Mention branches and keyring.
[releases.git] / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include <asm/cpuid.h>
23 #include "cpuid.h"
24 #include "lapic.h"
25 #include "mmu.h"
26 #include "trace.h"
27 #include "pmu.h"
28
29 /*
30  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
31  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
32  */
33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
34 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
35
36 u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 {
38         int feature_bit = 0;
39         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
40
41         xstate_bv &= XFEATURE_MASK_EXTEND;
42         while (xstate_bv) {
43                 if (xstate_bv & 0x1) {
44                         u32 eax, ebx, ecx, edx, offset;
45                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
46                         /* ECX[1]: 64B alignment in compacted form */
47                         if (compacted)
48                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
49                         else
50                                 offset = ebx;
51                         ret = max(ret, offset + eax);
52                 }
53
54                 xstate_bv >>= 1;
55                 feature_bit++;
56         }
57
58         return ret;
59 }
60
61 /*
62  * This one is tied to SSB in the user API, and not
63  * visible in /proc/cpuinfo.
64  */
65 #define KVM_X86_FEATURE_PSFD            (13*32+28) /* Predictive Store Forwarding Disable */
66
67 #define F feature_bit
68 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
69
70 /*
71  * Magic value used by KVM when querying userspace-provided CPUID entries and
72  * doesn't care about the CPIUD index because the index of the function in
73  * question is not significant.  Note, this magic value must have at least one
74  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
75  * to avoid false positives when processing guest CPUID input.
76  */
77 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
78
79 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
80         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
81 {
82         struct kvm_cpuid_entry2 *e;
83         int i;
84
85         for (i = 0; i < nent; i++) {
86                 e = &entries[i];
87
88                 if (e->function != function)
89                         continue;
90
91                 /*
92                  * If the index isn't significant, use the first entry with a
93                  * matching function.  It's userspace's responsibilty to not
94                  * provide "duplicate" entries in all cases.
95                  */
96                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
97                         return e;
98
99
100                 /*
101                  * Similarly, use the first matching entry if KVM is doing a
102                  * lookup (as opposed to emulating CPUID) for a function that's
103                  * architecturally defined as not having a significant index.
104                  */
105                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
106                         /*
107                          * Direct lookups from KVM should not diverge from what
108                          * KVM defines internally (the architectural behavior).
109                          */
110                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
111                         return e;
112                 }
113         }
114
115         return NULL;
116 }
117
118 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
119                            struct kvm_cpuid_entry2 *entries,
120                            int nent)
121 {
122         struct kvm_cpuid_entry2 *best;
123         u64 xfeatures;
124
125         /*
126          * The existing code assumes virtual address is 48-bit or 57-bit in the
127          * canonical address checks; exit if it is ever changed.
128          */
129         best = cpuid_entry2_find(entries, nent, 0x80000008,
130                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
131         if (best) {
132                 int vaddr_bits = (best->eax & 0xff00) >> 8;
133
134                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135                         return -EINVAL;
136         }
137
138         /*
139          * Exposing dynamic xfeatures to the guest requires additional
140          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
141          */
142         best = cpuid_entry2_find(entries, nent, 0xd, 0);
143         if (!best)
144                 return 0;
145
146         xfeatures = best->eax | ((u64)best->edx << 32);
147         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
148         if (!xfeatures)
149                 return 0;
150
151         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
152 }
153
154 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
155 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
156                                  int nent)
157 {
158         struct kvm_cpuid_entry2 *orig;
159         int i;
160
161         if (nent != vcpu->arch.cpuid_nent)
162                 return -EINVAL;
163
164         for (i = 0; i < nent; i++) {
165                 orig = &vcpu->arch.cpuid_entries[i];
166                 if (e2[i].function != orig->function ||
167                     e2[i].index != orig->index ||
168                     e2[i].flags != orig->flags ||
169                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
170                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
171                         return -EINVAL;
172         }
173
174         return 0;
175 }
176
177 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
178 {
179         u32 function;
180         struct kvm_cpuid_entry2 *entry;
181
182         vcpu->arch.kvm_cpuid_base = 0;
183
184         for_each_possible_hypervisor_cpuid_base(function) {
185                 entry = kvm_find_cpuid_entry(vcpu, function);
186
187                 if (entry) {
188                         u32 signature[3];
189
190                         signature[0] = entry->ebx;
191                         signature[1] = entry->ecx;
192                         signature[2] = entry->edx;
193
194                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
195                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
196                                 vcpu->arch.kvm_cpuid_base = function;
197                                 break;
198                         }
199                 }
200         }
201 }
202
203 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
204                                               struct kvm_cpuid_entry2 *entries, int nent)
205 {
206         u32 base = vcpu->arch.kvm_cpuid_base;
207
208         if (!base)
209                 return NULL;
210
211         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
212                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
213 }
214
215 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
216 {
217         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
218                                              vcpu->arch.cpuid_nent);
219 }
220
221 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
222 {
223         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
224
225         /*
226          * save the feature bitmap to avoid cpuid lookup for every PV
227          * operation
228          */
229         if (best)
230                 vcpu->arch.pv_cpuid.features = best->eax;
231 }
232
233 /*
234  * Calculate guest's supported XCR0 taking into account guest CPUID data and
235  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
236  */
237 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
238 {
239         struct kvm_cpuid_entry2 *best;
240
241         best = cpuid_entry2_find(entries, nent, 0xd, 0);
242         if (!best)
243                 return 0;
244
245         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
246 }
247
248 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
249                                        int nent)
250 {
251         struct kvm_cpuid_entry2 *best;
252         u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
253
254         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
255         if (best) {
256                 /* Update OSXSAVE bit */
257                 if (boot_cpu_has(X86_FEATURE_XSAVE))
258                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
259                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
260
261                 cpuid_entry_change(best, X86_FEATURE_APIC,
262                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
263         }
264
265         best = cpuid_entry2_find(entries, nent, 7, 0);
266         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
267                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
268                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
269
270         best = cpuid_entry2_find(entries, nent, 0xD, 0);
271         if (best)
272                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
273
274         best = cpuid_entry2_find(entries, nent, 0xD, 1);
275         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
276                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
277                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
278
279         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
280         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
281                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
282                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
283
284         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
285                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
286                 if (best)
287                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
288                                            vcpu->arch.ia32_misc_enable_msr &
289                                            MSR_IA32_MISC_ENABLE_MWAIT);
290         }
291
292         /*
293          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
294          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
295          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
296          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
297          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
298          * '1' even on CPUs that don't support XSAVE.
299          */
300         best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
301         if (best) {
302                 best->ecx &= guest_supported_xcr0 & 0xffffffff;
303                 best->edx &= guest_supported_xcr0 >> 32;
304                 best->ecx |= XFEATURE_MASK_FPSSE;
305         }
306 }
307
308 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
309 {
310         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
311 }
312 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
313
314 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
315 {
316         struct kvm_cpuid_entry2 *entry;
317
318         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
319                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
320         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
321 }
322
323 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
324 {
325         struct kvm_lapic *apic = vcpu->arch.apic;
326         struct kvm_cpuid_entry2 *best;
327
328         best = kvm_find_cpuid_entry(vcpu, 1);
329         if (best && apic) {
330                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
331                         apic->lapic_timer.timer_mode_mask = 3 << 17;
332                 else
333                         apic->lapic_timer.timer_mode_mask = 1 << 17;
334
335                 kvm_apic_set_version(vcpu);
336         }
337
338         vcpu->arch.guest_supported_xcr0 =
339                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
340
341         kvm_update_pv_runtime(vcpu);
342
343         vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
344         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
345         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
346
347         kvm_pmu_refresh(vcpu);
348         vcpu->arch.cr4_guest_rsvd_bits =
349             __cr4_reserved_bits(guest_cpuid_has, vcpu);
350
351         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
352                                                     vcpu->arch.cpuid_nent));
353
354         /* Invoke the vendor callback only after the above state is updated. */
355         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
356
357         /*
358          * Except for the MMU, which needs to do its thing any vendor specific
359          * adjustments to the reserved GPA bits.
360          */
361         kvm_mmu_after_set_cpuid(vcpu);
362 }
363
364 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
365 {
366         struct kvm_cpuid_entry2 *best;
367
368         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
369         if (!best || best->eax < 0x80000008)
370                 goto not_found;
371         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
372         if (best)
373                 return best->eax & 0xff;
374 not_found:
375         return 36;
376 }
377
378 /*
379  * This "raw" version returns the reserved GPA bits without any adjustments for
380  * encryption technologies that usurp bits.  The raw mask should be used if and
381  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
382  */
383 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
384 {
385         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
386 }
387
388 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
389                         int nent)
390 {
391         int r;
392
393         __kvm_update_cpuid_runtime(vcpu, e2, nent);
394
395         /*
396          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
397          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
398          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
399          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
400          * the core vCPU model on the fly. It would've been better to forbid any
401          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
402          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
403          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
404          * whether the supplied CPUID data is equal to what's already set.
405          */
406         if (vcpu->arch.last_vmentry_cpu != -1) {
407                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
408                 if (r)
409                         return r;
410
411                 kvfree(e2);
412                 return 0;
413         }
414
415         if (kvm_cpuid_has_hyperv(e2, nent)) {
416                 r = kvm_hv_vcpu_init(vcpu);
417                 if (r)
418                         return r;
419         }
420
421         r = kvm_check_cpuid(vcpu, e2, nent);
422         if (r)
423                 return r;
424
425         kvfree(vcpu->arch.cpuid_entries);
426         vcpu->arch.cpuid_entries = e2;
427         vcpu->arch.cpuid_nent = nent;
428
429         kvm_update_kvm_cpuid_base(vcpu);
430         kvm_vcpu_after_set_cpuid(vcpu);
431
432         return 0;
433 }
434
435 /* when an old userspace process fills a new kernel module */
436 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
437                              struct kvm_cpuid *cpuid,
438                              struct kvm_cpuid_entry __user *entries)
439 {
440         int r, i;
441         struct kvm_cpuid_entry *e = NULL;
442         struct kvm_cpuid_entry2 *e2 = NULL;
443
444         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
445                 return -E2BIG;
446
447         if (cpuid->nent) {
448                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
449                 if (IS_ERR(e))
450                         return PTR_ERR(e);
451
452                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
453                 if (!e2) {
454                         r = -ENOMEM;
455                         goto out_free_cpuid;
456                 }
457         }
458         for (i = 0; i < cpuid->nent; i++) {
459                 e2[i].function = e[i].function;
460                 e2[i].eax = e[i].eax;
461                 e2[i].ebx = e[i].ebx;
462                 e2[i].ecx = e[i].ecx;
463                 e2[i].edx = e[i].edx;
464                 e2[i].index = 0;
465                 e2[i].flags = 0;
466                 e2[i].padding[0] = 0;
467                 e2[i].padding[1] = 0;
468                 e2[i].padding[2] = 0;
469         }
470
471         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
472         if (r)
473                 kvfree(e2);
474
475 out_free_cpuid:
476         kvfree(e);
477
478         return r;
479 }
480
481 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
482                               struct kvm_cpuid2 *cpuid,
483                               struct kvm_cpuid_entry2 __user *entries)
484 {
485         struct kvm_cpuid_entry2 *e2 = NULL;
486         int r;
487
488         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
489                 return -E2BIG;
490
491         if (cpuid->nent) {
492                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
493                 if (IS_ERR(e2))
494                         return PTR_ERR(e2);
495         }
496
497         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
498         if (r)
499                 kvfree(e2);
500
501         return r;
502 }
503
504 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
505                               struct kvm_cpuid2 *cpuid,
506                               struct kvm_cpuid_entry2 __user *entries)
507 {
508         int r;
509
510         r = -E2BIG;
511         if (cpuid->nent < vcpu->arch.cpuid_nent)
512                 goto out;
513         r = -EFAULT;
514         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
515                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
516                 goto out;
517         return 0;
518
519 out:
520         cpuid->nent = vcpu->arch.cpuid_nent;
521         return r;
522 }
523
524 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
525 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
526 {
527         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
528         struct kvm_cpuid_entry2 entry;
529
530         reverse_cpuid_check(leaf);
531
532         cpuid_count(cpuid.function, cpuid.index,
533                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
534
535         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
536 }
537
538 static __always_inline
539 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
540 {
541         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
542         BUILD_BUG_ON(leaf < NCAPINTS);
543
544         kvm_cpu_caps[leaf] = mask;
545
546         __kvm_cpu_cap_mask(leaf);
547 }
548
549 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
550 {
551         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
552         BUILD_BUG_ON(leaf >= NCAPINTS);
553
554         kvm_cpu_caps[leaf] &= mask;
555
556         __kvm_cpu_cap_mask(leaf);
557 }
558
559 void kvm_set_cpu_caps(void)
560 {
561 #ifdef CONFIG_X86_64
562         unsigned int f_gbpages = F(GBPAGES);
563         unsigned int f_lm = F(LM);
564         unsigned int f_xfd = F(XFD);
565 #else
566         unsigned int f_gbpages = 0;
567         unsigned int f_lm = 0;
568         unsigned int f_xfd = 0;
569 #endif
570         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
571
572         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
573                      sizeof(boot_cpu_data.x86_capability));
574
575         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
576                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
577
578         kvm_cpu_cap_mask(CPUID_1_ECX,
579                 /*
580                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
581                  * advertised to guests via CPUID!
582                  */
583                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
584                 0 /* DS-CPL, VMX, SMX, EST */ |
585                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
586                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
587                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
588                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
589                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
590                 F(F16C) | F(RDRAND)
591         );
592         /* KVM emulates x2apic in software irrespective of host support. */
593         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
594
595         kvm_cpu_cap_mask(CPUID_1_EDX,
596                 F(FPU) | F(VME) | F(DE) | F(PSE) |
597                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
598                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
599                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
600                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
601                 0 /* Reserved, DS, ACPI */ | F(MMX) |
602                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
603                 0 /* HTT, TM, Reserved, PBE */
604         );
605
606         kvm_cpu_cap_mask(CPUID_7_0_EBX,
607                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
608                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
609                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
610                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
611                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
612                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
613                 F(AVX512VL));
614
615         kvm_cpu_cap_mask(CPUID_7_ECX,
616                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
617                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
618                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
619                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
620                 F(SGX_LC) | F(BUS_LOCK_DETECT)
621         );
622         /* Set LA57 based on hardware capability. */
623         if (cpuid_ecx(7) & F(LA57))
624                 kvm_cpu_cap_set(X86_FEATURE_LA57);
625
626         /*
627          * PKU not yet implemented for shadow paging and requires OSPKE
628          * to be set on the host. Clear it if that is not the case
629          */
630         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
631                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
632
633         kvm_cpu_cap_mask(CPUID_7_EDX,
634                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
635                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
636                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
637                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
638                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
639         );
640
641         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
642         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
643         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
644
645         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
646                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
647         if (boot_cpu_has(X86_FEATURE_STIBP))
648                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
649         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
650                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
651
652         kvm_cpu_cap_mask(CPUID_7_1_EAX,
653                 F(AVX_VNNI) | F(AVX512_BF16)
654         );
655
656         kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
657                 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
658                 F(BHI_CTRL) | F(MCDT_NO)
659         );
660
661         kvm_cpu_cap_mask(CPUID_D_1_EAX,
662                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
663         );
664
665         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
666                 SF(SGX1) | SF(SGX2)
667         );
668
669         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
670                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
671                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
672                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
673                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
674                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
675         );
676
677         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
678                 F(FPU) | F(VME) | F(DE) | F(PSE) |
679                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
680                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
681                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
682                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
683                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
684                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
685                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
686         );
687
688         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
689                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
690
691         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
692                 F(CLZERO) | F(XSAVEERPTR) |
693                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
694                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
695                 __feature_bit(KVM_X86_FEATURE_PSFD)
696         );
697
698         /*
699          * AMD has separate bits for each SPEC_CTRL bit.
700          * arch/x86/kernel/cpu/bugs.c is kind enough to
701          * record that in cpufeatures so use them.
702          */
703         if (boot_cpu_has(X86_FEATURE_IBPB))
704                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
705         if (boot_cpu_has(X86_FEATURE_IBRS))
706                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
707         if (boot_cpu_has(X86_FEATURE_STIBP))
708                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
709         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
710                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
711         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
712                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
713         /*
714          * The preference is to use SPEC CTRL MSR instead of the
715          * VIRT_SPEC MSR.
716          */
717         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
718             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
719                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
720
721         /*
722          * Hide all SVM features by default, SVM will set the cap bits for
723          * features it emulates and/or exposes for L1.
724          */
725         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
726
727         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
728                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
729                 F(SME_COHERENT));
730
731         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
732                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
733                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
734                 F(PMM) | F(PMM_EN)
735         );
736
737         if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
738                 kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
739
740         /*
741          * Hide RDTSCP and RDPID if either feature is reported as supported but
742          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
743          * should never happen, but the guest will likely crash if RDTSCP or
744          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
745          * the past.  For example, the sanity check may fire if this instance of
746          * KVM is running as L1 on top of an older, broken KVM.
747          */
748         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
749                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
750                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
751                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
752                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
753         }
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
756
757 struct kvm_cpuid_array {
758         struct kvm_cpuid_entry2 *entries;
759         int maxnent;
760         int nent;
761 };
762
763 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
764 {
765         if (array->nent >= array->maxnent)
766                 return NULL;
767
768         return &array->entries[array->nent++];
769 }
770
771 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
772                                               u32 function, u32 index)
773 {
774         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
775
776         if (!entry)
777                 return NULL;
778
779         memset(entry, 0, sizeof(*entry));
780         entry->function = function;
781         entry->index = index;
782         switch (function & 0xC0000000) {
783         case 0x40000000:
784                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
785                 return entry;
786
787         case 0x80000000:
788                 /*
789                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
790                  * would result in out-of-bounds calls to do_host_cpuid.
791                  */
792                 {
793                         static int max_cpuid_80000000;
794                         if (!READ_ONCE(max_cpuid_80000000))
795                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
796                         if (function > READ_ONCE(max_cpuid_80000000))
797                                 return entry;
798                 }
799                 break;
800
801         default:
802                 break;
803         }
804
805         cpuid_count(entry->function, entry->index,
806                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
807
808         if (cpuid_function_is_indexed(function))
809                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
810
811         return entry;
812 }
813
814 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
815 {
816         struct kvm_cpuid_entry2 *entry;
817
818         if (array->nent >= array->maxnent)
819                 return -E2BIG;
820
821         entry = &array->entries[array->nent];
822         entry->function = func;
823         entry->index = 0;
824         entry->flags = 0;
825
826         switch (func) {
827         case 0:
828                 entry->eax = 7;
829                 ++array->nent;
830                 break;
831         case 1:
832                 entry->ecx = F(MOVBE);
833                 ++array->nent;
834                 break;
835         case 7:
836                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
837                 entry->eax = 0;
838                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
839                         entry->ecx = F(RDPID);
840                 ++array->nent;
841                 break;
842         default:
843                 break;
844         }
845
846         return 0;
847 }
848
849 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
850 {
851         struct kvm_cpuid_entry2 *entry;
852         int r, i, max_idx;
853
854         /* all calls to cpuid_count() should be made on the same cpu */
855         get_cpu();
856
857         r = -E2BIG;
858
859         entry = do_host_cpuid(array, function, 0);
860         if (!entry)
861                 goto out;
862
863         switch (function) {
864         case 0:
865                 /* Limited to the highest leaf implemented in KVM. */
866                 entry->eax = min(entry->eax, 0x1fU);
867                 break;
868         case 1:
869                 cpuid_entry_override(entry, CPUID_1_EDX);
870                 cpuid_entry_override(entry, CPUID_1_ECX);
871                 break;
872         case 2:
873                 /*
874                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
875                  * CPUID(function=2, index=0) may return different results each
876                  * time, with the least-significant byte in EAX enumerating the
877                  * number of times software should do CPUID(2, 0).
878                  *
879                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
880                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
881                  * return 01H. Software should ignore this value and not
882                  * interpret it as an informational descriptor", while AMD's
883                  * APM states that CPUID(2) is reserved.
884                  *
885                  * WARN if a frankenstein CPU that supports virtualization and
886                  * a stateful CPUID.0x2 is encountered.
887                  */
888                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
889                 break;
890         /* functions 4 and 0x8000001d have additional index. */
891         case 4:
892         case 0x8000001d:
893                 /*
894                  * Read entries until the cache type in the previous entry is
895                  * zero, i.e. indicates an invalid entry.
896                  */
897                 for (i = 1; entry->eax & 0x1f; ++i) {
898                         entry = do_host_cpuid(array, function, i);
899                         if (!entry)
900                                 goto out;
901                 }
902                 break;
903         case 6: /* Thermal management */
904                 entry->eax = 0x4; /* allow ARAT */
905                 entry->ebx = 0;
906                 entry->ecx = 0;
907                 entry->edx = 0;
908                 break;
909         /* function 7 has additional index. */
910         case 7:
911                 max_idx = entry->eax = min(entry->eax, 2u);
912                 cpuid_entry_override(entry, CPUID_7_0_EBX);
913                 cpuid_entry_override(entry, CPUID_7_ECX);
914                 cpuid_entry_override(entry, CPUID_7_EDX);
915
916                 /* KVM only supports up to 0x7.2, capped above via min(). */
917                 if (max_idx >= 1) {
918                         entry = do_host_cpuid(array, function, 1);
919                         if (!entry)
920                                 goto out;
921
922                         cpuid_entry_override(entry, CPUID_7_1_EAX);
923                         entry->ebx = 0;
924                         entry->ecx = 0;
925                         entry->edx = 0;
926                 }
927                 if (max_idx >= 2) {
928                         entry = do_host_cpuid(array, function, 2);
929                         if (!entry)
930                                 goto out;
931
932                         cpuid_entry_override(entry, CPUID_7_2_EDX);
933                         entry->ecx = 0;
934                         entry->ebx = 0;
935                         entry->eax = 0;
936                 }
937                 break;
938         case 0xa: { /* Architectural Performance Monitoring */
939                 union cpuid10_eax eax;
940                 union cpuid10_edx edx;
941
942                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
943                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
944                         break;
945                 }
946
947                 eax.split.version_id = kvm_pmu_cap.version;
948                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
949                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
950                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
951                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
952                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
953
954                 if (kvm_pmu_cap.version)
955                         edx.split.anythread_deprecated = 1;
956                 edx.split.reserved1 = 0;
957                 edx.split.reserved2 = 0;
958
959                 entry->eax = eax.full;
960                 entry->ebx = kvm_pmu_cap.events_mask;
961                 entry->ecx = 0;
962                 entry->edx = edx.full;
963                 break;
964         }
965         case 0x1f:
966         case 0xb:
967                 /*
968                  * No topology; a valid topology is indicated by the presence
969                  * of subleaf 1.
970                  */
971                 entry->eax = entry->ebx = entry->ecx = 0;
972                 break;
973         case 0xd: {
974                 u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
975                 u64 permitted_xss = kvm_caps.supported_xss;
976
977                 entry->eax &= permitted_xcr0;
978                 entry->ebx = xstate_required_size(permitted_xcr0, false);
979                 entry->ecx = entry->ebx;
980                 entry->edx &= permitted_xcr0 >> 32;
981                 if (!permitted_xcr0)
982                         break;
983
984                 entry = do_host_cpuid(array, function, 1);
985                 if (!entry)
986                         goto out;
987
988                 cpuid_entry_override(entry, CPUID_D_1_EAX);
989                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
990                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
991                                                           true);
992                 else {
993                         WARN_ON_ONCE(permitted_xss != 0);
994                         entry->ebx = 0;
995                 }
996                 entry->ecx &= permitted_xss;
997                 entry->edx &= permitted_xss >> 32;
998
999                 for (i = 2; i < 64; ++i) {
1000                         bool s_state;
1001                         if (permitted_xcr0 & BIT_ULL(i))
1002                                 s_state = false;
1003                         else if (permitted_xss & BIT_ULL(i))
1004                                 s_state = true;
1005                         else
1006                                 continue;
1007
1008                         entry = do_host_cpuid(array, function, i);
1009                         if (!entry)
1010                                 goto out;
1011
1012                         /*
1013                          * The supported check above should have filtered out
1014                          * invalid sub-leafs.  Only valid sub-leafs should
1015                          * reach this point, and they should have a non-zero
1016                          * save state size.  Furthermore, check whether the
1017                          * processor agrees with permitted_xcr0/permitted_xss
1018                          * on whether this is an XCR0- or IA32_XSS-managed area.
1019                          */
1020                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1021                                 --array->nent;
1022                                 continue;
1023                         }
1024
1025                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1026                                 entry->ecx &= ~BIT_ULL(2);
1027                         entry->edx = 0;
1028                 }
1029                 break;
1030         }
1031         case 0x12:
1032                 /* Intel SGX */
1033                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1034                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1035                         break;
1036                 }
1037
1038                 /*
1039                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1040                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1041                  * are restricted by kernel and KVM capabilities (like most
1042                  * feature flags), while enclave size is unrestricted.
1043                  */
1044                 cpuid_entry_override(entry, CPUID_12_EAX);
1045                 entry->ebx &= SGX_MISC_EXINFO;
1046
1047                 entry = do_host_cpuid(array, function, 1);
1048                 if (!entry)
1049                         goto out;
1050
1051                 /*
1052                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1053                  * feature flags.  Advertise all supported flags, including
1054                  * privileged attributes that require explicit opt-in from
1055                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1056                  * expected to derive it from supported XCR0.
1057                  */
1058                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
1059                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
1060                               SGX_ATTR_KSS;
1061                 entry->ebx &= 0;
1062                 break;
1063         /* Intel PT */
1064         case 0x14:
1065                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1066                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1067                         break;
1068                 }
1069
1070                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1071                         if (!do_host_cpuid(array, function, i))
1072                                 goto out;
1073                 }
1074                 break;
1075         /* Intel AMX TILE */
1076         case 0x1d:
1077                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1078                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1079                         break;
1080                 }
1081
1082                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1083                         if (!do_host_cpuid(array, function, i))
1084                                 goto out;
1085                 }
1086                 break;
1087         case 0x1e: /* TMUL information */
1088                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1089                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1090                         break;
1091                 }
1092                 break;
1093         case KVM_CPUID_SIGNATURE: {
1094                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1095                 entry->eax = KVM_CPUID_FEATURES;
1096                 entry->ebx = sigptr[0];
1097                 entry->ecx = sigptr[1];
1098                 entry->edx = sigptr[2];
1099                 break;
1100         }
1101         case KVM_CPUID_FEATURES:
1102                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1103                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1104                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1105                              (1 << KVM_FEATURE_ASYNC_PF) |
1106                              (1 << KVM_FEATURE_PV_EOI) |
1107                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1108                              (1 << KVM_FEATURE_PV_UNHALT) |
1109                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1110                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1111                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1112                              (1 << KVM_FEATURE_POLL_CONTROL) |
1113                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1114                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1115
1116                 if (sched_info_on())
1117                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1118
1119                 entry->ebx = 0;
1120                 entry->ecx = 0;
1121                 entry->edx = 0;
1122                 break;
1123         case 0x80000000:
1124                 entry->eax = min(entry->eax, 0x80000021);
1125                 /*
1126                  * Serializing LFENCE is reported in a multitude of ways, and
1127                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1128                  * userspace by providing the CPUID leaf ourselves.
1129                  *
1130                  * However, only do it if the host has CPUID leaf 0x8000001d.
1131                  * QEMU thinks that it can query the host blindly for that
1132                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1133                  * above.  The processor merrily returns values from the
1134                  * highest Intel leaf which QEMU tries to use as the guest's
1135                  * 0x8000001d.  Even worse, this can result in an infinite
1136                  * loop if said highest leaf has no subleaves indexed by ECX.
1137                  */
1138                 if (entry->eax >= 0x8000001d &&
1139                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1140                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1141                         entry->eax = max(entry->eax, 0x80000021);
1142                 break;
1143         case 0x80000001:
1144                 entry->ebx &= ~GENMASK(27, 16);
1145                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1146                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1147                 break;
1148         case 0x80000006:
1149                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1150                 entry->edx &= ~GENMASK(17, 16);
1151                 break;
1152         case 0x80000007: /* Advanced power management */
1153                 /* invariant TSC is CPUID.80000007H:EDX[8] */
1154                 entry->edx &= (1 << 8);
1155                 /* mask against host */
1156                 entry->edx &= boot_cpu_data.x86_power;
1157                 entry->eax = entry->ebx = entry->ecx = 0;
1158                 break;
1159         case 0x80000008: {
1160                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1161                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1162                 unsigned phys_as = entry->eax & 0xff;
1163
1164                 /*
1165                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1166                  * the guest operates in the same PA space as the host, i.e.
1167                  * reductions in MAXPHYADDR for memory encryption affect shadow
1168                  * paging, too.
1169                  *
1170                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1171                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1172                  * the HPAs do not affect GPAs.
1173                  */
1174                 if (!tdp_enabled)
1175                         g_phys_as = boot_cpu_data.x86_phys_bits;
1176                 else if (!g_phys_as)
1177                         g_phys_as = phys_as;
1178
1179                 entry->eax = g_phys_as | (virt_as << 8);
1180                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1181                 entry->edx = 0;
1182                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1183                 break;
1184         }
1185         case 0x8000000A:
1186                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1187                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1188                         break;
1189                 }
1190                 entry->eax = 1; /* SVM revision 1 */
1191                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1192                                    ASID emulation to nested SVM */
1193                 entry->ecx = 0; /* Reserved */
1194                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1195                 break;
1196         case 0x80000019:
1197                 entry->ecx = entry->edx = 0;
1198                 break;
1199         case 0x8000001a:
1200                 entry->eax &= GENMASK(2, 0);
1201                 entry->ebx = entry->ecx = entry->edx = 0;
1202                 break;
1203         case 0x8000001e:
1204                 /* Do not return host topology information.  */
1205                 entry->eax = entry->ebx = entry->ecx = 0;
1206                 entry->edx = 0; /* reserved */
1207                 break;
1208         case 0x8000001F:
1209                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1210                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1211                 } else {
1212                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1213                         /* Clear NumVMPL since KVM does not support VMPL.  */
1214                         entry->ebx &= ~GENMASK(31, 12);
1215                         /*
1216                          * Enumerate '0' for "PA bits reduction", the adjusted
1217                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1218                          */
1219                         entry->ebx &= ~GENMASK(11, 6);
1220                 }
1221                 break;
1222         case 0x80000020:
1223                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1224                 break;
1225         case 0x80000021:
1226                 entry->ebx = entry->ecx = entry->edx = 0;
1227                 /*
1228                  * Pass down these bits:
1229                  *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1230                  *    EAX      2      LAS, LFENCE always serializing
1231                  *    EAX      6      NSCB, Null selector clear base
1232                  *
1233                  * Other defined bits are for MSRs that KVM does not expose:
1234                  *   EAX      3      SPCL, SMM page configuration lock
1235                  *   EAX      13     PCMSR, Prefetch control MSR
1236                  */
1237                 entry->eax &= BIT(0) | BIT(2) | BIT(6);
1238                 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1239                         entry->eax |= BIT(2);
1240                 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1241                         entry->eax |= BIT(6);
1242                 break;
1243         /*Add support for Centaur's CPUID instruction*/
1244         case 0xC0000000:
1245                 /*Just support up to 0xC0000004 now*/
1246                 entry->eax = min(entry->eax, 0xC0000004);
1247                 break;
1248         case 0xC0000001:
1249                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1250                 break;
1251         case 3: /* Processor serial number */
1252         case 5: /* MONITOR/MWAIT */
1253         case 0xC0000002:
1254         case 0xC0000003:
1255         case 0xC0000004:
1256         default:
1257                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1258                 break;
1259         }
1260
1261         r = 0;
1262
1263 out:
1264         put_cpu();
1265
1266         return r;
1267 }
1268
1269 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1270                          unsigned int type)
1271 {
1272         if (type == KVM_GET_EMULATED_CPUID)
1273                 return __do_cpuid_func_emulated(array, func);
1274
1275         return __do_cpuid_func(array, func);
1276 }
1277
1278 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1279
1280 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1281                           unsigned int type)
1282 {
1283         u32 limit;
1284         int r;
1285
1286         if (func == CENTAUR_CPUID_SIGNATURE &&
1287             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1288                 return 0;
1289
1290         r = do_cpuid_func(array, func, type);
1291         if (r)
1292                 return r;
1293
1294         limit = array->entries[array->nent - 1].eax;
1295         for (func = func + 1; func <= limit; ++func) {
1296                 r = do_cpuid_func(array, func, type);
1297                 if (r)
1298                         break;
1299         }
1300
1301         return r;
1302 }
1303
1304 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1305                                  __u32 num_entries, unsigned int ioctl_type)
1306 {
1307         int i;
1308         __u32 pad[3];
1309
1310         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1311                 return false;
1312
1313         /*
1314          * We want to make sure that ->padding is being passed clean from
1315          * userspace in case we want to use it for something in the future.
1316          *
1317          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1318          * have to give ourselves satisfied only with the emulated side. /me
1319          * sheds a tear.
1320          */
1321         for (i = 0; i < num_entries; i++) {
1322                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1323                         return true;
1324
1325                 if (pad[0] || pad[1] || pad[2])
1326                         return true;
1327         }
1328         return false;
1329 }
1330
1331 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1332                             struct kvm_cpuid_entry2 __user *entries,
1333                             unsigned int type)
1334 {
1335         static const u32 funcs[] = {
1336                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1337         };
1338
1339         struct kvm_cpuid_array array = {
1340                 .nent = 0,
1341         };
1342         int r, i;
1343
1344         if (cpuid->nent < 1)
1345                 return -E2BIG;
1346         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1347                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1348
1349         if (sanity_check_entries(entries, cpuid->nent, type))
1350                 return -EINVAL;
1351
1352         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1353         if (!array.entries)
1354                 return -ENOMEM;
1355
1356         array.maxnent = cpuid->nent;
1357
1358         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1359                 r = get_cpuid_func(&array, funcs[i], type);
1360                 if (r)
1361                         goto out_free;
1362         }
1363         cpuid->nent = array.nent;
1364
1365         if (copy_to_user(entries, array.entries,
1366                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1367                 r = -EFAULT;
1368
1369 out_free:
1370         kvfree(array.entries);
1371         return r;
1372 }
1373
1374 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1375                                                     u32 function, u32 index)
1376 {
1377         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1378                                  function, index);
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1381
1382 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1383                                               u32 function)
1384 {
1385         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1386                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1389
1390 /*
1391  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1392  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1393  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1394  * range.  Centaur/VIA follows Intel semantics.
1395  *
1396  * A leaf is considered out-of-range if its function is higher than the maximum
1397  * supported leaf of its associated class or if its associated class does not
1398  * exist.
1399  *
1400  * There are three primary classes to be considered, with their respective
1401  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1402  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1403  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1404  *
1405  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1406  *  - Hypervisor: 0x40000000 - 0x4fffffff
1407  *  - Extended:   0x80000000 - 0xbfffffff
1408  *  - Centaur:    0xc0000000 - 0xcfffffff
1409  *
1410  * The Hypervisor class is further subdivided into sub-classes that each act as
1411  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1412  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1413  * CPUID sub-classes are:
1414  *
1415  *  - HyperV:     0x40000000 - 0x400000ff
1416  *  - KVM:        0x40000100 - 0x400001ff
1417  */
1418 static struct kvm_cpuid_entry2 *
1419 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1420 {
1421         struct kvm_cpuid_entry2 *basic, *class;
1422         u32 function = *fn_ptr;
1423
1424         basic = kvm_find_cpuid_entry(vcpu, 0);
1425         if (!basic)
1426                 return NULL;
1427
1428         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1429             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1430                 return NULL;
1431
1432         if (function >= 0x40000000 && function <= 0x4fffffff)
1433                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1434         else if (function >= 0xc0000000)
1435                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1436         else
1437                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1438
1439         if (class && function <= class->eax)
1440                 return NULL;
1441
1442         /*
1443          * Leaf specific adjustments are also applied when redirecting to the
1444          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1445          * entry for CPUID.0xb.index (see below), then the output value for EDX
1446          * needs to be pulled from CPUID.0xb.1.
1447          */
1448         *fn_ptr = basic->eax;
1449
1450         /*
1451          * The class does not exist or the requested function is out of range;
1452          * the effective CPUID entry is the max basic leaf.  Note, the index of
1453          * the original requested leaf is observed!
1454          */
1455         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1456 }
1457
1458 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1459                u32 *ecx, u32 *edx, bool exact_only)
1460 {
1461         u32 orig_function = *eax, function = *eax, index = *ecx;
1462         struct kvm_cpuid_entry2 *entry;
1463         bool exact, used_max_basic = false;
1464
1465         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1466         exact = !!entry;
1467
1468         if (!entry && !exact_only) {
1469                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1470                 used_max_basic = !!entry;
1471         }
1472
1473         if (entry) {
1474                 *eax = entry->eax;
1475                 *ebx = entry->ebx;
1476                 *ecx = entry->ecx;
1477                 *edx = entry->edx;
1478                 if (function == 7 && index == 0) {
1479                         u64 data;
1480                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1481                             (data & TSX_CTRL_CPUID_CLEAR))
1482                                 *ebx &= ~(F(RTM) | F(HLE));
1483                 }
1484         } else {
1485                 *eax = *ebx = *ecx = *edx = 0;
1486                 /*
1487                  * When leaf 0BH or 1FH is defined, CL is pass-through
1488                  * and EDX is always the x2APIC ID, even for undefined
1489                  * subleaves. Index 1 will exist iff the leaf is
1490                  * implemented, so we pass through CL iff leaf 1
1491                  * exists. EDX can be copied from any existing index.
1492                  */
1493                 if (function == 0xb || function == 0x1f) {
1494                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1495                         if (entry) {
1496                                 *ecx = index & 0xff;
1497                                 *edx = entry->edx;
1498                         }
1499                 }
1500         }
1501         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1502                         used_max_basic);
1503         return exact;
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_cpuid);
1506
1507 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1508 {
1509         u32 eax, ebx, ecx, edx;
1510
1511         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1512                 return 1;
1513
1514         eax = kvm_rax_read(vcpu);
1515         ecx = kvm_rcx_read(vcpu);
1516         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1517         kvm_rax_write(vcpu, eax);
1518         kvm_rbx_write(vcpu, ebx);
1519         kvm_rcx_write(vcpu, ecx);
1520         kvm_rdx_write(vcpu, edx);
1521         return kvm_skip_emulated_instruction(vcpu);
1522 }
1523 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);