return coord(self.i*other, self.j*other)
def __div__(self, other):
return coord(self.i/other, self.j/other)
+ def __mod__(self, other):
+ return coord(self.i % other, self.j % other)
def __rdiv__(self, other):
return coord(self.i/other, self.j/other)
def roundtogrid(self):
return coord(int(round(self.i)), int(round(self.j)))
- def trunctogrid(self):
- return coord(int(round(self.i)), int(round(self.j)))
def distance(self, other=None):
if not other: other = coord(0, 0)
return math.sqrt((self.i - other.i)**2 + (self.j - other.j)**2)
else:
s.j = self.j / abs(self.j)
return s
+ def quadrant(self):
+ return (self / QUADSIZE).roundtogrid()
+ def sector(self):
+ return self.roundtogrid() % QUADSIZE
def scatter(self):
s = coord()
s.i = self.i + randrange(-1, 2)
s.j = self.j + randrange(-1, 2)
return s
- def __hash__(self):
- return hash((x, y))
def __str__(self):
if self.i == None or self.j == None:
return "Nowhere"
def __init__(self, bearing, distance, origin=None):
self.distance = distance
self.bearing = bearing
+ if origin is None:
+ self.origin = cartesian(game.quadrant, game.sector)
+ else:
+ self.origin = origin
# The bearing() code we inherited from FORTRAN is actually computing
# clockface directions!
if self.bearing < 0.0:
else:
return False
def quadrant(self):
- return (self.location / QUADSIZE).roundtogrid()
+ return self.location.quadrant()
def sector(self):
- return coord(int(round(self.location.i)) % QUADSIZE, int(round(self.location.j)) % QUADSIZE)
+ return self.location.sector()
def power(self, warp):
return self.distance*(warp**3)*(game.shldup+1)
def time(self, warp):