1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int cycle_state,
31 unsigned int max_packet,
35 struct xhci_segment *seg;
38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
51 seg->bounce_buf = kzalloc_node(max_packet, flags,
53 if (!seg->bounce_buf) {
54 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 if (cycle_state == 0) {
61 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
77 kfree(seg->bounce_buf);
81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 struct xhci_segment *first)
84 struct xhci_segment *seg;
87 while (seg != first) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(xhci, seg);
92 xhci_segment_free(xhci, first);
96 * Make the prev segment point to the next segment.
98 * Change the last TRB in the prev segment to be a Link TRB which points to the
99 * DMA address of the next segment. The caller needs to set any Link TRB
100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
102 static void xhci_link_segments(struct xhci_segment *prev,
103 struct xhci_segment *next,
104 enum xhci_ring_type type, bool chain_links)
111 if (type != TYPE_EVENT) {
112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 cpu_to_le64(next->dma);
115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 val &= ~TRB_TYPE_BITMASK;
118 val |= TRB_TYPE(TRB_LINK);
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
133 struct xhci_segment *next, *seg;
136 if (!ring || !first || !last)
139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 (ring->type == TYPE_ISOC &&
142 (xhci->quirks & XHCI_AMD_0x96_HOST)));
144 next = ring->enq_seg->next;
145 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 xhci_link_segments(last, next, ring->type, chain_links);
147 ring->num_segs += num_segs;
149 if (ring->enq_seg == ring->last_seg) {
150 if (ring->type != TYPE_EVENT) {
151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 &= ~cpu_to_le32(LINK_TOGGLE);
153 last->trbs[TRBS_PER_SEGMENT-1].link.control
154 |= cpu_to_le32(LINK_TOGGLE);
156 ring->last_seg = last;
159 for (seg = last; seg != ring->last_seg; seg = seg->next)
160 seg->next->num = seg->num + 1;
164 * We need a radix tree for mapping physical addresses of TRBs to which stream
165 * ID they belong to. We need to do this because the host controller won't tell
166 * us which stream ring the TRB came from. We could store the stream ID in an
167 * event data TRB, but that doesn't help us for the cancellation case, since the
168 * endpoint may stop before it reaches that event data TRB.
170 * The radix tree maps the upper portion of the TRB DMA address to a ring
171 * segment that has the same upper portion of DMA addresses. For example, say I
172 * have segments of size 1KB, that are always 1KB aligned. A segment may
173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
175 * pass the radix tree a key to get the right stream ID:
177 * 0x10c90fff >> 10 = 0x43243
178 * 0x10c912c0 >> 10 = 0x43244
179 * 0x10c91400 >> 10 = 0x43245
181 * Obviously, only those TRBs with DMA addresses that are within the segment
182 * will make the radix tree return the stream ID for that ring.
184 * Caveats for the radix tree:
186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
191 * extended systems (where the DMA address can be bigger than 32-bits),
192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 struct xhci_ring *ring,
196 struct xhci_segment *seg,
202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 /* Skip any segments that were already added. */
204 if (radix_tree_lookup(trb_address_map, key))
207 ret = radix_tree_maybe_preload(mem_flags);
210 ret = radix_tree_insert(trb_address_map,
212 radix_tree_preload_end();
216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 struct xhci_segment *seg)
221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 if (radix_tree_lookup(trb_address_map, key))
223 radix_tree_delete(trb_address_map, key);
226 static int xhci_update_stream_segment_mapping(
227 struct radix_tree_root *trb_address_map,
228 struct xhci_ring *ring,
229 struct xhci_segment *first_seg,
230 struct xhci_segment *last_seg,
233 struct xhci_segment *seg;
234 struct xhci_segment *failed_seg;
237 if (WARN_ON_ONCE(trb_address_map == NULL))
242 ret = xhci_insert_segment_mapping(trb_address_map,
243 ring, seg, mem_flags);
249 } while (seg != first_seg);
257 xhci_remove_segment_mapping(trb_address_map, seg);
258 if (seg == failed_seg)
261 } while (seg != first_seg);
266 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
268 struct xhci_segment *seg;
270 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
273 seg = ring->first_seg;
275 xhci_remove_segment_mapping(ring->trb_address_map, seg);
277 } while (seg != ring->first_seg);
280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
282 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283 ring->first_seg, ring->last_seg, mem_flags);
286 /* XXX: Do we need the hcd structure in all these functions? */
287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
292 trace_xhci_ring_free(ring);
294 if (ring->first_seg) {
295 if (ring->type == TYPE_STREAM)
296 xhci_remove_stream_mapping(ring);
297 xhci_free_segments_for_ring(xhci, ring->first_seg);
303 void xhci_initialize_ring_info(struct xhci_ring *ring,
304 unsigned int cycle_state)
306 /* The ring is empty, so the enqueue pointer == dequeue pointer */
307 ring->enqueue = ring->first_seg->trbs;
308 ring->enq_seg = ring->first_seg;
309 ring->dequeue = ring->enqueue;
310 ring->deq_seg = ring->first_seg;
311 /* The ring is initialized to 0. The producer must write 1 to the cycle
312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
313 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315 * New rings are initialized with cycle state equal to 1; if we are
316 * handling ring expansion, set the cycle state equal to the old ring.
318 ring->cycle_state = cycle_state;
321 * Each segment has a link TRB, and leave an extra TRB for SW
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329 struct xhci_segment **first, struct xhci_segment **last,
330 unsigned int num_segs, unsigned int num,
331 unsigned int cycle_state, enum xhci_ring_type type,
332 unsigned int max_packet, gfp_t flags)
334 struct xhci_segment *prev;
337 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
338 chain_links = !!(xhci_link_trb_quirk(xhci) ||
339 (type == TYPE_ISOC &&
340 (xhci->quirks & XHCI_AMD_0x96_HOST)));
342 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
348 while (num < num_segs) {
349 struct xhci_segment *next;
351 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
357 xhci_segment_free(xhci, prev);
362 xhci_link_segments(prev, next, type, chain_links);
367 xhci_link_segments(prev, *first, type, chain_links);
374 * Create a new ring with zero or more segments.
376 * Link each segment together into a ring.
377 * Set the end flag and the cycle toggle bit on the last segment.
378 * See section 4.9.1 and figures 15 and 16.
380 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
381 unsigned int num_segs, unsigned int cycle_state,
382 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
384 struct xhci_ring *ring;
386 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
388 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
392 ring->num_segs = num_segs;
393 ring->bounce_buf_len = max_packet;
394 INIT_LIST_HEAD(&ring->td_list);
399 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
400 &ring->last_seg, num_segs, 0, cycle_state, type,
405 /* Only event ring does not use link TRB */
406 if (type != TYPE_EVENT) {
407 /* See section 4.9.2.1 and 6.4.4.1 */
408 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
409 cpu_to_le32(LINK_TOGGLE);
411 xhci_initialize_ring_info(ring, cycle_state);
412 trace_xhci_ring_alloc(ring);
420 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
421 struct xhci_virt_device *virt_dev,
422 unsigned int ep_index)
424 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
425 virt_dev->eps[ep_index].ring = NULL;
429 * Expand an existing ring.
430 * Allocate a new ring which has same segment numbers and link the two rings.
432 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
433 unsigned int num_new_segs, gfp_t flags)
435 struct xhci_segment *first;
436 struct xhci_segment *last;
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_new_segs, ring->enq_seg->num + 1,
441 ring->cycle_state, ring->type,
442 ring->bounce_buf_len, flags);
446 if (ring->type == TYPE_STREAM)
447 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
448 ring, first, last, flags);
450 struct xhci_segment *next;
453 xhci_segment_free(xhci, first);
461 xhci_link_rings(xhci, ring, first, last, num_new_segs);
462 trace_xhci_ring_expansion(ring);
463 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
464 "ring expansion succeed, now has %d segments",
470 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471 int type, gfp_t flags)
473 struct xhci_container_ctx *ctx;
474 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
479 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
484 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
485 if (type == XHCI_CTX_TYPE_INPUT)
486 ctx->size += CTX_SIZE(xhci->hcc_params);
488 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
496 void xhci_free_container_ctx(struct xhci_hcd *xhci,
497 struct xhci_container_ctx *ctx)
501 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
505 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
506 struct xhci_container_ctx *ctx)
508 if (ctx->type != XHCI_CTX_TYPE_INPUT)
511 return (struct xhci_input_control_ctx *)ctx->bytes;
514 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
515 struct xhci_container_ctx *ctx)
517 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
518 return (struct xhci_slot_ctx *)ctx->bytes;
520 return (struct xhci_slot_ctx *)
521 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
524 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
525 struct xhci_container_ctx *ctx,
526 unsigned int ep_index)
528 /* increment ep index by offset of start of ep ctx array */
530 if (ctx->type == XHCI_CTX_TYPE_INPUT)
533 return (struct xhci_ep_ctx *)
534 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538 /***************** Streams structures manipulation *************************/
540 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
541 unsigned int num_stream_ctxs,
542 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
545 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547 if (size > MEDIUM_STREAM_ARRAY_SIZE)
548 dma_free_coherent(dev, size, stream_ctx, dma);
549 else if (size > SMALL_STREAM_ARRAY_SIZE)
550 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
552 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
556 * The stream context array for each endpoint with bulk streams enabled can
557 * vary in size, based on:
558 * - how many streams the endpoint supports,
559 * - the maximum primary stream array size the host controller supports,
560 * - and how many streams the device driver asks for.
562 * The stream context array must be a power of 2, and can be as small as
563 * 64 bytes or as large as 1MB.
565 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
566 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
570 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
572 if (size > MEDIUM_STREAM_ARRAY_SIZE)
573 return dma_alloc_coherent(dev, size, dma, mem_flags);
574 if (size > SMALL_STREAM_ARRAY_SIZE)
575 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
577 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
580 struct xhci_ring *xhci_dma_to_transfer_ring(
581 struct xhci_virt_ep *ep,
584 if (ep->ep_state & EP_HAS_STREAMS)
585 return radix_tree_lookup(&ep->stream_info->trb_address_map,
586 address >> TRB_SEGMENT_SHIFT);
591 * Change an endpoint's internal structure so it supports stream IDs. The
592 * number of requested streams includes stream 0, which cannot be used by device
595 * The number of stream contexts in the stream context array may be bigger than
596 * the number of streams the driver wants to use. This is because the number of
597 * stream context array entries must be a power of two.
599 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
600 unsigned int num_stream_ctxs,
601 unsigned int num_streams,
602 unsigned int max_packet, gfp_t mem_flags)
604 struct xhci_stream_info *stream_info;
606 struct xhci_ring *cur_ring;
609 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
611 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
612 num_streams, num_stream_ctxs);
613 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
614 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
617 xhci->cmd_ring_reserved_trbs++;
619 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
624 stream_info->num_streams = num_streams;
625 stream_info->num_stream_ctxs = num_stream_ctxs;
627 /* Initialize the array of virtual pointers to stream rings. */
628 stream_info->stream_rings = kcalloc_node(
629 num_streams, sizeof(struct xhci_ring *), mem_flags,
631 if (!stream_info->stream_rings)
634 /* Initialize the array of DMA addresses for stream rings for the HW. */
635 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
636 num_stream_ctxs, &stream_info->ctx_array_dma,
638 if (!stream_info->stream_ctx_array)
639 goto cleanup_ring_array;
641 /* Allocate everything needed to free the stream rings later */
642 stream_info->free_streams_command =
643 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
644 if (!stream_info->free_streams_command)
647 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649 /* Allocate rings for all the streams that the driver will use,
650 * and add their segment DMA addresses to the radix tree.
651 * Stream 0 is reserved.
654 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
655 stream_info->stream_rings[cur_stream] =
656 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
658 cur_ring = stream_info->stream_rings[cur_stream];
661 cur_ring->stream_id = cur_stream;
662 cur_ring->trb_address_map = &stream_info->trb_address_map;
663 /* Set deq ptr, cycle bit, and stream context type */
664 addr = cur_ring->first_seg->dma |
665 SCT_FOR_CTX(SCT_PRI_TR) |
666 cur_ring->cycle_state;
667 stream_info->stream_ctx_array[cur_stream].stream_ring =
669 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
671 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
673 xhci_ring_free(xhci, cur_ring);
674 stream_info->stream_rings[cur_stream] = NULL;
678 /* Leave the other unused stream ring pointers in the stream context
679 * array initialized to zero. This will cause the xHC to give us an
680 * error if the device asks for a stream ID we don't have setup (if it
681 * was any other way, the host controller would assume the ring is
682 * "empty" and wait forever for data to be queued to that stream ID).
688 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
689 cur_ring = stream_info->stream_rings[cur_stream];
691 xhci_ring_free(xhci, cur_ring);
692 stream_info->stream_rings[cur_stream] = NULL;
695 xhci_free_command(xhci, stream_info->free_streams_command);
697 xhci_free_stream_ctx(xhci,
698 stream_info->num_stream_ctxs,
699 stream_info->stream_ctx_array,
700 stream_info->ctx_array_dma);
702 kfree(stream_info->stream_rings);
706 xhci->cmd_ring_reserved_trbs--;
710 * Sets the MaxPStreams field and the Linear Stream Array field.
711 * Sets the dequeue pointer to the stream context array.
713 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
714 struct xhci_ep_ctx *ep_ctx,
715 struct xhci_stream_info *stream_info)
717 u32 max_primary_streams;
718 /* MaxPStreams is the number of stream context array entries, not the
719 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
720 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
723 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
724 "Setting number of stream ctx array entries to %u",
725 1 << (max_primary_streams + 1));
726 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
727 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
729 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
733 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
734 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
735 * not at the beginning of the ring).
737 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
738 struct xhci_virt_ep *ep)
741 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
742 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
743 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
746 /* Frees all stream contexts associated with the endpoint,
748 * Caller should fix the endpoint context streams fields.
750 void xhci_free_stream_info(struct xhci_hcd *xhci,
751 struct xhci_stream_info *stream_info)
754 struct xhci_ring *cur_ring;
759 for (cur_stream = 1; cur_stream < stream_info->num_streams;
761 cur_ring = stream_info->stream_rings[cur_stream];
763 xhci_ring_free(xhci, cur_ring);
764 stream_info->stream_rings[cur_stream] = NULL;
767 xhci_free_command(xhci, stream_info->free_streams_command);
768 xhci->cmd_ring_reserved_trbs--;
769 if (stream_info->stream_ctx_array)
770 xhci_free_stream_ctx(xhci,
771 stream_info->num_stream_ctxs,
772 stream_info->stream_ctx_array,
773 stream_info->ctx_array_dma);
775 kfree(stream_info->stream_rings);
780 /***************** Device context manipulation *************************/
782 static void xhci_free_tt_info(struct xhci_hcd *xhci,
783 struct xhci_virt_device *virt_dev,
786 struct list_head *tt_list_head;
787 struct xhci_tt_bw_info *tt_info, *next;
788 bool slot_found = false;
790 /* If the device never made it past the Set Address stage,
791 * it may not have the real_port set correctly.
793 if (virt_dev->real_port == 0 ||
794 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
795 xhci_dbg(xhci, "Bad real port.\n");
799 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
800 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
801 /* Multi-TT hubs will have more than one entry */
802 if (tt_info->slot_id == slot_id) {
804 list_del(&tt_info->tt_list);
806 } else if (slot_found) {
812 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
813 struct xhci_virt_device *virt_dev,
814 struct usb_device *hdev,
815 struct usb_tt *tt, gfp_t mem_flags)
817 struct xhci_tt_bw_info *tt_info;
818 unsigned int num_ports;
820 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
825 num_ports = hdev->maxchild;
827 for (i = 0; i < num_ports; i++, tt_info++) {
828 struct xhci_interval_bw_table *bw_table;
830 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
834 INIT_LIST_HEAD(&tt_info->tt_list);
835 list_add(&tt_info->tt_list,
836 &xhci->rh_bw[virt_dev->real_port - 1].tts);
837 tt_info->slot_id = virt_dev->udev->slot_id;
839 tt_info->ttport = i+1;
840 bw_table = &tt_info->bw_table;
841 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
842 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
847 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
852 /* All the xhci_tds in the ring's TD list should be freed at this point.
853 * Should be called with xhci->lock held if there is any chance the TT lists
854 * will be manipulated by the configure endpoint, allocate device, or update
855 * hub functions while this function is removing the TT entries from the list.
857 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
859 struct xhci_virt_device *dev;
861 int old_active_eps = 0;
863 /* Slot ID 0 is reserved */
864 if (slot_id == 0 || !xhci->devs[slot_id])
867 dev = xhci->devs[slot_id];
869 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
873 trace_xhci_free_virt_device(dev);
876 old_active_eps = dev->tt_info->active_eps;
878 for (i = 0; i < 31; i++) {
879 if (dev->eps[i].ring)
880 xhci_ring_free(xhci, dev->eps[i].ring);
881 if (dev->eps[i].stream_info)
882 xhci_free_stream_info(xhci,
883 dev->eps[i].stream_info);
885 * Endpoints are normally deleted from the bandwidth list when
886 * endpoints are dropped, before device is freed.
887 * If host is dying or being removed then endpoints aren't
888 * dropped cleanly, so delete the endpoint from list here.
889 * Only applicable for hosts with software bandwidth checking.
892 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
893 list_del_init(&dev->eps[i].bw_endpoint_list);
894 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
898 /* If this is a hub, free the TT(s) from the TT list */
899 xhci_free_tt_info(xhci, dev, slot_id);
900 /* If necessary, update the number of active TTs on this root port */
901 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
904 xhci_free_container_ctx(xhci, dev->in_ctx);
906 xhci_free_container_ctx(xhci, dev->out_ctx);
908 if (dev->udev && dev->udev->slot_id)
909 dev->udev->slot_id = 0;
910 kfree(xhci->devs[slot_id]);
911 xhci->devs[slot_id] = NULL;
915 * Free a virt_device structure.
916 * If the virt_device added a tt_info (a hub) and has children pointing to
917 * that tt_info, then free the child first. Recursive.
918 * We can't rely on udev at this point to find child-parent relationships.
920 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
922 struct xhci_virt_device *vdev;
923 struct list_head *tt_list_head;
924 struct xhci_tt_bw_info *tt_info, *next;
927 vdev = xhci->devs[slot_id];
931 if (vdev->real_port == 0 ||
932 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
933 xhci_dbg(xhci, "Bad vdev->real_port.\n");
937 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
938 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
939 /* is this a hub device that added a tt_info to the tts list */
940 if (tt_info->slot_id == slot_id) {
941 /* are any devices using this tt_info? */
942 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
943 vdev = xhci->devs[i];
944 if (vdev && (vdev->tt_info == tt_info))
945 xhci_free_virt_devices_depth_first(
951 /* we are now at a leaf device */
952 xhci_debugfs_remove_slot(xhci, slot_id);
953 xhci_free_virt_device(xhci, slot_id);
956 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
957 struct usb_device *udev, gfp_t flags)
959 struct xhci_virt_device *dev;
962 /* Slot ID 0 is reserved */
963 if (slot_id == 0 || xhci->devs[slot_id]) {
964 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
968 dev = kzalloc(sizeof(*dev), flags);
972 dev->slot_id = slot_id;
974 /* Allocate the (output) device context that will be used in the HC. */
975 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
979 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
981 /* Allocate the (input) device context for address device command */
982 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
986 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
988 /* Initialize the cancellation and bandwidth list for each ep */
989 for (i = 0; i < 31; i++) {
990 dev->eps[i].ep_index = i;
991 dev->eps[i].vdev = dev;
992 dev->eps[i].xhci = xhci;
993 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
994 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
997 /* Allocate endpoint 0 ring */
998 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
999 if (!dev->eps[0].ring)
1004 /* Point to output device context in dcbaa. */
1005 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1006 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008 &xhci->dcbaa->dev_context_ptrs[slot_id],
1009 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011 trace_xhci_alloc_virt_device(dev);
1013 xhci->devs[slot_id] = dev;
1019 xhci_free_container_ctx(xhci, dev->in_ctx);
1021 xhci_free_container_ctx(xhci, dev->out_ctx);
1027 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1028 struct usb_device *udev)
1030 struct xhci_virt_device *virt_dev;
1031 struct xhci_ep_ctx *ep0_ctx;
1032 struct xhci_ring *ep_ring;
1034 virt_dev = xhci->devs[udev->slot_id];
1035 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1036 ep_ring = virt_dev->eps[0].ring;
1038 * FIXME we don't keep track of the dequeue pointer very well after a
1039 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1040 * host to our enqueue pointer. This should only be called after a
1041 * configured device has reset, so all control transfers should have
1042 * been completed or cancelled before the reset.
1044 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046 | ep_ring->cycle_state);
1050 * The xHCI roothub may have ports of differing speeds in any order in the port
1053 * The xHCI hardware wants to know the roothub port number that the USB device
1054 * is attached to (or the roothub port its ancestor hub is attached to). All we
1055 * know is the index of that port under either the USB 2.0 or the USB 3.0
1056 * roothub, but that doesn't give us the real index into the HW port status
1057 * registers. Call xhci_find_raw_port_number() to get real index.
1059 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1060 struct usb_device *udev)
1062 struct usb_device *top_dev;
1063 struct usb_hcd *hcd;
1065 if (udev->speed >= USB_SPEED_SUPER)
1066 hcd = xhci_get_usb3_hcd(xhci);
1068 hcd = xhci->main_hcd;
1070 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1071 top_dev = top_dev->parent)
1072 /* Found device below root hub */;
1074 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1077 /* Setup an xHCI virtual device for a Set Address command */
1078 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080 struct xhci_virt_device *dev;
1081 struct xhci_ep_ctx *ep0_ctx;
1082 struct xhci_slot_ctx *slot_ctx;
1085 struct usb_device *top_dev;
1087 dev = xhci->devs[udev->slot_id];
1088 /* Slot ID 0 is reserved */
1089 if (udev->slot_id == 0 || !dev) {
1090 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1094 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1095 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097 /* 3) Only the control endpoint is valid - one endpoint context */
1098 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1099 switch (udev->speed) {
1100 case USB_SPEED_SUPER_PLUS:
1101 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1102 max_packets = MAX_PACKET(512);
1104 case USB_SPEED_SUPER:
1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1106 max_packets = MAX_PACKET(512);
1108 case USB_SPEED_HIGH:
1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1110 max_packets = MAX_PACKET(64);
1112 /* USB core guesses at a 64-byte max packet first for FS devices */
1113 case USB_SPEED_FULL:
1114 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1115 max_packets = MAX_PACKET(64);
1118 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1119 max_packets = MAX_PACKET(8);
1122 /* Speed was set earlier, this shouldn't happen. */
1125 /* Find the root hub port this device is under */
1126 port_num = xhci_find_real_port_number(xhci, udev);
1129 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1130 /* Set the port number in the virtual_device to the faked port number */
1131 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1132 top_dev = top_dev->parent)
1133 /* Found device below root hub */;
1134 dev->fake_port = top_dev->portnum;
1135 dev->real_port = port_num;
1136 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1137 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139 /* Find the right bandwidth table that this device will be a part of.
1140 * If this is a full speed device attached directly to a root port (or a
1141 * decendent of one), it counts as a primary bandwidth domain, not a
1142 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1143 * will never be created for the HS root hub.
1145 if (!udev->tt || !udev->tt->hub->parent) {
1146 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148 struct xhci_root_port_bw_info *rh_bw;
1149 struct xhci_tt_bw_info *tt_bw;
1151 rh_bw = &xhci->rh_bw[port_num - 1];
1152 /* Find the right TT. */
1153 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1154 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1157 if (!dev->udev->tt->multi ||
1159 tt_bw->ttport == dev->udev->ttport)) {
1160 dev->bw_table = &tt_bw->bw_table;
1161 dev->tt_info = tt_bw;
1166 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1169 /* Is this a LS/FS device under an external HS hub? */
1170 if (udev->tt && udev->tt->hub->parent) {
1171 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1172 (udev->ttport << 8));
1173 if (udev->tt->multi)
1174 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1177 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179 /* Step 4 - ring already allocated */
1181 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1184 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1187 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1188 dev->eps[0].ring->cycle_state);
1190 trace_xhci_setup_addressable_virt_device(dev);
1192 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1198 * Convert interval expressed as 2^(bInterval - 1) == interval into
1199 * straight exponent value 2^n == interval.
1202 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1203 struct usb_host_endpoint *ep)
1205 unsigned int interval;
1207 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1208 if (interval != ep->desc.bInterval - 1)
1209 dev_warn(&udev->dev,
1210 "ep %#x - rounding interval to %d %sframes\n",
1211 ep->desc.bEndpointAddress,
1213 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215 if (udev->speed == USB_SPEED_FULL) {
1217 * Full speed isoc endpoints specify interval in frames,
1218 * not microframes. We are using microframes everywhere,
1219 * so adjust accordingly.
1221 interval += 3; /* 1 frame = 2^3 uframes */
1228 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1229 * microframes, rounded down to nearest power of 2.
1231 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1232 struct usb_host_endpoint *ep, unsigned int desc_interval,
1233 unsigned int min_exponent, unsigned int max_exponent)
1235 unsigned int interval;
1237 interval = fls(desc_interval) - 1;
1238 interval = clamp_val(interval, min_exponent, max_exponent);
1239 if ((1 << interval) != desc_interval)
1241 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1242 ep->desc.bEndpointAddress,
1249 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1250 struct usb_host_endpoint *ep)
1252 if (ep->desc.bInterval == 0)
1254 return xhci_microframes_to_exponent(udev, ep,
1255 ep->desc.bInterval, 0, 15);
1259 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1260 struct usb_host_endpoint *ep)
1262 return xhci_microframes_to_exponent(udev, ep,
1263 ep->desc.bInterval * 8, 3, 10);
1266 /* Return the polling or NAK interval.
1268 * The polling interval is expressed in "microframes". If xHCI's Interval field
1269 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1274 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1275 struct usb_host_endpoint *ep)
1277 unsigned int interval = 0;
1279 switch (udev->speed) {
1280 case USB_SPEED_HIGH:
1282 if (usb_endpoint_xfer_control(&ep->desc) ||
1283 usb_endpoint_xfer_bulk(&ep->desc)) {
1284 interval = xhci_parse_microframe_interval(udev, ep);
1287 fallthrough; /* SS and HS isoc/int have same decoding */
1289 case USB_SPEED_SUPER_PLUS:
1290 case USB_SPEED_SUPER:
1291 if (usb_endpoint_xfer_int(&ep->desc) ||
1292 usb_endpoint_xfer_isoc(&ep->desc)) {
1293 interval = xhci_parse_exponent_interval(udev, ep);
1297 case USB_SPEED_FULL:
1298 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1299 interval = xhci_parse_exponent_interval(udev, ep);
1303 * Fall through for interrupt endpoint interval decoding
1304 * since it uses the same rules as low speed interrupt
1310 if (usb_endpoint_xfer_int(&ep->desc) ||
1311 usb_endpoint_xfer_isoc(&ep->desc)) {
1313 interval = xhci_parse_frame_interval(udev, ep);
1323 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1324 * High speed endpoint descriptors can define "the number of additional
1325 * transaction opportunities per microframe", but that goes in the Max Burst
1326 * endpoint context field.
1328 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1329 struct usb_host_endpoint *ep)
1331 if (udev->speed < USB_SPEED_SUPER ||
1332 !usb_endpoint_xfer_isoc(&ep->desc))
1334 return ep->ss_ep_comp.bmAttributes;
1337 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1338 struct usb_host_endpoint *ep)
1340 /* Super speed and Plus have max burst in ep companion desc */
1341 if (udev->speed >= USB_SPEED_SUPER)
1342 return ep->ss_ep_comp.bMaxBurst;
1344 if (udev->speed == USB_SPEED_HIGH &&
1345 (usb_endpoint_xfer_isoc(&ep->desc) ||
1346 usb_endpoint_xfer_int(&ep->desc)))
1347 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1352 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1356 in = usb_endpoint_dir_in(&ep->desc);
1358 switch (usb_endpoint_type(&ep->desc)) {
1359 case USB_ENDPOINT_XFER_CONTROL:
1361 case USB_ENDPOINT_XFER_BULK:
1362 return in ? BULK_IN_EP : BULK_OUT_EP;
1363 case USB_ENDPOINT_XFER_ISOC:
1364 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1365 case USB_ENDPOINT_XFER_INT:
1366 return in ? INT_IN_EP : INT_OUT_EP;
1371 /* Return the maximum endpoint service interval time (ESIT) payload.
1372 * Basically, this is the maxpacket size, multiplied by the burst size
1375 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1376 struct usb_host_endpoint *ep)
1381 /* Only applies for interrupt or isochronous endpoints */
1382 if (usb_endpoint_xfer_control(&ep->desc) ||
1383 usb_endpoint_xfer_bulk(&ep->desc))
1386 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1387 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1388 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1389 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1392 if (udev->speed >= USB_SPEED_SUPER)
1393 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395 max_packet = usb_endpoint_maxp(&ep->desc);
1396 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1397 /* A 0 in max burst means 1 transfer per ESIT */
1398 return max_packet * max_burst;
1401 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1402 * Drivers will have to call usb_alloc_streams() to do that.
1404 int xhci_endpoint_init(struct xhci_hcd *xhci,
1405 struct xhci_virt_device *virt_dev,
1406 struct usb_device *udev,
1407 struct usb_host_endpoint *ep,
1410 unsigned int ep_index;
1411 struct xhci_ep_ctx *ep_ctx;
1412 struct xhci_ring *ep_ring;
1413 unsigned int max_packet;
1414 enum xhci_ring_type ring_type;
1415 u32 max_esit_payload;
1417 unsigned int max_burst;
1418 unsigned int interval;
1420 unsigned int avg_trb_len;
1421 unsigned int err_count = 0;
1423 ep_index = xhci_get_endpoint_index(&ep->desc);
1424 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426 endpoint_type = xhci_get_endpoint_type(ep);
1430 ring_type = usb_endpoint_type(&ep->desc);
1433 * Get values to fill the endpoint context, mostly from ep descriptor.
1434 * The average TRB buffer lengt for bulk endpoints is unclear as we
1435 * have no clue on scatter gather list entry size. For Isoc and Int,
1436 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1439 interval = xhci_get_endpoint_interval(udev, ep);
1441 /* Periodic endpoint bInterval limit quirk */
1442 if (usb_endpoint_xfer_int(&ep->desc) ||
1443 usb_endpoint_xfer_isoc(&ep->desc)) {
1444 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1445 udev->speed >= USB_SPEED_HIGH &&
1451 mult = xhci_get_endpoint_mult(udev, ep);
1452 max_packet = usb_endpoint_maxp(&ep->desc);
1453 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1454 avg_trb_len = max_esit_payload;
1456 /* FIXME dig Mult and streams info out of ep companion desc */
1458 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1459 if (!usb_endpoint_xfer_isoc(&ep->desc))
1461 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1462 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1463 if (udev->speed == USB_SPEED_HIGH)
1465 if (udev->speed == USB_SPEED_FULL) {
1466 max_packet = rounddown_pow_of_two(max_packet);
1467 max_packet = clamp_val(max_packet, 8, 64);
1470 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1471 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1474 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1477 /* Set up the endpoint ring */
1478 virt_dev->eps[ep_index].new_ring =
1479 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1480 if (!virt_dev->eps[ep_index].new_ring)
1483 virt_dev->eps[ep_index].skip = false;
1484 ep_ring = virt_dev->eps[ep_index].new_ring;
1486 /* Fill the endpoint context */
1487 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1488 EP_INTERVAL(interval) |
1490 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1491 MAX_PACKET(max_packet) |
1492 MAX_BURST(max_burst) |
1493 ERROR_COUNT(err_count));
1494 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1495 ep_ring->cycle_state);
1497 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1498 EP_AVG_TRB_LENGTH(avg_trb_len));
1503 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1504 struct xhci_virt_device *virt_dev,
1505 struct usb_host_endpoint *ep)
1507 unsigned int ep_index;
1508 struct xhci_ep_ctx *ep_ctx;
1510 ep_index = xhci_get_endpoint_index(&ep->desc);
1511 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513 ep_ctx->ep_info = 0;
1514 ep_ctx->ep_info2 = 0;
1516 ep_ctx->tx_info = 0;
1517 /* Don't free the endpoint ring until the set interface or configuration
1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524 bw_info->ep_interval = 0;
1526 bw_info->num_packets = 0;
1527 bw_info->max_packet_size = 0;
1529 bw_info->max_esit_payload = 0;
1532 void xhci_update_bw_info(struct xhci_hcd *xhci,
1533 struct xhci_container_ctx *in_ctx,
1534 struct xhci_input_control_ctx *ctrl_ctx,
1535 struct xhci_virt_device *virt_dev)
1537 struct xhci_bw_info *bw_info;
1538 struct xhci_ep_ctx *ep_ctx;
1539 unsigned int ep_type;
1542 for (i = 1; i < 31; i++) {
1543 bw_info = &virt_dev->eps[i].bw_info;
1545 /* We can't tell what endpoint type is being dropped, but
1546 * unconditionally clearing the bandwidth info for non-periodic
1547 * endpoints should be harmless because the info will never be
1548 * set in the first place.
1550 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1551 /* Dropped endpoint */
1552 xhci_clear_endpoint_bw_info(bw_info);
1556 if (EP_IS_ADDED(ctrl_ctx, i)) {
1557 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1558 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560 /* Ignore non-periodic endpoints */
1561 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1562 ep_type != ISOC_IN_EP &&
1563 ep_type != INT_IN_EP)
1566 /* Added or changed endpoint */
1567 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1568 le32_to_cpu(ep_ctx->ep_info));
1569 /* Number of packets and mult are zero-based in the
1570 * input context, but we want one-based for the
1573 bw_info->mult = CTX_TO_EP_MULT(
1574 le32_to_cpu(ep_ctx->ep_info)) + 1;
1575 bw_info->num_packets = CTX_TO_MAX_BURST(
1576 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1577 bw_info->max_packet_size = MAX_PACKET_DECODED(
1578 le32_to_cpu(ep_ctx->ep_info2));
1579 bw_info->type = ep_type;
1580 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1581 le32_to_cpu(ep_ctx->tx_info));
1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1587 * Useful when you want to change one particular aspect of the endpoint and then
1588 * issue a configure endpoint command.
1590 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1591 struct xhci_container_ctx *in_ctx,
1592 struct xhci_container_ctx *out_ctx,
1593 unsigned int ep_index)
1595 struct xhci_ep_ctx *out_ep_ctx;
1596 struct xhci_ep_ctx *in_ep_ctx;
1598 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1602 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1603 in_ep_ctx->deq = out_ep_ctx->deq;
1604 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1605 if (xhci->quirks & XHCI_MTK_HOST) {
1606 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1607 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1611 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command. Only the context entries field matters,
1614 * but we'll copy the whole thing anyway.
1616 void xhci_slot_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx)
1620 struct xhci_slot_ctx *in_slot_ctx;
1621 struct xhci_slot_ctx *out_slot_ctx;
1623 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1632 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1636 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640 "Allocating %d scratchpad buffers", num_sp);
1645 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647 if (!xhci->scratchpad)
1650 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1651 size_mul(sizeof(u64), num_sp),
1652 &xhci->scratchpad->sp_dma, flags);
1653 if (!xhci->scratchpad->sp_array)
1656 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1657 flags, dev_to_node(dev));
1658 if (!xhci->scratchpad->sp_buffers)
1661 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1662 for (i = 0; i < num_sp; i++) {
1664 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1669 xhci->scratchpad->sp_array[i] = dma;
1670 xhci->scratchpad->sp_buffers[i] = buf;
1677 dma_free_coherent(dev, xhci->page_size,
1678 xhci->scratchpad->sp_buffers[i],
1679 xhci->scratchpad->sp_array[i]);
1681 kfree(xhci->scratchpad->sp_buffers);
1684 dma_free_coherent(dev, num_sp * sizeof(u64),
1685 xhci->scratchpad->sp_array,
1686 xhci->scratchpad->sp_dma);
1689 kfree(xhci->scratchpad);
1690 xhci->scratchpad = NULL;
1696 static void scratchpad_free(struct xhci_hcd *xhci)
1700 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702 if (!xhci->scratchpad)
1705 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707 for (i = 0; i < num_sp; i++) {
1708 dma_free_coherent(dev, xhci->page_size,
1709 xhci->scratchpad->sp_buffers[i],
1710 xhci->scratchpad->sp_array[i]);
1712 kfree(xhci->scratchpad->sp_buffers);
1713 dma_free_coherent(dev, num_sp * sizeof(u64),
1714 xhci->scratchpad->sp_array,
1715 xhci->scratchpad->sp_dma);
1716 kfree(xhci->scratchpad);
1717 xhci->scratchpad = NULL;
1720 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1721 bool allocate_completion, gfp_t mem_flags)
1723 struct xhci_command *command;
1724 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1730 if (allocate_completion) {
1731 command->completion =
1732 kzalloc_node(sizeof(struct completion), mem_flags,
1734 if (!command->completion) {
1738 init_completion(command->completion);
1741 command->status = 0;
1742 INIT_LIST_HEAD(&command->cmd_list);
1746 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1747 bool allocate_completion, gfp_t mem_flags)
1749 struct xhci_command *command;
1751 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1757 if (!command->in_ctx) {
1758 kfree(command->completion);
1765 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1770 void xhci_free_command(struct xhci_hcd *xhci,
1771 struct xhci_command *command)
1773 xhci_free_container_ctx(xhci,
1775 kfree(command->completion);
1779 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1780 struct xhci_ring *evt_ring,
1781 struct xhci_erst *erst,
1786 struct xhci_segment *seg;
1787 struct xhci_erst_entry *entry;
1789 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1790 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1791 size, &erst->erst_dma_addr, flags);
1795 erst->num_entries = evt_ring->num_segs;
1797 seg = evt_ring->first_seg;
1798 for (val = 0; val < evt_ring->num_segs; val++) {
1799 entry = &erst->entries[val];
1800 entry->seg_addr = cpu_to_le64(seg->dma);
1801 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1810 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1818 * Clean out interrupter registers except ERSTBA. Clearing either the
1819 * low or high 32 bits of ERSTBA immediately causes the controller to
1820 * dereference the partially cleared 64 bit address, causing IOMMU error.
1823 tmp = readl(&ir->ir_set->erst_size);
1824 tmp &= ERST_SIZE_MASK;
1825 writel(tmp, &ir->ir_set->erst_size);
1827 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1832 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1834 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1841 if (ir->erst.entries)
1842 dma_free_coherent(dev, erst_size,
1844 ir->erst.erst_dma_addr);
1845 ir->erst.entries = NULL;
1847 /* free interrupter event ring */
1849 xhci_ring_free(xhci, ir->event_ring);
1851 ir->event_ring = NULL;
1856 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1858 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1859 int i, j, num_ports;
1861 cancel_delayed_work_sync(&xhci->cmd_timer);
1863 xhci_remove_interrupter(xhci, xhci->interrupter);
1864 xhci_free_interrupter(xhci, xhci->interrupter);
1865 xhci->interrupter = NULL;
1866 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring");
1869 xhci_ring_free(xhci, xhci->cmd_ring);
1870 xhci->cmd_ring = NULL;
1871 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1872 xhci_cleanup_command_queue(xhci);
1874 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1875 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1876 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1877 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1878 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1879 while (!list_empty(ep))
1880 list_del_init(ep->next);
1884 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1885 xhci_free_virt_devices_depth_first(xhci, i);
1887 dma_pool_destroy(xhci->segment_pool);
1888 xhci->segment_pool = NULL;
1889 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1891 dma_pool_destroy(xhci->device_pool);
1892 xhci->device_pool = NULL;
1893 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1895 dma_pool_destroy(xhci->small_streams_pool);
1896 xhci->small_streams_pool = NULL;
1897 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1898 "Freed small stream array pool");
1900 dma_pool_destroy(xhci->medium_streams_pool);
1901 xhci->medium_streams_pool = NULL;
1902 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1903 "Freed medium stream array pool");
1906 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1907 xhci->dcbaa, xhci->dcbaa->dma);
1910 scratchpad_free(xhci);
1915 for (i = 0; i < num_ports; i++) {
1916 struct xhci_tt_bw_info *tt, *n;
1917 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1918 list_del(&tt->tt_list);
1924 xhci->cmd_ring_reserved_trbs = 0;
1925 xhci->usb2_rhub.num_ports = 0;
1926 xhci->usb3_rhub.num_ports = 0;
1927 xhci->num_active_eps = 0;
1928 kfree(xhci->usb2_rhub.ports);
1929 kfree(xhci->usb3_rhub.ports);
1930 kfree(xhci->hw_ports);
1932 kfree(xhci->ext_caps);
1933 for (i = 0; i < xhci->num_port_caps; i++)
1934 kfree(xhci->port_caps[i].psi);
1935 kfree(xhci->port_caps);
1936 xhci->num_port_caps = 0;
1938 xhci->usb2_rhub.ports = NULL;
1939 xhci->usb3_rhub.ports = NULL;
1940 xhci->hw_ports = NULL;
1942 xhci->ext_caps = NULL;
1943 xhci->port_caps = NULL;
1945 xhci->page_size = 0;
1946 xhci->page_shift = 0;
1947 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1948 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1951 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1955 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1956 ir->event_ring->dequeue);
1958 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1959 /* Update HC event ring dequeue pointer */
1960 /* Don't clear the EHB bit (which is RW1C) because
1961 * there might be more events to service.
1963 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1964 "// Write event ring dequeue pointer, preserving EHB bit");
1965 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1968 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1969 __le32 __iomem *addr, int max_caps)
1971 u32 temp, port_offset, port_count;
1973 u8 major_revision, minor_revision, tmp_minor_revision;
1974 struct xhci_hub *rhub;
1975 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1976 struct xhci_port_cap *port_cap;
1979 major_revision = XHCI_EXT_PORT_MAJOR(temp);
1980 minor_revision = XHCI_EXT_PORT_MINOR(temp);
1982 if (major_revision == 0x03) {
1983 rhub = &xhci->usb3_rhub;
1985 * Some hosts incorrectly use sub-minor version for minor
1986 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1987 * for bcdUSB 0x310). Since there is no USB release with sub
1988 * minor version 0x301 to 0x309, we can assume that they are
1989 * incorrect and fix it here.
1991 if (minor_revision > 0x00 && minor_revision < 0x10)
1992 minor_revision <<= 4;
1994 * Some zhaoxin's xHCI controller that follow usb3.1 spec
1995 * but only support Gen1.
1997 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
1998 tmp_minor_revision = minor_revision;
2002 } else if (major_revision <= 0x02) {
2003 rhub = &xhci->usb2_rhub;
2005 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2006 addr, major_revision);
2007 /* Ignoring port protocol we can't understand. FIXME */
2011 /* Port offset and count in the third dword, see section 7.2 */
2012 temp = readl(addr + 2);
2013 port_offset = XHCI_EXT_PORT_OFF(temp);
2014 port_count = XHCI_EXT_PORT_COUNT(temp);
2015 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2016 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2017 addr, port_offset, port_count, major_revision);
2018 /* Port count includes the current port offset */
2019 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2020 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2023 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2024 if (xhci->num_port_caps > max_caps)
2027 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2029 if (port_cap->psi_count) {
2030 port_cap->psi = kcalloc_node(port_cap->psi_count,
2031 sizeof(*port_cap->psi),
2032 GFP_KERNEL, dev_to_node(dev));
2034 port_cap->psi_count = 0;
2036 port_cap->psi_uid_count++;
2037 for (i = 0; i < port_cap->psi_count; i++) {
2038 port_cap->psi[i] = readl(addr + 4 + i);
2040 /* count unique ID values, two consecutive entries can
2041 * have the same ID if link is assymetric
2043 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2044 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2045 port_cap->psi_uid_count++;
2047 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2048 major_revision == 0x03 &&
2049 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2050 minor_revision = tmp_minor_revision;
2052 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2053 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2054 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2055 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2056 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2057 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2058 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2062 rhub->maj_rev = major_revision;
2064 if (rhub->min_rev < minor_revision)
2065 rhub->min_rev = minor_revision;
2067 port_cap->maj_rev = major_revision;
2068 port_cap->min_rev = minor_revision;
2070 /* cache usb2 port capabilities */
2071 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2072 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2074 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2075 (temp & XHCI_HLC)) {
2076 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2077 "xHCI 1.0: support USB2 hardware lpm");
2078 xhci->hw_lpm_support = 1;
2082 for (i = port_offset; i < (port_offset + port_count); i++) {
2083 struct xhci_port *hw_port = &xhci->hw_ports[i];
2084 /* Duplicate entry. Ignore the port if the revisions differ. */
2085 if (hw_port->rhub) {
2086 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2087 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2088 hw_port->rhub->maj_rev, major_revision);
2089 /* Only adjust the roothub port counts if we haven't
2090 * found a similar duplicate.
2092 if (hw_port->rhub != rhub &&
2093 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2094 hw_port->rhub->num_ports--;
2095 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2099 hw_port->rhub = rhub;
2100 hw_port->port_cap = port_cap;
2103 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2106 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2107 struct xhci_hub *rhub, gfp_t flags)
2111 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2113 if (!rhub->num_ports)
2115 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2116 flags, dev_to_node(dev));
2120 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2121 if (xhci->hw_ports[i].rhub != rhub ||
2122 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2124 xhci->hw_ports[i].hcd_portnum = port_index;
2125 rhub->ports[port_index] = &xhci->hw_ports[i];
2127 if (port_index == rhub->num_ports)
2133 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2134 * specify what speeds each port is supposed to be. We can't count on the port
2135 * speed bits in the PORTSC register being correct until a device is connected,
2136 * but we need to set up the two fake roothubs with the correct number of USB
2137 * 3.0 and USB 2.0 ports at host controller initialization time.
2139 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2143 unsigned int num_ports;
2147 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2149 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2151 flags, dev_to_node(dev));
2152 if (!xhci->hw_ports)
2155 for (i = 0; i < num_ports; i++) {
2156 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2158 xhci->hw_ports[i].hw_portnum = i;
2160 init_completion(&xhci->hw_ports[i].rexit_done);
2161 init_completion(&xhci->hw_ports[i].u3exit_done);
2164 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2168 for (i = 0; i < num_ports; i++) {
2169 struct xhci_interval_bw_table *bw_table;
2171 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2172 bw_table = &xhci->rh_bw[i].bw_table;
2173 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2174 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2176 base = &xhci->cap_regs->hc_capbase;
2178 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2180 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2185 /* count extended protocol capability entries for later caching */
2188 offset = xhci_find_next_ext_cap(base, offset,
2189 XHCI_EXT_CAPS_PROTOCOL);
2192 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2193 flags, dev_to_node(dev));
2194 if (!xhci->ext_caps)
2197 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2198 flags, dev_to_node(dev));
2199 if (!xhci->port_caps)
2205 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2206 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2209 offset = xhci_find_next_ext_cap(base, offset,
2210 XHCI_EXT_CAPS_PROTOCOL);
2212 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2213 xhci_warn(xhci, "No ports on the roothubs?\n");
2216 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2217 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2218 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2220 /* Place limits on the number of roothub ports so that the hub
2221 * descriptors aren't longer than the USB core will allocate.
2223 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2224 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2225 "Limiting USB 3.0 roothub ports to %u.",
2227 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2229 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2230 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2231 "Limiting USB 2.0 roothub ports to %u.",
2233 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2236 if (!xhci->usb2_rhub.num_ports)
2237 xhci_info(xhci, "USB2 root hub has no ports\n");
2239 if (!xhci->usb3_rhub.num_ports)
2240 xhci_info(xhci, "USB3 root hub has no ports\n");
2242 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2243 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2248 static struct xhci_interrupter *
2249 xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags)
2251 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252 struct xhci_interrupter *ir;
2253 unsigned int num_segs;
2256 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2260 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2263 ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2265 if (!ir->event_ring) {
2266 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2271 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2273 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2274 xhci_ring_free(xhci, ir->event_ring);
2283 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2284 unsigned int intr_num)
2289 if (intr_num > xhci->max_interrupters) {
2290 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2291 intr_num, xhci->max_interrupters);
2295 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2297 /* set ERST count with the number of entries in the segment table */
2298 erst_size = readl(&ir->ir_set->erst_size);
2299 erst_size &= ERST_SIZE_MASK;
2300 erst_size |= ir->event_ring->num_segs;
2301 writel(erst_size, &ir->ir_set->erst_size);
2303 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2304 erst_base &= ERST_BASE_RSVDP;
2305 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2306 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2308 /* Set the event ring dequeue address of this interrupter */
2309 xhci_set_hc_event_deq(xhci, ir);
2314 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2318 unsigned int val, val2;
2320 u32 page_size, temp;
2323 INIT_LIST_HEAD(&xhci->cmd_list);
2325 /* init command timeout work */
2326 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2327 init_completion(&xhci->cmd_ring_stop_completion);
2329 page_size = readl(&xhci->op_regs->page_size);
2330 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2331 "Supported page size register = 0x%x", page_size);
2334 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335 "Supported page size of %iK", (1 << (i+12)) / 1024);
2337 xhci_warn(xhci, "WARN: no supported page size\n");
2338 /* Use 4K pages, since that's common and the minimum the HC supports */
2339 xhci->page_shift = 12;
2340 xhci->page_size = 1 << xhci->page_shift;
2341 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342 "HCD page size set to %iK", xhci->page_size / 1024);
2345 * Program the Number of Device Slots Enabled field in the CONFIG
2346 * register with the max value of slots the HC can handle.
2348 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2349 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350 "// xHC can handle at most %d device slots.", val);
2351 val2 = readl(&xhci->op_regs->config_reg);
2352 val |= (val2 & ~HCS_SLOTS_MASK);
2353 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2354 "// Setting Max device slots reg = 0x%x.", val);
2355 writel(val, &xhci->op_regs->config_reg);
2358 * xHCI section 5.4.6 - Device Context array must be
2359 * "physically contiguous and 64-byte (cache line) aligned".
2361 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365 xhci->dcbaa->dma = dma;
2366 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367 "// Device context base array address = 0x%pad (DMA), %p (virt)",
2368 &xhci->dcbaa->dma, xhci->dcbaa);
2369 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2372 * Initialize the ring segment pool. The ring must be a contiguous
2373 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2374 * however, the command ring segment needs 64-byte aligned segments
2375 * and our use of dma addresses in the trb_address_map radix tree needs
2376 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2378 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2379 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2380 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2382 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2385 /* See Table 46 and Note on Figure 55 */
2386 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387 2112, 64, xhci->page_size);
2388 if (!xhci->segment_pool || !xhci->device_pool)
2391 /* Linear stream context arrays don't have any boundary restrictions,
2392 * and only need to be 16-byte aligned.
2394 xhci->small_streams_pool =
2395 dma_pool_create("xHCI 256 byte stream ctx arrays",
2396 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397 xhci->medium_streams_pool =
2398 dma_pool_create("xHCI 1KB stream ctx arrays",
2399 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401 * will be allocated with dma_alloc_coherent()
2404 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2407 /* Set up the command ring to have one segments for now. */
2408 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2409 if (!xhci->cmd_ring)
2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 "Allocated command ring at %p", xhci->cmd_ring);
2413 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2414 &xhci->cmd_ring->first_seg->dma);
2416 /* Set the address in the Command Ring Control register */
2417 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420 xhci->cmd_ring->cycle_state;
2421 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422 "// Setting command ring address to 0x%016llx", val_64);
2423 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2425 /* Reserve one command ring TRB for disabling LPM.
2426 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2427 * disabling LPM, we only need to reserve one TRB for all devices.
2429 xhci->cmd_ring_reserved_trbs++;
2431 val = readl(&xhci->cap_regs->db_off);
2433 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2434 "// Doorbell array is located at offset 0x%x from cap regs base addr",
2436 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2438 /* Allocate and set up primary interrupter 0 with an event ring. */
2439 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440 "Allocating primary event ring");
2441 xhci->interrupter = xhci_alloc_interrupter(xhci, flags);
2442 if (!xhci->interrupter)
2445 if (xhci_add_interrupter(xhci, xhci->interrupter, 0))
2448 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2451 * XXX: Might need to set the Interrupter Moderation Register to
2452 * something other than the default (~1ms minimum between interrupts).
2453 * See section 5.5.1.2.
2455 for (i = 0; i < MAX_HC_SLOTS; i++)
2456 xhci->devs[i] = NULL;
2458 if (scratchpad_alloc(xhci, flags))
2460 if (xhci_setup_port_arrays(xhci, flags))
2463 /* Enable USB 3.0 device notifications for function remote wake, which
2464 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2465 * U3 (device suspend).
2467 temp = readl(&xhci->op_regs->dev_notification);
2468 temp &= ~DEV_NOTE_MASK;
2469 temp |= DEV_NOTE_FWAKE;
2470 writel(temp, &xhci->op_regs->dev_notification);
2476 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2477 xhci_mem_cleanup(xhci);