Mention branches and keyring.
[releases.git] / x86 / hyperv / hv_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/e820/api.h>
17 #include <asm/sev.h>
18 #include <asm/ibt.h>
19 #include <asm/hypervisor.h>
20 #include <asm/hyperv-tlfs.h>
21 #include <asm/mshyperv.h>
22 #include <asm/idtentry.h>
23 #include <linux/kexec.h>
24 #include <linux/version.h>
25 #include <linux/vmalloc.h>
26 #include <linux/mm.h>
27 #include <linux/hyperv.h>
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/cpuhotplug.h>
31 #include <linux/syscore_ops.h>
32 #include <clocksource/hyperv_timer.h>
33 #include <linux/highmem.h>
34 #include <linux/swiotlb.h>
35
36 int hyperv_init_cpuhp;
37 u64 hv_current_partition_id = ~0ull;
38 EXPORT_SYMBOL_GPL(hv_current_partition_id);
39
40 void *hv_hypercall_pg;
41 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
42
43 union hv_ghcb * __percpu *hv_ghcb_pg;
44
45 /* Storage to save the hypercall page temporarily for hibernation */
46 static void *hv_hypercall_pg_saved;
47
48 struct hv_vp_assist_page **hv_vp_assist_page;
49 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
50
51 static int hyperv_init_ghcb(void)
52 {
53         u64 ghcb_gpa;
54         void *ghcb_va;
55         void **ghcb_base;
56
57         if (!hv_isolation_type_snp())
58                 return 0;
59
60         if (!hv_ghcb_pg)
61                 return -EINVAL;
62
63         /*
64          * GHCB page is allocated by paravisor. The address
65          * returned by MSR_AMD64_SEV_ES_GHCB is above shared
66          * memory boundary and map it here.
67          */
68         rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
69         ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
70         if (!ghcb_va)
71                 return -ENOMEM;
72
73         ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
74         *ghcb_base = ghcb_va;
75
76         return 0;
77 }
78
79 static int hv_cpu_init(unsigned int cpu)
80 {
81         union hv_vp_assist_msr_contents msr = { 0 };
82         struct hv_vp_assist_page **hvp = &hv_vp_assist_page[cpu];
83         int ret;
84
85         ret = hv_common_cpu_init(cpu);
86         if (ret)
87                 return ret;
88
89         if (!hv_vp_assist_page)
90                 return 0;
91
92         if (hv_root_partition) {
93                 /*
94                  * For root partition we get the hypervisor provided VP assist
95                  * page, instead of allocating a new page.
96                  */
97                 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
98                 *hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
99                                 PAGE_SIZE, MEMREMAP_WB);
100         } else {
101                 /*
102                  * The VP assist page is an "overlay" page (see Hyper-V TLFS's
103                  * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
104                  * out to make sure we always write the EOI MSR in
105                  * hv_apic_eoi_write() *after* the EOI optimization is disabled
106                  * in hv_cpu_die(), otherwise a CPU may not be stopped in the
107                  * case of CPU offlining and the VM will hang.
108                  */
109                 if (!*hvp)
110                         *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
111                 if (*hvp)
112                         msr.pfn = vmalloc_to_pfn(*hvp);
113
114         }
115         if (!WARN_ON(!(*hvp))) {
116                 msr.enable = 1;
117                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
118         }
119
120         return hyperv_init_ghcb();
121 }
122
123 static void (*hv_reenlightenment_cb)(void);
124
125 static void hv_reenlightenment_notify(struct work_struct *dummy)
126 {
127         struct hv_tsc_emulation_status emu_status;
128
129         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
130
131         /* Don't issue the callback if TSC accesses are not emulated */
132         if (hv_reenlightenment_cb && emu_status.inprogress)
133                 hv_reenlightenment_cb();
134 }
135 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
136
137 void hyperv_stop_tsc_emulation(void)
138 {
139         u64 freq;
140         struct hv_tsc_emulation_status emu_status;
141
142         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
143         emu_status.inprogress = 0;
144         wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
145
146         rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
147         tsc_khz = div64_u64(freq, 1000);
148 }
149 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
150
151 static inline bool hv_reenlightenment_available(void)
152 {
153         /*
154          * Check for required features and privileges to make TSC frequency
155          * change notifications work.
156          */
157         return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
158                 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
159                 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
160 }
161
162 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
163 {
164         ack_APIC_irq();
165         inc_irq_stat(irq_hv_reenlightenment_count);
166         schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
167 }
168
169 void set_hv_tscchange_cb(void (*cb)(void))
170 {
171         struct hv_reenlightenment_control re_ctrl = {
172                 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
173                 .enabled = 1,
174         };
175         struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
176
177         if (!hv_reenlightenment_available()) {
178                 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
179                 return;
180         }
181
182         if (!hv_vp_index)
183                 return;
184
185         hv_reenlightenment_cb = cb;
186
187         /* Make sure callback is registered before we write to MSRs */
188         wmb();
189
190         re_ctrl.target_vp = hv_vp_index[get_cpu()];
191
192         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
193         wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
194
195         put_cpu();
196 }
197 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
198
199 void clear_hv_tscchange_cb(void)
200 {
201         struct hv_reenlightenment_control re_ctrl;
202
203         if (!hv_reenlightenment_available())
204                 return;
205
206         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
207         re_ctrl.enabled = 0;
208         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
209
210         hv_reenlightenment_cb = NULL;
211 }
212 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
213
214 static int hv_cpu_die(unsigned int cpu)
215 {
216         struct hv_reenlightenment_control re_ctrl;
217         unsigned int new_cpu;
218         void **ghcb_va;
219
220         if (hv_ghcb_pg) {
221                 ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
222                 if (*ghcb_va)
223                         memunmap(*ghcb_va);
224                 *ghcb_va = NULL;
225         }
226
227         hv_common_cpu_die(cpu);
228
229         if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
230                 union hv_vp_assist_msr_contents msr = { 0 };
231                 if (hv_root_partition) {
232                         /*
233                          * For root partition the VP assist page is mapped to
234                          * hypervisor provided page, and thus we unmap the
235                          * page here and nullify it, so that in future we have
236                          * correct page address mapped in hv_cpu_init.
237                          */
238                         memunmap(hv_vp_assist_page[cpu]);
239                         hv_vp_assist_page[cpu] = NULL;
240                         rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
241                         msr.enable = 0;
242                 }
243                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
244         }
245
246         if (hv_reenlightenment_cb == NULL)
247                 return 0;
248
249         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
250         if (re_ctrl.target_vp == hv_vp_index[cpu]) {
251                 /*
252                  * Reassign reenlightenment notifications to some other online
253                  * CPU or just disable the feature if there are no online CPUs
254                  * left (happens on hibernation).
255                  */
256                 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
257
258                 if (new_cpu < nr_cpu_ids)
259                         re_ctrl.target_vp = hv_vp_index[new_cpu];
260                 else
261                         re_ctrl.enabled = 0;
262
263                 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
264         }
265
266         return 0;
267 }
268
269 static int __init hv_pci_init(void)
270 {
271         bool gen2vm = efi_enabled(EFI_BOOT);
272
273         /*
274          * A Generation-2 VM doesn't support legacy PCI/PCIe, so both
275          * raw_pci_ops and raw_pci_ext_ops are NULL, and pci_subsys_init() ->
276          * pcibios_init() doesn't call pcibios_resource_survey() ->
277          * e820__reserve_resources_late(); as a result, any emulated persistent
278          * memory of E820_TYPE_PRAM (12) via the kernel parameter
279          * memmap=nn[KMG]!ss is not added into iomem_resource and hence can't be
280          * detected by register_e820_pmem(). Fix this by directly calling
281          * e820__reserve_resources_late() here: e820__reserve_resources_late()
282          * depends on e820__reserve_resources(), which has been called earlier
283          * from setup_arch(). Note: e820__reserve_resources_late() also adds
284          * any memory of E820_TYPE_PMEM (7) into iomem_resource, and
285          * acpi_nfit_register_region() -> acpi_nfit_insert_resource() ->
286          * region_intersects() returns REGION_INTERSECTS, so the memory of
287          * E820_TYPE_PMEM won't get added twice.
288          *
289          * We return 0 here so that pci_arch_init() won't print the warning:
290          * "PCI: Fatal: No config space access function found"
291          */
292         if (gen2vm) {
293                 e820__reserve_resources_late();
294                 return 0;
295         }
296
297         /* For Generation-1 VM, we'll proceed in pci_arch_init().  */
298         return 1;
299 }
300
301 static int hv_suspend(void)
302 {
303         union hv_x64_msr_hypercall_contents hypercall_msr;
304         int ret;
305
306         if (hv_root_partition)
307                 return -EPERM;
308
309         /*
310          * Reset the hypercall page as it is going to be invalidated
311          * across hibernation. Setting hv_hypercall_pg to NULL ensures
312          * that any subsequent hypercall operation fails safely instead of
313          * crashing due to an access of an invalid page. The hypercall page
314          * pointer is restored on resume.
315          */
316         hv_hypercall_pg_saved = hv_hypercall_pg;
317         hv_hypercall_pg = NULL;
318
319         /* Disable the hypercall page in the hypervisor */
320         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
321         hypercall_msr.enable = 0;
322         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
323
324         ret = hv_cpu_die(0);
325         return ret;
326 }
327
328 static void hv_resume(void)
329 {
330         union hv_x64_msr_hypercall_contents hypercall_msr;
331         int ret;
332
333         ret = hv_cpu_init(0);
334         WARN_ON(ret);
335
336         /* Re-enable the hypercall page */
337         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
338         hypercall_msr.enable = 1;
339         hypercall_msr.guest_physical_address =
340                 vmalloc_to_pfn(hv_hypercall_pg_saved);
341         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
342
343         hv_hypercall_pg = hv_hypercall_pg_saved;
344         hv_hypercall_pg_saved = NULL;
345
346         /*
347          * Reenlightenment notifications are disabled by hv_cpu_die(0),
348          * reenable them here if hv_reenlightenment_cb was previously set.
349          */
350         if (hv_reenlightenment_cb)
351                 set_hv_tscchange_cb(hv_reenlightenment_cb);
352 }
353
354 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
355 static struct syscore_ops hv_syscore_ops = {
356         .suspend        = hv_suspend,
357         .resume         = hv_resume,
358 };
359
360 static void (* __initdata old_setup_percpu_clockev)(void);
361
362 static void __init hv_stimer_setup_percpu_clockev(void)
363 {
364         /*
365          * Ignore any errors in setting up stimer clockevents
366          * as we can run with the LAPIC timer as a fallback.
367          */
368         (void)hv_stimer_alloc(false);
369
370         /*
371          * Still register the LAPIC timer, because the direct-mode STIMER is
372          * not supported by old versions of Hyper-V. This also allows users
373          * to switch to LAPIC timer via /sys, if they want to.
374          */
375         if (old_setup_percpu_clockev)
376                 old_setup_percpu_clockev();
377 }
378
379 static void __init hv_get_partition_id(void)
380 {
381         struct hv_get_partition_id *output_page;
382         u64 status;
383         unsigned long flags;
384
385         local_irq_save(flags);
386         output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
387         status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
388         if (!hv_result_success(status)) {
389                 /* No point in proceeding if this failed */
390                 pr_err("Failed to get partition ID: %lld\n", status);
391                 BUG();
392         }
393         hv_current_partition_id = output_page->partition_id;
394         local_irq_restore(flags);
395 }
396
397 /*
398  * This function is to be invoked early in the boot sequence after the
399  * hypervisor has been detected.
400  *
401  * 1. Setup the hypercall page.
402  * 2. Register Hyper-V specific clocksource.
403  * 3. Setup Hyper-V specific APIC entry points.
404  */
405 void __init hyperv_init(void)
406 {
407         u64 guest_id;
408         union hv_x64_msr_hypercall_contents hypercall_msr;
409         int cpuhp;
410
411         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
412                 return;
413
414         if (hv_common_init())
415                 return;
416
417         hv_vp_assist_page = kcalloc(num_possible_cpus(),
418                                     sizeof(*hv_vp_assist_page), GFP_KERNEL);
419         if (!hv_vp_assist_page) {
420                 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
421                 goto common_free;
422         }
423
424         if (hv_isolation_type_snp()) {
425                 /* Negotiate GHCB Version. */
426                 if (!hv_ghcb_negotiate_protocol())
427                         hv_ghcb_terminate(SEV_TERM_SET_GEN,
428                                           GHCB_SEV_ES_PROT_UNSUPPORTED);
429
430                 hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
431                 if (!hv_ghcb_pg)
432                         goto free_vp_assist_page;
433         }
434
435         cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
436                                   hv_cpu_init, hv_cpu_die);
437         if (cpuhp < 0)
438                 goto free_ghcb_page;
439
440         /*
441          * Setup the hypercall page and enable hypercalls.
442          * 1. Register the guest ID
443          * 2. Enable the hypercall and register the hypercall page
444          */
445         guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
446         wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
447
448         /* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
449         hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
450
451         hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
452                         VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
453                         VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
454                         __builtin_return_address(0));
455         if (hv_hypercall_pg == NULL)
456                 goto clean_guest_os_id;
457
458         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
459         hypercall_msr.enable = 1;
460
461         if (hv_root_partition) {
462                 struct page *pg;
463                 void *src;
464
465                 /*
466                  * For the root partition, the hypervisor will set up its
467                  * hypercall page. The hypervisor guarantees it will not show
468                  * up in the root's address space. The root can't change the
469                  * location of the hypercall page.
470                  *
471                  * Order is important here. We must enable the hypercall page
472                  * so it is populated with code, then copy the code to an
473                  * executable page.
474                  */
475                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
476
477                 pg = vmalloc_to_page(hv_hypercall_pg);
478                 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
479                                 MEMREMAP_WB);
480                 BUG_ON(!src);
481                 memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
482                 memunmap(src);
483         } else {
484                 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
485                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
486         }
487
488         /*
489          * Some versions of Hyper-V that provide IBT in guest VMs have a bug
490          * in that there's no ENDBR64 instruction at the entry to the
491          * hypercall page. Because hypercalls are invoked via an indirect call
492          * to the hypercall page, all hypercall attempts fail when IBT is
493          * enabled, and Linux panics. For such buggy versions, disable IBT.
494          *
495          * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
496          * page, so if future Linux kernel versions enable IBT for 32-bit
497          * builds, additional hypercall page hackery will be required here
498          * to provide an ENDBR32.
499          */
500 #ifdef CONFIG_X86_KERNEL_IBT
501         if (cpu_feature_enabled(X86_FEATURE_IBT) &&
502             *(u32 *)hv_hypercall_pg != gen_endbr()) {
503                 setup_clear_cpu_cap(X86_FEATURE_IBT);
504                 pr_warn("Hyper-V: Disabling IBT because of Hyper-V bug\n");
505         }
506 #endif
507
508         /*
509          * hyperv_init() is called before LAPIC is initialized: see
510          * apic_intr_mode_init() -> x86_platform.apic_post_init() and
511          * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
512          * depends on LAPIC, so hv_stimer_alloc() should be called from
513          * x86_init.timers.setup_percpu_clockev.
514          */
515         old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
516         x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
517
518         hv_apic_init();
519
520         x86_init.pci.arch_init = hv_pci_init;
521
522         register_syscore_ops(&hv_syscore_ops);
523
524         hyperv_init_cpuhp = cpuhp;
525
526         if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
527                 hv_get_partition_id();
528
529         BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
530
531 #ifdef CONFIG_PCI_MSI
532         /*
533          * If we're running as root, we want to create our own PCI MSI domain.
534          * We can't set this in hv_pci_init because that would be too late.
535          */
536         if (hv_root_partition)
537                 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
538 #endif
539
540         /* Query the VMs extended capability once, so that it can be cached. */
541         hv_query_ext_cap(0);
542
543 #ifdef CONFIG_SWIOTLB
544         /*
545          * Swiotlb bounce buffer needs to be mapped in extra address
546          * space. Map function doesn't work in the early place and so
547          * call swiotlb_update_mem_attributes() here.
548          */
549         if (hv_is_isolation_supported())
550                 swiotlb_update_mem_attributes();
551 #endif
552
553         return;
554
555 clean_guest_os_id:
556         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
557         hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
558         cpuhp_remove_state(cpuhp);
559 free_ghcb_page:
560         free_percpu(hv_ghcb_pg);
561 free_vp_assist_page:
562         kfree(hv_vp_assist_page);
563         hv_vp_assist_page = NULL;
564 common_free:
565         hv_common_free();
566 }
567
568 /*
569  * This routine is called before kexec/kdump, it does the required cleanup.
570  */
571 void hyperv_cleanup(void)
572 {
573         union hv_x64_msr_hypercall_contents hypercall_msr;
574         union hv_reference_tsc_msr tsc_msr;
575
576         /* Reset our OS id */
577         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
578         hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
579
580         /*
581          * Reset hypercall page reference before reset the page,
582          * let hypercall operations fail safely rather than
583          * panic the kernel for using invalid hypercall page
584          */
585         hv_hypercall_pg = NULL;
586
587         /* Reset the hypercall page */
588         hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL);
589         hypercall_msr.enable = 0;
590         hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
591
592         /* Reset the TSC page */
593         tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC);
594         tsc_msr.enable = 0;
595         hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
596 }
597
598 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
599 {
600         static bool panic_reported;
601         u64 guest_id;
602
603         if (in_die && !panic_on_oops)
604                 return;
605
606         /*
607          * We prefer to report panic on 'die' chain as we have proper
608          * registers to report, but if we miss it (e.g. on BUG()) we need
609          * to report it on 'panic'.
610          */
611         if (panic_reported)
612                 return;
613         panic_reported = true;
614
615         rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
616
617         wrmsrl(HV_X64_MSR_CRASH_P0, err);
618         wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
619         wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
620         wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
621         wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
622
623         /*
624          * Let Hyper-V know there is crash data available
625          */
626         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
627 }
628 EXPORT_SYMBOL_GPL(hyperv_report_panic);
629
630 bool hv_is_hyperv_initialized(void)
631 {
632         union hv_x64_msr_hypercall_contents hypercall_msr;
633
634         /*
635          * Ensure that we're really on Hyper-V, and not a KVM or Xen
636          * emulation of Hyper-V
637          */
638         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
639                 return false;
640
641         /*
642          * Verify that earlier initialization succeeded by checking
643          * that the hypercall page is setup
644          */
645         hypercall_msr.as_uint64 = 0;
646         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
647
648         return hypercall_msr.enable;
649 }
650 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);