators, and they are not saved or restored across
9641 Subroutine calls. Of course the interrupt machinery always saves these
9642 and all other accumulators. `A` and `B` are used to return a pair as
9643 the value of a Subroutine call. Other than that special feature, they
9644 are just like the other scratch accumulators.
9645
9646 `M` and `R` are used in running `RSUBR`s. `M` is always set up to
9647 point to the start of the `RSUBR`'s code, which is actually just a
9648 uniform vector of instructions. All jumps and other references to the
9649 code use `M` as an index register. This makes the code
9650 location-insensitive, which is necessary because the code uvector will
9651 move around. `R` is set up to point to the vector of objects needed by
9652 the `RSUBR`. This accumulator is necessary because objects in
9653 garbage-collected space can move around, but the pointers to them in
9654 the reference vector are always at the same place relative to its
9655 beginning.
9656
9657 `FRM` is the internal frame pointer, used in compiled code to keep
9658 track of pending Subroutine calls when the control stack is heavily
9659 used. `P` is the internal-stack pointer, used primarily for internal
9660 calls in the interpreter.
9661
9662 One of the nicest features of the Muddle environment is the uniformity
9663 of the calling and returning sequence. All Subroutines -- both
9664 built-in F/SUBRs and compiled `RSUBR(-ENTRY)`s -- are called in
9665 exactly the same way and return the same way. Arguments are always
9666 passed on the control stack and results always end up in the same
9667 accumulators. For efficiency reasons, a lot of internal calls within
9668 the interpreter circumvent the calling sequence. However, all calls
9669 made by the interpreter when running user programs go through the
9670 standard calling sequence.
9671
9672 A Subroutine call is initiated by one of three UUOs (PDP-10
9673 instructions executed by software rather than hardware). `MCALL`
9674 ("Muddle call") is used when the number of arguments is known at
9675 assemble or compile time, and this number is less than 16. `QCALL`
9676 ("quick call") may be used if, in addition, an `RSUBR(-ENTRY)` is
9677 being called that can be called "quickly" by virtue of its having
9678 special information in its reference vector. `ACALL` ("accumulator
9679 call") is used otherwise. The general method of calling a Subroutine
9680 is to `PUSH` (a PDP-10 instruction) pairs representing the arguments
9681 onto the control stack via `TP` and then either (1) `MCALL` or `QCALL`
9682 or (2) put the number of arguments into an accumulator and `ACALL`.
9683 Upon return the object returned by the Subroutine will be in
9684 accumulators `A` and `B`, and the arguments will have been `POP`ped
9685 off the control stack.
9686
9687 The call mediator stores the contents of `P` and `TP` and the address
9688 of the calling instruction in the current frame (pointed to by `TB`).
9689 It also stores Muddle's "binding pointer" to the topmost binding in
9690 the control stack. (The bindings are linked together through the
9691 control stack so that searching through them is more efficient than
9692 looking at every object on the stack.) This frame now specifies the
9693 entire state of the caller when the call occurred. The mediator then
9694 builds a new frame on the control stack and stores a pointer back to
9695 the caller's frame (the current contents of `TB`), a pointer to the
9696 Subroutine being called, and the new contents of `AB`, which is a
9697 counting pointer to the arguments and is computed from the information
9698 in the `MCALL` or `QCALL` instruction or the `ACALL` accumulator. `TB`
9699 is then set up to point to the new frame, and its left half is
9700 incremented by one, making a new `unique-id`. The mediator then
9701 transfers control to the Subroutine.
9702
9703 A control stack frame has seven words as shown:
9704
9705     ---------------------------------
9706     |     ENTRY     |  called-addr  |
9707     ---------------------------------
9708     |   unique-id   |  prev frame   |
9709     ---------------------------------
9710     |       argument pointer        |
9711     ---------------------------------
9712     |    saved binding pointer      |
9713     ---------------------------------
9714     |           saved P             |
9715     ---------------------------------
9716     |           saved TP            |
9717     ---------------------------------
9718     |    saved calling address      |
9719     ---------------------------------
9720
9721 The first three words are set up during the call to the Subroutine.
9722 The rest are filled in when this routine calls another Subroutine. The
9723 left half of `TB` is incremented every time a Subroutine call occurs
9724 and is used as the `unique-id` for the frame, stored in frame and
9725 tuple pairs as mentioned before. Obviously this `id` is not strictly
9726 unique, since each 256K calls it wraps around to zero. The right half
9727 of `TB` is always left pointing one word past the
9728 saved-calling-address word in the frame. `TP` is also left pointing at
9729 that word, since that is the top of the control stack at Subroutine
9730 entry. The arguments to the called Subroutine are below the frame on
9731 the control stack (at lower storage addresses), and the temporaries
9732 for the called Subroutine are above the frame (at higher storage
9733 addresses). These arguments and temporaries are just pairs stored on
9734 the control stack while needed: they are all that remain of
9735 `UNSPECIAL` values in compiled programs.
9736
9737 The following figure shows what the control stack might look like
9738 after several Subroutine calls.
9739
9740     /               /
9741     |               |
9742     -----------------
9743     |               |
9744     |  args for S1  |
9745     |               |
9746     -----------------
9747     | frame for S1  |
9748     ----------------- <--
9749     |               |   |
9750     | temps for S1  |   |
9751     |               |   |
9752     -----------------   |
9753     |               |   |
9754     |  args for S2  |   |
9755     |               |   |
9756     -----------------   |
9757     | frame for S2  | ---
9758     ----------------- <------
9759     |               |       |
9760     | temps for S2  |       |
9761     |               |       |
9762     -----------------       |
9763     |  args for S3  |       |
9764     -----------------       |
9765     | frame for S3  | -------
9766     -----------------
9767     |               |
9768     | temps for S3  |
9769     |               |
9770     |               |
9771     -----------------
9772           (top)
9773
9774 The above figure shows the frames all linked together through the
9775 control stack (the "execution path"), so that it is easy to return to
9776 the caller of a given Subroutine (`ERRET` or `RETRY`).
9777
9778 Subroutine exit is accomplished simply by the call mediator, which
9779 loads the right half of `TB` from the previous frame pointer, restores
9780 the "binding pointer", `P`, and `TP`, and transfers control back to
9781 the instruction following the saved calling address.
9782
9783 Variable Bindings
9784 -----------------
9785
9786 All local `ATOM` values are kept on the control stack of the `PROCESS`
9787 to which they are local. As described before, the atom contains a word
9788 that points to the value on the control stack. The pointer is actually
9789 to a six-word "binding block" on the control stack. Binding blocks
9790 have the following format:
9791
9792     ---------------------------------
9793     | BIND or UBIND |      prev     |
9794     ---------------------------------
9795     |        pointer to ATOM        |
9796     ---------------------------------
9797     |             value             |
9798     | - - - - - - - - - - - - - - - |
9799     |             pair              |
9800     ---------------------------------
9801     |     decl      |   unique-id   |
9802     ---------------------------------
9803     |       previous-binding        |
9804     ---------------------------------
9805
9806 where:
9807
9808 -   `BIND` means this is a binding for a `SPECIAL` `ATOM` (the only
9809     kind used by compiled programs), and `UBIND` means this is a
9810     binding for an `UNSPECIAL` `ATOM` -- for `SPECIAL` checking by the
9811     interpreter;
9812 -   `prev` points to the closest previous binding block for any `ATOM`
9813     (the "access path" -- `UNWIND` objects are also linked in this
9814     chain);
9815 -   `decl` points to a `DECL` associated with this value, for
9816     `SET(LOC)` to check;
9817 -   `unique-id` is used for validation of this block; and
9818 -   `previous-binding` points to the closest previous binding for this
9819     `ATOM` (used in unbinding).
9820
9821 Bindings are generated by an internal subroutine called `SPECBIND`
9822 (name comes from `SPECIAL`). The caller to `SPECBIND` `PUSH`es
9823 consecutive six-word blocks onto the control stack via `TP` before
9824 calling `SPECBIND`. The first word of each block contains the `TYPE`
9825 code for `ATOM` in its left half and all ones in its right half.
9826 `SPECBIND` uses this bit pattern to identify the binding blocks.
9827 `SPECBIND`'s caller also fills in the next three words and leaves the
9828 last two words empty. `SPECBIND` fills in the rest and leaves the
9829 "binding pointer" pointing at the topmost binding on the control
9830 stack. `SPECBIND` also stores a pointer to the current binding in the
9831 value cell of the atom.
9832
9833 Unbinding is accomplished during Subroutine return. When the previous
9834 frame is being restored, the call mediator checks to see if the saved
9835 "binding pointer" and the current one are different; if they are,
9836 `SPECSTORE` is called. `SPECSTORE` runs through the binding blocks,
9837 restoring old value pointers in atoms until the "binding pointer" is
9838 equal to the one saved in the frame.
9839
9840 Obviously variable binding is more complicated than this, because
9841 `ATOM`s can have both local and global values and even different local
9842 values in different `PROCESS`es. The solution to all of these
9843 additional problems lies in the `bindid` field of the atom. Each
9844 `PROCESS` vector also contains a current `bindid`. Whenever an ATOM's
9845 local value is desired, the `RUNNING` `PROCESS`'s `bindid` is checked
9846 against that of the atom: if they are the same, the atom points to the
9847 current value; if not, the current `PROCESS`'s control stack must be
9848 searched to find a binding block for this `ATOM`. This binding scheme
9849 might be called "shallow binding". The searching is facilitated by
9850 having all binding blocks linked together. Accessing global variables
9851 is accomplished in a similar way, using a `VECTOR` that is referred to
9852 as the "global stack". The global stack has only an `ATOM` and a value
9853 slot for each variable, since global values never get rebound.
9854
9855 `EVAL` with respect to a different environment causes some additional
9856 problems. Whenever this kind of `EVAL` is done, a brand new `bindid`
9857 is generated, forcing all current local value cells of atoms to appear
9858 invalid. Local values must now be obtained by searching the control
9859 stack, which is inefficient compared to just pulling them out of the
9860 atoms. (The greatest inefficiency occurs when an `ATOM`'s `LVAL` is
9861 never accessed twice in a row in the same environment.) A special
9862 block is built on the control stack and linked into the binding-block
9863 chain. This block is called a "skip block" or "environment splice",
9864 and it diverts the "access path" to the new environment, causing
9865 searches to become relative to this new environment.