Mention branches and keyring.
[releases.git] / x86 / kernel / kvmclock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  KVM paravirtual clock driver. A clocksource implementation
3     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4 */
5
6 #include <linux/clocksource.h>
7 #include <linux/kvm_para.h>
8 #include <asm/pvclock.h>
9 #include <asm/msr.h>
10 #include <asm/apic.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/set_memory.h>
19 #include <linux/cc_platform.h>
20
21 #include <asm/hypervisor.h>
22 #include <asm/x86_init.h>
23 #include <asm/kvmclock.h>
24
25 static int kvmclock __initdata = 1;
26 static int kvmclock_vsyscall __initdata = 1;
27 static int msr_kvm_system_time __ro_after_init;
28 static int msr_kvm_wall_clock __ro_after_init;
29 static u64 kvm_sched_clock_offset __ro_after_init;
30
31 static int __init parse_no_kvmclock(char *arg)
32 {
33         kvmclock = 0;
34         return 0;
35 }
36 early_param("no-kvmclock", parse_no_kvmclock);
37
38 static int __init parse_no_kvmclock_vsyscall(char *arg)
39 {
40         kvmclock_vsyscall = 0;
41         return 0;
42 }
43 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
44
45 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
46 #define HVC_BOOT_ARRAY_SIZE \
47         (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
48
49 static struct pvclock_vsyscall_time_info
50                         hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
51 static struct pvclock_wall_clock wall_clock __bss_decrypted;
52 static struct pvclock_vsyscall_time_info *hvclock_mem;
53 DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
54 EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu);
55
56 /*
57  * The wallclock is the time of day when we booted. Since then, some time may
58  * have elapsed since the hypervisor wrote the data. So we try to account for
59  * that with system time
60  */
61 static void kvm_get_wallclock(struct timespec64 *now)
62 {
63         wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
64         preempt_disable();
65         pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
66         preempt_enable();
67 }
68
69 static int kvm_set_wallclock(const struct timespec64 *now)
70 {
71         return -ENODEV;
72 }
73
74 static u64 kvm_clock_read(void)
75 {
76         u64 ret;
77
78         preempt_disable_notrace();
79         ret = pvclock_clocksource_read(this_cpu_pvti());
80         preempt_enable_notrace();
81         return ret;
82 }
83
84 static u64 kvm_clock_get_cycles(struct clocksource *cs)
85 {
86         return kvm_clock_read();
87 }
88
89 static u64 kvm_sched_clock_read(void)
90 {
91         return kvm_clock_read() - kvm_sched_clock_offset;
92 }
93
94 static inline void kvm_sched_clock_init(bool stable)
95 {
96         if (!stable)
97                 clear_sched_clock_stable();
98         kvm_sched_clock_offset = kvm_clock_read();
99         paravirt_set_sched_clock(kvm_sched_clock_read);
100
101         pr_info("kvm-clock: using sched offset of %llu cycles",
102                 kvm_sched_clock_offset);
103
104         BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
105                 sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
106 }
107
108 /*
109  * If we don't do that, there is the possibility that the guest
110  * will calibrate under heavy load - thus, getting a lower lpj -
111  * and execute the delays themselves without load. This is wrong,
112  * because no delay loop can finish beforehand.
113  * Any heuristics is subject to fail, because ultimately, a large
114  * poll of guests can be running and trouble each other. So we preset
115  * lpj here
116  */
117 static unsigned long kvm_get_tsc_khz(void)
118 {
119         setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
120         return pvclock_tsc_khz(this_cpu_pvti());
121 }
122
123 static void __init kvm_get_preset_lpj(void)
124 {
125         unsigned long khz;
126         u64 lpj;
127
128         khz = kvm_get_tsc_khz();
129
130         lpj = ((u64)khz * 1000);
131         do_div(lpj, HZ);
132         preset_lpj = lpj;
133 }
134
135 bool kvm_check_and_clear_guest_paused(void)
136 {
137         struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
138         bool ret = false;
139
140         if (!src)
141                 return ret;
142
143         if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
144                 src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
145                 pvclock_touch_watchdogs();
146                 ret = true;
147         }
148         return ret;
149 }
150
151 static int kvm_cs_enable(struct clocksource *cs)
152 {
153         vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
154         return 0;
155 }
156
157 struct clocksource kvm_clock = {
158         .name   = "kvm-clock",
159         .read   = kvm_clock_get_cycles,
160         .rating = 400,
161         .mask   = CLOCKSOURCE_MASK(64),
162         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
163         .enable = kvm_cs_enable,
164 };
165 EXPORT_SYMBOL_GPL(kvm_clock);
166
167 static void kvm_register_clock(char *txt)
168 {
169         struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
170         u64 pa;
171
172         if (!src)
173                 return;
174
175         pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
176         wrmsrl(msr_kvm_system_time, pa);
177         pr_debug("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
178 }
179
180 static void kvm_save_sched_clock_state(void)
181 {
182 }
183
184 static void kvm_restore_sched_clock_state(void)
185 {
186         kvm_register_clock("primary cpu clock, resume");
187 }
188
189 #ifdef CONFIG_X86_LOCAL_APIC
190 static void kvm_setup_secondary_clock(void)
191 {
192         kvm_register_clock("secondary cpu clock");
193 }
194 #endif
195
196 void kvmclock_disable(void)
197 {
198         if (msr_kvm_system_time)
199                 native_write_msr(msr_kvm_system_time, 0, 0);
200 }
201
202 static void __init kvmclock_init_mem(void)
203 {
204         unsigned long ncpus;
205         unsigned int order;
206         struct page *p;
207         int r;
208
209         if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
210                 return;
211
212         ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
213         order = get_order(ncpus * sizeof(*hvclock_mem));
214
215         p = alloc_pages(GFP_KERNEL, order);
216         if (!p) {
217                 pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
218                 return;
219         }
220
221         hvclock_mem = page_address(p);
222
223         /*
224          * hvclock is shared between the guest and the hypervisor, must
225          * be mapped decrypted.
226          */
227         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
228                 r = set_memory_decrypted((unsigned long) hvclock_mem,
229                                          1UL << order);
230                 if (r) {
231                         __free_pages(p, order);
232                         hvclock_mem = NULL;
233                         pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
234                         return;
235                 }
236         }
237
238         memset(hvclock_mem, 0, PAGE_SIZE << order);
239 }
240
241 static int __init kvm_setup_vsyscall_timeinfo(void)
242 {
243         if (!kvm_para_available() || !kvmclock || nopv)
244                 return 0;
245
246         kvmclock_init_mem();
247
248 #ifdef CONFIG_X86_64
249         if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) {
250                 u8 flags;
251
252                 flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
253                 if (!(flags & PVCLOCK_TSC_STABLE_BIT))
254                         return 0;
255
256                 kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
257         }
258 #endif
259
260         return 0;
261 }
262 early_initcall(kvm_setup_vsyscall_timeinfo);
263
264 static int kvmclock_setup_percpu(unsigned int cpu)
265 {
266         struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
267
268         /*
269          * The per cpu area setup replicates CPU0 data to all cpu
270          * pointers. So carefully check. CPU0 has been set up in init
271          * already.
272          */
273         if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
274                 return 0;
275
276         /* Use the static page for the first CPUs, allocate otherwise */
277         if (cpu < HVC_BOOT_ARRAY_SIZE)
278                 p = &hv_clock_boot[cpu];
279         else if (hvclock_mem)
280                 p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
281         else
282                 return -ENOMEM;
283
284         per_cpu(hv_clock_per_cpu, cpu) = p;
285         return p ? 0 : -ENOMEM;
286 }
287
288 void __init kvmclock_init(void)
289 {
290         u8 flags;
291
292         if (!kvm_para_available() || !kvmclock)
293                 return;
294
295         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
296                 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
297                 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
298         } else if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
299                 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
300                 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
301         } else {
302                 return;
303         }
304
305         if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
306                               kvmclock_setup_percpu, NULL) < 0) {
307                 return;
308         }
309
310         pr_info("kvm-clock: Using msrs %x and %x",
311                 msr_kvm_system_time, msr_kvm_wall_clock);
312
313         this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
314         kvm_register_clock("primary cpu clock");
315         pvclock_set_pvti_cpu0_va(hv_clock_boot);
316
317         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
318                 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
319
320         flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
321         kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
322
323         x86_platform.calibrate_tsc = kvm_get_tsc_khz;
324         x86_platform.calibrate_cpu = kvm_get_tsc_khz;
325         x86_platform.get_wallclock = kvm_get_wallclock;
326         x86_platform.set_wallclock = kvm_set_wallclock;
327 #ifdef CONFIG_X86_LOCAL_APIC
328         x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
329 #endif
330         x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
331         x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
332         kvm_get_preset_lpj();
333
334         /*
335          * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
336          * with P/T states and does not stop in deep C-states.
337          *
338          * Invariant TSC exposed by host means kvmclock is not necessary:
339          * can use TSC as clocksource.
340          *
341          */
342         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
343             boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
344             !check_tsc_unstable())
345                 kvm_clock.rating = 299;
346
347         clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
348         pv_info.name = "KVM";
349 }