Mention branches and keyring.
[releases.git] / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/api.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85 #include <asm/sev.h>
86
87 /* representing HT siblings of each logical CPU */
88 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
90
91 /* representing HT and core siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
94
95 /* representing HT, core, and die siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
98
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102
103 struct mwait_cpu_dead {
104         unsigned int    control;
105         unsigned int    status;
106 };
107
108 #define CPUDEAD_MWAIT_WAIT      0xDEADBEEF
109 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
110
111 /*
112  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
113  * that it's unlikely to be touched by other CPUs.
114  */
115 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
116
117 /* Logical package management. We might want to allocate that dynamically */
118 unsigned int __max_logical_packages __read_mostly;
119 EXPORT_SYMBOL(__max_logical_packages);
120 static unsigned int logical_packages __read_mostly;
121 static unsigned int logical_die __read_mostly;
122
123 /* Maximum number of SMT threads on any online core */
124 int __read_mostly __max_smt_threads = 1;
125
126 /* Flag to indicate if a complete sched domain rebuild is required */
127 bool x86_topology_update;
128
129 int arch_update_cpu_topology(void)
130 {
131         int retval = x86_topology_update;
132
133         x86_topology_update = false;
134         return retval;
135 }
136
137 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&rtc_lock, flags);
142         CMOS_WRITE(0xa, 0xf);
143         spin_unlock_irqrestore(&rtc_lock, flags);
144         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
145                                                         start_eip >> 4;
146         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
147                                                         start_eip & 0xf;
148 }
149
150 static inline void smpboot_restore_warm_reset_vector(void)
151 {
152         unsigned long flags;
153
154         /*
155          * Paranoid:  Set warm reset code and vector here back
156          * to default values.
157          */
158         spin_lock_irqsave(&rtc_lock, flags);
159         CMOS_WRITE(0, 0xf);
160         spin_unlock_irqrestore(&rtc_lock, flags);
161
162         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
163 }
164
165 /*
166  * Report back to the Boot Processor during boot time or to the caller processor
167  * during CPU online.
168  */
169 static void smp_callin(void)
170 {
171         int cpuid;
172
173         /* Mop up eventual mwait_play_dead() wreckage */
174         this_cpu_write(mwait_cpu_dead.status, 0);
175         this_cpu_write(mwait_cpu_dead.control, 0);
176
177         /*
178          * If waken up by an INIT in an 82489DX configuration
179          * cpu_callout_mask guarantees we don't get here before
180          * an INIT_deassert IPI reaches our local APIC, so it is
181          * now safe to touch our local APIC.
182          */
183         cpuid = smp_processor_id();
184
185         /*
186          * the boot CPU has finished the init stage and is spinning
187          * on callin_map until we finish. We are free to set up this
188          * CPU, first the APIC. (this is probably redundant on most
189          * boards)
190          */
191         apic_ap_setup();
192
193         /*
194          * Save our processor parameters. Note: this information
195          * is needed for clock calibration.
196          */
197         smp_store_cpu_info(cpuid);
198
199         /*
200          * The topology information must be up to date before
201          * calibrate_delay() and notify_cpu_starting().
202          */
203         set_cpu_sibling_map(raw_smp_processor_id());
204
205         ap_init_aperfmperf();
206
207         /*
208          * Get our bogomips.
209          * Update loops_per_jiffy in cpu_data. Previous call to
210          * smp_store_cpu_info() stored a value that is close but not as
211          * accurate as the value just calculated.
212          */
213         calibrate_delay();
214         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
215         pr_debug("Stack at about %p\n", &cpuid);
216
217         wmb();
218
219         notify_cpu_starting(cpuid);
220
221         /*
222          * Allow the master to continue.
223          */
224         cpumask_set_cpu(cpuid, cpu_callin_mask);
225 }
226
227 static int cpu0_logical_apicid;
228 static int enable_start_cpu0;
229 /*
230  * Activate a secondary processor.
231  */
232 static void notrace start_secondary(void *unused)
233 {
234         /*
235          * Don't put *anything* except direct CPU state initialization
236          * before cpu_init(), SMP booting is too fragile that we want to
237          * limit the things done here to the most necessary things.
238          */
239         cr4_init();
240
241 #ifdef CONFIG_X86_32
242         /* switch away from the initial page table */
243         load_cr3(swapper_pg_dir);
244         __flush_tlb_all();
245 #endif
246         cpu_init_secondary();
247         rcu_cpu_starting(raw_smp_processor_id());
248         x86_cpuinit.early_percpu_clock_init();
249         smp_callin();
250
251         enable_start_cpu0 = 0;
252
253         /* otherwise gcc will move up smp_processor_id before the cpu_init */
254         barrier();
255         /*
256          * Check TSC synchronization with the boot CPU:
257          */
258         check_tsc_sync_target();
259
260         speculative_store_bypass_ht_init();
261
262         /*
263          * Lock vector_lock, set CPU online and bring the vector
264          * allocator online. Online must be set with vector_lock held
265          * to prevent a concurrent irq setup/teardown from seeing a
266          * half valid vector space.
267          */
268         lock_vector_lock();
269         set_cpu_online(smp_processor_id(), true);
270         lapic_online();
271         unlock_vector_lock();
272         cpu_set_state_online(smp_processor_id());
273         x86_platform.nmi_init();
274
275         /* enable local interrupts */
276         local_irq_enable();
277
278         x86_cpuinit.setup_percpu_clockev();
279
280         wmb();
281         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
282 }
283
284 /**
285  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
286  * @cpu:        CPU to check
287  */
288 bool topology_is_primary_thread(unsigned int cpu)
289 {
290         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
291 }
292
293 /**
294  * topology_smt_supported - Check whether SMT is supported by the CPUs
295  */
296 bool topology_smt_supported(void)
297 {
298         return smp_num_siblings > 1;
299 }
300
301 /**
302  * topology_phys_to_logical_pkg - Map a physical package id to a logical
303  *
304  * Returns logical package id or -1 if not found
305  */
306 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
307 {
308         int cpu;
309
310         for_each_possible_cpu(cpu) {
311                 struct cpuinfo_x86 *c = &cpu_data(cpu);
312
313                 if (c->initialized && c->phys_proc_id == phys_pkg)
314                         return c->logical_proc_id;
315         }
316         return -1;
317 }
318 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
319 /**
320  * topology_phys_to_logical_die - Map a physical die id to logical
321  *
322  * Returns logical die id or -1 if not found
323  */
324 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
325 {
326         int cpu;
327         int proc_id = cpu_data(cur_cpu).phys_proc_id;
328
329         for_each_possible_cpu(cpu) {
330                 struct cpuinfo_x86 *c = &cpu_data(cpu);
331
332                 if (c->initialized && c->cpu_die_id == die_id &&
333                     c->phys_proc_id == proc_id)
334                         return c->logical_die_id;
335         }
336         return -1;
337 }
338 EXPORT_SYMBOL(topology_phys_to_logical_die);
339
340 /**
341  * topology_update_package_map - Update the physical to logical package map
342  * @pkg:        The physical package id as retrieved via CPUID
343  * @cpu:        The cpu for which this is updated
344  */
345 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
346 {
347         int new;
348
349         /* Already available somewhere? */
350         new = topology_phys_to_logical_pkg(pkg);
351         if (new >= 0)
352                 goto found;
353
354         new = logical_packages++;
355         if (new != pkg) {
356                 pr_info("CPU %u Converting physical %u to logical package %u\n",
357                         cpu, pkg, new);
358         }
359 found:
360         cpu_data(cpu).logical_proc_id = new;
361         return 0;
362 }
363 /**
364  * topology_update_die_map - Update the physical to logical die map
365  * @die:        The die id as retrieved via CPUID
366  * @cpu:        The cpu for which this is updated
367  */
368 int topology_update_die_map(unsigned int die, unsigned int cpu)
369 {
370         int new;
371
372         /* Already available somewhere? */
373         new = topology_phys_to_logical_die(die, cpu);
374         if (new >= 0)
375                 goto found;
376
377         new = logical_die++;
378         if (new != die) {
379                 pr_info("CPU %u Converting physical %u to logical die %u\n",
380                         cpu, die, new);
381         }
382 found:
383         cpu_data(cpu).logical_die_id = new;
384         return 0;
385 }
386
387 void __init smp_store_boot_cpu_info(void)
388 {
389         int id = 0; /* CPU 0 */
390         struct cpuinfo_x86 *c = &cpu_data(id);
391
392         *c = boot_cpu_data;
393         c->cpu_index = id;
394         topology_update_package_map(c->phys_proc_id, id);
395         topology_update_die_map(c->cpu_die_id, id);
396         c->initialized = true;
397 }
398
399 /*
400  * The bootstrap kernel entry code has set these up. Save them for
401  * a given CPU
402  */
403 void smp_store_cpu_info(int id)
404 {
405         struct cpuinfo_x86 *c = &cpu_data(id);
406
407         /* Copy boot_cpu_data only on the first bringup */
408         if (!c->initialized)
409                 *c = boot_cpu_data;
410         c->cpu_index = id;
411         /*
412          * During boot time, CPU0 has this setup already. Save the info when
413          * bringing up AP or offlined CPU0.
414          */
415         identify_secondary_cpu(c);
416         c->initialized = true;
417 }
418
419 static bool
420 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
421 {
422         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
423
424         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
425 }
426
427 static bool
428 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
429 {
430         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
431
432         return !WARN_ONCE(!topology_same_node(c, o),
433                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
434                 "[node: %d != %d]. Ignoring dependency.\n",
435                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
436 }
437
438 #define link_mask(mfunc, c1, c2)                                        \
439 do {                                                                    \
440         cpumask_set_cpu((c1), mfunc(c2));                               \
441         cpumask_set_cpu((c2), mfunc(c1));                               \
442 } while (0)
443
444 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
445 {
446         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
447                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
448
449                 if (c->phys_proc_id == o->phys_proc_id &&
450                     c->cpu_die_id == o->cpu_die_id &&
451                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
452                         if (c->cpu_core_id == o->cpu_core_id)
453                                 return topology_sane(c, o, "smt");
454
455                         if ((c->cu_id != 0xff) &&
456                             (o->cu_id != 0xff) &&
457                             (c->cu_id == o->cu_id))
458                                 return topology_sane(c, o, "smt");
459                 }
460
461         } else if (c->phys_proc_id == o->phys_proc_id &&
462                    c->cpu_die_id == o->cpu_die_id &&
463                    c->cpu_core_id == o->cpu_core_id) {
464                 return topology_sane(c, o, "smt");
465         }
466
467         return false;
468 }
469
470 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
471 {
472         if (c->phys_proc_id == o->phys_proc_id &&
473             c->cpu_die_id == o->cpu_die_id)
474                 return true;
475         return false;
476 }
477
478 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
479 {
480         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
481
482         /* If the arch didn't set up l2c_id, fall back to SMT */
483         if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
484                 return match_smt(c, o);
485
486         /* Do not match if L2 cache id does not match: */
487         if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
488                 return false;
489
490         return topology_sane(c, o, "l2c");
491 }
492
493 /*
494  * Unlike the other levels, we do not enforce keeping a
495  * multicore group inside a NUMA node.  If this happens, we will
496  * discard the MC level of the topology later.
497  */
498 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
499 {
500         if (c->phys_proc_id == o->phys_proc_id)
501                 return true;
502         return false;
503 }
504
505 /*
506  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
507  *
508  * Any Intel CPU that has multiple nodes per package and does not
509  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
510  *
511  * When in SNC mode, these CPUs enumerate an LLC that is shared
512  * by multiple NUMA nodes. The LLC is shared for off-package data
513  * access but private to the NUMA node (half of the package) for
514  * on-package access. CPUID (the source of the information about
515  * the LLC) can only enumerate the cache as shared or unshared,
516  * but not this particular configuration.
517  */
518
519 static const struct x86_cpu_id intel_cod_cpu[] = {
520         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
521         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
522         X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
523         {}
524 };
525
526 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
527 {
528         const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
529         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
530         bool intel_snc = id && id->driver_data;
531
532         /* Do not match if we do not have a valid APICID for cpu: */
533         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
534                 return false;
535
536         /* Do not match if LLC id does not match: */
537         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
538                 return false;
539
540         /*
541          * Allow the SNC topology without warning. Return of false
542          * means 'c' does not share the LLC of 'o'. This will be
543          * reflected to userspace.
544          */
545         if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
546                 return false;
547
548         return topology_sane(c, o, "llc");
549 }
550
551
552 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
553 static inline int x86_sched_itmt_flags(void)
554 {
555         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
556 }
557
558 #ifdef CONFIG_SCHED_MC
559 static int x86_core_flags(void)
560 {
561         return cpu_core_flags() | x86_sched_itmt_flags();
562 }
563 #endif
564 #ifdef CONFIG_SCHED_SMT
565 static int x86_smt_flags(void)
566 {
567         return cpu_smt_flags() | x86_sched_itmt_flags();
568 }
569 #endif
570 #ifdef CONFIG_SCHED_CLUSTER
571 static int x86_cluster_flags(void)
572 {
573         return cpu_cluster_flags() | x86_sched_itmt_flags();
574 }
575 #endif
576 #endif
577
578 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
579 #ifdef CONFIG_SCHED_SMT
580         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
581 #endif
582 #ifdef CONFIG_SCHED_CLUSTER
583         { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
584 #endif
585 #ifdef CONFIG_SCHED_MC
586         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
587 #endif
588         { NULL, },
589 };
590
591 static struct sched_domain_topology_level x86_hybrid_topology[] = {
592 #ifdef CONFIG_SCHED_SMT
593         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
594 #endif
595 #ifdef CONFIG_SCHED_MC
596         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
597 #endif
598         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
599         { NULL, },
600 };
601
602 static struct sched_domain_topology_level x86_topology[] = {
603 #ifdef CONFIG_SCHED_SMT
604         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
605 #endif
606 #ifdef CONFIG_SCHED_CLUSTER
607         { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
608 #endif
609 #ifdef CONFIG_SCHED_MC
610         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
611 #endif
612         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
613         { NULL, },
614 };
615
616 /*
617  * Set if a package/die has multiple NUMA nodes inside.
618  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
619  * Sub-NUMA Clustering have this.
620  */
621 static bool x86_has_numa_in_package;
622
623 void set_cpu_sibling_map(int cpu)
624 {
625         bool has_smt = smp_num_siblings > 1;
626         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
627         struct cpuinfo_x86 *c = &cpu_data(cpu);
628         struct cpuinfo_x86 *o;
629         int i, threads;
630
631         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
632
633         if (!has_mp) {
634                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
635                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
636                 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
637                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
638                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
639                 c->booted_cores = 1;
640                 return;
641         }
642
643         for_each_cpu(i, cpu_sibling_setup_mask) {
644                 o = &cpu_data(i);
645
646                 if (match_pkg(c, o) && !topology_same_node(c, o))
647                         x86_has_numa_in_package = true;
648
649                 if ((i == cpu) || (has_smt && match_smt(c, o)))
650                         link_mask(topology_sibling_cpumask, cpu, i);
651
652                 if ((i == cpu) || (has_mp && match_llc(c, o)))
653                         link_mask(cpu_llc_shared_mask, cpu, i);
654
655                 if ((i == cpu) || (has_mp && match_l2c(c, o)))
656                         link_mask(cpu_l2c_shared_mask, cpu, i);
657
658                 if ((i == cpu) || (has_mp && match_die(c, o)))
659                         link_mask(topology_die_cpumask, cpu, i);
660         }
661
662         threads = cpumask_weight(topology_sibling_cpumask(cpu));
663         if (threads > __max_smt_threads)
664                 __max_smt_threads = threads;
665
666         for_each_cpu(i, topology_sibling_cpumask(cpu))
667                 cpu_data(i).smt_active = threads > 1;
668
669         /*
670          * This needs a separate iteration over the cpus because we rely on all
671          * topology_sibling_cpumask links to be set-up.
672          */
673         for_each_cpu(i, cpu_sibling_setup_mask) {
674                 o = &cpu_data(i);
675
676                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
677                         link_mask(topology_core_cpumask, cpu, i);
678
679                         /*
680                          *  Does this new cpu bringup a new core?
681                          */
682                         if (threads == 1) {
683                                 /*
684                                  * for each core in package, increment
685                                  * the booted_cores for this new cpu
686                                  */
687                                 if (cpumask_first(
688                                     topology_sibling_cpumask(i)) == i)
689                                         c->booted_cores++;
690                                 /*
691                                  * increment the core count for all
692                                  * the other cpus in this package
693                                  */
694                                 if (i != cpu)
695                                         cpu_data(i).booted_cores++;
696                         } else if (i != cpu && !c->booted_cores)
697                                 c->booted_cores = cpu_data(i).booted_cores;
698                 }
699         }
700 }
701
702 /* maps the cpu to the sched domain representing multi-core */
703 const struct cpumask *cpu_coregroup_mask(int cpu)
704 {
705         return cpu_llc_shared_mask(cpu);
706 }
707
708 const struct cpumask *cpu_clustergroup_mask(int cpu)
709 {
710         return cpu_l2c_shared_mask(cpu);
711 }
712
713 static void impress_friends(void)
714 {
715         int cpu;
716         unsigned long bogosum = 0;
717         /*
718          * Allow the user to impress friends.
719          */
720         pr_debug("Before bogomips\n");
721         for_each_possible_cpu(cpu)
722                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
723                         bogosum += cpu_data(cpu).loops_per_jiffy;
724         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
725                 num_online_cpus(),
726                 bogosum/(500000/HZ),
727                 (bogosum/(5000/HZ))%100);
728
729         pr_debug("Before bogocount - setting activated=1\n");
730 }
731
732 void __inquire_remote_apic(int apicid)
733 {
734         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
735         const char * const names[] = { "ID", "VERSION", "SPIV" };
736         int timeout;
737         u32 status;
738
739         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
740
741         for (i = 0; i < ARRAY_SIZE(regs); i++) {
742                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
743
744                 /*
745                  * Wait for idle.
746                  */
747                 status = safe_apic_wait_icr_idle();
748                 if (status)
749                         pr_cont("a previous APIC delivery may have failed\n");
750
751                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
752
753                 timeout = 0;
754                 do {
755                         udelay(100);
756                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
757                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
758
759                 switch (status) {
760                 case APIC_ICR_RR_VALID:
761                         status = apic_read(APIC_RRR);
762                         pr_cont("%08x\n", status);
763                         break;
764                 default:
765                         pr_cont("failed\n");
766                 }
767         }
768 }
769
770 /*
771  * The Multiprocessor Specification 1.4 (1997) example code suggests
772  * that there should be a 10ms delay between the BSP asserting INIT
773  * and de-asserting INIT, when starting a remote processor.
774  * But that slows boot and resume on modern processors, which include
775  * many cores and don't require that delay.
776  *
777  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
778  * Modern processor families are quirked to remove the delay entirely.
779  */
780 #define UDELAY_10MS_DEFAULT 10000
781
782 static unsigned int init_udelay = UINT_MAX;
783
784 static int __init cpu_init_udelay(char *str)
785 {
786         get_option(&str, &init_udelay);
787
788         return 0;
789 }
790 early_param("cpu_init_udelay", cpu_init_udelay);
791
792 static void __init smp_quirk_init_udelay(void)
793 {
794         /* if cmdline changed it from default, leave it alone */
795         if (init_udelay != UINT_MAX)
796                 return;
797
798         /* if modern processor, use no delay */
799         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
800             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
801             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
802                 init_udelay = 0;
803                 return;
804         }
805         /* else, use legacy delay */
806         init_udelay = UDELAY_10MS_DEFAULT;
807 }
808
809 /*
810  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
811  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
812  * won't ... remember to clear down the APIC, etc later.
813  */
814 int
815 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
816 {
817         u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
818         unsigned long send_status, accept_status = 0;
819         int maxlvt;
820
821         /* Target chip */
822         /* Boot on the stack */
823         /* Kick the second */
824         apic_icr_write(APIC_DM_NMI | dm, apicid);
825
826         pr_debug("Waiting for send to finish...\n");
827         send_status = safe_apic_wait_icr_idle();
828
829         /*
830          * Give the other CPU some time to accept the IPI.
831          */
832         udelay(200);
833         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
834                 maxlvt = lapic_get_maxlvt();
835                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
836                         apic_write(APIC_ESR, 0);
837                 accept_status = (apic_read(APIC_ESR) & 0xEF);
838         }
839         pr_debug("NMI sent\n");
840
841         if (send_status)
842                 pr_err("APIC never delivered???\n");
843         if (accept_status)
844                 pr_err("APIC delivery error (%lx)\n", accept_status);
845
846         return (send_status | accept_status);
847 }
848
849 static int
850 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
851 {
852         unsigned long send_status = 0, accept_status = 0;
853         int maxlvt, num_starts, j;
854
855         maxlvt = lapic_get_maxlvt();
856
857         /*
858          * Be paranoid about clearing APIC errors.
859          */
860         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
861                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
862                         apic_write(APIC_ESR, 0);
863                 apic_read(APIC_ESR);
864         }
865
866         pr_debug("Asserting INIT\n");
867
868         /*
869          * Turn INIT on target chip
870          */
871         /*
872          * Send IPI
873          */
874         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
875                        phys_apicid);
876
877         pr_debug("Waiting for send to finish...\n");
878         send_status = safe_apic_wait_icr_idle();
879
880         udelay(init_udelay);
881
882         pr_debug("Deasserting INIT\n");
883
884         /* Target chip */
885         /* Send IPI */
886         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
887
888         pr_debug("Waiting for send to finish...\n");
889         send_status = safe_apic_wait_icr_idle();
890
891         mb();
892
893         /*
894          * Should we send STARTUP IPIs ?
895          *
896          * Determine this based on the APIC version.
897          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
898          */
899         if (APIC_INTEGRATED(boot_cpu_apic_version))
900                 num_starts = 2;
901         else
902                 num_starts = 0;
903
904         /*
905          * Run STARTUP IPI loop.
906          */
907         pr_debug("#startup loops: %d\n", num_starts);
908
909         for (j = 1; j <= num_starts; j++) {
910                 pr_debug("Sending STARTUP #%d\n", j);
911                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
912                         apic_write(APIC_ESR, 0);
913                 apic_read(APIC_ESR);
914                 pr_debug("After apic_write\n");
915
916                 /*
917                  * STARTUP IPI
918                  */
919
920                 /* Target chip */
921                 /* Boot on the stack */
922                 /* Kick the second */
923                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
924                                phys_apicid);
925
926                 /*
927                  * Give the other CPU some time to accept the IPI.
928                  */
929                 if (init_udelay == 0)
930                         udelay(10);
931                 else
932                         udelay(300);
933
934                 pr_debug("Startup point 1\n");
935
936                 pr_debug("Waiting for send to finish...\n");
937                 send_status = safe_apic_wait_icr_idle();
938
939                 /*
940                  * Give the other CPU some time to accept the IPI.
941                  */
942                 if (init_udelay == 0)
943                         udelay(10);
944                 else
945                         udelay(200);
946
947                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
948                         apic_write(APIC_ESR, 0);
949                 accept_status = (apic_read(APIC_ESR) & 0xEF);
950                 if (send_status || accept_status)
951                         break;
952         }
953         pr_debug("After Startup\n");
954
955         if (send_status)
956                 pr_err("APIC never delivered???\n");
957         if (accept_status)
958                 pr_err("APIC delivery error (%lx)\n", accept_status);
959
960         return (send_status | accept_status);
961 }
962
963 /* reduce the number of lines printed when booting a large cpu count system */
964 static void announce_cpu(int cpu, int apicid)
965 {
966         static int current_node = NUMA_NO_NODE;
967         int node = early_cpu_to_node(cpu);
968         static int width, node_width;
969
970         if (!width)
971                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
972
973         if (!node_width)
974                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
975
976         if (cpu == 1)
977                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
978
979         if (system_state < SYSTEM_RUNNING) {
980                 if (node != current_node) {
981                         if (current_node > (-1))
982                                 pr_cont("\n");
983                         current_node = node;
984
985                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
986                                node_width - num_digits(node), " ", node);
987                 }
988
989                 /* Add padding for the BSP */
990                 if (cpu == 1)
991                         pr_cont("%*s", width + 1, " ");
992
993                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
994
995         } else
996                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
997                         node, cpu, apicid);
998 }
999
1000 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
1001 {
1002         int cpu;
1003
1004         cpu = smp_processor_id();
1005         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
1006                 return NMI_HANDLED;
1007
1008         return NMI_DONE;
1009 }
1010
1011 /*
1012  * Wake up AP by INIT, INIT, STARTUP sequence.
1013  *
1014  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
1015  * boot-strap code which is not a desired behavior for waking up BSP. To
1016  * void the boot-strap code, wake up CPU0 by NMI instead.
1017  *
1018  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
1019  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
1020  * We'll change this code in the future to wake up hard offlined CPU0 if
1021  * real platform and request are available.
1022  */
1023 static int
1024 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
1025                int *cpu0_nmi_registered)
1026 {
1027         int id;
1028         int boot_error;
1029
1030         preempt_disable();
1031
1032         /*
1033          * Wake up AP by INIT, INIT, STARTUP sequence.
1034          */
1035         if (cpu) {
1036                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
1037                 goto out;
1038         }
1039
1040         /*
1041          * Wake up BSP by nmi.
1042          *
1043          * Register a NMI handler to help wake up CPU0.
1044          */
1045         boot_error = register_nmi_handler(NMI_LOCAL,
1046                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
1047
1048         if (!boot_error) {
1049                 enable_start_cpu0 = 1;
1050                 *cpu0_nmi_registered = 1;
1051                 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1052                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1053         }
1054
1055 out:
1056         preempt_enable();
1057
1058         return boot_error;
1059 }
1060
1061 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1062 {
1063         int ret;
1064
1065         /* Just in case we booted with a single CPU. */
1066         alternatives_enable_smp();
1067
1068         per_cpu(current_task, cpu) = idle;
1069         cpu_init_stack_canary(cpu, idle);
1070
1071         /* Initialize the interrupt stack(s) */
1072         ret = irq_init_percpu_irqstack(cpu);
1073         if (ret)
1074                 return ret;
1075
1076 #ifdef CONFIG_X86_32
1077         /* Stack for startup_32 can be just as for start_secondary onwards */
1078         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1079 #else
1080         initial_gs = per_cpu_offset(cpu);
1081 #endif
1082         return 0;
1083 }
1084
1085 /*
1086  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1087  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1088  * Returns zero if CPU booted OK, else error code from
1089  * ->wakeup_secondary_cpu.
1090  */
1091 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1092                        int *cpu0_nmi_registered)
1093 {
1094         /* start_ip had better be page-aligned! */
1095         unsigned long start_ip = real_mode_header->trampoline_start;
1096
1097         unsigned long boot_error = 0;
1098         unsigned long timeout;
1099
1100 #ifdef CONFIG_X86_64
1101         /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1102         if (apic->wakeup_secondary_cpu_64)
1103                 start_ip = real_mode_header->trampoline_start64;
1104 #endif
1105         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1106         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1107         initial_code = (unsigned long)start_secondary;
1108         initial_stack  = idle->thread.sp;
1109
1110         /* Enable the espfix hack for this CPU */
1111         init_espfix_ap(cpu);
1112
1113         /* So we see what's up */
1114         announce_cpu(cpu, apicid);
1115
1116         /*
1117          * This grunge runs the startup process for
1118          * the targeted processor.
1119          */
1120
1121         if (x86_platform.legacy.warm_reset) {
1122
1123                 pr_debug("Setting warm reset code and vector.\n");
1124
1125                 smpboot_setup_warm_reset_vector(start_ip);
1126                 /*
1127                  * Be paranoid about clearing APIC errors.
1128                 */
1129                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1130                         apic_write(APIC_ESR, 0);
1131                         apic_read(APIC_ESR);
1132                 }
1133         }
1134
1135         /*
1136          * AP might wait on cpu_callout_mask in cpu_init() with
1137          * cpu_initialized_mask set if previous attempt to online
1138          * it timed-out. Clear cpu_initialized_mask so that after
1139          * INIT/SIPI it could start with a clean state.
1140          */
1141         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1142         smp_mb();
1143
1144         /*
1145          * Wake up a CPU in difference cases:
1146          * - Use a method from the APIC driver if one defined, with wakeup
1147          *   straight to 64-bit mode preferred over wakeup to RM.
1148          * Otherwise,
1149          * - Use an INIT boot APIC message for APs or NMI for BSP.
1150          */
1151         if (apic->wakeup_secondary_cpu_64)
1152                 boot_error = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1153         else if (apic->wakeup_secondary_cpu)
1154                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1155         else
1156                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1157                                                      cpu0_nmi_registered);
1158
1159         if (!boot_error) {
1160                 /*
1161                  * Wait 10s total for first sign of life from AP
1162                  */
1163                 boot_error = -1;
1164                 timeout = jiffies + 10*HZ;
1165                 while (time_before(jiffies, timeout)) {
1166                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1167                                 /*
1168                                  * Tell AP to proceed with initialization
1169                                  */
1170                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1171                                 boot_error = 0;
1172                                 break;
1173                         }
1174                         schedule();
1175                 }
1176         }
1177
1178         if (!boot_error) {
1179                 /*
1180                  * Wait till AP completes initial initialization
1181                  */
1182                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1183                         /*
1184                          * Allow other tasks to run while we wait for the
1185                          * AP to come online. This also gives a chance
1186                          * for the MTRR work(triggered by the AP coming online)
1187                          * to be completed in the stop machine context.
1188                          */
1189                         schedule();
1190                 }
1191         }
1192
1193         if (x86_platform.legacy.warm_reset) {
1194                 /*
1195                  * Cleanup possible dangling ends...
1196                  */
1197                 smpboot_restore_warm_reset_vector();
1198         }
1199
1200         return boot_error;
1201 }
1202
1203 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1204 {
1205         int apicid = apic->cpu_present_to_apicid(cpu);
1206         int cpu0_nmi_registered = 0;
1207         unsigned long flags;
1208         int err, ret = 0;
1209
1210         lockdep_assert_irqs_enabled();
1211
1212         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1213
1214         if (apicid == BAD_APICID ||
1215             !physid_isset(apicid, phys_cpu_present_map) ||
1216             !apic->apic_id_valid(apicid)) {
1217                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1218                 return -EINVAL;
1219         }
1220
1221         /*
1222          * Already booted CPU?
1223          */
1224         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1225                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1226                 return -ENOSYS;
1227         }
1228
1229         /*
1230          * Save current MTRR state in case it was changed since early boot
1231          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1232          */
1233         mtrr_save_state();
1234
1235         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1236         err = cpu_check_up_prepare(cpu);
1237         if (err && err != -EBUSY)
1238                 return err;
1239
1240         /* the FPU context is blank, nobody can own it */
1241         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1242
1243         err = common_cpu_up(cpu, tidle);
1244         if (err)
1245                 return err;
1246
1247         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1248         if (err) {
1249                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1250                 ret = -EIO;
1251                 goto unreg_nmi;
1252         }
1253
1254         /*
1255          * Check TSC synchronization with the AP (keep irqs disabled
1256          * while doing so):
1257          */
1258         local_irq_save(flags);
1259         check_tsc_sync_source(cpu);
1260         local_irq_restore(flags);
1261
1262         while (!cpu_online(cpu)) {
1263                 cpu_relax();
1264                 touch_nmi_watchdog();
1265         }
1266
1267 unreg_nmi:
1268         /*
1269          * Clean up the nmi handler. Do this after the callin and callout sync
1270          * to avoid impact of possible long unregister time.
1271          */
1272         if (cpu0_nmi_registered)
1273                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1274
1275         return ret;
1276 }
1277
1278 /**
1279  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1280  */
1281 void arch_disable_smp_support(void)
1282 {
1283         disable_ioapic_support();
1284 }
1285
1286 /*
1287  * Fall back to non SMP mode after errors.
1288  *
1289  * RED-PEN audit/test this more. I bet there is more state messed up here.
1290  */
1291 static __init void disable_smp(void)
1292 {
1293         pr_info("SMP disabled\n");
1294
1295         disable_ioapic_support();
1296
1297         init_cpu_present(cpumask_of(0));
1298         init_cpu_possible(cpumask_of(0));
1299
1300         if (smp_found_config)
1301                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1302         else
1303                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1304         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1305         cpumask_set_cpu(0, topology_core_cpumask(0));
1306         cpumask_set_cpu(0, topology_die_cpumask(0));
1307 }
1308
1309 /*
1310  * Various sanity checks.
1311  */
1312 static void __init smp_sanity_check(void)
1313 {
1314         preempt_disable();
1315
1316 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1317         if (def_to_bigsmp && nr_cpu_ids > 8) {
1318                 unsigned int cpu;
1319                 unsigned nr;
1320
1321                 pr_warn("More than 8 CPUs detected - skipping them\n"
1322                         "Use CONFIG_X86_BIGSMP\n");
1323
1324                 nr = 0;
1325                 for_each_present_cpu(cpu) {
1326                         if (nr >= 8)
1327                                 set_cpu_present(cpu, false);
1328                         nr++;
1329                 }
1330
1331                 nr = 0;
1332                 for_each_possible_cpu(cpu) {
1333                         if (nr >= 8)
1334                                 set_cpu_possible(cpu, false);
1335                         nr++;
1336                 }
1337
1338                 set_nr_cpu_ids(8);
1339         }
1340 #endif
1341
1342         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1343                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1344                         hard_smp_processor_id());
1345
1346                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1347         }
1348
1349         /*
1350          * Should not be necessary because the MP table should list the boot
1351          * CPU too, but we do it for the sake of robustness anyway.
1352          */
1353         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1354                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1355                           boot_cpu_physical_apicid);
1356                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1357         }
1358         preempt_enable();
1359 }
1360
1361 static void __init smp_cpu_index_default(void)
1362 {
1363         int i;
1364         struct cpuinfo_x86 *c;
1365
1366         for_each_possible_cpu(i) {
1367                 c = &cpu_data(i);
1368                 /* mark all to hotplug */
1369                 c->cpu_index = nr_cpu_ids;
1370         }
1371 }
1372
1373 static void __init smp_get_logical_apicid(void)
1374 {
1375         if (x2apic_mode)
1376                 cpu0_logical_apicid = apic_read(APIC_LDR);
1377         else
1378                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1379 }
1380
1381 void __init smp_prepare_cpus_common(void)
1382 {
1383         unsigned int i;
1384
1385         smp_cpu_index_default();
1386
1387         /*
1388          * Setup boot CPU information
1389          */
1390         smp_store_boot_cpu_info(); /* Final full version of the data */
1391         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1392         mb();
1393
1394         for_each_possible_cpu(i) {
1395                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1396                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1397                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1398                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1399                 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1400         }
1401
1402         /*
1403          * Set 'default' x86 topology, this matches default_topology() in that
1404          * it has NUMA nodes as a topology level. See also
1405          * native_smp_cpus_done().
1406          *
1407          * Must be done before set_cpus_sibling_map() is ran.
1408          */
1409         set_sched_topology(x86_topology);
1410
1411         set_cpu_sibling_map(0);
1412 }
1413
1414 /*
1415  * Prepare for SMP bootup.
1416  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1417  *            for common interface support.
1418  */
1419 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1420 {
1421         smp_prepare_cpus_common();
1422
1423         smp_sanity_check();
1424
1425         switch (apic_intr_mode) {
1426         case APIC_PIC:
1427         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1428                 disable_smp();
1429                 return;
1430         case APIC_SYMMETRIC_IO_NO_ROUTING:
1431                 disable_smp();
1432                 /* Setup local timer */
1433                 x86_init.timers.setup_percpu_clockev();
1434                 return;
1435         case APIC_VIRTUAL_WIRE:
1436         case APIC_SYMMETRIC_IO:
1437                 break;
1438         }
1439
1440         /* Setup local timer */
1441         x86_init.timers.setup_percpu_clockev();
1442
1443         smp_get_logical_apicid();
1444
1445         pr_info("CPU0: ");
1446         print_cpu_info(&cpu_data(0));
1447
1448         uv_system_init();
1449
1450         set_mtrr_aps_delayed_init();
1451
1452         smp_quirk_init_udelay();
1453
1454         speculative_store_bypass_ht_init();
1455
1456         snp_set_wakeup_secondary_cpu();
1457 }
1458
1459 void arch_thaw_secondary_cpus_begin(void)
1460 {
1461         set_mtrr_aps_delayed_init();
1462 }
1463
1464 void arch_thaw_secondary_cpus_end(void)
1465 {
1466         mtrr_aps_init();
1467 }
1468
1469 /*
1470  * Early setup to make printk work.
1471  */
1472 void __init native_smp_prepare_boot_cpu(void)
1473 {
1474         int me = smp_processor_id();
1475         switch_to_new_gdt(me);
1476         /* already set me in cpu_online_mask in boot_cpu_init() */
1477         cpumask_set_cpu(me, cpu_callout_mask);
1478         cpu_set_state_online(me);
1479         native_pv_lock_init();
1480 }
1481
1482 void __init calculate_max_logical_packages(void)
1483 {
1484         int ncpus;
1485
1486         /*
1487          * Today neither Intel nor AMD support heterogeneous systems so
1488          * extrapolate the boot cpu's data to all packages.
1489          */
1490         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1491         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1492         pr_info("Max logical packages: %u\n", __max_logical_packages);
1493 }
1494
1495 void __init native_smp_cpus_done(unsigned int max_cpus)
1496 {
1497         pr_debug("Boot done\n");
1498
1499         calculate_max_logical_packages();
1500
1501         /* XXX for now assume numa-in-package and hybrid don't overlap */
1502         if (x86_has_numa_in_package)
1503                 set_sched_topology(x86_numa_in_package_topology);
1504         if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1505                 set_sched_topology(x86_hybrid_topology);
1506
1507         nmi_selftest();
1508         impress_friends();
1509         mtrr_aps_init();
1510 }
1511
1512 static int __initdata setup_possible_cpus = -1;
1513 static int __init _setup_possible_cpus(char *str)
1514 {
1515         get_option(&str, &setup_possible_cpus);
1516         return 0;
1517 }
1518 early_param("possible_cpus", _setup_possible_cpus);
1519
1520
1521 /*
1522  * cpu_possible_mask should be static, it cannot change as cpu's
1523  * are onlined, or offlined. The reason is per-cpu data-structures
1524  * are allocated by some modules at init time, and don't expect to
1525  * do this dynamically on cpu arrival/departure.
1526  * cpu_present_mask on the other hand can change dynamically.
1527  * In case when cpu_hotplug is not compiled, then we resort to current
1528  * behaviour, which is cpu_possible == cpu_present.
1529  * - Ashok Raj
1530  *
1531  * Three ways to find out the number of additional hotplug CPUs:
1532  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1533  * - The user can overwrite it with possible_cpus=NUM
1534  * - Otherwise don't reserve additional CPUs.
1535  * We do this because additional CPUs waste a lot of memory.
1536  * -AK
1537  */
1538 __init void prefill_possible_map(void)
1539 {
1540         int i, possible;
1541
1542         /* No boot processor was found in mptable or ACPI MADT */
1543         if (!num_processors) {
1544                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1545                         int apicid = boot_cpu_physical_apicid;
1546                         int cpu = hard_smp_processor_id();
1547
1548                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1549
1550                         /* Make sure boot cpu is enumerated */
1551                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1552                             apic->apic_id_valid(apicid))
1553                                 generic_processor_info(apicid, boot_cpu_apic_version);
1554                 }
1555
1556                 if (!num_processors)
1557                         num_processors = 1;
1558         }
1559
1560         i = setup_max_cpus ?: 1;
1561         if (setup_possible_cpus == -1) {
1562                 possible = num_processors;
1563 #ifdef CONFIG_HOTPLUG_CPU
1564                 if (setup_max_cpus)
1565                         possible += disabled_cpus;
1566 #else
1567                 if (possible > i)
1568                         possible = i;
1569 #endif
1570         } else
1571                 possible = setup_possible_cpus;
1572
1573         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1574
1575         /* nr_cpu_ids could be reduced via nr_cpus= */
1576         if (possible > nr_cpu_ids) {
1577                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1578                         possible, nr_cpu_ids);
1579                 possible = nr_cpu_ids;
1580         }
1581
1582 #ifdef CONFIG_HOTPLUG_CPU
1583         if (!setup_max_cpus)
1584 #endif
1585         if (possible > i) {
1586                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1587                         possible, setup_max_cpus);
1588                 possible = i;
1589         }
1590
1591         set_nr_cpu_ids(possible);
1592
1593         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1594                 possible, max_t(int, possible - num_processors, 0));
1595
1596         reset_cpu_possible_mask();
1597
1598         for (i = 0; i < possible; i++)
1599                 set_cpu_possible(i, true);
1600 }
1601
1602 #ifdef CONFIG_HOTPLUG_CPU
1603
1604 /* Recompute SMT state for all CPUs on offline */
1605 static void recompute_smt_state(void)
1606 {
1607         int max_threads, cpu;
1608
1609         max_threads = 0;
1610         for_each_online_cpu (cpu) {
1611                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1612
1613                 if (threads > max_threads)
1614                         max_threads = threads;
1615         }
1616         __max_smt_threads = max_threads;
1617 }
1618
1619 static void remove_siblinginfo(int cpu)
1620 {
1621         int sibling;
1622         struct cpuinfo_x86 *c = &cpu_data(cpu);
1623
1624         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1625                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1626                 /*/
1627                  * last thread sibling in this cpu core going down
1628                  */
1629                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1630                         cpu_data(sibling).booted_cores--;
1631         }
1632
1633         for_each_cpu(sibling, topology_die_cpumask(cpu))
1634                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1635
1636         for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1637                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1638                 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1639                         cpu_data(sibling).smt_active = false;
1640         }
1641
1642         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1643                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1644         for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1645                 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1646         cpumask_clear(cpu_llc_shared_mask(cpu));
1647         cpumask_clear(cpu_l2c_shared_mask(cpu));
1648         cpumask_clear(topology_sibling_cpumask(cpu));
1649         cpumask_clear(topology_core_cpumask(cpu));
1650         cpumask_clear(topology_die_cpumask(cpu));
1651         c->cpu_core_id = 0;
1652         c->booted_cores = 0;
1653         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1654         recompute_smt_state();
1655 }
1656
1657 static void remove_cpu_from_maps(int cpu)
1658 {
1659         set_cpu_online(cpu, false);
1660         cpumask_clear_cpu(cpu, cpu_callout_mask);
1661         cpumask_clear_cpu(cpu, cpu_callin_mask);
1662         /* was set by cpu_init() */
1663         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1664         numa_remove_cpu(cpu);
1665 }
1666
1667 void cpu_disable_common(void)
1668 {
1669         int cpu = smp_processor_id();
1670
1671         remove_siblinginfo(cpu);
1672
1673         /* It's now safe to remove this processor from the online map */
1674         lock_vector_lock();
1675         remove_cpu_from_maps(cpu);
1676         unlock_vector_lock();
1677         fixup_irqs();
1678         lapic_offline();
1679 }
1680
1681 int native_cpu_disable(void)
1682 {
1683         int ret;
1684
1685         ret = lapic_can_unplug_cpu();
1686         if (ret)
1687                 return ret;
1688
1689         cpu_disable_common();
1690
1691         /*
1692          * Disable the local APIC. Otherwise IPI broadcasts will reach
1693          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1694          * messages.
1695          *
1696          * Disabling the APIC must happen after cpu_disable_common()
1697          * which invokes fixup_irqs().
1698          *
1699          * Disabling the APIC preserves already set bits in IRR, but
1700          * an interrupt arriving after disabling the local APIC does not
1701          * set the corresponding IRR bit.
1702          *
1703          * fixup_irqs() scans IRR for set bits so it can raise a not
1704          * yet handled interrupt on the new destination CPU via an IPI
1705          * but obviously it can't do so for IRR bits which are not set.
1706          * IOW, interrupts arriving after disabling the local APIC will
1707          * be lost.
1708          */
1709         apic_soft_disable();
1710
1711         return 0;
1712 }
1713
1714 int common_cpu_die(unsigned int cpu)
1715 {
1716         int ret = 0;
1717
1718         /* We don't do anything here: idle task is faking death itself. */
1719
1720         /* They ack this in play_dead() by setting CPU_DEAD */
1721         if (cpu_wait_death(cpu, 5)) {
1722                 if (system_state == SYSTEM_RUNNING)
1723                         pr_info("CPU %u is now offline\n", cpu);
1724         } else {
1725                 pr_err("CPU %u didn't die...\n", cpu);
1726                 ret = -1;
1727         }
1728
1729         return ret;
1730 }
1731
1732 void native_cpu_die(unsigned int cpu)
1733 {
1734         common_cpu_die(cpu);
1735 }
1736
1737 void play_dead_common(void)
1738 {
1739         idle_task_exit();
1740
1741         /* Ack it */
1742         (void)cpu_report_death();
1743
1744         /*
1745          * With physical CPU hotplug, we should halt the cpu
1746          */
1747         local_irq_disable();
1748 }
1749
1750 /**
1751  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1752  *
1753  * If NMI wants to wake up CPU0, start CPU0.
1754  */
1755 void cond_wakeup_cpu0(void)
1756 {
1757         if (smp_processor_id() == 0 && enable_start_cpu0)
1758                 start_cpu0();
1759 }
1760 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1761
1762 /*
1763  * We need to flush the caches before going to sleep, lest we have
1764  * dirty data in our caches when we come back up.
1765  */
1766 static inline void mwait_play_dead(void)
1767 {
1768         struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1769         unsigned int eax, ebx, ecx, edx;
1770         unsigned int highest_cstate = 0;
1771         unsigned int highest_subcstate = 0;
1772         int i;
1773
1774         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1775             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1776                 return;
1777         if (!this_cpu_has(X86_FEATURE_MWAIT))
1778                 return;
1779         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1780                 return;
1781         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1782                 return;
1783
1784         eax = CPUID_MWAIT_LEAF;
1785         ecx = 0;
1786         native_cpuid(&eax, &ebx, &ecx, &edx);
1787
1788         /*
1789          * eax will be 0 if EDX enumeration is not valid.
1790          * Initialized below to cstate, sub_cstate value when EDX is valid.
1791          */
1792         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1793                 eax = 0;
1794         } else {
1795                 edx >>= MWAIT_SUBSTATE_SIZE;
1796                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1797                         if (edx & MWAIT_SUBSTATE_MASK) {
1798                                 highest_cstate = i;
1799                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1800                         }
1801                 }
1802                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1803                         (highest_subcstate - 1);
1804         }
1805
1806         /* Set up state for the kexec() hack below */
1807         md->status = CPUDEAD_MWAIT_WAIT;
1808         md->control = CPUDEAD_MWAIT_WAIT;
1809
1810         wbinvd();
1811
1812         while (1) {
1813                 /*
1814                  * The CLFLUSH is a workaround for erratum AAI65 for
1815                  * the Xeon 7400 series.  It's not clear it is actually
1816                  * needed, but it should be harmless in either case.
1817                  * The WBINVD is insufficient due to the spurious-wakeup
1818                  * case where we return around the loop.
1819                  */
1820                 mb();
1821                 clflush(md);
1822                 mb();
1823                 __monitor(md, 0, 0);
1824                 mb();
1825                 __mwait(eax, 0);
1826
1827                 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1828                         /*
1829                          * Kexec is about to happen. Don't go back into mwait() as
1830                          * the kexec kernel might overwrite text and data including
1831                          * page tables and stack. So mwait() would resume when the
1832                          * monitor cache line is written to and then the CPU goes
1833                          * south due to overwritten text, page tables and stack.
1834                          *
1835                          * Note: This does _NOT_ protect against a stray MCE, NMI,
1836                          * SMI. They will resume execution at the instruction
1837                          * following the HLT instruction and run into the problem
1838                          * which this is trying to prevent.
1839                          */
1840                         WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1841                         while(1)
1842                                 native_halt();
1843                 }
1844
1845                 cond_wakeup_cpu0();
1846         }
1847 }
1848
1849 /*
1850  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1851  * mwait_play_dead().
1852  */
1853 void smp_kick_mwait_play_dead(void)
1854 {
1855         u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1856         struct mwait_cpu_dead *md;
1857         unsigned int cpu, i;
1858
1859         for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1860                 md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1861
1862                 /* Does it sit in mwait_play_dead() ? */
1863                 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1864                         continue;
1865
1866                 /* Wait up to 5ms */
1867                 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1868                         /* Bring it out of mwait */
1869                         WRITE_ONCE(md->control, newstate);
1870                         udelay(5);
1871                 }
1872
1873                 if (READ_ONCE(md->status) != newstate)
1874                         pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1875         }
1876 }
1877
1878 void hlt_play_dead(void)
1879 {
1880         if (__this_cpu_read(cpu_info.x86) >= 4)
1881                 wbinvd();
1882
1883         while (1) {
1884                 native_halt();
1885
1886                 cond_wakeup_cpu0();
1887         }
1888 }
1889
1890 void native_play_dead(void)
1891 {
1892         play_dead_common();
1893         tboot_shutdown(TB_SHUTDOWN_WFS);
1894
1895         mwait_play_dead();      /* Only returns on failure */
1896         if (cpuidle_play_dead())
1897                 hlt_play_dead();
1898 }
1899
1900 #else /* ... !CONFIG_HOTPLUG_CPU */
1901 int native_cpu_disable(void)
1902 {
1903         return -ENOSYS;
1904 }
1905
1906 void native_cpu_die(unsigned int cpu)
1907 {
1908         /* We said "no" in __cpu_disable */
1909         BUG();
1910 }
1911
1912 void native_play_dead(void)
1913 {
1914         BUG();
1915 }
1916
1917 #endif