6f33d62331b1fe4f585a5d8b64b9778dc06c3969
[releases.git] / xen-blkfront.c
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62
63 #include <asm/xen/hypervisor.h>
64
65 /*
66  * The minimal size of segment supported by the block framework is PAGE_SIZE.
67  * When Linux is using a different page size than Xen, it may not be possible
68  * to put all the data in a single segment.
69  * This can happen when the backend doesn't support indirect descriptor and
70  * therefore the maximum amount of data that a request can carry is
71  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72  *
73  * Note that we only support one extra request. So the Linux page size
74  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75  * 88KB.
76  */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78
79 enum blkif_state {
80         BLKIF_STATE_DISCONNECTED,
81         BLKIF_STATE_CONNECTED,
82         BLKIF_STATE_SUSPENDED,
83         BLKIF_STATE_ERROR,
84 };
85
86 struct grant {
87         grant_ref_t gref;
88         struct page *page;
89         struct list_head node;
90 };
91
92 enum blk_req_status {
93         REQ_PROCESSING,
94         REQ_WAITING,
95         REQ_DONE,
96         REQ_ERROR,
97         REQ_EOPNOTSUPP,
98 };
99
100 struct blk_shadow {
101         struct blkif_request req;
102         struct request *request;
103         struct grant **grants_used;
104         struct grant **indirect_grants;
105         struct scatterlist *sg;
106         unsigned int num_sg;
107         enum blk_req_status status;
108
109         #define NO_ASSOCIATED_ID ~0UL
110         /*
111          * Id of the sibling if we ever need 2 requests when handling a
112          * block I/O request
113          */
114         unsigned long associated_id;
115 };
116
117 struct blkif_req {
118         blk_status_t    error;
119 };
120
121 static inline struct blkif_req *blkif_req(struct request *rq)
122 {
123         return blk_mq_rq_to_pdu(rq);
124 }
125
126 static DEFINE_MUTEX(blkfront_mutex);
127 static const struct block_device_operations xlvbd_block_fops;
128 static struct delayed_work blkfront_work;
129 static LIST_HEAD(info_list);
130
131 /*
132  * Maximum number of segments in indirect requests, the actual value used by
133  * the frontend driver is the minimum of this value and the value provided
134  * by the backend driver.
135  */
136
137 static unsigned int xen_blkif_max_segments = 32;
138 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
139 MODULE_PARM_DESC(max_indirect_segments,
140                  "Maximum amount of segments in indirect requests (default is 32)");
141
142 static unsigned int xen_blkif_max_queues = 4;
143 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
144 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
145
146 /*
147  * Maximum order of pages to be used for the shared ring between front and
148  * backend, 4KB page granularity is used.
149  */
150 static unsigned int xen_blkif_max_ring_order;
151 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
152 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
153
154 static bool __read_mostly xen_blkif_trusted = true;
155 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
156 MODULE_PARM_DESC(trusted, "Is the backend trusted");
157
158 #define BLK_RING_SIZE(info)     \
159         __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
160
161 /*
162  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
163  * characters are enough. Define to 20 to keep consistent with backend.
164  */
165 #define RINGREF_NAME_LEN (20)
166 /*
167  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
168  */
169 #define QUEUE_NAME_LEN (17)
170
171 /*
172  *  Per-ring info.
173  *  Every blkfront device can associate with one or more blkfront_ring_info,
174  *  depending on how many hardware queues/rings to be used.
175  */
176 struct blkfront_ring_info {
177         /* Lock to protect data in every ring buffer. */
178         spinlock_t ring_lock;
179         struct blkif_front_ring ring;
180         unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
181         unsigned int evtchn, irq;
182         struct work_struct work;
183         struct gnttab_free_callback callback;
184         struct list_head indirect_pages;
185         struct list_head grants;
186         unsigned int persistent_gnts_c;
187         unsigned long shadow_free;
188         struct blkfront_info *dev_info;
189         struct blk_shadow shadow[];
190 };
191
192 /*
193  * We have one of these per vbd, whether ide, scsi or 'other'.  They
194  * hang in private_data off the gendisk structure. We may end up
195  * putting all kinds of interesting stuff here :-)
196  */
197 struct blkfront_info
198 {
199         struct mutex mutex;
200         struct xenbus_device *xbdev;
201         struct gendisk *gd;
202         u16 sector_size;
203         unsigned int physical_sector_size;
204         int vdevice;
205         blkif_vdev_t handle;
206         enum blkif_state connected;
207         /* Number of pages per ring buffer. */
208         unsigned int nr_ring_pages;
209         struct request_queue *rq;
210         unsigned int feature_flush:1;
211         unsigned int feature_fua:1;
212         unsigned int feature_discard:1;
213         unsigned int feature_secdiscard:1;
214         /* Connect-time cached feature_persistent parameter */
215         unsigned int feature_persistent_parm:1;
216         /* Persistent grants feature negotiation result */
217         unsigned int feature_persistent:1;
218         unsigned int bounce:1;
219         unsigned int discard_granularity;
220         unsigned int discard_alignment;
221         /* Number of 4KB segments handled */
222         unsigned int max_indirect_segments;
223         int is_ready;
224         struct blk_mq_tag_set tag_set;
225         struct blkfront_ring_info *rinfo;
226         unsigned int nr_rings;
227         unsigned int rinfo_size;
228         /* Save uncomplete reqs and bios for migration. */
229         struct list_head requests;
230         struct bio_list bio_list;
231         struct list_head info_list;
232 };
233
234 static unsigned int nr_minors;
235 static unsigned long *minors;
236 static DEFINE_SPINLOCK(minor_lock);
237
238 #define GRANT_INVALID_REF       0
239
240 #define PARTS_PER_DISK          16
241 #define PARTS_PER_EXT_DISK      256
242
243 #define BLKIF_MAJOR(dev) ((dev)>>8)
244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
245
246 #define EXT_SHIFT 28
247 #define EXTENDED (1<<EXT_SHIFT)
248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254
255 #define DEV_NAME        "xvd"   /* name in /dev */
256
257 /*
258  * Grants are always the same size as a Xen page (i.e 4KB).
259  * A physical segment is always the same size as a Linux page.
260  * Number of grants per physical segment
261  */
262 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
263
264 #define GRANTS_PER_INDIRECT_FRAME \
265         (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266
267 #define INDIRECT_GREFS(_grants)         \
268         DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269
270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271 static void blkfront_gather_backend_features(struct blkfront_info *info);
272 static int negotiate_mq(struct blkfront_info *info);
273
274 #define for_each_rinfo(info, ptr, idx)                          \
275         for ((ptr) = (info)->rinfo, (idx) = 0;                  \
276              (idx) < (info)->nr_rings;                          \
277              (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278
279 static inline struct blkfront_ring_info *
280 get_rinfo(const struct blkfront_info *info, unsigned int i)
281 {
282         BUG_ON(i >= info->nr_rings);
283         return (void *)info->rinfo + i * info->rinfo_size;
284 }
285
286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287 {
288         unsigned long free = rinfo->shadow_free;
289
290         BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291         rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292         rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293         return free;
294 }
295
296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297                               unsigned long id)
298 {
299         if (rinfo->shadow[id].req.u.rw.id != id)
300                 return -EINVAL;
301         if (rinfo->shadow[id].request == NULL)
302                 return -EINVAL;
303         rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
304         rinfo->shadow[id].request = NULL;
305         rinfo->shadow_free = id;
306         return 0;
307 }
308
309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310 {
311         struct blkfront_info *info = rinfo->dev_info;
312         struct page *granted_page;
313         struct grant *gnt_list_entry, *n;
314         int i = 0;
315
316         while (i < num) {
317                 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318                 if (!gnt_list_entry)
319                         goto out_of_memory;
320
321                 if (info->bounce) {
322                         granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323                         if (!granted_page) {
324                                 kfree(gnt_list_entry);
325                                 goto out_of_memory;
326                         }
327                         gnt_list_entry->page = granted_page;
328                 }
329
330                 gnt_list_entry->gref = GRANT_INVALID_REF;
331                 list_add(&gnt_list_entry->node, &rinfo->grants);
332                 i++;
333         }
334
335         return 0;
336
337 out_of_memory:
338         list_for_each_entry_safe(gnt_list_entry, n,
339                                  &rinfo->grants, node) {
340                 list_del(&gnt_list_entry->node);
341                 if (info->bounce)
342                         __free_page(gnt_list_entry->page);
343                 kfree(gnt_list_entry);
344                 i--;
345         }
346         BUG_ON(i != 0);
347         return -ENOMEM;
348 }
349
350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351 {
352         struct grant *gnt_list_entry;
353
354         BUG_ON(list_empty(&rinfo->grants));
355         gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356                                           node);
357         list_del(&gnt_list_entry->node);
358
359         if (gnt_list_entry->gref != GRANT_INVALID_REF)
360                 rinfo->persistent_gnts_c--;
361
362         return gnt_list_entry;
363 }
364
365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366                                         const struct blkfront_info *info)
367 {
368         gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369                                                  info->xbdev->otherend_id,
370                                                  gnt_list_entry->page,
371                                                  0);
372 }
373
374 static struct grant *get_grant(grant_ref_t *gref_head,
375                                unsigned long gfn,
376                                struct blkfront_ring_info *rinfo)
377 {
378         struct grant *gnt_list_entry = get_free_grant(rinfo);
379         struct blkfront_info *info = rinfo->dev_info;
380
381         if (gnt_list_entry->gref != GRANT_INVALID_REF)
382                 return gnt_list_entry;
383
384         /* Assign a gref to this page */
385         gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386         BUG_ON(gnt_list_entry->gref == -ENOSPC);
387         if (info->bounce)
388                 grant_foreign_access(gnt_list_entry, info);
389         else {
390                 /* Grant access to the GFN passed by the caller */
391                 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392                                                 info->xbdev->otherend_id,
393                                                 gfn, 0);
394         }
395
396         return gnt_list_entry;
397 }
398
399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400                                         struct blkfront_ring_info *rinfo)
401 {
402         struct grant *gnt_list_entry = get_free_grant(rinfo);
403         struct blkfront_info *info = rinfo->dev_info;
404
405         if (gnt_list_entry->gref != GRANT_INVALID_REF)
406                 return gnt_list_entry;
407
408         /* Assign a gref to this page */
409         gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410         BUG_ON(gnt_list_entry->gref == -ENOSPC);
411         if (!info->bounce) {
412                 struct page *indirect_page;
413
414                 /* Fetch a pre-allocated page to use for indirect grefs */
415                 BUG_ON(list_empty(&rinfo->indirect_pages));
416                 indirect_page = list_first_entry(&rinfo->indirect_pages,
417                                                  struct page, lru);
418                 list_del(&indirect_page->lru);
419                 gnt_list_entry->page = indirect_page;
420         }
421         grant_foreign_access(gnt_list_entry, info);
422
423         return gnt_list_entry;
424 }
425
426 static const char *op_name(int op)
427 {
428         static const char *const names[] = {
429                 [BLKIF_OP_READ] = "read",
430                 [BLKIF_OP_WRITE] = "write",
431                 [BLKIF_OP_WRITE_BARRIER] = "barrier",
432                 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433                 [BLKIF_OP_DISCARD] = "discard" };
434
435         if (op < 0 || op >= ARRAY_SIZE(names))
436                 return "unknown";
437
438         if (!names[op])
439                 return "reserved";
440
441         return names[op];
442 }
443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444 {
445         unsigned int end = minor + nr;
446         int rc;
447
448         if (end > nr_minors) {
449                 unsigned long *bitmap, *old;
450
451                 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452                                  GFP_KERNEL);
453                 if (bitmap == NULL)
454                         return -ENOMEM;
455
456                 spin_lock(&minor_lock);
457                 if (end > nr_minors) {
458                         old = minors;
459                         memcpy(bitmap, minors,
460                                BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461                         minors = bitmap;
462                         nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463                 } else
464                         old = bitmap;
465                 spin_unlock(&minor_lock);
466                 kfree(old);
467         }
468
469         spin_lock(&minor_lock);
470         if (find_next_bit(minors, end, minor) >= end) {
471                 bitmap_set(minors, minor, nr);
472                 rc = 0;
473         } else
474                 rc = -EBUSY;
475         spin_unlock(&minor_lock);
476
477         return rc;
478 }
479
480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481 {
482         unsigned int end = minor + nr;
483
484         BUG_ON(end > nr_minors);
485         spin_lock(&minor_lock);
486         bitmap_clear(minors,  minor, nr);
487         spin_unlock(&minor_lock);
488 }
489
490 static void blkif_restart_queue_callback(void *arg)
491 {
492         struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493         schedule_work(&rinfo->work);
494 }
495
496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497 {
498         /* We don't have real geometry info, but let's at least return
499            values consistent with the size of the device */
500         sector_t nsect = get_capacity(bd->bd_disk);
501         sector_t cylinders = nsect;
502
503         hg->heads = 0xff;
504         hg->sectors = 0x3f;
505         sector_div(cylinders, hg->heads * hg->sectors);
506         hg->cylinders = cylinders;
507         if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508                 hg->cylinders = 0xffff;
509         return 0;
510 }
511
512 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
513                        unsigned command, unsigned long argument)
514 {
515         struct blkfront_info *info = bdev->bd_disk->private_data;
516         int i;
517
518         dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
519                 command, (long)argument);
520
521         switch (command) {
522         case CDROMMULTISESSION:
523                 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
524                 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
525                         if (put_user(0, (char __user *)(argument + i)))
526                                 return -EFAULT;
527                 return 0;
528
529         case CDROM_GET_CAPABILITY: {
530                 struct gendisk *gd = info->gd;
531                 if (gd->flags & GENHD_FL_CD)
532                         return 0;
533                 return -EINVAL;
534         }
535
536         default:
537                 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
538                   command);*/
539                 return -EINVAL; /* same return as native Linux */
540         }
541
542         return 0;
543 }
544
545 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
546                                             struct request *req,
547                                             struct blkif_request **ring_req)
548 {
549         unsigned long id;
550
551         *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
552         rinfo->ring.req_prod_pvt++;
553
554         id = get_id_from_freelist(rinfo);
555         rinfo->shadow[id].request = req;
556         rinfo->shadow[id].status = REQ_PROCESSING;
557         rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
558
559         rinfo->shadow[id].req.u.rw.id = id;
560
561         return id;
562 }
563
564 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
565 {
566         struct blkfront_info *info = rinfo->dev_info;
567         struct blkif_request *ring_req, *final_ring_req;
568         unsigned long id;
569
570         /* Fill out a communications ring structure. */
571         id = blkif_ring_get_request(rinfo, req, &final_ring_req);
572         ring_req = &rinfo->shadow[id].req;
573
574         ring_req->operation = BLKIF_OP_DISCARD;
575         ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
576         ring_req->u.discard.id = id;
577         ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
578         if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
579                 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
580         else
581                 ring_req->u.discard.flag = 0;
582
583         /* Copy the request to the ring page. */
584         *final_ring_req = *ring_req;
585         rinfo->shadow[id].status = REQ_WAITING;
586
587         return 0;
588 }
589
590 struct setup_rw_req {
591         unsigned int grant_idx;
592         struct blkif_request_segment *segments;
593         struct blkfront_ring_info *rinfo;
594         struct blkif_request *ring_req;
595         grant_ref_t gref_head;
596         unsigned int id;
597         /* Only used when persistent grant is used and it's a read request */
598         bool need_copy;
599         unsigned int bvec_off;
600         char *bvec_data;
601
602         bool require_extra_req;
603         struct blkif_request *extra_ring_req;
604 };
605
606 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
607                                      unsigned int len, void *data)
608 {
609         struct setup_rw_req *setup = data;
610         int n, ref;
611         struct grant *gnt_list_entry;
612         unsigned int fsect, lsect;
613         /* Convenient aliases */
614         unsigned int grant_idx = setup->grant_idx;
615         struct blkif_request *ring_req = setup->ring_req;
616         struct blkfront_ring_info *rinfo = setup->rinfo;
617         /*
618          * We always use the shadow of the first request to store the list
619          * of grant associated to the block I/O request. This made the
620          * completion more easy to handle even if the block I/O request is
621          * split.
622          */
623         struct blk_shadow *shadow = &rinfo->shadow[setup->id];
624
625         if (unlikely(setup->require_extra_req &&
626                      grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
627                 /*
628                  * We are using the second request, setup grant_idx
629                  * to be the index of the segment array.
630                  */
631                 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
632                 ring_req = setup->extra_ring_req;
633         }
634
635         if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
636             (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
637                 if (setup->segments)
638                         kunmap_atomic(setup->segments);
639
640                 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
641                 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
642                 shadow->indirect_grants[n] = gnt_list_entry;
643                 setup->segments = kmap_atomic(gnt_list_entry->page);
644                 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
645         }
646
647         gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
648         ref = gnt_list_entry->gref;
649         /*
650          * All the grants are stored in the shadow of the first
651          * request. Therefore we have to use the global index.
652          */
653         shadow->grants_used[setup->grant_idx] = gnt_list_entry;
654
655         if (setup->need_copy) {
656                 void *shared_data;
657
658                 shared_data = kmap_atomic(gnt_list_entry->page);
659                 /*
660                  * this does not wipe data stored outside the
661                  * range sg->offset..sg->offset+sg->length.
662                  * Therefore, blkback *could* see data from
663                  * previous requests. This is OK as long as
664                  * persistent grants are shared with just one
665                  * domain. It may need refactoring if this
666                  * changes
667                  */
668                 memcpy(shared_data + offset,
669                        setup->bvec_data + setup->bvec_off,
670                        len);
671
672                 kunmap_atomic(shared_data);
673                 setup->bvec_off += len;
674         }
675
676         fsect = offset >> 9;
677         lsect = fsect + (len >> 9) - 1;
678         if (ring_req->operation != BLKIF_OP_INDIRECT) {
679                 ring_req->u.rw.seg[grant_idx] =
680                         (struct blkif_request_segment) {
681                                 .gref       = ref,
682                                 .first_sect = fsect,
683                                 .last_sect  = lsect };
684         } else {
685                 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
686                         (struct blkif_request_segment) {
687                                 .gref       = ref,
688                                 .first_sect = fsect,
689                                 .last_sect  = lsect };
690         }
691
692         (setup->grant_idx)++;
693 }
694
695 static void blkif_setup_extra_req(struct blkif_request *first,
696                                   struct blkif_request *second)
697 {
698         uint16_t nr_segments = first->u.rw.nr_segments;
699
700         /*
701          * The second request is only present when the first request uses
702          * all its segments. It's always the continuity of the first one.
703          */
704         first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
705
706         second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
707         second->u.rw.sector_number = first->u.rw.sector_number +
708                 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
709
710         second->u.rw.handle = first->u.rw.handle;
711         second->operation = first->operation;
712 }
713
714 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
715 {
716         struct blkfront_info *info = rinfo->dev_info;
717         struct blkif_request *ring_req, *extra_ring_req = NULL;
718         struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
719         unsigned long id, extra_id = NO_ASSOCIATED_ID;
720         bool require_extra_req = false;
721         int i;
722         struct setup_rw_req setup = {
723                 .grant_idx = 0,
724                 .segments = NULL,
725                 .rinfo = rinfo,
726                 .need_copy = rq_data_dir(req) && info->bounce,
727         };
728
729         /*
730          * Used to store if we are able to queue the request by just using
731          * existing persistent grants, or if we have to get new grants,
732          * as there are not sufficiently many free.
733          */
734         bool new_persistent_gnts = false;
735         struct scatterlist *sg;
736         int num_sg, max_grefs, num_grant;
737
738         max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
739         if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
740                 /*
741                  * If we are using indirect segments we need to account
742                  * for the indirect grefs used in the request.
743                  */
744                 max_grefs += INDIRECT_GREFS(max_grefs);
745
746         /* Check if we have enough persistent grants to allocate a requests */
747         if (rinfo->persistent_gnts_c < max_grefs) {
748                 new_persistent_gnts = true;
749
750                 if (gnttab_alloc_grant_references(
751                     max_grefs - rinfo->persistent_gnts_c,
752                     &setup.gref_head) < 0) {
753                         gnttab_request_free_callback(
754                                 &rinfo->callback,
755                                 blkif_restart_queue_callback,
756                                 rinfo,
757                                 max_grefs - rinfo->persistent_gnts_c);
758                         return 1;
759                 }
760         }
761
762         /* Fill out a communications ring structure. */
763         id = blkif_ring_get_request(rinfo, req, &final_ring_req);
764         ring_req = &rinfo->shadow[id].req;
765
766         num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
767         num_grant = 0;
768         /* Calculate the number of grant used */
769         for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
770                num_grant += gnttab_count_grant(sg->offset, sg->length);
771
772         require_extra_req = info->max_indirect_segments == 0 &&
773                 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
774         BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
775
776         rinfo->shadow[id].num_sg = num_sg;
777         if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
778             likely(!require_extra_req)) {
779                 /*
780                  * The indirect operation can only be a BLKIF_OP_READ or
781                  * BLKIF_OP_WRITE
782                  */
783                 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
784                 ring_req->operation = BLKIF_OP_INDIRECT;
785                 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
786                         BLKIF_OP_WRITE : BLKIF_OP_READ;
787                 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
788                 ring_req->u.indirect.handle = info->handle;
789                 ring_req->u.indirect.nr_segments = num_grant;
790         } else {
791                 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
792                 ring_req->u.rw.handle = info->handle;
793                 ring_req->operation = rq_data_dir(req) ?
794                         BLKIF_OP_WRITE : BLKIF_OP_READ;
795                 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
796                         /*
797                          * Ideally we can do an unordered flush-to-disk.
798                          * In case the backend onlysupports barriers, use that.
799                          * A barrier request a superset of FUA, so we can
800                          * implement it the same way.  (It's also a FLUSH+FUA,
801                          * since it is guaranteed ordered WRT previous writes.)
802                          */
803                         if (info->feature_flush && info->feature_fua)
804                                 ring_req->operation =
805                                         BLKIF_OP_WRITE_BARRIER;
806                         else if (info->feature_flush)
807                                 ring_req->operation =
808                                         BLKIF_OP_FLUSH_DISKCACHE;
809                         else
810                                 ring_req->operation = 0;
811                 }
812                 ring_req->u.rw.nr_segments = num_grant;
813                 if (unlikely(require_extra_req)) {
814                         extra_id = blkif_ring_get_request(rinfo, req,
815                                                           &final_extra_ring_req);
816                         extra_ring_req = &rinfo->shadow[extra_id].req;
817
818                         /*
819                          * Only the first request contains the scatter-gather
820                          * list.
821                          */
822                         rinfo->shadow[extra_id].num_sg = 0;
823
824                         blkif_setup_extra_req(ring_req, extra_ring_req);
825
826                         /* Link the 2 requests together */
827                         rinfo->shadow[extra_id].associated_id = id;
828                         rinfo->shadow[id].associated_id = extra_id;
829                 }
830         }
831
832         setup.ring_req = ring_req;
833         setup.id = id;
834
835         setup.require_extra_req = require_extra_req;
836         if (unlikely(require_extra_req))
837                 setup.extra_ring_req = extra_ring_req;
838
839         for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
840                 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
841
842                 if (setup.need_copy) {
843                         setup.bvec_off = sg->offset;
844                         setup.bvec_data = kmap_atomic(sg_page(sg));
845                 }
846
847                 gnttab_foreach_grant_in_range(sg_page(sg),
848                                               sg->offset,
849                                               sg->length,
850                                               blkif_setup_rw_req_grant,
851                                               &setup);
852
853                 if (setup.need_copy)
854                         kunmap_atomic(setup.bvec_data);
855         }
856         if (setup.segments)
857                 kunmap_atomic(setup.segments);
858
859         /* Copy request(s) to the ring page. */
860         *final_ring_req = *ring_req;
861         rinfo->shadow[id].status = REQ_WAITING;
862         if (unlikely(require_extra_req)) {
863                 *final_extra_ring_req = *extra_ring_req;
864                 rinfo->shadow[extra_id].status = REQ_WAITING;
865         }
866
867         if (new_persistent_gnts)
868                 gnttab_free_grant_references(setup.gref_head);
869
870         return 0;
871 }
872
873 /*
874  * Generate a Xen blkfront IO request from a blk layer request.  Reads
875  * and writes are handled as expected.
876  *
877  * @req: a request struct
878  */
879 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
880 {
881         if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
882                 return 1;
883
884         if (unlikely(req_op(req) == REQ_OP_DISCARD ||
885                      req_op(req) == REQ_OP_SECURE_ERASE))
886                 return blkif_queue_discard_req(req, rinfo);
887         else
888                 return blkif_queue_rw_req(req, rinfo);
889 }
890
891 static inline void flush_requests(struct blkfront_ring_info *rinfo)
892 {
893         int notify;
894
895         RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
896
897         if (notify)
898                 notify_remote_via_irq(rinfo->irq);
899 }
900
901 static inline bool blkif_request_flush_invalid(struct request *req,
902                                                struct blkfront_info *info)
903 {
904         return (blk_rq_is_passthrough(req) ||
905                 ((req_op(req) == REQ_OP_FLUSH) &&
906                  !info->feature_flush) ||
907                 ((req->cmd_flags & REQ_FUA) &&
908                  !info->feature_fua));
909 }
910
911 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
912                           const struct blk_mq_queue_data *qd)
913 {
914         unsigned long flags;
915         int qid = hctx->queue_num;
916         struct blkfront_info *info = hctx->queue->queuedata;
917         struct blkfront_ring_info *rinfo = NULL;
918
919         rinfo = get_rinfo(info, qid);
920         blk_mq_start_request(qd->rq);
921         spin_lock_irqsave(&rinfo->ring_lock, flags);
922         if (RING_FULL(&rinfo->ring))
923                 goto out_busy;
924
925         if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
926                 goto out_err;
927
928         if (blkif_queue_request(qd->rq, rinfo))
929                 goto out_busy;
930
931         flush_requests(rinfo);
932         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
933         return BLK_STS_OK;
934
935 out_err:
936         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
937         return BLK_STS_IOERR;
938
939 out_busy:
940         blk_mq_stop_hw_queue(hctx);
941         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
942         return BLK_STS_DEV_RESOURCE;
943 }
944
945 static void blkif_complete_rq(struct request *rq)
946 {
947         blk_mq_end_request(rq, blkif_req(rq)->error);
948 }
949
950 static const struct blk_mq_ops blkfront_mq_ops = {
951         .queue_rq = blkif_queue_rq,
952         .complete = blkif_complete_rq,
953 };
954
955 static void blkif_set_queue_limits(struct blkfront_info *info)
956 {
957         struct request_queue *rq = info->rq;
958         struct gendisk *gd = info->gd;
959         unsigned int segments = info->max_indirect_segments ? :
960                                 BLKIF_MAX_SEGMENTS_PER_REQUEST;
961
962         blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
963
964         if (info->feature_discard) {
965                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
966                 blk_queue_max_discard_sectors(rq, get_capacity(gd));
967                 rq->limits.discard_granularity = info->discard_granularity ?:
968                                                  info->physical_sector_size;
969                 rq->limits.discard_alignment = info->discard_alignment;
970                 if (info->feature_secdiscard)
971                         blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
972         }
973
974         /* Hard sector size and max sectors impersonate the equiv. hardware. */
975         blk_queue_logical_block_size(rq, info->sector_size);
976         blk_queue_physical_block_size(rq, info->physical_sector_size);
977         blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
978
979         /* Each segment in a request is up to an aligned page in size. */
980         blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
981         blk_queue_max_segment_size(rq, PAGE_SIZE);
982
983         /* Ensure a merged request will fit in a single I/O ring slot. */
984         blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
985
986         /* Make sure buffer addresses are sector-aligned. */
987         blk_queue_dma_alignment(rq, 511);
988 }
989
990 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
991                                 unsigned int physical_sector_size)
992 {
993         struct request_queue *rq;
994         struct blkfront_info *info = gd->private_data;
995
996         memset(&info->tag_set, 0, sizeof(info->tag_set));
997         info->tag_set.ops = &blkfront_mq_ops;
998         info->tag_set.nr_hw_queues = info->nr_rings;
999         if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1000                 /*
1001                  * When indirect descriptior is not supported, the I/O request
1002                  * will be split between multiple request in the ring.
1003                  * To avoid problems when sending the request, divide by
1004                  * 2 the depth of the queue.
1005                  */
1006                 info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1007         } else
1008                 info->tag_set.queue_depth = BLK_RING_SIZE(info);
1009         info->tag_set.numa_node = NUMA_NO_NODE;
1010         info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1011         info->tag_set.cmd_size = sizeof(struct blkif_req);
1012         info->tag_set.driver_data = info;
1013
1014         if (blk_mq_alloc_tag_set(&info->tag_set))
1015                 return -EINVAL;
1016         rq = blk_mq_init_queue(&info->tag_set);
1017         if (IS_ERR(rq)) {
1018                 blk_mq_free_tag_set(&info->tag_set);
1019                 return PTR_ERR(rq);
1020         }
1021
1022         rq->queuedata = info;
1023         info->rq = gd->queue = rq;
1024         info->gd = gd;
1025         info->sector_size = sector_size;
1026         info->physical_sector_size = physical_sector_size;
1027         blkif_set_queue_limits(info);
1028
1029         return 0;
1030 }
1031
1032 static const char *flush_info(struct blkfront_info *info)
1033 {
1034         if (info->feature_flush && info->feature_fua)
1035                 return "barrier: enabled;";
1036         else if (info->feature_flush)
1037                 return "flush diskcache: enabled;";
1038         else
1039                 return "barrier or flush: disabled;";
1040 }
1041
1042 static void xlvbd_flush(struct blkfront_info *info)
1043 {
1044         blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1045                               info->feature_fua ? true : false);
1046         pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
1047                 info->gd->disk_name, flush_info(info),
1048                 "persistent grants:", info->feature_persistent ?
1049                 "enabled;" : "disabled;", "indirect descriptors:",
1050                 info->max_indirect_segments ? "enabled;" : "disabled;",
1051                 "bounce buffer:", info->bounce ? "enabled" : "disabled;");
1052 }
1053
1054 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1055 {
1056         int major;
1057         major = BLKIF_MAJOR(vdevice);
1058         *minor = BLKIF_MINOR(vdevice);
1059         switch (major) {
1060                 case XEN_IDE0_MAJOR:
1061                         *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1062                         *minor = ((*minor / 64) * PARTS_PER_DISK) +
1063                                 EMULATED_HD_DISK_MINOR_OFFSET;
1064                         break;
1065                 case XEN_IDE1_MAJOR:
1066                         *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1067                         *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1068                                 EMULATED_HD_DISK_MINOR_OFFSET;
1069                         break;
1070                 case XEN_SCSI_DISK0_MAJOR:
1071                         *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1072                         *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1073                         break;
1074                 case XEN_SCSI_DISK1_MAJOR:
1075                 case XEN_SCSI_DISK2_MAJOR:
1076                 case XEN_SCSI_DISK3_MAJOR:
1077                 case XEN_SCSI_DISK4_MAJOR:
1078                 case XEN_SCSI_DISK5_MAJOR:
1079                 case XEN_SCSI_DISK6_MAJOR:
1080                 case XEN_SCSI_DISK7_MAJOR:
1081                         *offset = (*minor / PARTS_PER_DISK) + 
1082                                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1083                                 EMULATED_SD_DISK_NAME_OFFSET;
1084                         *minor = *minor +
1085                                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1086                                 EMULATED_SD_DISK_MINOR_OFFSET;
1087                         break;
1088                 case XEN_SCSI_DISK8_MAJOR:
1089                 case XEN_SCSI_DISK9_MAJOR:
1090                 case XEN_SCSI_DISK10_MAJOR:
1091                 case XEN_SCSI_DISK11_MAJOR:
1092                 case XEN_SCSI_DISK12_MAJOR:
1093                 case XEN_SCSI_DISK13_MAJOR:
1094                 case XEN_SCSI_DISK14_MAJOR:
1095                 case XEN_SCSI_DISK15_MAJOR:
1096                         *offset = (*minor / PARTS_PER_DISK) + 
1097                                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1098                                 EMULATED_SD_DISK_NAME_OFFSET;
1099                         *minor = *minor +
1100                                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1101                                 EMULATED_SD_DISK_MINOR_OFFSET;
1102                         break;
1103                 case XENVBD_MAJOR:
1104                         *offset = *minor / PARTS_PER_DISK;
1105                         break;
1106                 default:
1107                         printk(KERN_WARNING "blkfront: your disk configuration is "
1108                                         "incorrect, please use an xvd device instead\n");
1109                         return -ENODEV;
1110         }
1111         return 0;
1112 }
1113
1114 static char *encode_disk_name(char *ptr, unsigned int n)
1115 {
1116         if (n >= 26)
1117                 ptr = encode_disk_name(ptr, n / 26 - 1);
1118         *ptr = 'a' + n % 26;
1119         return ptr + 1;
1120 }
1121
1122 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1123                                struct blkfront_info *info,
1124                                u16 vdisk_info, u16 sector_size,
1125                                unsigned int physical_sector_size)
1126 {
1127         struct gendisk *gd;
1128         int nr_minors = 1;
1129         int err;
1130         unsigned int offset;
1131         int minor;
1132         int nr_parts;
1133         char *ptr;
1134
1135         BUG_ON(info->gd != NULL);
1136         BUG_ON(info->rq != NULL);
1137
1138         if ((info->vdevice>>EXT_SHIFT) > 1) {
1139                 /* this is above the extended range; something is wrong */
1140                 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1141                 return -ENODEV;
1142         }
1143
1144         if (!VDEV_IS_EXTENDED(info->vdevice)) {
1145                 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1146                 if (err)
1147                         return err;
1148                 nr_parts = PARTS_PER_DISK;
1149         } else {
1150                 minor = BLKIF_MINOR_EXT(info->vdevice);
1151                 nr_parts = PARTS_PER_EXT_DISK;
1152                 offset = minor / nr_parts;
1153                 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1154                         printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1155                                         "emulated IDE disks,\n\t choose an xvd device name"
1156                                         "from xvde on\n", info->vdevice);
1157         }
1158         if (minor >> MINORBITS) {
1159                 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1160                         info->vdevice, minor);
1161                 return -ENODEV;
1162         }
1163
1164         if ((minor % nr_parts) == 0)
1165                 nr_minors = nr_parts;
1166
1167         err = xlbd_reserve_minors(minor, nr_minors);
1168         if (err)
1169                 goto out;
1170         err = -ENODEV;
1171
1172         gd = alloc_disk(nr_minors);
1173         if (gd == NULL)
1174                 goto release;
1175
1176         strcpy(gd->disk_name, DEV_NAME);
1177         ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1178         BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1179         if (nr_minors > 1)
1180                 *ptr = 0;
1181         else
1182                 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1183                          "%d", minor & (nr_parts - 1));
1184
1185         gd->major = XENVBD_MAJOR;
1186         gd->first_minor = minor;
1187         gd->fops = &xlvbd_block_fops;
1188         gd->private_data = info;
1189         set_capacity(gd, capacity);
1190
1191         if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1192                 del_gendisk(gd);
1193                 goto release;
1194         }
1195
1196         xlvbd_flush(info);
1197
1198         if (vdisk_info & VDISK_READONLY)
1199                 set_disk_ro(gd, 1);
1200
1201         if (vdisk_info & VDISK_REMOVABLE)
1202                 gd->flags |= GENHD_FL_REMOVABLE;
1203
1204         if (vdisk_info & VDISK_CDROM)
1205                 gd->flags |= GENHD_FL_CD;
1206
1207         return 0;
1208
1209  release:
1210         xlbd_release_minors(minor, nr_minors);
1211  out:
1212         return err;
1213 }
1214
1215 static void xlvbd_release_gendisk(struct blkfront_info *info)
1216 {
1217         unsigned int minor, nr_minors, i;
1218         struct blkfront_ring_info *rinfo;
1219
1220         if (info->rq == NULL)
1221                 return;
1222
1223         /* No more blkif_request(). */
1224         blk_mq_stop_hw_queues(info->rq);
1225
1226         for_each_rinfo(info, rinfo, i) {
1227                 /* No more gnttab callback work. */
1228                 gnttab_cancel_free_callback(&rinfo->callback);
1229
1230                 /* Flush gnttab callback work. Must be done with no locks held. */
1231                 flush_work(&rinfo->work);
1232         }
1233
1234         del_gendisk(info->gd);
1235
1236         minor = info->gd->first_minor;
1237         nr_minors = info->gd->minors;
1238         xlbd_release_minors(minor, nr_minors);
1239
1240         blk_cleanup_queue(info->rq);
1241         blk_mq_free_tag_set(&info->tag_set);
1242         info->rq = NULL;
1243
1244         put_disk(info->gd);
1245         info->gd = NULL;
1246 }
1247
1248 /* Already hold rinfo->ring_lock. */
1249 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1250 {
1251         if (!RING_FULL(&rinfo->ring))
1252                 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1253 }
1254
1255 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1256 {
1257         unsigned long flags;
1258
1259         spin_lock_irqsave(&rinfo->ring_lock, flags);
1260         kick_pending_request_queues_locked(rinfo);
1261         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1262 }
1263
1264 static void blkif_restart_queue(struct work_struct *work)
1265 {
1266         struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1267
1268         if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1269                 kick_pending_request_queues(rinfo);
1270 }
1271
1272 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1273 {
1274         struct grant *persistent_gnt, *n;
1275         struct blkfront_info *info = rinfo->dev_info;
1276         int i, j, segs;
1277
1278         /*
1279          * Remove indirect pages, this only happens when using indirect
1280          * descriptors but not persistent grants
1281          */
1282         if (!list_empty(&rinfo->indirect_pages)) {
1283                 struct page *indirect_page, *n;
1284
1285                 BUG_ON(info->bounce);
1286                 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1287                         list_del(&indirect_page->lru);
1288                         __free_page(indirect_page);
1289                 }
1290         }
1291
1292         /* Remove all persistent grants. */
1293         if (!list_empty(&rinfo->grants)) {
1294                 list_for_each_entry_safe(persistent_gnt, n,
1295                                          &rinfo->grants, node) {
1296                         list_del(&persistent_gnt->node);
1297                         if (persistent_gnt->gref != GRANT_INVALID_REF) {
1298                                 gnttab_end_foreign_access(persistent_gnt->gref,
1299                                                           0, 0UL);
1300                                 rinfo->persistent_gnts_c--;
1301                         }
1302                         if (info->bounce)
1303                                 __free_page(persistent_gnt->page);
1304                         kfree(persistent_gnt);
1305                 }
1306         }
1307         BUG_ON(rinfo->persistent_gnts_c != 0);
1308
1309         for (i = 0; i < BLK_RING_SIZE(info); i++) {
1310                 /*
1311                  * Clear persistent grants present in requests already
1312                  * on the shared ring
1313                  */
1314                 if (!rinfo->shadow[i].request)
1315                         goto free_shadow;
1316
1317                 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1318                        rinfo->shadow[i].req.u.indirect.nr_segments :
1319                        rinfo->shadow[i].req.u.rw.nr_segments;
1320                 for (j = 0; j < segs; j++) {
1321                         persistent_gnt = rinfo->shadow[i].grants_used[j];
1322                         gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1323                         if (info->bounce)
1324                                 __free_page(persistent_gnt->page);
1325                         kfree(persistent_gnt);
1326                 }
1327
1328                 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1329                         /*
1330                          * If this is not an indirect operation don't try to
1331                          * free indirect segments
1332                          */
1333                         goto free_shadow;
1334
1335                 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1336                         persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1337                         gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1338                         __free_page(persistent_gnt->page);
1339                         kfree(persistent_gnt);
1340                 }
1341
1342 free_shadow:
1343                 kvfree(rinfo->shadow[i].grants_used);
1344                 rinfo->shadow[i].grants_used = NULL;
1345                 kvfree(rinfo->shadow[i].indirect_grants);
1346                 rinfo->shadow[i].indirect_grants = NULL;
1347                 kvfree(rinfo->shadow[i].sg);
1348                 rinfo->shadow[i].sg = NULL;
1349         }
1350
1351         /* No more gnttab callback work. */
1352         gnttab_cancel_free_callback(&rinfo->callback);
1353
1354         /* Flush gnttab callback work. Must be done with no locks held. */
1355         flush_work(&rinfo->work);
1356
1357         /* Free resources associated with old device channel. */
1358         for (i = 0; i < info->nr_ring_pages; i++) {
1359                 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1360                         gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1361                         rinfo->ring_ref[i] = GRANT_INVALID_REF;
1362                 }
1363         }
1364         free_pages_exact(rinfo->ring.sring,
1365                          info->nr_ring_pages * XEN_PAGE_SIZE);
1366         rinfo->ring.sring = NULL;
1367
1368         if (rinfo->irq)
1369                 unbind_from_irqhandler(rinfo->irq, rinfo);
1370         rinfo->evtchn = rinfo->irq = 0;
1371 }
1372
1373 static void blkif_free(struct blkfront_info *info, int suspend)
1374 {
1375         unsigned int i;
1376         struct blkfront_ring_info *rinfo;
1377
1378         /* Prevent new requests being issued until we fix things up. */
1379         info->connected = suspend ?
1380                 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1381         /* No more blkif_request(). */
1382         if (info->rq)
1383                 blk_mq_stop_hw_queues(info->rq);
1384
1385         for_each_rinfo(info, rinfo, i)
1386                 blkif_free_ring(rinfo);
1387
1388         kvfree(info->rinfo);
1389         info->rinfo = NULL;
1390         info->nr_rings = 0;
1391 }
1392
1393 struct copy_from_grant {
1394         const struct blk_shadow *s;
1395         unsigned int grant_idx;
1396         unsigned int bvec_offset;
1397         char *bvec_data;
1398 };
1399
1400 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1401                                   unsigned int len, void *data)
1402 {
1403         struct copy_from_grant *info = data;
1404         char *shared_data;
1405         /* Convenient aliases */
1406         const struct blk_shadow *s = info->s;
1407
1408         shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1409
1410         memcpy(info->bvec_data + info->bvec_offset,
1411                shared_data + offset, len);
1412
1413         info->bvec_offset += len;
1414         info->grant_idx++;
1415
1416         kunmap_atomic(shared_data);
1417 }
1418
1419 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1420 {
1421         switch (rsp)
1422         {
1423         case BLKIF_RSP_OKAY:
1424                 return REQ_DONE;
1425         case BLKIF_RSP_EOPNOTSUPP:
1426                 return REQ_EOPNOTSUPP;
1427         case BLKIF_RSP_ERROR:
1428         default:
1429                 return REQ_ERROR;
1430         }
1431 }
1432
1433 /*
1434  * Get the final status of the block request based on two ring response
1435  */
1436 static int blkif_get_final_status(enum blk_req_status s1,
1437                                   enum blk_req_status s2)
1438 {
1439         BUG_ON(s1 < REQ_DONE);
1440         BUG_ON(s2 < REQ_DONE);
1441
1442         if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1443                 return BLKIF_RSP_ERROR;
1444         else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1445                 return BLKIF_RSP_EOPNOTSUPP;
1446         return BLKIF_RSP_OKAY;
1447 }
1448
1449 /*
1450  * Return values:
1451  *  1 response processed.
1452  *  0 missing further responses.
1453  * -1 error while processing.
1454  */
1455 static int blkif_completion(unsigned long *id,
1456                             struct blkfront_ring_info *rinfo,
1457                             struct blkif_response *bret)
1458 {
1459         int i = 0;
1460         struct scatterlist *sg;
1461         int num_sg, num_grant;
1462         struct blkfront_info *info = rinfo->dev_info;
1463         struct blk_shadow *s = &rinfo->shadow[*id];
1464         struct copy_from_grant data = {
1465                 .grant_idx = 0,
1466         };
1467
1468         num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1469                 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1470
1471         /* The I/O request may be split in two. */
1472         if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1473                 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1474
1475                 /* Keep the status of the current response in shadow. */
1476                 s->status = blkif_rsp_to_req_status(bret->status);
1477
1478                 /* Wait the second response if not yet here. */
1479                 if (s2->status < REQ_DONE)
1480                         return 0;
1481
1482                 bret->status = blkif_get_final_status(s->status,
1483                                                       s2->status);
1484
1485                 /*
1486                  * All the grants is stored in the first shadow in order
1487                  * to make the completion code simpler.
1488                  */
1489                 num_grant += s2->req.u.rw.nr_segments;
1490
1491                 /*
1492                  * The two responses may not come in order. Only the
1493                  * first request will store the scatter-gather list.
1494                  */
1495                 if (s2->num_sg != 0) {
1496                         /* Update "id" with the ID of the first response. */
1497                         *id = s->associated_id;
1498                         s = s2;
1499                 }
1500
1501                 /*
1502                  * We don't need anymore the second request, so recycling
1503                  * it now.
1504                  */
1505                 if (add_id_to_freelist(rinfo, s->associated_id))
1506                         WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1507                              info->gd->disk_name, s->associated_id);
1508         }
1509
1510         data.s = s;
1511         num_sg = s->num_sg;
1512
1513         if (bret->operation == BLKIF_OP_READ && info->bounce) {
1514                 for_each_sg(s->sg, sg, num_sg, i) {
1515                         BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1516
1517                         data.bvec_offset = sg->offset;
1518                         data.bvec_data = kmap_atomic(sg_page(sg));
1519
1520                         gnttab_foreach_grant_in_range(sg_page(sg),
1521                                                       sg->offset,
1522                                                       sg->length,
1523                                                       blkif_copy_from_grant,
1524                                                       &data);
1525
1526                         kunmap_atomic(data.bvec_data);
1527                 }
1528         }
1529         /* Add the persistent grant into the list of free grants */
1530         for (i = 0; i < num_grant; i++) {
1531                 if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1532                         /*
1533                          * If the grant is still mapped by the backend (the
1534                          * backend has chosen to make this grant persistent)
1535                          * we add it at the head of the list, so it will be
1536                          * reused first.
1537                          */
1538                         if (!info->feature_persistent) {
1539                                 pr_alert("backed has not unmapped grant: %u\n",
1540                                          s->grants_used[i]->gref);
1541                                 return -1;
1542                         }
1543                         list_add(&s->grants_used[i]->node, &rinfo->grants);
1544                         rinfo->persistent_gnts_c++;
1545                 } else {
1546                         /*
1547                          * If the grant is not mapped by the backend we add it
1548                          * to the tail of the list, so it will not be picked
1549                          * again unless we run out of persistent grants.
1550                          */
1551                         s->grants_used[i]->gref = GRANT_INVALID_REF;
1552                         list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1553                 }
1554         }
1555         if (s->req.operation == BLKIF_OP_INDIRECT) {
1556                 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1557                         if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1558                                 if (!info->feature_persistent) {
1559                                         pr_alert("backed has not unmapped grant: %u\n",
1560                                                  s->indirect_grants[i]->gref);
1561                                         return -1;
1562                                 }
1563                                 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1564                                 rinfo->persistent_gnts_c++;
1565                         } else {
1566                                 struct page *indirect_page;
1567
1568                                 /*
1569                                  * Add the used indirect page back to the list of
1570                                  * available pages for indirect grefs.
1571                                  */
1572                                 if (!info->bounce) {
1573                                         indirect_page = s->indirect_grants[i]->page;
1574                                         list_add(&indirect_page->lru, &rinfo->indirect_pages);
1575                                 }
1576                                 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1577                                 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1578                         }
1579                 }
1580         }
1581
1582         return 1;
1583 }
1584
1585 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1586 {
1587         struct request *req;
1588         struct blkif_response bret;
1589         RING_IDX i, rp;
1590         unsigned long flags;
1591         struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1592         struct blkfront_info *info = rinfo->dev_info;
1593         unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1594
1595         if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1596                 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1597                 return IRQ_HANDLED;
1598         }
1599
1600         spin_lock_irqsave(&rinfo->ring_lock, flags);
1601  again:
1602         rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1603         virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1604         if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1605                 pr_alert("%s: illegal number of responses %u\n",
1606                          info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1607                 goto err;
1608         }
1609
1610         for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1611                 unsigned long id;
1612                 unsigned int op;
1613
1614                 eoiflag = 0;
1615
1616                 RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1617                 id = bret.id;
1618
1619                 /*
1620                  * The backend has messed up and given us an id that we would
1621                  * never have given to it (we stamp it up to BLK_RING_SIZE -
1622                  * look in get_id_from_freelist.
1623                  */
1624                 if (id >= BLK_RING_SIZE(info)) {
1625                         pr_alert("%s: response has incorrect id (%ld)\n",
1626                                  info->gd->disk_name, id);
1627                         goto err;
1628                 }
1629                 if (rinfo->shadow[id].status != REQ_WAITING) {
1630                         pr_alert("%s: response references no pending request\n",
1631                                  info->gd->disk_name);
1632                         goto err;
1633                 }
1634
1635                 rinfo->shadow[id].status = REQ_PROCESSING;
1636                 req  = rinfo->shadow[id].request;
1637
1638                 op = rinfo->shadow[id].req.operation;
1639                 if (op == BLKIF_OP_INDIRECT)
1640                         op = rinfo->shadow[id].req.u.indirect.indirect_op;
1641                 if (bret.operation != op) {
1642                         pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1643                                  info->gd->disk_name, bret.operation, op);
1644                         goto err;
1645                 }
1646
1647                 if (bret.operation != BLKIF_OP_DISCARD) {
1648                         int ret;
1649
1650                         /*
1651                          * We may need to wait for an extra response if the
1652                          * I/O request is split in 2
1653                          */
1654                         ret = blkif_completion(&id, rinfo, &bret);
1655                         if (!ret)
1656                                 continue;
1657                         if (unlikely(ret < 0))
1658                                 goto err;
1659                 }
1660
1661                 if (add_id_to_freelist(rinfo, id)) {
1662                         WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1663                              info->gd->disk_name, op_name(bret.operation), id);
1664                         continue;
1665                 }
1666
1667                 if (bret.status == BLKIF_RSP_OKAY)
1668                         blkif_req(req)->error = BLK_STS_OK;
1669                 else
1670                         blkif_req(req)->error = BLK_STS_IOERR;
1671
1672                 switch (bret.operation) {
1673                 case BLKIF_OP_DISCARD:
1674                         if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1675                                 struct request_queue *rq = info->rq;
1676
1677                                 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1678                                            info->gd->disk_name, op_name(bret.operation));
1679                                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1680                                 info->feature_discard = 0;
1681                                 info->feature_secdiscard = 0;
1682                                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1683                                 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1684                         }
1685                         break;
1686                 case BLKIF_OP_FLUSH_DISKCACHE:
1687                 case BLKIF_OP_WRITE_BARRIER:
1688                         if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1689                                 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1690                                        info->gd->disk_name, op_name(bret.operation));
1691                                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1692                         }
1693                         if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1694                                      rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1695                                 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1696                                        info->gd->disk_name, op_name(bret.operation));
1697                                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1698                         }
1699                         if (unlikely(blkif_req(req)->error)) {
1700                                 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1701                                         blkif_req(req)->error = BLK_STS_OK;
1702                                 info->feature_fua = 0;
1703                                 info->feature_flush = 0;
1704                                 xlvbd_flush(info);
1705                         }
1706                         fallthrough;
1707                 case BLKIF_OP_READ:
1708                 case BLKIF_OP_WRITE:
1709                         if (unlikely(bret.status != BLKIF_RSP_OKAY))
1710                                 dev_dbg_ratelimited(&info->xbdev->dev,
1711                                         "Bad return from blkdev data request: %#x\n",
1712                                         bret.status);
1713
1714                         break;
1715                 default:
1716                         BUG();
1717                 }
1718
1719                 if (likely(!blk_should_fake_timeout(req->q)))
1720                         blk_mq_complete_request(req);
1721         }
1722
1723         rinfo->ring.rsp_cons = i;
1724
1725         if (i != rinfo->ring.req_prod_pvt) {
1726                 int more_to_do;
1727                 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1728                 if (more_to_do)
1729                         goto again;
1730         } else
1731                 rinfo->ring.sring->rsp_event = i + 1;
1732
1733         kick_pending_request_queues_locked(rinfo);
1734
1735         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1736
1737         xen_irq_lateeoi(irq, eoiflag);
1738
1739         return IRQ_HANDLED;
1740
1741  err:
1742         info->connected = BLKIF_STATE_ERROR;
1743
1744         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1745
1746         /* No EOI in order to avoid further interrupts. */
1747
1748         pr_alert("%s disabled for further use\n", info->gd->disk_name);
1749         return IRQ_HANDLED;
1750 }
1751
1752
1753 static int setup_blkring(struct xenbus_device *dev,
1754                          struct blkfront_ring_info *rinfo)
1755 {
1756         struct blkif_sring *sring;
1757         int err, i;
1758         struct blkfront_info *info = rinfo->dev_info;
1759         unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1760         grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1761
1762         for (i = 0; i < info->nr_ring_pages; i++)
1763                 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1764
1765         sring = alloc_pages_exact(ring_size, GFP_NOIO | __GFP_ZERO);
1766         if (!sring) {
1767                 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1768                 return -ENOMEM;
1769         }
1770         SHARED_RING_INIT(sring);
1771         FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1772
1773         err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1774         if (err < 0) {
1775                 free_pages_exact(sring, ring_size);
1776                 rinfo->ring.sring = NULL;
1777                 goto fail;
1778         }
1779         for (i = 0; i < info->nr_ring_pages; i++)
1780                 rinfo->ring_ref[i] = gref[i];
1781
1782         err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1783         if (err)
1784                 goto fail;
1785
1786         err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1787                                                 0, "blkif", rinfo);
1788         if (err <= 0) {
1789                 xenbus_dev_fatal(dev, err,
1790                                  "bind_evtchn_to_irqhandler failed");
1791                 goto fail;
1792         }
1793         rinfo->irq = err;
1794
1795         return 0;
1796 fail:
1797         blkif_free(info, 0);
1798         return err;
1799 }
1800
1801 /*
1802  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1803  * ring buffer may have multi pages depending on ->nr_ring_pages.
1804  */
1805 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1806                                 struct blkfront_ring_info *rinfo, const char *dir)
1807 {
1808         int err;
1809         unsigned int i;
1810         const char *message = NULL;
1811         struct blkfront_info *info = rinfo->dev_info;
1812
1813         if (info->nr_ring_pages == 1) {
1814                 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1815                 if (err) {
1816                         message = "writing ring-ref";
1817                         goto abort_transaction;
1818                 }
1819         } else {
1820                 for (i = 0; i < info->nr_ring_pages; i++) {
1821                         char ring_ref_name[RINGREF_NAME_LEN];
1822
1823                         snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1824                         err = xenbus_printf(xbt, dir, ring_ref_name,
1825                                             "%u", rinfo->ring_ref[i]);
1826                         if (err) {
1827                                 message = "writing ring-ref";
1828                                 goto abort_transaction;
1829                         }
1830                 }
1831         }
1832
1833         err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1834         if (err) {
1835                 message = "writing event-channel";
1836                 goto abort_transaction;
1837         }
1838
1839         return 0;
1840
1841 abort_transaction:
1842         xenbus_transaction_end(xbt, 1);
1843         if (message)
1844                 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1845
1846         return err;
1847 }
1848
1849 static void free_info(struct blkfront_info *info)
1850 {
1851         list_del(&info->info_list);
1852         kfree(info);
1853 }
1854
1855 /* Enable the persistent grants feature. */
1856 static bool feature_persistent = true;
1857 module_param(feature_persistent, bool, 0644);
1858 MODULE_PARM_DESC(feature_persistent,
1859                 "Enables the persistent grants feature");
1860
1861 /* Common code used when first setting up, and when resuming. */
1862 static int talk_to_blkback(struct xenbus_device *dev,
1863                            struct blkfront_info *info)
1864 {
1865         const char *message = NULL;
1866         struct xenbus_transaction xbt;
1867         int err;
1868         unsigned int i, max_page_order;
1869         unsigned int ring_page_order;
1870         struct blkfront_ring_info *rinfo;
1871
1872         if (!info)
1873                 return -ENODEV;
1874
1875         /* Check if backend is trusted. */
1876         info->bounce = !xen_blkif_trusted ||
1877                        !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1878
1879         max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1880                                               "max-ring-page-order", 0);
1881         ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1882         info->nr_ring_pages = 1 << ring_page_order;
1883
1884         err = negotiate_mq(info);
1885         if (err)
1886                 goto destroy_blkring;
1887
1888         for_each_rinfo(info, rinfo, i) {
1889                 /* Create shared ring, alloc event channel. */
1890                 err = setup_blkring(dev, rinfo);
1891                 if (err)
1892                         goto destroy_blkring;
1893         }
1894
1895 again:
1896         err = xenbus_transaction_start(&xbt);
1897         if (err) {
1898                 xenbus_dev_fatal(dev, err, "starting transaction");
1899                 goto destroy_blkring;
1900         }
1901
1902         if (info->nr_ring_pages > 1) {
1903                 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1904                                     ring_page_order);
1905                 if (err) {
1906                         message = "writing ring-page-order";
1907                         goto abort_transaction;
1908                 }
1909         }
1910
1911         /* We already got the number of queues/rings in _probe */
1912         if (info->nr_rings == 1) {
1913                 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1914                 if (err)
1915                         goto destroy_blkring;
1916         } else {
1917                 char *path;
1918                 size_t pathsize;
1919
1920                 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1921                                     info->nr_rings);
1922                 if (err) {
1923                         message = "writing multi-queue-num-queues";
1924                         goto abort_transaction;
1925                 }
1926
1927                 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1928                 path = kmalloc(pathsize, GFP_KERNEL);
1929                 if (!path) {
1930                         err = -ENOMEM;
1931                         message = "ENOMEM while writing ring references";
1932                         goto abort_transaction;
1933                 }
1934
1935                 for_each_rinfo(info, rinfo, i) {
1936                         memset(path, 0, pathsize);
1937                         snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1938                         err = write_per_ring_nodes(xbt, rinfo, path);
1939                         if (err) {
1940                                 kfree(path);
1941                                 goto destroy_blkring;
1942                         }
1943                 }
1944                 kfree(path);
1945         }
1946         err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1947                             XEN_IO_PROTO_ABI_NATIVE);
1948         if (err) {
1949                 message = "writing protocol";
1950                 goto abort_transaction;
1951         }
1952         info->feature_persistent_parm = feature_persistent;
1953         err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1954                         info->feature_persistent_parm);
1955         if (err)
1956                 dev_warn(&dev->dev,
1957                          "writing persistent grants feature to xenbus");
1958
1959         err = xenbus_transaction_end(xbt, 0);
1960         if (err) {
1961                 if (err == -EAGAIN)
1962                         goto again;
1963                 xenbus_dev_fatal(dev, err, "completing transaction");
1964                 goto destroy_blkring;
1965         }
1966
1967         for_each_rinfo(info, rinfo, i) {
1968                 unsigned int j;
1969
1970                 for (j = 0; j < BLK_RING_SIZE(info); j++)
1971                         rinfo->shadow[j].req.u.rw.id = j + 1;
1972                 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1973         }
1974         xenbus_switch_state(dev, XenbusStateInitialised);
1975
1976         return 0;
1977
1978  abort_transaction:
1979         xenbus_transaction_end(xbt, 1);
1980         if (message)
1981                 xenbus_dev_fatal(dev, err, "%s", message);
1982  destroy_blkring:
1983         blkif_free(info, 0);
1984
1985         mutex_lock(&blkfront_mutex);
1986         free_info(info);
1987         mutex_unlock(&blkfront_mutex);
1988
1989         dev_set_drvdata(&dev->dev, NULL);
1990
1991         return err;
1992 }
1993
1994 static int negotiate_mq(struct blkfront_info *info)
1995 {
1996         unsigned int backend_max_queues;
1997         unsigned int i;
1998         struct blkfront_ring_info *rinfo;
1999
2000         BUG_ON(info->nr_rings);
2001
2002         /* Check if backend supports multiple queues. */
2003         backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
2004                                                   "multi-queue-max-queues", 1);
2005         info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
2006         /* We need at least one ring. */
2007         if (!info->nr_rings)
2008                 info->nr_rings = 1;
2009
2010         info->rinfo_size = struct_size(info->rinfo, shadow,
2011                                        BLK_RING_SIZE(info));
2012         info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
2013         if (!info->rinfo) {
2014                 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
2015                 info->nr_rings = 0;
2016                 return -ENOMEM;
2017         }
2018
2019         for_each_rinfo(info, rinfo, i) {
2020                 INIT_LIST_HEAD(&rinfo->indirect_pages);
2021                 INIT_LIST_HEAD(&rinfo->grants);
2022                 rinfo->dev_info = info;
2023                 INIT_WORK(&rinfo->work, blkif_restart_queue);
2024                 spin_lock_init(&rinfo->ring_lock);
2025         }
2026         return 0;
2027 }
2028
2029 /**
2030  * Entry point to this code when a new device is created.  Allocate the basic
2031  * structures and the ring buffer for communication with the backend, and
2032  * inform the backend of the appropriate details for those.  Switch to
2033  * Initialised state.
2034  */
2035 static int blkfront_probe(struct xenbus_device *dev,
2036                           const struct xenbus_device_id *id)
2037 {
2038         int err, vdevice;
2039         struct blkfront_info *info;
2040
2041         /* FIXME: Use dynamic device id if this is not set. */
2042         err = xenbus_scanf(XBT_NIL, dev->nodename,
2043                            "virtual-device", "%i", &vdevice);
2044         if (err != 1) {
2045                 /* go looking in the extended area instead */
2046                 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
2047                                    "%i", &vdevice);
2048                 if (err != 1) {
2049                         xenbus_dev_fatal(dev, err, "reading virtual-device");
2050                         return err;
2051                 }
2052         }
2053
2054         if (xen_hvm_domain()) {
2055                 char *type;
2056                 int len;
2057                 /* no unplug has been done: do not hook devices != xen vbds */
2058                 if (xen_has_pv_and_legacy_disk_devices()) {
2059                         int major;
2060
2061                         if (!VDEV_IS_EXTENDED(vdevice))
2062                                 major = BLKIF_MAJOR(vdevice);
2063                         else
2064                                 major = XENVBD_MAJOR;
2065
2066                         if (major != XENVBD_MAJOR) {
2067                                 printk(KERN_INFO
2068                                                 "%s: HVM does not support vbd %d as xen block device\n",
2069                                                 __func__, vdevice);
2070                                 return -ENODEV;
2071                         }
2072                 }
2073                 /* do not create a PV cdrom device if we are an HVM guest */
2074                 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
2075                 if (IS_ERR(type))
2076                         return -ENODEV;
2077                 if (strncmp(type, "cdrom", 5) == 0) {
2078                         kfree(type);
2079                         return -ENODEV;
2080                 }
2081                 kfree(type);
2082         }
2083         info = kzalloc(sizeof(*info), GFP_KERNEL);
2084         if (!info) {
2085                 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
2086                 return -ENOMEM;
2087         }
2088
2089         info->xbdev = dev;
2090
2091         mutex_init(&info->mutex);
2092         info->vdevice = vdevice;
2093         info->connected = BLKIF_STATE_DISCONNECTED;
2094
2095         /* Front end dir is a number, which is used as the id. */
2096         info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2097         dev_set_drvdata(&dev->dev, info);
2098
2099         mutex_lock(&blkfront_mutex);
2100         list_add(&info->info_list, &info_list);
2101         mutex_unlock(&blkfront_mutex);
2102
2103         return 0;
2104 }
2105
2106 static int blkif_recover(struct blkfront_info *info)
2107 {
2108         unsigned int r_index;
2109         struct request *req, *n;
2110         int rc;
2111         struct bio *bio;
2112         unsigned int segs;
2113         struct blkfront_ring_info *rinfo;
2114
2115         blkfront_gather_backend_features(info);
2116         /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2117         blkif_set_queue_limits(info);
2118         segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2119         blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2120
2121         for_each_rinfo(info, rinfo, r_index) {
2122                 rc = blkfront_setup_indirect(rinfo);
2123                 if (rc)
2124                         return rc;
2125         }
2126         xenbus_switch_state(info->xbdev, XenbusStateConnected);
2127
2128         /* Now safe for us to use the shared ring */
2129         info->connected = BLKIF_STATE_CONNECTED;
2130
2131         for_each_rinfo(info, rinfo, r_index) {
2132                 /* Kick any other new requests queued since we resumed */
2133                 kick_pending_request_queues(rinfo);
2134         }
2135
2136         list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2137                 /* Requeue pending requests (flush or discard) */
2138                 list_del_init(&req->queuelist);
2139                 BUG_ON(req->nr_phys_segments > segs);
2140                 blk_mq_requeue_request(req, false);
2141         }
2142         blk_mq_start_stopped_hw_queues(info->rq, true);
2143         blk_mq_kick_requeue_list(info->rq);
2144
2145         while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2146                 /* Traverse the list of pending bios and re-queue them */
2147                 submit_bio(bio);
2148         }
2149
2150         return 0;
2151 }
2152
2153 /**
2154  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2155  * driver restart.  We tear down our blkif structure and recreate it, but
2156  * leave the device-layer structures intact so that this is transparent to the
2157  * rest of the kernel.
2158  */
2159 static int blkfront_resume(struct xenbus_device *dev)
2160 {
2161         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2162         int err = 0;
2163         unsigned int i, j;
2164         struct blkfront_ring_info *rinfo;
2165
2166         dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2167
2168         bio_list_init(&info->bio_list);
2169         INIT_LIST_HEAD(&info->requests);
2170         for_each_rinfo(info, rinfo, i) {
2171                 struct bio_list merge_bio;
2172                 struct blk_shadow *shadow = rinfo->shadow;
2173
2174                 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2175                         /* Not in use? */
2176                         if (!shadow[j].request)
2177                                 continue;
2178
2179                         /*
2180                          * Get the bios in the request so we can re-queue them.
2181                          */
2182                         if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2183                             req_op(shadow[j].request) == REQ_OP_DISCARD ||
2184                             req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2185                             shadow[j].request->cmd_flags & REQ_FUA) {
2186                                 /*
2187                                  * Flush operations don't contain bios, so
2188                                  * we need to requeue the whole request
2189                                  *
2190                                  * XXX: but this doesn't make any sense for a
2191                                  * write with the FUA flag set..
2192                                  */
2193                                 list_add(&shadow[j].request->queuelist, &info->requests);
2194                                 continue;
2195                         }
2196                         merge_bio.head = shadow[j].request->bio;
2197                         merge_bio.tail = shadow[j].request->biotail;
2198                         bio_list_merge(&info->bio_list, &merge_bio);
2199                         shadow[j].request->bio = NULL;
2200                         blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2201                 }
2202         }
2203
2204         blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2205
2206         err = talk_to_blkback(dev, info);
2207         if (!err)
2208                 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2209
2210         /*
2211          * We have to wait for the backend to switch to
2212          * connected state, since we want to read which
2213          * features it supports.
2214          */
2215
2216         return err;
2217 }
2218
2219 static void blkfront_closing(struct blkfront_info *info)
2220 {
2221         struct xenbus_device *xbdev = info->xbdev;
2222         struct block_device *bdev = NULL;
2223
2224         mutex_lock(&info->mutex);
2225
2226         if (xbdev->state == XenbusStateClosing) {
2227                 mutex_unlock(&info->mutex);
2228                 return;
2229         }
2230
2231         if (info->gd)
2232                 bdev = bdget_disk(info->gd, 0);
2233
2234         mutex_unlock(&info->mutex);
2235
2236         if (!bdev) {
2237                 xenbus_frontend_closed(xbdev);
2238                 return;
2239         }
2240
2241         mutex_lock(&bdev->bd_mutex);
2242
2243         if (bdev->bd_openers) {
2244                 xenbus_dev_error(xbdev, -EBUSY,
2245                                  "Device in use; refusing to close");
2246                 xenbus_switch_state(xbdev, XenbusStateClosing);
2247         } else {
2248                 xlvbd_release_gendisk(info);
2249                 xenbus_frontend_closed(xbdev);
2250         }
2251
2252         mutex_unlock(&bdev->bd_mutex);
2253         bdput(bdev);
2254 }
2255
2256 static void blkfront_setup_discard(struct blkfront_info *info)
2257 {
2258         info->feature_discard = 1;
2259         info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2260                                                          "discard-granularity",
2261                                                          0);
2262         info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2263                                                        "discard-alignment", 0);
2264         info->feature_secdiscard =
2265                 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2266                                        0);
2267 }
2268
2269 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2270 {
2271         unsigned int psegs, grants, memflags;
2272         int err, i;
2273         struct blkfront_info *info = rinfo->dev_info;
2274
2275         memflags = memalloc_noio_save();
2276
2277         if (info->max_indirect_segments == 0) {
2278                 if (!HAS_EXTRA_REQ)
2279                         grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2280                 else {
2281                         /*
2282                          * When an extra req is required, the maximum
2283                          * grants supported is related to the size of the
2284                          * Linux block segment.
2285                          */
2286                         grants = GRANTS_PER_PSEG;
2287                 }
2288         }
2289         else
2290                 grants = info->max_indirect_segments;
2291         psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2292
2293         err = fill_grant_buffer(rinfo,
2294                                 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2295         if (err)
2296                 goto out_of_memory;
2297
2298         if (!info->bounce && info->max_indirect_segments) {
2299                 /*
2300                  * We are using indirect descriptors but don't have a bounce
2301                  * buffer, we need to allocate a set of pages that can be
2302                  * used for mapping indirect grefs
2303                  */
2304                 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2305
2306                 BUG_ON(!list_empty(&rinfo->indirect_pages));
2307                 for (i = 0; i < num; i++) {
2308                         struct page *indirect_page = alloc_page(GFP_KERNEL |
2309                                                                 __GFP_ZERO);
2310                         if (!indirect_page)
2311                                 goto out_of_memory;
2312                         list_add(&indirect_page->lru, &rinfo->indirect_pages);
2313                 }
2314         }
2315
2316         for (i = 0; i < BLK_RING_SIZE(info); i++) {
2317                 rinfo->shadow[i].grants_used =
2318                         kvcalloc(grants,
2319                                  sizeof(rinfo->shadow[i].grants_used[0]),
2320                                  GFP_KERNEL);
2321                 rinfo->shadow[i].sg = kvcalloc(psegs,
2322                                                sizeof(rinfo->shadow[i].sg[0]),
2323                                                GFP_KERNEL);
2324                 if (info->max_indirect_segments)
2325                         rinfo->shadow[i].indirect_grants =
2326                                 kvcalloc(INDIRECT_GREFS(grants),
2327                                          sizeof(rinfo->shadow[i].indirect_grants[0]),
2328                                          GFP_KERNEL);
2329                 if ((rinfo->shadow[i].grants_used == NULL) ||
2330                         (rinfo->shadow[i].sg == NULL) ||
2331                      (info->max_indirect_segments &&
2332                      (rinfo->shadow[i].indirect_grants == NULL)))
2333                         goto out_of_memory;
2334                 sg_init_table(rinfo->shadow[i].sg, psegs);
2335         }
2336
2337         memalloc_noio_restore(memflags);
2338
2339         return 0;
2340
2341 out_of_memory:
2342         for (i = 0; i < BLK_RING_SIZE(info); i++) {
2343                 kvfree(rinfo->shadow[i].grants_used);
2344                 rinfo->shadow[i].grants_used = NULL;
2345                 kvfree(rinfo->shadow[i].sg);
2346                 rinfo->shadow[i].sg = NULL;
2347                 kvfree(rinfo->shadow[i].indirect_grants);
2348                 rinfo->shadow[i].indirect_grants = NULL;
2349         }
2350         if (!list_empty(&rinfo->indirect_pages)) {
2351                 struct page *indirect_page, *n;
2352                 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2353                         list_del(&indirect_page->lru);
2354                         __free_page(indirect_page);
2355                 }
2356         }
2357
2358         memalloc_noio_restore(memflags);
2359
2360         return -ENOMEM;
2361 }
2362
2363 /*
2364  * Gather all backend feature-*
2365  */
2366 static void blkfront_gather_backend_features(struct blkfront_info *info)
2367 {
2368         unsigned int indirect_segments;
2369
2370         info->feature_flush = 0;
2371         info->feature_fua = 0;
2372
2373         /*
2374          * If there's no "feature-barrier" defined, then it means
2375          * we're dealing with a very old backend which writes
2376          * synchronously; nothing to do.
2377          *
2378          * If there are barriers, then we use flush.
2379          */
2380         if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2381                 info->feature_flush = 1;
2382                 info->feature_fua = 1;
2383         }
2384
2385         /*
2386          * And if there is "feature-flush-cache" use that above
2387          * barriers.
2388          */
2389         if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2390                                  0)) {
2391                 info->feature_flush = 1;
2392                 info->feature_fua = 0;
2393         }
2394
2395         if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2396                 blkfront_setup_discard(info);
2397
2398         if (info->feature_persistent_parm)
2399                 info->feature_persistent =
2400                         !!xenbus_read_unsigned(info->xbdev->otherend,
2401                                                "feature-persistent", 0);
2402         if (info->feature_persistent)
2403                 info->bounce = true;
2404
2405         indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2406                                         "feature-max-indirect-segments", 0);
2407         if (indirect_segments > xen_blkif_max_segments)
2408                 indirect_segments = xen_blkif_max_segments;
2409         if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2410                 indirect_segments = 0;
2411         info->max_indirect_segments = indirect_segments;
2412
2413         if (info->feature_persistent) {
2414                 mutex_lock(&blkfront_mutex);
2415                 schedule_delayed_work(&blkfront_work, HZ * 10);
2416                 mutex_unlock(&blkfront_mutex);
2417         }
2418 }
2419
2420 /*
2421  * Invoked when the backend is finally 'ready' (and has told produced
2422  * the details about the physical device - #sectors, size, etc).
2423  */
2424 static void blkfront_connect(struct blkfront_info *info)
2425 {
2426         unsigned long long sectors;
2427         unsigned long sector_size;
2428         unsigned int physical_sector_size;
2429         unsigned int binfo;
2430         int err, i;
2431         struct blkfront_ring_info *rinfo;
2432
2433         switch (info->connected) {
2434         case BLKIF_STATE_CONNECTED:
2435                 /*
2436                  * Potentially, the back-end may be signalling
2437                  * a capacity change; update the capacity.
2438                  */
2439                 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2440                                    "sectors", "%Lu", &sectors);
2441                 if (XENBUS_EXIST_ERR(err))
2442                         return;
2443                 printk(KERN_INFO "Setting capacity to %Lu\n",
2444                        sectors);
2445                 set_capacity_revalidate_and_notify(info->gd, sectors, true);
2446
2447                 return;
2448         case BLKIF_STATE_SUSPENDED:
2449                 /*
2450                  * If we are recovering from suspension, we need to wait
2451                  * for the backend to announce it's features before
2452                  * reconnecting, at least we need to know if the backend
2453                  * supports indirect descriptors, and how many.
2454                  */
2455                 blkif_recover(info);
2456                 return;
2457
2458         default:
2459                 break;
2460         }
2461
2462         dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2463                 __func__, info->xbdev->otherend);
2464
2465         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2466                             "sectors", "%llu", &sectors,
2467                             "info", "%u", &binfo,
2468                             "sector-size", "%lu", &sector_size,
2469                             NULL);
2470         if (err) {
2471                 xenbus_dev_fatal(info->xbdev, err,
2472                                  "reading backend fields at %s",
2473                                  info->xbdev->otherend);
2474                 return;
2475         }
2476
2477         /*
2478          * physcial-sector-size is a newer field, so old backends may not
2479          * provide this. Assume physical sector size to be the same as
2480          * sector_size in that case.
2481          */
2482         physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2483                                                     "physical-sector-size",
2484                                                     sector_size);
2485         blkfront_gather_backend_features(info);
2486         for_each_rinfo(info, rinfo, i) {
2487                 err = blkfront_setup_indirect(rinfo);
2488                 if (err) {
2489                         xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2490                                          info->xbdev->otherend);
2491                         blkif_free(info, 0);
2492                         break;
2493                 }
2494         }
2495
2496         err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2497                                   physical_sector_size);
2498         if (err) {
2499                 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2500                                  info->xbdev->otherend);
2501                 goto fail;
2502         }
2503
2504         xenbus_switch_state(info->xbdev, XenbusStateConnected);
2505
2506         /* Kick pending requests. */
2507         info->connected = BLKIF_STATE_CONNECTED;
2508         for_each_rinfo(info, rinfo, i)
2509                 kick_pending_request_queues(rinfo);
2510
2511         device_add_disk(&info->xbdev->dev, info->gd, NULL);
2512
2513         info->is_ready = 1;
2514         return;
2515
2516 fail:
2517         blkif_free(info, 0);
2518         return;
2519 }
2520
2521 /**
2522  * Callback received when the backend's state changes.
2523  */
2524 static void blkback_changed(struct xenbus_device *dev,
2525                             enum xenbus_state backend_state)
2526 {
2527         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2528
2529         dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2530
2531         switch (backend_state) {
2532         case XenbusStateInitWait:
2533                 if (dev->state != XenbusStateInitialising)
2534                         break;
2535                 if (talk_to_blkback(dev, info))
2536                         break;
2537         case XenbusStateInitialising:
2538         case XenbusStateInitialised:
2539         case XenbusStateReconfiguring:
2540         case XenbusStateReconfigured:
2541         case XenbusStateUnknown:
2542                 break;
2543
2544         case XenbusStateConnected:
2545                 /*
2546                  * talk_to_blkback sets state to XenbusStateInitialised
2547                  * and blkfront_connect sets it to XenbusStateConnected
2548                  * (if connection went OK).
2549                  *
2550                  * If the backend (or toolstack) decides to poke at backend
2551                  * state (and re-trigger the watch by setting the state repeatedly
2552                  * to XenbusStateConnected (4)) we need to deal with this.
2553                  * This is allowed as this is used to communicate to the guest
2554                  * that the size of disk has changed!
2555                  */
2556                 if ((dev->state != XenbusStateInitialised) &&
2557                     (dev->state != XenbusStateConnected)) {
2558                         if (talk_to_blkback(dev, info))
2559                                 break;
2560                 }
2561
2562                 blkfront_connect(info);
2563                 break;
2564
2565         case XenbusStateClosed:
2566                 if (dev->state == XenbusStateClosed)
2567                         break;
2568                 fallthrough;
2569         case XenbusStateClosing:
2570                 if (info)
2571                         blkfront_closing(info);
2572                 break;
2573         }
2574 }
2575
2576 static int blkfront_remove(struct xenbus_device *xbdev)
2577 {
2578         struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2579         struct block_device *bdev = NULL;
2580         struct gendisk *disk;
2581
2582         dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2583
2584         if (!info)
2585                 return 0;
2586
2587         blkif_free(info, 0);
2588
2589         mutex_lock(&info->mutex);
2590
2591         disk = info->gd;
2592         if (disk)
2593                 bdev = bdget_disk(disk, 0);
2594
2595         info->xbdev = NULL;
2596         mutex_unlock(&info->mutex);
2597
2598         if (!bdev) {
2599                 mutex_lock(&blkfront_mutex);
2600                 free_info(info);
2601                 mutex_unlock(&blkfront_mutex);
2602                 return 0;
2603         }
2604
2605         /*
2606          * The xbdev was removed before we reached the Closed
2607          * state. See if it's safe to remove the disk. If the bdev
2608          * isn't closed yet, we let release take care of it.
2609          */
2610
2611         mutex_lock(&bdev->bd_mutex);
2612         info = disk->private_data;
2613
2614         dev_warn(disk_to_dev(disk),
2615                  "%s was hot-unplugged, %d stale handles\n",
2616                  xbdev->nodename, bdev->bd_openers);
2617
2618         if (info && !bdev->bd_openers) {
2619                 xlvbd_release_gendisk(info);
2620                 disk->private_data = NULL;
2621                 mutex_lock(&blkfront_mutex);
2622                 free_info(info);
2623                 mutex_unlock(&blkfront_mutex);
2624         }
2625
2626         mutex_unlock(&bdev->bd_mutex);
2627         bdput(bdev);
2628
2629         return 0;
2630 }
2631
2632 static int blkfront_is_ready(struct xenbus_device *dev)
2633 {
2634         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2635
2636         return info->is_ready && info->xbdev;
2637 }
2638
2639 static int blkif_open(struct block_device *bdev, fmode_t mode)
2640 {
2641         struct gendisk *disk = bdev->bd_disk;
2642         struct blkfront_info *info;
2643         int err = 0;
2644
2645         mutex_lock(&blkfront_mutex);
2646
2647         info = disk->private_data;
2648         if (!info) {
2649                 /* xbdev gone */
2650                 err = -ERESTARTSYS;
2651                 goto out;
2652         }
2653
2654         mutex_lock(&info->mutex);
2655
2656         if (!info->gd)
2657                 /* xbdev is closed */
2658                 err = -ERESTARTSYS;
2659
2660         mutex_unlock(&info->mutex);
2661
2662 out:
2663         mutex_unlock(&blkfront_mutex);
2664         return err;
2665 }
2666
2667 static void blkif_release(struct gendisk *disk, fmode_t mode)
2668 {
2669         struct blkfront_info *info = disk->private_data;
2670         struct block_device *bdev;
2671         struct xenbus_device *xbdev;
2672
2673         mutex_lock(&blkfront_mutex);
2674
2675         bdev = bdget_disk(disk, 0);
2676
2677         if (!bdev) {
2678                 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2679                 goto out_mutex;
2680         }
2681         if (bdev->bd_openers)
2682                 goto out;
2683
2684         /*
2685          * Check if we have been instructed to close. We will have
2686          * deferred this request, because the bdev was still open.
2687          */
2688
2689         mutex_lock(&info->mutex);
2690         xbdev = info->xbdev;
2691
2692         if (xbdev && xbdev->state == XenbusStateClosing) {
2693                 /* pending switch to state closed */
2694                 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2695                 xlvbd_release_gendisk(info);
2696                 xenbus_frontend_closed(info->xbdev);
2697         }
2698
2699         mutex_unlock(&info->mutex);
2700
2701         if (!xbdev) {
2702                 /* sudden device removal */
2703                 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2704                 xlvbd_release_gendisk(info);
2705                 disk->private_data = NULL;
2706                 free_info(info);
2707         }
2708
2709 out:
2710         bdput(bdev);
2711 out_mutex:
2712         mutex_unlock(&blkfront_mutex);
2713 }
2714
2715 static const struct block_device_operations xlvbd_block_fops =
2716 {
2717         .owner = THIS_MODULE,
2718         .open = blkif_open,
2719         .release = blkif_release,
2720         .getgeo = blkif_getgeo,
2721         .ioctl = blkif_ioctl,
2722         .compat_ioctl = blkdev_compat_ptr_ioctl,
2723 };
2724
2725
2726 static const struct xenbus_device_id blkfront_ids[] = {
2727         { "vbd" },
2728         { "" }
2729 };
2730
2731 static struct xenbus_driver blkfront_driver = {
2732         .ids  = blkfront_ids,
2733         .probe = blkfront_probe,
2734         .remove = blkfront_remove,
2735         .resume = blkfront_resume,
2736         .otherend_changed = blkback_changed,
2737         .is_ready = blkfront_is_ready,
2738 };
2739
2740 static void purge_persistent_grants(struct blkfront_info *info)
2741 {
2742         unsigned int i;
2743         unsigned long flags;
2744         struct blkfront_ring_info *rinfo;
2745
2746         for_each_rinfo(info, rinfo, i) {
2747                 struct grant *gnt_list_entry, *tmp;
2748
2749                 spin_lock_irqsave(&rinfo->ring_lock, flags);
2750
2751                 if (rinfo->persistent_gnts_c == 0) {
2752                         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2753                         continue;
2754                 }
2755
2756                 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2757                                          node) {
2758                         if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2759                             !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2760                                 continue;
2761
2762                         list_del(&gnt_list_entry->node);
2763                         rinfo->persistent_gnts_c--;
2764                         gnt_list_entry->gref = GRANT_INVALID_REF;
2765                         list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2766                 }
2767
2768                 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2769         }
2770 }
2771
2772 static void blkfront_delay_work(struct work_struct *work)
2773 {
2774         struct blkfront_info *info;
2775         bool need_schedule_work = false;
2776
2777         /*
2778          * Note that when using bounce buffers but not persistent grants
2779          * there's no need to run blkfront_delay_work because grants are
2780          * revoked in blkif_completion or else an error is reported and the
2781          * connection is closed.
2782          */
2783
2784         mutex_lock(&blkfront_mutex);
2785
2786         list_for_each_entry(info, &info_list, info_list) {
2787                 if (info->feature_persistent) {
2788                         need_schedule_work = true;
2789                         mutex_lock(&info->mutex);
2790                         purge_persistent_grants(info);
2791                         mutex_unlock(&info->mutex);
2792                 }
2793         }
2794
2795         if (need_schedule_work)
2796                 schedule_delayed_work(&blkfront_work, HZ * 10);
2797
2798         mutex_unlock(&blkfront_mutex);
2799 }
2800
2801 static int __init xlblk_init(void)
2802 {
2803         int ret;
2804         int nr_cpus = num_online_cpus();
2805
2806         if (!xen_domain())
2807                 return -ENODEV;
2808
2809         if (!xen_has_pv_disk_devices())
2810                 return -ENODEV;
2811
2812         if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2813                 pr_warn("xen_blk: can't get major %d with name %s\n",
2814                         XENVBD_MAJOR, DEV_NAME);
2815                 return -ENODEV;
2816         }
2817
2818         if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2819                 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2820
2821         if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2822                 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2823                         xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2824                 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2825         }
2826
2827         if (xen_blkif_max_queues > nr_cpus) {
2828                 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2829                         xen_blkif_max_queues, nr_cpus);
2830                 xen_blkif_max_queues = nr_cpus;
2831         }
2832
2833         INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2834
2835         ret = xenbus_register_frontend(&blkfront_driver);
2836         if (ret) {
2837                 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2838                 return ret;
2839         }
2840
2841         return 0;
2842 }
2843 module_init(xlblk_init);
2844
2845
2846 static void __exit xlblk_exit(void)
2847 {
2848         cancel_delayed_work_sync(&blkfront_work);
2849
2850         xenbus_unregister_driver(&blkfront_driver);
2851         unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2852         kfree(minors);
2853 }
2854 module_exit(xlblk_exit);
2855
2856 MODULE_DESCRIPTION("Xen virtual block device frontend");
2857 MODULE_LICENSE("GPL");
2858 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2859 MODULE_ALIAS("xen:vbd");
2860 MODULE_ALIAS("xenblk");