Mention branches and keyring.
[releases.git] / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20
21 #include <asm/pkru.h>
22 #include <asm/trapnr.h>
23 #include <asm/fpu/xcr.h>
24
25 #include "mmu.h"
26 #include "x86.h"
27 #include "svm.h"
28 #include "svm_ops.h"
29 #include "cpuid.h"
30 #include "trace.h"
31
32 #ifndef CONFIG_KVM_AMD_SEV
33 /*
34  * When this config is not defined, SEV feature is not supported and APIs in
35  * this file are not used but this file still gets compiled into the KVM AMD
36  * module.
37  *
38  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
39  * misc_res_type {} defined in linux/misc_cgroup.h.
40  *
41  * Below macros allow compilation to succeed.
42  */
43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
45 #endif
46
47 #ifdef CONFIG_KVM_AMD_SEV
48 /* enable/disable SEV support */
49 static bool sev_enabled = true;
50 module_param_named(sev, sev_enabled, bool, 0444);
51
52 /* enable/disable SEV-ES support */
53 static bool sev_es_enabled = true;
54 module_param_named(sev_es, sev_es_enabled, bool, 0444);
55 #else
56 #define sev_enabled false
57 #define sev_es_enabled false
58 #endif /* CONFIG_KVM_AMD_SEV */
59
60 static u8 sev_enc_bit;
61 static DECLARE_RWSEM(sev_deactivate_lock);
62 static DEFINE_MUTEX(sev_bitmap_lock);
63 unsigned int max_sev_asid;
64 static unsigned int min_sev_asid;
65 static unsigned long sev_me_mask;
66 static unsigned int nr_asids;
67 static unsigned long *sev_asid_bitmap;
68 static unsigned long *sev_reclaim_asid_bitmap;
69
70 struct enc_region {
71         struct list_head list;
72         unsigned long npages;
73         struct page **pages;
74         unsigned long uaddr;
75         unsigned long size;
76 };
77
78 /* Called with the sev_bitmap_lock held, or on shutdown  */
79 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
80 {
81         int ret, error = 0;
82         unsigned int asid;
83
84         /* Check if there are any ASIDs to reclaim before performing a flush */
85         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
86         if (asid > max_asid)
87                 return -EBUSY;
88
89         /*
90          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
91          * so it must be guarded.
92          */
93         down_write(&sev_deactivate_lock);
94
95         wbinvd_on_all_cpus();
96         ret = sev_guest_df_flush(&error);
97
98         up_write(&sev_deactivate_lock);
99
100         if (ret)
101                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
102
103         return ret;
104 }
105
106 static inline bool is_mirroring_enc_context(struct kvm *kvm)
107 {
108         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
109 }
110
111 /* Must be called with the sev_bitmap_lock held */
112 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
113 {
114         if (sev_flush_asids(min_asid, max_asid))
115                 return false;
116
117         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
118         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
119                    nr_asids);
120         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
121
122         return true;
123 }
124
125 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
126 {
127         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
128         return misc_cg_try_charge(type, sev->misc_cg, 1);
129 }
130
131 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
132 {
133         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
134         misc_cg_uncharge(type, sev->misc_cg, 1);
135 }
136
137 static int sev_asid_new(struct kvm_sev_info *sev)
138 {
139         /*
140          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
141          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
142          * Note: min ASID can end up larger than the max if basic SEV support is
143          * effectively disabled by disallowing use of ASIDs for SEV guests.
144          */
145         unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
146         unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
147         unsigned int asid;
148         bool retry = true;
149         int ret;
150
151         if (min_asid > max_asid)
152                 return -ENOTTY;
153
154         WARN_ON(sev->misc_cg);
155         sev->misc_cg = get_current_misc_cg();
156         ret = sev_misc_cg_try_charge(sev);
157         if (ret) {
158                 put_misc_cg(sev->misc_cg);
159                 sev->misc_cg = NULL;
160                 return ret;
161         }
162
163         mutex_lock(&sev_bitmap_lock);
164
165 again:
166         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
167         if (asid > max_asid) {
168                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
169                         retry = false;
170                         goto again;
171                 }
172                 mutex_unlock(&sev_bitmap_lock);
173                 ret = -EBUSY;
174                 goto e_uncharge;
175         }
176
177         __set_bit(asid, sev_asid_bitmap);
178
179         mutex_unlock(&sev_bitmap_lock);
180
181         return asid;
182 e_uncharge:
183         sev_misc_cg_uncharge(sev);
184         put_misc_cg(sev->misc_cg);
185         sev->misc_cg = NULL;
186         return ret;
187 }
188
189 static unsigned int sev_get_asid(struct kvm *kvm)
190 {
191         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
192
193         return sev->asid;
194 }
195
196 static void sev_asid_free(struct kvm_sev_info *sev)
197 {
198         struct svm_cpu_data *sd;
199         int cpu;
200
201         mutex_lock(&sev_bitmap_lock);
202
203         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
204
205         for_each_possible_cpu(cpu) {
206                 sd = per_cpu_ptr(&svm_data, cpu);
207                 sd->sev_vmcbs[sev->asid] = NULL;
208         }
209
210         mutex_unlock(&sev_bitmap_lock);
211
212         sev_misc_cg_uncharge(sev);
213         put_misc_cg(sev->misc_cg);
214         sev->misc_cg = NULL;
215 }
216
217 static void sev_decommission(unsigned int handle)
218 {
219         struct sev_data_decommission decommission;
220
221         if (!handle)
222                 return;
223
224         decommission.handle = handle;
225         sev_guest_decommission(&decommission, NULL);
226 }
227
228 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
229 {
230         struct sev_data_deactivate deactivate;
231
232         if (!handle)
233                 return;
234
235         deactivate.handle = handle;
236
237         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
238         down_read(&sev_deactivate_lock);
239         sev_guest_deactivate(&deactivate, NULL);
240         up_read(&sev_deactivate_lock);
241
242         sev_decommission(handle);
243 }
244
245 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
246 {
247         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
248         int asid, ret;
249
250         if (kvm->created_vcpus)
251                 return -EINVAL;
252
253         ret = -EBUSY;
254         if (unlikely(sev->active))
255                 return ret;
256
257         sev->active = true;
258         sev->es_active = argp->id == KVM_SEV_ES_INIT;
259         asid = sev_asid_new(sev);
260         if (asid < 0)
261                 goto e_no_asid;
262         sev->asid = asid;
263
264         ret = sev_platform_init(&argp->error);
265         if (ret)
266                 goto e_free;
267
268         INIT_LIST_HEAD(&sev->regions_list);
269         INIT_LIST_HEAD(&sev->mirror_vms);
270
271         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
272
273         return 0;
274
275 e_free:
276         sev_asid_free(sev);
277         sev->asid = 0;
278 e_no_asid:
279         sev->es_active = false;
280         sev->active = false;
281         return ret;
282 }
283
284 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
285 {
286         unsigned int asid = sev_get_asid(kvm);
287         struct sev_data_activate activate;
288         int ret;
289
290         /* activate ASID on the given handle */
291         activate.handle = handle;
292         activate.asid   = asid;
293         ret = sev_guest_activate(&activate, error);
294
295         return ret;
296 }
297
298 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
299 {
300         struct fd f;
301         int ret;
302
303         f = fdget(fd);
304         if (!f.file)
305                 return -EBADF;
306
307         ret = sev_issue_cmd_external_user(f.file, id, data, error);
308
309         fdput(f);
310         return ret;
311 }
312
313 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
314 {
315         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
316
317         return __sev_issue_cmd(sev->fd, id, data, error);
318 }
319
320 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
321 {
322         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
323         struct sev_data_launch_start start;
324         struct kvm_sev_launch_start params;
325         void *dh_blob, *session_blob;
326         int *error = &argp->error;
327         int ret;
328
329         if (!sev_guest(kvm))
330                 return -ENOTTY;
331
332         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
333                 return -EFAULT;
334
335         memset(&start, 0, sizeof(start));
336
337         dh_blob = NULL;
338         if (params.dh_uaddr) {
339                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
340                 if (IS_ERR(dh_blob))
341                         return PTR_ERR(dh_blob);
342
343                 start.dh_cert_address = __sme_set(__pa(dh_blob));
344                 start.dh_cert_len = params.dh_len;
345         }
346
347         session_blob = NULL;
348         if (params.session_uaddr) {
349                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
350                 if (IS_ERR(session_blob)) {
351                         ret = PTR_ERR(session_blob);
352                         goto e_free_dh;
353                 }
354
355                 start.session_address = __sme_set(__pa(session_blob));
356                 start.session_len = params.session_len;
357         }
358
359         start.handle = params.handle;
360         start.policy = params.policy;
361
362         /* create memory encryption context */
363         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
364         if (ret)
365                 goto e_free_session;
366
367         /* Bind ASID to this guest */
368         ret = sev_bind_asid(kvm, start.handle, error);
369         if (ret) {
370                 sev_decommission(start.handle);
371                 goto e_free_session;
372         }
373
374         /* return handle to userspace */
375         params.handle = start.handle;
376         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
377                 sev_unbind_asid(kvm, start.handle);
378                 ret = -EFAULT;
379                 goto e_free_session;
380         }
381
382         sev->handle = start.handle;
383         sev->fd = argp->sev_fd;
384
385 e_free_session:
386         kfree(session_blob);
387 e_free_dh:
388         kfree(dh_blob);
389         return ret;
390 }
391
392 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
393                                     unsigned long ulen, unsigned long *n,
394                                     int write)
395 {
396         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
397         unsigned long npages, size;
398         int npinned;
399         unsigned long locked, lock_limit;
400         struct page **pages;
401         unsigned long first, last;
402         int ret;
403
404         lockdep_assert_held(&kvm->lock);
405
406         if (ulen == 0 || uaddr + ulen < uaddr)
407                 return ERR_PTR(-EINVAL);
408
409         /* Calculate number of pages. */
410         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
411         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
412         npages = (last - first + 1);
413
414         locked = sev->pages_locked + npages;
415         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
416         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
417                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
418                 return ERR_PTR(-ENOMEM);
419         }
420
421         if (WARN_ON_ONCE(npages > INT_MAX))
422                 return ERR_PTR(-EINVAL);
423
424         /* Avoid using vmalloc for smaller buffers. */
425         size = npages * sizeof(struct page *);
426         if (size > PAGE_SIZE)
427                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
428         else
429                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
430
431         if (!pages)
432                 return ERR_PTR(-ENOMEM);
433
434         /* Pin the user virtual address. */
435         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
436         if (npinned != npages) {
437                 pr_err("SEV: Failure locking %lu pages.\n", npages);
438                 ret = -ENOMEM;
439                 goto err;
440         }
441
442         *n = npages;
443         sev->pages_locked = locked;
444
445         return pages;
446
447 err:
448         if (npinned > 0)
449                 unpin_user_pages(pages, npinned);
450
451         kvfree(pages);
452         return ERR_PTR(ret);
453 }
454
455 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
456                              unsigned long npages)
457 {
458         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
459
460         unpin_user_pages(pages, npages);
461         kvfree(pages);
462         sev->pages_locked -= npages;
463 }
464
465 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
466 {
467         uint8_t *page_virtual;
468         unsigned long i;
469
470         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
471             pages == NULL)
472                 return;
473
474         for (i = 0; i < npages; i++) {
475                 page_virtual = kmap_atomic(pages[i]);
476                 clflush_cache_range(page_virtual, PAGE_SIZE);
477                 kunmap_atomic(page_virtual);
478                 cond_resched();
479         }
480 }
481
482 static unsigned long get_num_contig_pages(unsigned long idx,
483                                 struct page **inpages, unsigned long npages)
484 {
485         unsigned long paddr, next_paddr;
486         unsigned long i = idx + 1, pages = 1;
487
488         /* find the number of contiguous pages starting from idx */
489         paddr = __sme_page_pa(inpages[idx]);
490         while (i < npages) {
491                 next_paddr = __sme_page_pa(inpages[i++]);
492                 if ((paddr + PAGE_SIZE) == next_paddr) {
493                         pages++;
494                         paddr = next_paddr;
495                         continue;
496                 }
497                 break;
498         }
499
500         return pages;
501 }
502
503 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
504 {
505         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
506         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
507         struct kvm_sev_launch_update_data params;
508         struct sev_data_launch_update_data data;
509         struct page **inpages;
510         int ret;
511
512         if (!sev_guest(kvm))
513                 return -ENOTTY;
514
515         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
516                 return -EFAULT;
517
518         vaddr = params.uaddr;
519         size = params.len;
520         vaddr_end = vaddr + size;
521
522         /* Lock the user memory. */
523         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
524         if (IS_ERR(inpages))
525                 return PTR_ERR(inpages);
526
527         /*
528          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
529          * place; the cache may contain the data that was written unencrypted.
530          */
531         sev_clflush_pages(inpages, npages);
532
533         data.reserved = 0;
534         data.handle = sev->handle;
535
536         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
537                 int offset, len;
538
539                 /*
540                  * If the user buffer is not page-aligned, calculate the offset
541                  * within the page.
542                  */
543                 offset = vaddr & (PAGE_SIZE - 1);
544
545                 /* Calculate the number of pages that can be encrypted in one go. */
546                 pages = get_num_contig_pages(i, inpages, npages);
547
548                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
549
550                 data.len = len;
551                 data.address = __sme_page_pa(inpages[i]) + offset;
552                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
553                 if (ret)
554                         goto e_unpin;
555
556                 size -= len;
557                 next_vaddr = vaddr + len;
558         }
559
560 e_unpin:
561         /* content of memory is updated, mark pages dirty */
562         for (i = 0; i < npages; i++) {
563                 set_page_dirty_lock(inpages[i]);
564                 mark_page_accessed(inpages[i]);
565         }
566         /* unlock the user pages */
567         sev_unpin_memory(kvm, inpages, npages);
568         return ret;
569 }
570
571 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
572 {
573         struct sev_es_save_area *save = svm->sev_es.vmsa;
574
575         /* Check some debug related fields before encrypting the VMSA */
576         if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
577                 return -EINVAL;
578
579         /*
580          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
581          * the traditional VMSA that is part of the VMCB. Copy the
582          * traditional VMSA as it has been built so far (in prep
583          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
584          */
585         memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
586
587         /* Sync registgers */
588         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
589         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
590         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
591         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
592         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
593         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
594         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
595         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
596 #ifdef CONFIG_X86_64
597         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
598         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
599         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
600         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
601         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
602         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
603         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
604         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
605 #endif
606         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
607
608         /* Sync some non-GPR registers before encrypting */
609         save->xcr0 = svm->vcpu.arch.xcr0;
610         save->pkru = svm->vcpu.arch.pkru;
611         save->xss  = svm->vcpu.arch.ia32_xss;
612         save->dr6  = svm->vcpu.arch.dr6;
613
614         pr_debug("Virtual Machine Save Area (VMSA):\n");
615         print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
616
617         return 0;
618 }
619
620 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
621                                     int *error)
622 {
623         struct sev_data_launch_update_vmsa vmsa;
624         struct vcpu_svm *svm = to_svm(vcpu);
625         int ret;
626
627         /* Perform some pre-encryption checks against the VMSA */
628         ret = sev_es_sync_vmsa(svm);
629         if (ret)
630                 return ret;
631
632         /*
633          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
634          * the VMSA memory content (i.e it will write the same memory region
635          * with the guest's key), so invalidate it first.
636          */
637         clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
638
639         vmsa.reserved = 0;
640         vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
641         vmsa.address = __sme_pa(svm->sev_es.vmsa);
642         vmsa.len = PAGE_SIZE;
643         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
644         if (ret)
645           return ret;
646
647         vcpu->arch.guest_state_protected = true;
648         return 0;
649 }
650
651 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
652 {
653         struct kvm_vcpu *vcpu;
654         unsigned long i;
655         int ret;
656
657         if (!sev_es_guest(kvm))
658                 return -ENOTTY;
659
660         kvm_for_each_vcpu(i, vcpu, kvm) {
661                 ret = mutex_lock_killable(&vcpu->mutex);
662                 if (ret)
663                         return ret;
664
665                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
666
667                 mutex_unlock(&vcpu->mutex);
668                 if (ret)
669                         return ret;
670         }
671
672         return 0;
673 }
674
675 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
676 {
677         void __user *measure = (void __user *)(uintptr_t)argp->data;
678         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
679         struct sev_data_launch_measure data;
680         struct kvm_sev_launch_measure params;
681         void __user *p = NULL;
682         void *blob = NULL;
683         int ret;
684
685         if (!sev_guest(kvm))
686                 return -ENOTTY;
687
688         if (copy_from_user(&params, measure, sizeof(params)))
689                 return -EFAULT;
690
691         memset(&data, 0, sizeof(data));
692
693         /* User wants to query the blob length */
694         if (!params.len)
695                 goto cmd;
696
697         p = (void __user *)(uintptr_t)params.uaddr;
698         if (p) {
699                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
700                         return -EINVAL;
701
702                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
703                 if (!blob)
704                         return -ENOMEM;
705
706                 data.address = __psp_pa(blob);
707                 data.len = params.len;
708         }
709
710 cmd:
711         data.handle = sev->handle;
712         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
713
714         /*
715          * If we query the session length, FW responded with expected data.
716          */
717         if (!params.len)
718                 goto done;
719
720         if (ret)
721                 goto e_free_blob;
722
723         if (blob) {
724                 if (copy_to_user(p, blob, params.len))
725                         ret = -EFAULT;
726         }
727
728 done:
729         params.len = data.len;
730         if (copy_to_user(measure, &params, sizeof(params)))
731                 ret = -EFAULT;
732 e_free_blob:
733         kfree(blob);
734         return ret;
735 }
736
737 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
738 {
739         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
740         struct sev_data_launch_finish data;
741
742         if (!sev_guest(kvm))
743                 return -ENOTTY;
744
745         data.handle = sev->handle;
746         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
747 }
748
749 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
750 {
751         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
752         struct kvm_sev_guest_status params;
753         struct sev_data_guest_status data;
754         int ret;
755
756         if (!sev_guest(kvm))
757                 return -ENOTTY;
758
759         memset(&data, 0, sizeof(data));
760
761         data.handle = sev->handle;
762         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
763         if (ret)
764                 return ret;
765
766         params.policy = data.policy;
767         params.state = data.state;
768         params.handle = data.handle;
769
770         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
771                 ret = -EFAULT;
772
773         return ret;
774 }
775
776 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
777                                unsigned long dst, int size,
778                                int *error, bool enc)
779 {
780         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
781         struct sev_data_dbg data;
782
783         data.reserved = 0;
784         data.handle = sev->handle;
785         data.dst_addr = dst;
786         data.src_addr = src;
787         data.len = size;
788
789         return sev_issue_cmd(kvm,
790                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
791                              &data, error);
792 }
793
794 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
795                              unsigned long dst_paddr, int sz, int *err)
796 {
797         int offset;
798
799         /*
800          * Its safe to read more than we are asked, caller should ensure that
801          * destination has enough space.
802          */
803         offset = src_paddr & 15;
804         src_paddr = round_down(src_paddr, 16);
805         sz = round_up(sz + offset, 16);
806
807         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
808 }
809
810 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
811                                   void __user *dst_uaddr,
812                                   unsigned long dst_paddr,
813                                   int size, int *err)
814 {
815         struct page *tpage = NULL;
816         int ret, offset;
817
818         /* if inputs are not 16-byte then use intermediate buffer */
819         if (!IS_ALIGNED(dst_paddr, 16) ||
820             !IS_ALIGNED(paddr,     16) ||
821             !IS_ALIGNED(size,      16)) {
822                 tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
823                 if (!tpage)
824                         return -ENOMEM;
825
826                 dst_paddr = __sme_page_pa(tpage);
827         }
828
829         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
830         if (ret)
831                 goto e_free;
832
833         if (tpage) {
834                 offset = paddr & 15;
835                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
836                         ret = -EFAULT;
837         }
838
839 e_free:
840         if (tpage)
841                 __free_page(tpage);
842
843         return ret;
844 }
845
846 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
847                                   void __user *vaddr,
848                                   unsigned long dst_paddr,
849                                   void __user *dst_vaddr,
850                                   int size, int *error)
851 {
852         struct page *src_tpage = NULL;
853         struct page *dst_tpage = NULL;
854         int ret, len = size;
855
856         /* If source buffer is not aligned then use an intermediate buffer */
857         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
858                 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
859                 if (!src_tpage)
860                         return -ENOMEM;
861
862                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
863                         __free_page(src_tpage);
864                         return -EFAULT;
865                 }
866
867                 paddr = __sme_page_pa(src_tpage);
868         }
869
870         /*
871          *  If destination buffer or length is not aligned then do read-modify-write:
872          *   - decrypt destination in an intermediate buffer
873          *   - copy the source buffer in an intermediate buffer
874          *   - use the intermediate buffer as source buffer
875          */
876         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
877                 int dst_offset;
878
879                 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
880                 if (!dst_tpage) {
881                         ret = -ENOMEM;
882                         goto e_free;
883                 }
884
885                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
886                                         __sme_page_pa(dst_tpage), size, error);
887                 if (ret)
888                         goto e_free;
889
890                 /*
891                  *  If source is kernel buffer then use memcpy() otherwise
892                  *  copy_from_user().
893                  */
894                 dst_offset = dst_paddr & 15;
895
896                 if (src_tpage)
897                         memcpy(page_address(dst_tpage) + dst_offset,
898                                page_address(src_tpage), size);
899                 else {
900                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
901                                            vaddr, size)) {
902                                 ret = -EFAULT;
903                                 goto e_free;
904                         }
905                 }
906
907                 paddr = __sme_page_pa(dst_tpage);
908                 dst_paddr = round_down(dst_paddr, 16);
909                 len = round_up(size, 16);
910         }
911
912         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
913
914 e_free:
915         if (src_tpage)
916                 __free_page(src_tpage);
917         if (dst_tpage)
918                 __free_page(dst_tpage);
919         return ret;
920 }
921
922 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
923 {
924         unsigned long vaddr, vaddr_end, next_vaddr;
925         unsigned long dst_vaddr;
926         struct page **src_p, **dst_p;
927         struct kvm_sev_dbg debug;
928         unsigned long n;
929         unsigned int size;
930         int ret;
931
932         if (!sev_guest(kvm))
933                 return -ENOTTY;
934
935         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
936                 return -EFAULT;
937
938         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
939                 return -EINVAL;
940         if (!debug.dst_uaddr)
941                 return -EINVAL;
942
943         vaddr = debug.src_uaddr;
944         size = debug.len;
945         vaddr_end = vaddr + size;
946         dst_vaddr = debug.dst_uaddr;
947
948         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
949                 int len, s_off, d_off;
950
951                 /* lock userspace source and destination page */
952                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
953                 if (IS_ERR(src_p))
954                         return PTR_ERR(src_p);
955
956                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
957                 if (IS_ERR(dst_p)) {
958                         sev_unpin_memory(kvm, src_p, n);
959                         return PTR_ERR(dst_p);
960                 }
961
962                 /*
963                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
964                  * the pages; flush the destination too so that future accesses do not
965                  * see stale data.
966                  */
967                 sev_clflush_pages(src_p, 1);
968                 sev_clflush_pages(dst_p, 1);
969
970                 /*
971                  * Since user buffer may not be page aligned, calculate the
972                  * offset within the page.
973                  */
974                 s_off = vaddr & ~PAGE_MASK;
975                 d_off = dst_vaddr & ~PAGE_MASK;
976                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
977
978                 if (dec)
979                         ret = __sev_dbg_decrypt_user(kvm,
980                                                      __sme_page_pa(src_p[0]) + s_off,
981                                                      (void __user *)dst_vaddr,
982                                                      __sme_page_pa(dst_p[0]) + d_off,
983                                                      len, &argp->error);
984                 else
985                         ret = __sev_dbg_encrypt_user(kvm,
986                                                      __sme_page_pa(src_p[0]) + s_off,
987                                                      (void __user *)vaddr,
988                                                      __sme_page_pa(dst_p[0]) + d_off,
989                                                      (void __user *)dst_vaddr,
990                                                      len, &argp->error);
991
992                 sev_unpin_memory(kvm, src_p, n);
993                 sev_unpin_memory(kvm, dst_p, n);
994
995                 if (ret)
996                         goto err;
997
998                 next_vaddr = vaddr + len;
999                 dst_vaddr = dst_vaddr + len;
1000                 size -= len;
1001         }
1002 err:
1003         return ret;
1004 }
1005
1006 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1007 {
1008         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1009         struct sev_data_launch_secret data;
1010         struct kvm_sev_launch_secret params;
1011         struct page **pages;
1012         void *blob, *hdr;
1013         unsigned long n, i;
1014         int ret, offset;
1015
1016         if (!sev_guest(kvm))
1017                 return -ENOTTY;
1018
1019         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1020                 return -EFAULT;
1021
1022         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1023         if (IS_ERR(pages))
1024                 return PTR_ERR(pages);
1025
1026         /*
1027          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1028          * place; the cache may contain the data that was written unencrypted.
1029          */
1030         sev_clflush_pages(pages, n);
1031
1032         /*
1033          * The secret must be copied into contiguous memory region, lets verify
1034          * that userspace memory pages are contiguous before we issue command.
1035          */
1036         if (get_num_contig_pages(0, pages, n) != n) {
1037                 ret = -EINVAL;
1038                 goto e_unpin_memory;
1039         }
1040
1041         memset(&data, 0, sizeof(data));
1042
1043         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1044         data.guest_address = __sme_page_pa(pages[0]) + offset;
1045         data.guest_len = params.guest_len;
1046
1047         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1048         if (IS_ERR(blob)) {
1049                 ret = PTR_ERR(blob);
1050                 goto e_unpin_memory;
1051         }
1052
1053         data.trans_address = __psp_pa(blob);
1054         data.trans_len = params.trans_len;
1055
1056         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1057         if (IS_ERR(hdr)) {
1058                 ret = PTR_ERR(hdr);
1059                 goto e_free_blob;
1060         }
1061         data.hdr_address = __psp_pa(hdr);
1062         data.hdr_len = params.hdr_len;
1063
1064         data.handle = sev->handle;
1065         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1066
1067         kfree(hdr);
1068
1069 e_free_blob:
1070         kfree(blob);
1071 e_unpin_memory:
1072         /* content of memory is updated, mark pages dirty */
1073         for (i = 0; i < n; i++) {
1074                 set_page_dirty_lock(pages[i]);
1075                 mark_page_accessed(pages[i]);
1076         }
1077         sev_unpin_memory(kvm, pages, n);
1078         return ret;
1079 }
1080
1081 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1082 {
1083         void __user *report = (void __user *)(uintptr_t)argp->data;
1084         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1085         struct sev_data_attestation_report data;
1086         struct kvm_sev_attestation_report params;
1087         void __user *p;
1088         void *blob = NULL;
1089         int ret;
1090
1091         if (!sev_guest(kvm))
1092                 return -ENOTTY;
1093
1094         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1095                 return -EFAULT;
1096
1097         memset(&data, 0, sizeof(data));
1098
1099         /* User wants to query the blob length */
1100         if (!params.len)
1101                 goto cmd;
1102
1103         p = (void __user *)(uintptr_t)params.uaddr;
1104         if (p) {
1105                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1106                         return -EINVAL;
1107
1108                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1109                 if (!blob)
1110                         return -ENOMEM;
1111
1112                 data.address = __psp_pa(blob);
1113                 data.len = params.len;
1114                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1115         }
1116 cmd:
1117         data.handle = sev->handle;
1118         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1119         /*
1120          * If we query the session length, FW responded with expected data.
1121          */
1122         if (!params.len)
1123                 goto done;
1124
1125         if (ret)
1126                 goto e_free_blob;
1127
1128         if (blob) {
1129                 if (copy_to_user(p, blob, params.len))
1130                         ret = -EFAULT;
1131         }
1132
1133 done:
1134         params.len = data.len;
1135         if (copy_to_user(report, &params, sizeof(params)))
1136                 ret = -EFAULT;
1137 e_free_blob:
1138         kfree(blob);
1139         return ret;
1140 }
1141
1142 /* Userspace wants to query session length. */
1143 static int
1144 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1145                                       struct kvm_sev_send_start *params)
1146 {
1147         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1148         struct sev_data_send_start data;
1149         int ret;
1150
1151         memset(&data, 0, sizeof(data));
1152         data.handle = sev->handle;
1153         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1154
1155         params->session_len = data.session_len;
1156         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1157                                 sizeof(struct kvm_sev_send_start)))
1158                 ret = -EFAULT;
1159
1160         return ret;
1161 }
1162
1163 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1164 {
1165         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1166         struct sev_data_send_start data;
1167         struct kvm_sev_send_start params;
1168         void *amd_certs, *session_data;
1169         void *pdh_cert, *plat_certs;
1170         int ret;
1171
1172         if (!sev_guest(kvm))
1173                 return -ENOTTY;
1174
1175         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1176                                 sizeof(struct kvm_sev_send_start)))
1177                 return -EFAULT;
1178
1179         /* if session_len is zero, userspace wants to query the session length */
1180         if (!params.session_len)
1181                 return __sev_send_start_query_session_length(kvm, argp,
1182                                 &params);
1183
1184         /* some sanity checks */
1185         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1186             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1187                 return -EINVAL;
1188
1189         /* allocate the memory to hold the session data blob */
1190         session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1191         if (!session_data)
1192                 return -ENOMEM;
1193
1194         /* copy the certificate blobs from userspace */
1195         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1196                                 params.pdh_cert_len);
1197         if (IS_ERR(pdh_cert)) {
1198                 ret = PTR_ERR(pdh_cert);
1199                 goto e_free_session;
1200         }
1201
1202         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1203                                 params.plat_certs_len);
1204         if (IS_ERR(plat_certs)) {
1205                 ret = PTR_ERR(plat_certs);
1206                 goto e_free_pdh;
1207         }
1208
1209         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1210                                 params.amd_certs_len);
1211         if (IS_ERR(amd_certs)) {
1212                 ret = PTR_ERR(amd_certs);
1213                 goto e_free_plat_cert;
1214         }
1215
1216         /* populate the FW SEND_START field with system physical address */
1217         memset(&data, 0, sizeof(data));
1218         data.pdh_cert_address = __psp_pa(pdh_cert);
1219         data.pdh_cert_len = params.pdh_cert_len;
1220         data.plat_certs_address = __psp_pa(plat_certs);
1221         data.plat_certs_len = params.plat_certs_len;
1222         data.amd_certs_address = __psp_pa(amd_certs);
1223         data.amd_certs_len = params.amd_certs_len;
1224         data.session_address = __psp_pa(session_data);
1225         data.session_len = params.session_len;
1226         data.handle = sev->handle;
1227
1228         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1229
1230         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1231                         session_data, params.session_len)) {
1232                 ret = -EFAULT;
1233                 goto e_free_amd_cert;
1234         }
1235
1236         params.policy = data.policy;
1237         params.session_len = data.session_len;
1238         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1239                                 sizeof(struct kvm_sev_send_start)))
1240                 ret = -EFAULT;
1241
1242 e_free_amd_cert:
1243         kfree(amd_certs);
1244 e_free_plat_cert:
1245         kfree(plat_certs);
1246 e_free_pdh:
1247         kfree(pdh_cert);
1248 e_free_session:
1249         kfree(session_data);
1250         return ret;
1251 }
1252
1253 /* Userspace wants to query either header or trans length. */
1254 static int
1255 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1256                                      struct kvm_sev_send_update_data *params)
1257 {
1258         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1259         struct sev_data_send_update_data data;
1260         int ret;
1261
1262         memset(&data, 0, sizeof(data));
1263         data.handle = sev->handle;
1264         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1265
1266         params->hdr_len = data.hdr_len;
1267         params->trans_len = data.trans_len;
1268
1269         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1270                          sizeof(struct kvm_sev_send_update_data)))
1271                 ret = -EFAULT;
1272
1273         return ret;
1274 }
1275
1276 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1277 {
1278         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1279         struct sev_data_send_update_data data;
1280         struct kvm_sev_send_update_data params;
1281         void *hdr, *trans_data;
1282         struct page **guest_page;
1283         unsigned long n;
1284         int ret, offset;
1285
1286         if (!sev_guest(kvm))
1287                 return -ENOTTY;
1288
1289         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1290                         sizeof(struct kvm_sev_send_update_data)))
1291                 return -EFAULT;
1292
1293         /* userspace wants to query either header or trans length */
1294         if (!params.trans_len || !params.hdr_len)
1295                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1296
1297         if (!params.trans_uaddr || !params.guest_uaddr ||
1298             !params.guest_len || !params.hdr_uaddr)
1299                 return -EINVAL;
1300
1301         /* Check if we are crossing the page boundary */
1302         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1303         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1304                 return -EINVAL;
1305
1306         /* Pin guest memory */
1307         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1308                                     PAGE_SIZE, &n, 0);
1309         if (IS_ERR(guest_page))
1310                 return PTR_ERR(guest_page);
1311
1312         /* allocate memory for header and transport buffer */
1313         ret = -ENOMEM;
1314         hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1315         if (!hdr)
1316                 goto e_unpin;
1317
1318         trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1319         if (!trans_data)
1320                 goto e_free_hdr;
1321
1322         memset(&data, 0, sizeof(data));
1323         data.hdr_address = __psp_pa(hdr);
1324         data.hdr_len = params.hdr_len;
1325         data.trans_address = __psp_pa(trans_data);
1326         data.trans_len = params.trans_len;
1327
1328         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1329         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1330         data.guest_address |= sev_me_mask;
1331         data.guest_len = params.guest_len;
1332         data.handle = sev->handle;
1333
1334         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1335
1336         if (ret)
1337                 goto e_free_trans_data;
1338
1339         /* copy transport buffer to user space */
1340         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1341                          trans_data, params.trans_len)) {
1342                 ret = -EFAULT;
1343                 goto e_free_trans_data;
1344         }
1345
1346         /* Copy packet header to userspace. */
1347         if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1348                          params.hdr_len))
1349                 ret = -EFAULT;
1350
1351 e_free_trans_data:
1352         kfree(trans_data);
1353 e_free_hdr:
1354         kfree(hdr);
1355 e_unpin:
1356         sev_unpin_memory(kvm, guest_page, n);
1357
1358         return ret;
1359 }
1360
1361 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1362 {
1363         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1364         struct sev_data_send_finish data;
1365
1366         if (!sev_guest(kvm))
1367                 return -ENOTTY;
1368
1369         data.handle = sev->handle;
1370         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1371 }
1372
1373 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1374 {
1375         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1376         struct sev_data_send_cancel data;
1377
1378         if (!sev_guest(kvm))
1379                 return -ENOTTY;
1380
1381         data.handle = sev->handle;
1382         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1383 }
1384
1385 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1386 {
1387         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1388         struct sev_data_receive_start start;
1389         struct kvm_sev_receive_start params;
1390         int *error = &argp->error;
1391         void *session_data;
1392         void *pdh_data;
1393         int ret;
1394
1395         if (!sev_guest(kvm))
1396                 return -ENOTTY;
1397
1398         /* Get parameter from the userspace */
1399         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1400                         sizeof(struct kvm_sev_receive_start)))
1401                 return -EFAULT;
1402
1403         /* some sanity checks */
1404         if (!params.pdh_uaddr || !params.pdh_len ||
1405             !params.session_uaddr || !params.session_len)
1406                 return -EINVAL;
1407
1408         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1409         if (IS_ERR(pdh_data))
1410                 return PTR_ERR(pdh_data);
1411
1412         session_data = psp_copy_user_blob(params.session_uaddr,
1413                         params.session_len);
1414         if (IS_ERR(session_data)) {
1415                 ret = PTR_ERR(session_data);
1416                 goto e_free_pdh;
1417         }
1418
1419         memset(&start, 0, sizeof(start));
1420         start.handle = params.handle;
1421         start.policy = params.policy;
1422         start.pdh_cert_address = __psp_pa(pdh_data);
1423         start.pdh_cert_len = params.pdh_len;
1424         start.session_address = __psp_pa(session_data);
1425         start.session_len = params.session_len;
1426
1427         /* create memory encryption context */
1428         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1429                                 error);
1430         if (ret)
1431                 goto e_free_session;
1432
1433         /* Bind ASID to this guest */
1434         ret = sev_bind_asid(kvm, start.handle, error);
1435         if (ret) {
1436                 sev_decommission(start.handle);
1437                 goto e_free_session;
1438         }
1439
1440         params.handle = start.handle;
1441         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1442                          &params, sizeof(struct kvm_sev_receive_start))) {
1443                 ret = -EFAULT;
1444                 sev_unbind_asid(kvm, start.handle);
1445                 goto e_free_session;
1446         }
1447
1448         sev->handle = start.handle;
1449         sev->fd = argp->sev_fd;
1450
1451 e_free_session:
1452         kfree(session_data);
1453 e_free_pdh:
1454         kfree(pdh_data);
1455
1456         return ret;
1457 }
1458
1459 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1460 {
1461         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1462         struct kvm_sev_receive_update_data params;
1463         struct sev_data_receive_update_data data;
1464         void *hdr = NULL, *trans = NULL;
1465         struct page **guest_page;
1466         unsigned long n;
1467         int ret, offset;
1468
1469         if (!sev_guest(kvm))
1470                 return -EINVAL;
1471
1472         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1473                         sizeof(struct kvm_sev_receive_update_data)))
1474                 return -EFAULT;
1475
1476         if (!params.hdr_uaddr || !params.hdr_len ||
1477             !params.guest_uaddr || !params.guest_len ||
1478             !params.trans_uaddr || !params.trans_len)
1479                 return -EINVAL;
1480
1481         /* Check if we are crossing the page boundary */
1482         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1483         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1484                 return -EINVAL;
1485
1486         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1487         if (IS_ERR(hdr))
1488                 return PTR_ERR(hdr);
1489
1490         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1491         if (IS_ERR(trans)) {
1492                 ret = PTR_ERR(trans);
1493                 goto e_free_hdr;
1494         }
1495
1496         memset(&data, 0, sizeof(data));
1497         data.hdr_address = __psp_pa(hdr);
1498         data.hdr_len = params.hdr_len;
1499         data.trans_address = __psp_pa(trans);
1500         data.trans_len = params.trans_len;
1501
1502         /* Pin guest memory */
1503         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1504                                     PAGE_SIZE, &n, 1);
1505         if (IS_ERR(guest_page)) {
1506                 ret = PTR_ERR(guest_page);
1507                 goto e_free_trans;
1508         }
1509
1510         /*
1511          * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1512          * encrypts the written data with the guest's key, and the cache may
1513          * contain dirty, unencrypted data.
1514          */
1515         sev_clflush_pages(guest_page, n);
1516
1517         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1518         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1519         data.guest_address |= sev_me_mask;
1520         data.guest_len = params.guest_len;
1521         data.handle = sev->handle;
1522
1523         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1524                                 &argp->error);
1525
1526         sev_unpin_memory(kvm, guest_page, n);
1527
1528 e_free_trans:
1529         kfree(trans);
1530 e_free_hdr:
1531         kfree(hdr);
1532
1533         return ret;
1534 }
1535
1536 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1537 {
1538         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1539         struct sev_data_receive_finish data;
1540
1541         if (!sev_guest(kvm))
1542                 return -ENOTTY;
1543
1544         data.handle = sev->handle;
1545         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1546 }
1547
1548 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1549 {
1550         /*
1551          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1552          * active mirror VMs. Also allow the debugging and status commands.
1553          */
1554         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1555             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1556             cmd_id == KVM_SEV_DBG_ENCRYPT)
1557                 return true;
1558
1559         return false;
1560 }
1561
1562 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1563 {
1564         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1565         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1566         int r = -EBUSY;
1567
1568         if (dst_kvm == src_kvm)
1569                 return -EINVAL;
1570
1571         /*
1572          * Bail if these VMs are already involved in a migration to avoid
1573          * deadlock between two VMs trying to migrate to/from each other.
1574          */
1575         if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1576                 return -EBUSY;
1577
1578         if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1579                 goto release_dst;
1580
1581         r = -EINTR;
1582         if (mutex_lock_killable(&dst_kvm->lock))
1583                 goto release_src;
1584         if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1585                 goto unlock_dst;
1586         return 0;
1587
1588 unlock_dst:
1589         mutex_unlock(&dst_kvm->lock);
1590 release_src:
1591         atomic_set_release(&src_sev->migration_in_progress, 0);
1592 release_dst:
1593         atomic_set_release(&dst_sev->migration_in_progress, 0);
1594         return r;
1595 }
1596
1597 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1598 {
1599         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1600         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1601
1602         mutex_unlock(&dst_kvm->lock);
1603         mutex_unlock(&src_kvm->lock);
1604         atomic_set_release(&dst_sev->migration_in_progress, 0);
1605         atomic_set_release(&src_sev->migration_in_progress, 0);
1606 }
1607
1608 /* vCPU mutex subclasses.  */
1609 enum sev_migration_role {
1610         SEV_MIGRATION_SOURCE = 0,
1611         SEV_MIGRATION_TARGET,
1612         SEV_NR_MIGRATION_ROLES,
1613 };
1614
1615 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1616                                         enum sev_migration_role role)
1617 {
1618         struct kvm_vcpu *vcpu;
1619         unsigned long i, j;
1620
1621         kvm_for_each_vcpu(i, vcpu, kvm) {
1622                 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1623                         goto out_unlock;
1624
1625 #ifdef CONFIG_PROVE_LOCKING
1626                 if (!i)
1627                         /*
1628                          * Reset the role to one that avoids colliding with
1629                          * the role used for the first vcpu mutex.
1630                          */
1631                         role = SEV_NR_MIGRATION_ROLES;
1632                 else
1633                         mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1634 #endif
1635         }
1636
1637         return 0;
1638
1639 out_unlock:
1640
1641         kvm_for_each_vcpu(j, vcpu, kvm) {
1642                 if (i == j)
1643                         break;
1644
1645 #ifdef CONFIG_PROVE_LOCKING
1646                 if (j)
1647                         mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1648 #endif
1649
1650                 mutex_unlock(&vcpu->mutex);
1651         }
1652         return -EINTR;
1653 }
1654
1655 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1656 {
1657         struct kvm_vcpu *vcpu;
1658         unsigned long i;
1659         bool first = true;
1660
1661         kvm_for_each_vcpu(i, vcpu, kvm) {
1662                 if (first)
1663                         first = false;
1664                 else
1665                         mutex_acquire(&vcpu->mutex.dep_map,
1666                                       SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1667
1668                 mutex_unlock(&vcpu->mutex);
1669         }
1670 }
1671
1672 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1673 {
1674         struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1675         struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1676         struct kvm_vcpu *dst_vcpu, *src_vcpu;
1677         struct vcpu_svm *dst_svm, *src_svm;
1678         struct kvm_sev_info *mirror;
1679         unsigned long i;
1680
1681         dst->active = true;
1682         dst->asid = src->asid;
1683         dst->handle = src->handle;
1684         dst->pages_locked = src->pages_locked;
1685         dst->enc_context_owner = src->enc_context_owner;
1686         dst->es_active = src->es_active;
1687
1688         src->asid = 0;
1689         src->active = false;
1690         src->handle = 0;
1691         src->pages_locked = 0;
1692         src->enc_context_owner = NULL;
1693         src->es_active = false;
1694
1695         list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1696
1697         /*
1698          * If this VM has mirrors, "transfer" each mirror's refcount of the
1699          * source to the destination (this KVM).  The caller holds a reference
1700          * to the source, so there's no danger of use-after-free.
1701          */
1702         list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1703         list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1704                 kvm_get_kvm(dst_kvm);
1705                 kvm_put_kvm(src_kvm);
1706                 mirror->enc_context_owner = dst_kvm;
1707         }
1708
1709         /*
1710          * If this VM is a mirror, remove the old mirror from the owners list
1711          * and add the new mirror to the list.
1712          */
1713         if (is_mirroring_enc_context(dst_kvm)) {
1714                 struct kvm_sev_info *owner_sev_info =
1715                         &to_kvm_svm(dst->enc_context_owner)->sev_info;
1716
1717                 list_del(&src->mirror_entry);
1718                 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1719         }
1720
1721         kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1722                 dst_svm = to_svm(dst_vcpu);
1723
1724                 sev_init_vmcb(dst_svm);
1725
1726                 if (!dst->es_active)
1727                         continue;
1728
1729                 /*
1730                  * Note, the source is not required to have the same number of
1731                  * vCPUs as the destination when migrating a vanilla SEV VM.
1732                  */
1733                 src_vcpu = kvm_get_vcpu(src_kvm, i);
1734                 src_svm = to_svm(src_vcpu);
1735
1736                 /*
1737                  * Transfer VMSA and GHCB state to the destination.  Nullify and
1738                  * clear source fields as appropriate, the state now belongs to
1739                  * the destination.
1740                  */
1741                 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1742                 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1743                 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1744                 dst_vcpu->arch.guest_state_protected = true;
1745
1746                 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1747                 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1748                 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1749                 src_vcpu->arch.guest_state_protected = false;
1750         }
1751 }
1752
1753 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1754 {
1755         struct kvm_vcpu *src_vcpu;
1756         unsigned long i;
1757
1758         if (!sev_es_guest(src))
1759                 return 0;
1760
1761         if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1762                 return -EINVAL;
1763
1764         kvm_for_each_vcpu(i, src_vcpu, src) {
1765                 if (!src_vcpu->arch.guest_state_protected)
1766                         return -EINVAL;
1767         }
1768
1769         return 0;
1770 }
1771
1772 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1773 {
1774         struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1775         struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1776         struct file *source_kvm_file;
1777         struct kvm *source_kvm;
1778         bool charged = false;
1779         int ret;
1780
1781         source_kvm_file = fget(source_fd);
1782         if (!file_is_kvm(source_kvm_file)) {
1783                 ret = -EBADF;
1784                 goto out_fput;
1785         }
1786
1787         source_kvm = source_kvm_file->private_data;
1788         ret = sev_lock_two_vms(kvm, source_kvm);
1789         if (ret)
1790                 goto out_fput;
1791
1792         if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1793                 ret = -EINVAL;
1794                 goto out_unlock;
1795         }
1796
1797         src_sev = &to_kvm_svm(source_kvm)->sev_info;
1798
1799         dst_sev->misc_cg = get_current_misc_cg();
1800         cg_cleanup_sev = dst_sev;
1801         if (dst_sev->misc_cg != src_sev->misc_cg) {
1802                 ret = sev_misc_cg_try_charge(dst_sev);
1803                 if (ret)
1804                         goto out_dst_cgroup;
1805                 charged = true;
1806         }
1807
1808         ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1809         if (ret)
1810                 goto out_dst_cgroup;
1811         ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1812         if (ret)
1813                 goto out_dst_vcpu;
1814
1815         ret = sev_check_source_vcpus(kvm, source_kvm);
1816         if (ret)
1817                 goto out_source_vcpu;
1818
1819         sev_migrate_from(kvm, source_kvm);
1820         kvm_vm_dead(source_kvm);
1821         cg_cleanup_sev = src_sev;
1822         ret = 0;
1823
1824 out_source_vcpu:
1825         sev_unlock_vcpus_for_migration(source_kvm);
1826 out_dst_vcpu:
1827         sev_unlock_vcpus_for_migration(kvm);
1828 out_dst_cgroup:
1829         /* Operates on the source on success, on the destination on failure.  */
1830         if (charged)
1831                 sev_misc_cg_uncharge(cg_cleanup_sev);
1832         put_misc_cg(cg_cleanup_sev->misc_cg);
1833         cg_cleanup_sev->misc_cg = NULL;
1834 out_unlock:
1835         sev_unlock_two_vms(kvm, source_kvm);
1836 out_fput:
1837         if (source_kvm_file)
1838                 fput(source_kvm_file);
1839         return ret;
1840 }
1841
1842 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1843 {
1844         struct kvm_sev_cmd sev_cmd;
1845         int r;
1846
1847         if (!sev_enabled)
1848                 return -ENOTTY;
1849
1850         if (!argp)
1851                 return 0;
1852
1853         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1854                 return -EFAULT;
1855
1856         mutex_lock(&kvm->lock);
1857
1858         /* Only the enc_context_owner handles some memory enc operations. */
1859         if (is_mirroring_enc_context(kvm) &&
1860             !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1861                 r = -EINVAL;
1862                 goto out;
1863         }
1864
1865         switch (sev_cmd.id) {
1866         case KVM_SEV_ES_INIT:
1867                 if (!sev_es_enabled) {
1868                         r = -ENOTTY;
1869                         goto out;
1870                 }
1871                 fallthrough;
1872         case KVM_SEV_INIT:
1873                 r = sev_guest_init(kvm, &sev_cmd);
1874                 break;
1875         case KVM_SEV_LAUNCH_START:
1876                 r = sev_launch_start(kvm, &sev_cmd);
1877                 break;
1878         case KVM_SEV_LAUNCH_UPDATE_DATA:
1879                 r = sev_launch_update_data(kvm, &sev_cmd);
1880                 break;
1881         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1882                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1883                 break;
1884         case KVM_SEV_LAUNCH_MEASURE:
1885                 r = sev_launch_measure(kvm, &sev_cmd);
1886                 break;
1887         case KVM_SEV_LAUNCH_FINISH:
1888                 r = sev_launch_finish(kvm, &sev_cmd);
1889                 break;
1890         case KVM_SEV_GUEST_STATUS:
1891                 r = sev_guest_status(kvm, &sev_cmd);
1892                 break;
1893         case KVM_SEV_DBG_DECRYPT:
1894                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1895                 break;
1896         case KVM_SEV_DBG_ENCRYPT:
1897                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1898                 break;
1899         case KVM_SEV_LAUNCH_SECRET:
1900                 r = sev_launch_secret(kvm, &sev_cmd);
1901                 break;
1902         case KVM_SEV_GET_ATTESTATION_REPORT:
1903                 r = sev_get_attestation_report(kvm, &sev_cmd);
1904                 break;
1905         case KVM_SEV_SEND_START:
1906                 r = sev_send_start(kvm, &sev_cmd);
1907                 break;
1908         case KVM_SEV_SEND_UPDATE_DATA:
1909                 r = sev_send_update_data(kvm, &sev_cmd);
1910                 break;
1911         case KVM_SEV_SEND_FINISH:
1912                 r = sev_send_finish(kvm, &sev_cmd);
1913                 break;
1914         case KVM_SEV_SEND_CANCEL:
1915                 r = sev_send_cancel(kvm, &sev_cmd);
1916                 break;
1917         case KVM_SEV_RECEIVE_START:
1918                 r = sev_receive_start(kvm, &sev_cmd);
1919                 break;
1920         case KVM_SEV_RECEIVE_UPDATE_DATA:
1921                 r = sev_receive_update_data(kvm, &sev_cmd);
1922                 break;
1923         case KVM_SEV_RECEIVE_FINISH:
1924                 r = sev_receive_finish(kvm, &sev_cmd);
1925                 break;
1926         default:
1927                 r = -EINVAL;
1928                 goto out;
1929         }
1930
1931         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1932                 r = -EFAULT;
1933
1934 out:
1935         mutex_unlock(&kvm->lock);
1936         return r;
1937 }
1938
1939 int sev_mem_enc_register_region(struct kvm *kvm,
1940                                 struct kvm_enc_region *range)
1941 {
1942         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1943         struct enc_region *region;
1944         int ret = 0;
1945
1946         if (!sev_guest(kvm))
1947                 return -ENOTTY;
1948
1949         /* If kvm is mirroring encryption context it isn't responsible for it */
1950         if (is_mirroring_enc_context(kvm))
1951                 return -EINVAL;
1952
1953         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1954                 return -EINVAL;
1955
1956         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1957         if (!region)
1958                 return -ENOMEM;
1959
1960         mutex_lock(&kvm->lock);
1961         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1962         if (IS_ERR(region->pages)) {
1963                 ret = PTR_ERR(region->pages);
1964                 mutex_unlock(&kvm->lock);
1965                 goto e_free;
1966         }
1967
1968         /*
1969          * The guest may change the memory encryption attribute from C=0 -> C=1
1970          * or vice versa for this memory range. Lets make sure caches are
1971          * flushed to ensure that guest data gets written into memory with
1972          * correct C-bit.  Note, this must be done before dropping kvm->lock,
1973          * as region and its array of pages can be freed by a different task
1974          * once kvm->lock is released.
1975          */
1976         sev_clflush_pages(region->pages, region->npages);
1977
1978         region->uaddr = range->addr;
1979         region->size = range->size;
1980
1981         list_add_tail(&region->list, &sev->regions_list);
1982         mutex_unlock(&kvm->lock);
1983
1984         return ret;
1985
1986 e_free:
1987         kfree(region);
1988         return ret;
1989 }
1990
1991 static struct enc_region *
1992 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1993 {
1994         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1995         struct list_head *head = &sev->regions_list;
1996         struct enc_region *i;
1997
1998         list_for_each_entry(i, head, list) {
1999                 if (i->uaddr == range->addr &&
2000                     i->size == range->size)
2001                         return i;
2002         }
2003
2004         return NULL;
2005 }
2006
2007 static void __unregister_enc_region_locked(struct kvm *kvm,
2008                                            struct enc_region *region)
2009 {
2010         sev_unpin_memory(kvm, region->pages, region->npages);
2011         list_del(&region->list);
2012         kfree(region);
2013 }
2014
2015 int sev_mem_enc_unregister_region(struct kvm *kvm,
2016                                   struct kvm_enc_region *range)
2017 {
2018         struct enc_region *region;
2019         int ret;
2020
2021         /* If kvm is mirroring encryption context it isn't responsible for it */
2022         if (is_mirroring_enc_context(kvm))
2023                 return -EINVAL;
2024
2025         mutex_lock(&kvm->lock);
2026
2027         if (!sev_guest(kvm)) {
2028                 ret = -ENOTTY;
2029                 goto failed;
2030         }
2031
2032         region = find_enc_region(kvm, range);
2033         if (!region) {
2034                 ret = -EINVAL;
2035                 goto failed;
2036         }
2037
2038         /*
2039          * Ensure that all guest tagged cache entries are flushed before
2040          * releasing the pages back to the system for use. CLFLUSH will
2041          * not do this, so issue a WBINVD.
2042          */
2043         wbinvd_on_all_cpus();
2044
2045         __unregister_enc_region_locked(kvm, region);
2046
2047         mutex_unlock(&kvm->lock);
2048         return 0;
2049
2050 failed:
2051         mutex_unlock(&kvm->lock);
2052         return ret;
2053 }
2054
2055 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2056 {
2057         struct file *source_kvm_file;
2058         struct kvm *source_kvm;
2059         struct kvm_sev_info *source_sev, *mirror_sev;
2060         int ret;
2061
2062         source_kvm_file = fget(source_fd);
2063         if (!file_is_kvm(source_kvm_file)) {
2064                 ret = -EBADF;
2065                 goto e_source_fput;
2066         }
2067
2068         source_kvm = source_kvm_file->private_data;
2069         ret = sev_lock_two_vms(kvm, source_kvm);
2070         if (ret)
2071                 goto e_source_fput;
2072
2073         /*
2074          * Mirrors of mirrors should work, but let's not get silly.  Also
2075          * disallow out-of-band SEV/SEV-ES init if the target is already an
2076          * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2077          * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2078          */
2079         if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2080             is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2081                 ret = -EINVAL;
2082                 goto e_unlock;
2083         }
2084
2085         /*
2086          * The mirror kvm holds an enc_context_owner ref so its asid can't
2087          * disappear until we're done with it
2088          */
2089         source_sev = &to_kvm_svm(source_kvm)->sev_info;
2090         kvm_get_kvm(source_kvm);
2091         mirror_sev = &to_kvm_svm(kvm)->sev_info;
2092         list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2093
2094         /* Set enc_context_owner and copy its encryption context over */
2095         mirror_sev->enc_context_owner = source_kvm;
2096         mirror_sev->active = true;
2097         mirror_sev->asid = source_sev->asid;
2098         mirror_sev->fd = source_sev->fd;
2099         mirror_sev->es_active = source_sev->es_active;
2100         mirror_sev->handle = source_sev->handle;
2101         INIT_LIST_HEAD(&mirror_sev->regions_list);
2102         INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2103         ret = 0;
2104
2105         /*
2106          * Do not copy ap_jump_table. Since the mirror does not share the same
2107          * KVM contexts as the original, and they may have different
2108          * memory-views.
2109          */
2110
2111 e_unlock:
2112         sev_unlock_two_vms(kvm, source_kvm);
2113 e_source_fput:
2114         if (source_kvm_file)
2115                 fput(source_kvm_file);
2116         return ret;
2117 }
2118
2119 void sev_vm_destroy(struct kvm *kvm)
2120 {
2121         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2122         struct list_head *head = &sev->regions_list;
2123         struct list_head *pos, *q;
2124
2125         if (!sev_guest(kvm))
2126                 return;
2127
2128         WARN_ON(!list_empty(&sev->mirror_vms));
2129
2130         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2131         if (is_mirroring_enc_context(kvm)) {
2132                 struct kvm *owner_kvm = sev->enc_context_owner;
2133
2134                 mutex_lock(&owner_kvm->lock);
2135                 list_del(&sev->mirror_entry);
2136                 mutex_unlock(&owner_kvm->lock);
2137                 kvm_put_kvm(owner_kvm);
2138                 return;
2139         }
2140
2141         /*
2142          * Ensure that all guest tagged cache entries are flushed before
2143          * releasing the pages back to the system for use. CLFLUSH will
2144          * not do this, so issue a WBINVD.
2145          */
2146         wbinvd_on_all_cpus();
2147
2148         /*
2149          * if userspace was terminated before unregistering the memory regions
2150          * then lets unpin all the registered memory.
2151          */
2152         if (!list_empty(head)) {
2153                 list_for_each_safe(pos, q, head) {
2154                         __unregister_enc_region_locked(kvm,
2155                                 list_entry(pos, struct enc_region, list));
2156                         cond_resched();
2157                 }
2158         }
2159
2160         sev_unbind_asid(kvm, sev->handle);
2161         sev_asid_free(sev);
2162 }
2163
2164 void __init sev_set_cpu_caps(void)
2165 {
2166         if (!sev_enabled)
2167                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2168         if (!sev_es_enabled)
2169                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2170 }
2171
2172 void __init sev_hardware_setup(void)
2173 {
2174 #ifdef CONFIG_KVM_AMD_SEV
2175         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2176         bool sev_es_supported = false;
2177         bool sev_supported = false;
2178
2179         if (!sev_enabled || !npt_enabled)
2180                 goto out;
2181
2182         /*
2183          * SEV must obviously be supported in hardware.  Sanity check that the
2184          * CPU supports decode assists, which is mandatory for SEV guests to
2185          * support instruction emulation.
2186          */
2187         if (!boot_cpu_has(X86_FEATURE_SEV) ||
2188             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2189                 goto out;
2190
2191         /* Retrieve SEV CPUID information */
2192         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2193
2194         /* Set encryption bit location for SEV-ES guests */
2195         sev_enc_bit = ebx & 0x3f;
2196
2197         /* Maximum number of encrypted guests supported simultaneously */
2198         max_sev_asid = ecx;
2199         if (!max_sev_asid)
2200                 goto out;
2201
2202         /* Minimum ASID value that should be used for SEV guest */
2203         min_sev_asid = edx;
2204         sev_me_mask = 1UL << (ebx & 0x3f);
2205
2206         /*
2207          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2208          * even though it's never used, so that the bitmap is indexed by the
2209          * actual ASID.
2210          */
2211         nr_asids = max_sev_asid + 1;
2212         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2213         if (!sev_asid_bitmap)
2214                 goto out;
2215
2216         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2217         if (!sev_reclaim_asid_bitmap) {
2218                 bitmap_free(sev_asid_bitmap);
2219                 sev_asid_bitmap = NULL;
2220                 goto out;
2221         }
2222
2223         if (min_sev_asid <= max_sev_asid) {
2224                 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2225                 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2226         }
2227         sev_supported = true;
2228
2229         /* SEV-ES support requested? */
2230         if (!sev_es_enabled)
2231                 goto out;
2232
2233         /*
2234          * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2235          * instruction stream, i.e. can't emulate in response to a #NPF and
2236          * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2237          * (the guest can then do a #VMGEXIT to request MMIO emulation).
2238          */
2239         if (!enable_mmio_caching)
2240                 goto out;
2241
2242         /* Does the CPU support SEV-ES? */
2243         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2244                 goto out;
2245
2246         /* Has the system been allocated ASIDs for SEV-ES? */
2247         if (min_sev_asid == 1)
2248                 goto out;
2249
2250         sev_es_asid_count = min_sev_asid - 1;
2251         WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2252         sev_es_supported = true;
2253
2254 out:
2255         if (boot_cpu_has(X86_FEATURE_SEV))
2256                 pr_info("SEV %s (ASIDs %u - %u)\n",
2257                         sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
2258                                                                        "unusable" :
2259                                                                        "disabled",
2260                         min_sev_asid, max_sev_asid);
2261         if (boot_cpu_has(X86_FEATURE_SEV_ES))
2262                 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2263                         sev_es_supported ? "enabled" : "disabled",
2264                         min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2265
2266         sev_enabled = sev_supported;
2267         sev_es_enabled = sev_es_supported;
2268 #endif
2269 }
2270
2271 void sev_hardware_unsetup(void)
2272 {
2273         if (!sev_enabled)
2274                 return;
2275
2276         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2277         sev_flush_asids(1, max_sev_asid);
2278
2279         bitmap_free(sev_asid_bitmap);
2280         bitmap_free(sev_reclaim_asid_bitmap);
2281
2282         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2283         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2284 }
2285
2286 int sev_cpu_init(struct svm_cpu_data *sd)
2287 {
2288         if (!sev_enabled)
2289                 return 0;
2290
2291         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2292         if (!sd->sev_vmcbs)
2293                 return -ENOMEM;
2294
2295         return 0;
2296 }
2297
2298 /*
2299  * Pages used by hardware to hold guest encrypted state must be flushed before
2300  * returning them to the system.
2301  */
2302 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2303 {
2304         unsigned int asid = sev_get_asid(vcpu->kvm);
2305
2306         /*
2307          * Note!  The address must be a kernel address, as regular page walk
2308          * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2309          * address is non-deterministic and unsafe.  This function deliberately
2310          * takes a pointer to deter passing in a user address.
2311          */
2312         unsigned long addr = (unsigned long)va;
2313
2314         /*
2315          * If CPU enforced cache coherency for encrypted mappings of the
2316          * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2317          * flush is still needed in order to work properly with DMA devices.
2318          */
2319         if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2320                 clflush_cache_range(va, PAGE_SIZE);
2321                 return;
2322         }
2323
2324         /*
2325          * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2326          * back to WBINVD if this faults so as not to make any problems worse
2327          * by leaving stale encrypted data in the cache.
2328          */
2329         if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2330                 goto do_wbinvd;
2331
2332         return;
2333
2334 do_wbinvd:
2335         wbinvd_on_all_cpus();
2336 }
2337
2338 void sev_guest_memory_reclaimed(struct kvm *kvm)
2339 {
2340         if (!sev_guest(kvm))
2341                 return;
2342
2343         wbinvd_on_all_cpus();
2344 }
2345
2346 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2347 {
2348         struct vcpu_svm *svm;
2349
2350         if (!sev_es_guest(vcpu->kvm))
2351                 return;
2352
2353         svm = to_svm(vcpu);
2354
2355         if (vcpu->arch.guest_state_protected)
2356                 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2357
2358         __free_page(virt_to_page(svm->sev_es.vmsa));
2359
2360         if (svm->sev_es.ghcb_sa_free)
2361                 kvfree(svm->sev_es.ghcb_sa);
2362 }
2363
2364 static void dump_ghcb(struct vcpu_svm *svm)
2365 {
2366         struct ghcb *ghcb = svm->sev_es.ghcb;
2367         unsigned int nbits;
2368
2369         /* Re-use the dump_invalid_vmcb module parameter */
2370         if (!dump_invalid_vmcb) {
2371                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2372                 return;
2373         }
2374
2375         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2376
2377         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2378         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2379                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2380         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2381                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2382         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2383                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2384         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2385                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2386         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2387 }
2388
2389 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2390 {
2391         struct kvm_vcpu *vcpu = &svm->vcpu;
2392         struct ghcb *ghcb = svm->sev_es.ghcb;
2393
2394         /*
2395          * The GHCB protocol so far allows for the following data
2396          * to be returned:
2397          *   GPRs RAX, RBX, RCX, RDX
2398          *
2399          * Copy their values, even if they may not have been written during the
2400          * VM-Exit.  It's the guest's responsibility to not consume random data.
2401          */
2402         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2403         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2404         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2405         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2406 }
2407
2408 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2409 {
2410         struct vmcb_control_area *control = &svm->vmcb->control;
2411         struct kvm_vcpu *vcpu = &svm->vcpu;
2412         struct ghcb *ghcb = svm->sev_es.ghcb;
2413         u64 exit_code;
2414
2415         /*
2416          * The GHCB protocol so far allows for the following data
2417          * to be supplied:
2418          *   GPRs RAX, RBX, RCX, RDX
2419          *   XCR0
2420          *   CPL
2421          *
2422          * VMMCALL allows the guest to provide extra registers. KVM also
2423          * expects RSI for hypercalls, so include that, too.
2424          *
2425          * Copy their values to the appropriate location if supplied.
2426          */
2427         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2428
2429         BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2430         memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2431
2432         vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2433         vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2434         vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2435         vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2436         vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2437
2438         svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2439
2440         if (kvm_ghcb_xcr0_is_valid(svm)) {
2441                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2442                 kvm_update_cpuid_runtime(vcpu);
2443         }
2444
2445         /* Copy the GHCB exit information into the VMCB fields */
2446         exit_code = ghcb_get_sw_exit_code(ghcb);
2447         control->exit_code = lower_32_bits(exit_code);
2448         control->exit_code_hi = upper_32_bits(exit_code);
2449         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2450         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2451         svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2452
2453         /* Clear the valid entries fields */
2454         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2455 }
2456
2457 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2458 {
2459         return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2460 }
2461
2462 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2463 {
2464         struct vmcb_control_area *control = &svm->vmcb->control;
2465         struct kvm_vcpu *vcpu = &svm->vcpu;
2466         struct ghcb *ghcb;
2467         u64 exit_code;
2468         u64 reason;
2469
2470         ghcb = svm->sev_es.ghcb;
2471
2472         /*
2473          * Retrieve the exit code now even though it may not be marked valid
2474          * as it could help with debugging.
2475          */
2476         exit_code = kvm_ghcb_get_sw_exit_code(control);
2477
2478         /* Only GHCB Usage code 0 is supported */
2479         if (ghcb->ghcb_usage) {
2480                 reason = GHCB_ERR_INVALID_USAGE;
2481                 goto vmgexit_err;
2482         }
2483
2484         reason = GHCB_ERR_MISSING_INPUT;
2485
2486         if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2487             !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2488             !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2489                 goto vmgexit_err;
2490
2491         switch (exit_code) {
2492         case SVM_EXIT_READ_DR7:
2493                 break;
2494         case SVM_EXIT_WRITE_DR7:
2495                 if (!kvm_ghcb_rax_is_valid(svm))
2496                         goto vmgexit_err;
2497                 break;
2498         case SVM_EXIT_RDTSC:
2499                 break;
2500         case SVM_EXIT_RDPMC:
2501                 if (!kvm_ghcb_rcx_is_valid(svm))
2502                         goto vmgexit_err;
2503                 break;
2504         case SVM_EXIT_CPUID:
2505                 if (!kvm_ghcb_rax_is_valid(svm) ||
2506                     !kvm_ghcb_rcx_is_valid(svm))
2507                         goto vmgexit_err;
2508                 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2509                         if (!kvm_ghcb_xcr0_is_valid(svm))
2510                                 goto vmgexit_err;
2511                 break;
2512         case SVM_EXIT_INVD:
2513                 break;
2514         case SVM_EXIT_IOIO:
2515                 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2516                         if (!kvm_ghcb_sw_scratch_is_valid(svm))
2517                                 goto vmgexit_err;
2518                 } else {
2519                         if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2520                                 if (!kvm_ghcb_rax_is_valid(svm))
2521                                         goto vmgexit_err;
2522                 }
2523                 break;
2524         case SVM_EXIT_MSR:
2525                 if (!kvm_ghcb_rcx_is_valid(svm))
2526                         goto vmgexit_err;
2527                 if (control->exit_info_1) {
2528                         if (!kvm_ghcb_rax_is_valid(svm) ||
2529                             !kvm_ghcb_rdx_is_valid(svm))
2530                                 goto vmgexit_err;
2531                 }
2532                 break;
2533         case SVM_EXIT_VMMCALL:
2534                 if (!kvm_ghcb_rax_is_valid(svm) ||
2535                     !kvm_ghcb_cpl_is_valid(svm))
2536                         goto vmgexit_err;
2537                 break;
2538         case SVM_EXIT_RDTSCP:
2539                 break;
2540         case SVM_EXIT_WBINVD:
2541                 break;
2542         case SVM_EXIT_MONITOR:
2543                 if (!kvm_ghcb_rax_is_valid(svm) ||
2544                     !kvm_ghcb_rcx_is_valid(svm) ||
2545                     !kvm_ghcb_rdx_is_valid(svm))
2546                         goto vmgexit_err;
2547                 break;
2548         case SVM_EXIT_MWAIT:
2549                 if (!kvm_ghcb_rax_is_valid(svm) ||
2550                     !kvm_ghcb_rcx_is_valid(svm))
2551                         goto vmgexit_err;
2552                 break;
2553         case SVM_VMGEXIT_MMIO_READ:
2554         case SVM_VMGEXIT_MMIO_WRITE:
2555                 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2556                         goto vmgexit_err;
2557                 break;
2558         case SVM_VMGEXIT_NMI_COMPLETE:
2559         case SVM_VMGEXIT_AP_HLT_LOOP:
2560         case SVM_VMGEXIT_AP_JUMP_TABLE:
2561         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2562                 break;
2563         default:
2564                 reason = GHCB_ERR_INVALID_EVENT;
2565                 goto vmgexit_err;
2566         }
2567
2568         return 0;
2569
2570 vmgexit_err:
2571         if (reason == GHCB_ERR_INVALID_USAGE) {
2572                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2573                             ghcb->ghcb_usage);
2574         } else if (reason == GHCB_ERR_INVALID_EVENT) {
2575                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2576                             exit_code);
2577         } else {
2578                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2579                             exit_code);
2580                 dump_ghcb(svm);
2581         }
2582
2583         ghcb_set_sw_exit_info_1(ghcb, 2);
2584         ghcb_set_sw_exit_info_2(ghcb, reason);
2585
2586         /* Resume the guest to "return" the error code. */
2587         return 1;
2588 }
2589
2590 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2591 {
2592         if (!svm->sev_es.ghcb)
2593                 return;
2594
2595         if (svm->sev_es.ghcb_sa_free) {
2596                 /*
2597                  * The scratch area lives outside the GHCB, so there is a
2598                  * buffer that, depending on the operation performed, may
2599                  * need to be synced, then freed.
2600                  */
2601                 if (svm->sev_es.ghcb_sa_sync) {
2602                         kvm_write_guest(svm->vcpu.kvm,
2603                                         svm->sev_es.sw_scratch,
2604                                         svm->sev_es.ghcb_sa,
2605                                         svm->sev_es.ghcb_sa_len);
2606                         svm->sev_es.ghcb_sa_sync = false;
2607                 }
2608
2609                 kvfree(svm->sev_es.ghcb_sa);
2610                 svm->sev_es.ghcb_sa = NULL;
2611                 svm->sev_es.ghcb_sa_free = false;
2612         }
2613
2614         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2615
2616         sev_es_sync_to_ghcb(svm);
2617
2618         kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2619         svm->sev_es.ghcb = NULL;
2620 }
2621
2622 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2623 {
2624         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2625         unsigned int asid = sev_get_asid(svm->vcpu.kvm);
2626
2627         /* Assign the asid allocated with this SEV guest */
2628         svm->asid = asid;
2629
2630         /*
2631          * Flush guest TLB:
2632          *
2633          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2634          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2635          */
2636         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2637             svm->vcpu.arch.last_vmentry_cpu == cpu)
2638                 return;
2639
2640         sd->sev_vmcbs[asid] = svm->vmcb;
2641         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2642         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2643 }
2644
2645 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2646 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2647 {
2648         struct vmcb_control_area *control = &svm->vmcb->control;
2649         struct ghcb *ghcb = svm->sev_es.ghcb;
2650         u64 ghcb_scratch_beg, ghcb_scratch_end;
2651         u64 scratch_gpa_beg, scratch_gpa_end;
2652         void *scratch_va;
2653
2654         scratch_gpa_beg = svm->sev_es.sw_scratch;
2655         if (!scratch_gpa_beg) {
2656                 pr_err("vmgexit: scratch gpa not provided\n");
2657                 goto e_scratch;
2658         }
2659
2660         scratch_gpa_end = scratch_gpa_beg + len;
2661         if (scratch_gpa_end < scratch_gpa_beg) {
2662                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2663                        len, scratch_gpa_beg);
2664                 goto e_scratch;
2665         }
2666
2667         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2668                 /* Scratch area begins within GHCB */
2669                 ghcb_scratch_beg = control->ghcb_gpa +
2670                                    offsetof(struct ghcb, shared_buffer);
2671                 ghcb_scratch_end = control->ghcb_gpa +
2672                                    offsetof(struct ghcb, reserved_1);
2673
2674                 /*
2675                  * If the scratch area begins within the GHCB, it must be
2676                  * completely contained in the GHCB shared buffer area.
2677                  */
2678                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2679                     scratch_gpa_end > ghcb_scratch_end) {
2680                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2681                                scratch_gpa_beg, scratch_gpa_end);
2682                         goto e_scratch;
2683                 }
2684
2685                 scratch_va = (void *)svm->sev_es.ghcb;
2686                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2687         } else {
2688                 /*
2689                  * The guest memory must be read into a kernel buffer, so
2690                  * limit the size
2691                  */
2692                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2693                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2694                                len, GHCB_SCRATCH_AREA_LIMIT);
2695                         goto e_scratch;
2696                 }
2697                 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2698                 if (!scratch_va)
2699                         return -ENOMEM;
2700
2701                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2702                         /* Unable to copy scratch area from guest */
2703                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2704
2705                         kvfree(scratch_va);
2706                         return -EFAULT;
2707                 }
2708
2709                 /*
2710                  * The scratch area is outside the GHCB. The operation will
2711                  * dictate whether the buffer needs to be synced before running
2712                  * the vCPU next time (i.e. a read was requested so the data
2713                  * must be written back to the guest memory).
2714                  */
2715                 svm->sev_es.ghcb_sa_sync = sync;
2716                 svm->sev_es.ghcb_sa_free = true;
2717         }
2718
2719         svm->sev_es.ghcb_sa = scratch_va;
2720         svm->sev_es.ghcb_sa_len = len;
2721
2722         return 0;
2723
2724 e_scratch:
2725         ghcb_set_sw_exit_info_1(ghcb, 2);
2726         ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2727
2728         return 1;
2729 }
2730
2731 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2732                               unsigned int pos)
2733 {
2734         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2735         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2736 }
2737
2738 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2739 {
2740         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2741 }
2742
2743 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2744 {
2745         svm->vmcb->control.ghcb_gpa = value;
2746 }
2747
2748 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2749 {
2750         struct vmcb_control_area *control = &svm->vmcb->control;
2751         struct kvm_vcpu *vcpu = &svm->vcpu;
2752         u64 ghcb_info;
2753         int ret = 1;
2754
2755         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2756
2757         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2758                                              control->ghcb_gpa);
2759
2760         switch (ghcb_info) {
2761         case GHCB_MSR_SEV_INFO_REQ:
2762                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2763                                                     GHCB_VERSION_MIN,
2764                                                     sev_enc_bit));
2765                 break;
2766         case GHCB_MSR_CPUID_REQ: {
2767                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2768
2769                 cpuid_fn = get_ghcb_msr_bits(svm,
2770                                              GHCB_MSR_CPUID_FUNC_MASK,
2771                                              GHCB_MSR_CPUID_FUNC_POS);
2772
2773                 /* Initialize the registers needed by the CPUID intercept */
2774                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2775                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2776
2777                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2778                 if (!ret) {
2779                         /* Error, keep GHCB MSR value as-is */
2780                         break;
2781                 }
2782
2783                 cpuid_reg = get_ghcb_msr_bits(svm,
2784                                               GHCB_MSR_CPUID_REG_MASK,
2785                                               GHCB_MSR_CPUID_REG_POS);
2786                 if (cpuid_reg == 0)
2787                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2788                 else if (cpuid_reg == 1)
2789                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2790                 else if (cpuid_reg == 2)
2791                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2792                 else
2793                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2794
2795                 set_ghcb_msr_bits(svm, cpuid_value,
2796                                   GHCB_MSR_CPUID_VALUE_MASK,
2797                                   GHCB_MSR_CPUID_VALUE_POS);
2798
2799                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2800                                   GHCB_MSR_INFO_MASK,
2801                                   GHCB_MSR_INFO_POS);
2802                 break;
2803         }
2804         case GHCB_MSR_TERM_REQ: {
2805                 u64 reason_set, reason_code;
2806
2807                 reason_set = get_ghcb_msr_bits(svm,
2808                                                GHCB_MSR_TERM_REASON_SET_MASK,
2809                                                GHCB_MSR_TERM_REASON_SET_POS);
2810                 reason_code = get_ghcb_msr_bits(svm,
2811                                                 GHCB_MSR_TERM_REASON_MASK,
2812                                                 GHCB_MSR_TERM_REASON_POS);
2813                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2814                         reason_set, reason_code);
2815
2816                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2817                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2818                 vcpu->run->system_event.ndata = 1;
2819                 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2820
2821                 return 0;
2822         }
2823         default:
2824                 /* Error, keep GHCB MSR value as-is */
2825                 break;
2826         }
2827
2828         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2829                                             control->ghcb_gpa, ret);
2830
2831         return ret;
2832 }
2833
2834 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2835 {
2836         struct vcpu_svm *svm = to_svm(vcpu);
2837         struct vmcb_control_area *control = &svm->vmcb->control;
2838         u64 ghcb_gpa, exit_code;
2839         struct ghcb *ghcb;
2840         int ret;
2841
2842         /* Validate the GHCB */
2843         ghcb_gpa = control->ghcb_gpa;
2844         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2845                 return sev_handle_vmgexit_msr_protocol(svm);
2846
2847         if (!ghcb_gpa) {
2848                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2849
2850                 /* Without a GHCB, just return right back to the guest */
2851                 return 1;
2852         }
2853
2854         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2855                 /* Unable to map GHCB from guest */
2856                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2857                             ghcb_gpa);
2858
2859                 /* Without a GHCB, just return right back to the guest */
2860                 return 1;
2861         }
2862
2863         svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2864         ghcb = svm->sev_es.ghcb_map.hva;
2865
2866         trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2867
2868         sev_es_sync_from_ghcb(svm);
2869         ret = sev_es_validate_vmgexit(svm);
2870         if (ret)
2871                 return ret;
2872
2873         ghcb_set_sw_exit_info_1(ghcb, 0);
2874         ghcb_set_sw_exit_info_2(ghcb, 0);
2875
2876         exit_code = kvm_ghcb_get_sw_exit_code(control);
2877         switch (exit_code) {
2878         case SVM_VMGEXIT_MMIO_READ:
2879                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2880                 if (ret)
2881                         break;
2882
2883                 ret = kvm_sev_es_mmio_read(vcpu,
2884                                            control->exit_info_1,
2885                                            control->exit_info_2,
2886                                            svm->sev_es.ghcb_sa);
2887                 break;
2888         case SVM_VMGEXIT_MMIO_WRITE:
2889                 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2890                 if (ret)
2891                         break;
2892
2893                 ret = kvm_sev_es_mmio_write(vcpu,
2894                                             control->exit_info_1,
2895                                             control->exit_info_2,
2896                                             svm->sev_es.ghcb_sa);
2897                 break;
2898         case SVM_VMGEXIT_NMI_COMPLETE:
2899                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2900                 break;
2901         case SVM_VMGEXIT_AP_HLT_LOOP:
2902                 ret = kvm_emulate_ap_reset_hold(vcpu);
2903                 break;
2904         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2905                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2906
2907                 switch (control->exit_info_1) {
2908                 case 0:
2909                         /* Set AP jump table address */
2910                         sev->ap_jump_table = control->exit_info_2;
2911                         break;
2912                 case 1:
2913                         /* Get AP jump table address */
2914                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2915                         break;
2916                 default:
2917                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2918                                control->exit_info_1);
2919                         ghcb_set_sw_exit_info_1(ghcb, 2);
2920                         ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2921                 }
2922
2923                 ret = 1;
2924                 break;
2925         }
2926         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2927                 vcpu_unimpl(vcpu,
2928                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2929                             control->exit_info_1, control->exit_info_2);
2930                 ret = -EINVAL;
2931                 break;
2932         default:
2933                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2934         }
2935
2936         return ret;
2937 }
2938
2939 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2940 {
2941         int count;
2942         int bytes;
2943         int r;
2944
2945         if (svm->vmcb->control.exit_info_2 > INT_MAX)
2946                 return -EINVAL;
2947
2948         count = svm->vmcb->control.exit_info_2;
2949         if (unlikely(check_mul_overflow(count, size, &bytes)))
2950                 return -EINVAL;
2951
2952         r = setup_vmgexit_scratch(svm, in, bytes);
2953         if (r)
2954                 return r;
2955
2956         return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2957                                     count, in);
2958 }
2959
2960 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2961 {
2962         struct kvm_vcpu *vcpu = &svm->vcpu;
2963
2964         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2965                 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2966                                  guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2967
2968                 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2969         }
2970 }
2971
2972 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2973 {
2974         struct kvm_vcpu *vcpu = &svm->vcpu;
2975         struct kvm_cpuid_entry2 *best;
2976
2977         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
2978         best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
2979         if (best)
2980                 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
2981
2982         if (sev_es_guest(svm->vcpu.kvm))
2983                 sev_es_vcpu_after_set_cpuid(svm);
2984 }
2985
2986 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2987 {
2988         struct kvm_vcpu *vcpu = &svm->vcpu;
2989
2990         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2991         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2992
2993         /*
2994          * An SEV-ES guest requires a VMSA area that is a separate from the
2995          * VMCB page. Do not include the encryption mask on the VMSA physical
2996          * address since hardware will access it using the guest key.  Note,
2997          * the VMSA will be NULL if this vCPU is the destination for intrahost
2998          * migration, and will be copied later.
2999          */
3000         if (svm->sev_es.vmsa)
3001                 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3002
3003         /* Can't intercept CR register access, HV can't modify CR registers */
3004         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3005         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3006         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3007         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3008         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3009         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3010
3011         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3012
3013         /* Track EFER/CR register changes */
3014         svm_set_intercept(svm, TRAP_EFER_WRITE);
3015         svm_set_intercept(svm, TRAP_CR0_WRITE);
3016         svm_set_intercept(svm, TRAP_CR4_WRITE);
3017         svm_set_intercept(svm, TRAP_CR8_WRITE);
3018
3019         /* No support for enable_vmware_backdoor */
3020         clr_exception_intercept(svm, GP_VECTOR);
3021
3022         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
3023         svm_clr_intercept(svm, INTERCEPT_XSETBV);
3024
3025         /* Clear intercepts on selected MSRs */
3026         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3027         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3028         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3029         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3030         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3031         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3032 }
3033
3034 void sev_init_vmcb(struct vcpu_svm *svm)
3035 {
3036         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3037         clr_exception_intercept(svm, UD_VECTOR);
3038
3039         if (sev_es_guest(svm->vcpu.kvm))
3040                 sev_es_init_vmcb(svm);
3041 }
3042
3043 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3044 {
3045         /*
3046          * Set the GHCB MSR value as per the GHCB specification when emulating
3047          * vCPU RESET for an SEV-ES guest.
3048          */
3049         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3050                                             GHCB_VERSION_MIN,
3051                                             sev_enc_bit));
3052 }
3053
3054 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3055 {
3056         /*
3057          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3058          * of which one step is to perform a VMLOAD.  KVM performs the
3059          * corresponding VMSAVE in svm_prepare_guest_switch for both
3060          * traditional and SEV-ES guests.
3061          */
3062
3063         /* XCR0 is restored on VMEXIT, save the current host value */
3064         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3065
3066         /* PKRU is restored on VMEXIT, save the current host value */
3067         hostsa->pkru = read_pkru();
3068
3069         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3070         hostsa->xss = host_xss;
3071 }
3072
3073 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3074 {
3075         struct vcpu_svm *svm = to_svm(vcpu);
3076
3077         /* First SIPI: Use the values as initially set by the VMM */
3078         if (!svm->sev_es.received_first_sipi) {
3079                 svm->sev_es.received_first_sipi = true;
3080                 return;
3081         }
3082
3083         /*
3084          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3085          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3086          * non-zero value.
3087          */
3088         if (!svm->sev_es.ghcb)
3089                 return;
3090
3091         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3092 }