for (menu = parent->list; menu; menu = menu->next)
menu_finalize(menu);
} else if (sym) {
+ /*
+ * Automatic submenu creation. If sym is a symbol and A, B, C,
+ * ... are consecutive items (symbols, menus, ifs, etc.) that
+ * all depend on sym, then the following menu structure is
+ * created:
+ *
+ * sym
+ * +-A
+ * +-B
+ * +-C
+ * ...
+ *
+ * This also works recursively, giving the following structure
+ * if A is a symbol and B depends on A:
+ *
+ * sym
+ * +-A
+ * | +-B
+ * +-C
+ * ...
+ */
+
basedep = parent->prompt ? parent->prompt->visible.expr : NULL;
basedep = expr_trans_compare(basedep, E_UNEQUAL, &symbol_no);
basedep = expr_eliminate_dups(expr_transform(basedep));
+
+ /* Examine consecutive elements after sym */
last_menu = NULL;
for (menu = parent->next; menu; menu = menu->next) {
dep = menu->prompt ? menu->prompt->visible.expr : menu->dep;
if (!expr_contains_symbol(dep, sym))
+ /* No dependency, quit */
break;
if (expr_depends_symbol(dep, sym))
+ /* Absolute dependency, put in submenu */
goto next;
+
+ /*
+ * Also consider it a dependency on sym if our
+ * dependencies contain sym and are a "superset" of
+ * sym's dependencies, e.g. '(sym || Q) && R' when sym
+ * depends on R.
+ *
+ * Note that 'R' might be from an enclosing menu or if,
+ * making this a more common case than it might seem.
+ */
dep = expr_trans_compare(dep, E_UNEQUAL, &symbol_no);
dep = expr_eliminate_dups(expr_transform(dep));
dep2 = expr_copy(basedep);
expr_eliminate_eq(&dep, &dep2);
expr_free(dep);
if (!expr_is_yes(dep2)) {
+ /* Not superset, quit */
expr_free(dep2);
break;
}
+ /* Superset, put in submenu */
expr_free(dep2);
next:
menu_finalize(menu);