Mention branches and keyring.
[releases.git] / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119
120 /* Protocol family. */
121 static struct proto vsock_proto = {
122         .name = "AF_VSOCK",
123         .owner = THIS_MODULE,
124         .obj_size = sizeof(struct vsock_sock),
125 };
126
127 /* The default peer timeout indicates how long we will wait for a peer response
128  * to a control message.
129  */
130 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
131
132 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
133 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
134 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
135
136 /* Transport used for host->guest communication */
137 static const struct vsock_transport *transport_h2g;
138 /* Transport used for guest->host communication */
139 static const struct vsock_transport *transport_g2h;
140 /* Transport used for DGRAM communication */
141 static const struct vsock_transport *transport_dgram;
142 /* Transport used for local communication */
143 static const struct vsock_transport *transport_local;
144 static DEFINE_MUTEX(vsock_register_mutex);
145
146 /**** UTILS ****/
147
148 /* Each bound VSocket is stored in the bind hash table and each connected
149  * VSocket is stored in the connected hash table.
150  *
151  * Unbound sockets are all put on the same list attached to the end of the hash
152  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
153  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
154  * represents the list that addr hashes to).
155  *
156  * Specifically, we initialize the vsock_bind_table array to a size of
157  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
158  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
159  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
160  * mods with VSOCK_HASH_SIZE to ensure this.
161  */
162 #define MAX_PORT_RETRIES        24
163
164 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
165 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
166 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
167
168 /* XXX This can probably be implemented in a better way. */
169 #define VSOCK_CONN_HASH(src, dst)                               \
170         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
171 #define vsock_connected_sockets(src, dst)               \
172         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
173 #define vsock_connected_sockets_vsk(vsk)                                \
174         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
175
176 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
177 EXPORT_SYMBOL_GPL(vsock_bind_table);
178 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
179 EXPORT_SYMBOL_GPL(vsock_connected_table);
180 DEFINE_SPINLOCK(vsock_table_lock);
181 EXPORT_SYMBOL_GPL(vsock_table_lock);
182
183 /* Autobind this socket to the local address if necessary. */
184 static int vsock_auto_bind(struct vsock_sock *vsk)
185 {
186         struct sock *sk = sk_vsock(vsk);
187         struct sockaddr_vm local_addr;
188
189         if (vsock_addr_bound(&vsk->local_addr))
190                 return 0;
191         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
192         return __vsock_bind(sk, &local_addr);
193 }
194
195 static void vsock_init_tables(void)
196 {
197         int i;
198
199         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
200                 INIT_LIST_HEAD(&vsock_bind_table[i]);
201
202         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
203                 INIT_LIST_HEAD(&vsock_connected_table[i]);
204 }
205
206 static void __vsock_insert_bound(struct list_head *list,
207                                  struct vsock_sock *vsk)
208 {
209         sock_hold(&vsk->sk);
210         list_add(&vsk->bound_table, list);
211 }
212
213 static void __vsock_insert_connected(struct list_head *list,
214                                      struct vsock_sock *vsk)
215 {
216         sock_hold(&vsk->sk);
217         list_add(&vsk->connected_table, list);
218 }
219
220 static void __vsock_remove_bound(struct vsock_sock *vsk)
221 {
222         list_del_init(&vsk->bound_table);
223         sock_put(&vsk->sk);
224 }
225
226 static void __vsock_remove_connected(struct vsock_sock *vsk)
227 {
228         list_del_init(&vsk->connected_table);
229         sock_put(&vsk->sk);
230 }
231
232 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
233 {
234         struct vsock_sock *vsk;
235
236         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
237                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
238                         return sk_vsock(vsk);
239
240                 if (addr->svm_port == vsk->local_addr.svm_port &&
241                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
242                      addr->svm_cid == VMADDR_CID_ANY))
243                         return sk_vsock(vsk);
244         }
245
246         return NULL;
247 }
248
249 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
250                                                   struct sockaddr_vm *dst)
251 {
252         struct vsock_sock *vsk;
253
254         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
255                             connected_table) {
256                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
257                     dst->svm_port == vsk->local_addr.svm_port) {
258                         return sk_vsock(vsk);
259                 }
260         }
261
262         return NULL;
263 }
264
265 static void vsock_insert_unbound(struct vsock_sock *vsk)
266 {
267         spin_lock_bh(&vsock_table_lock);
268         __vsock_insert_bound(vsock_unbound_sockets, vsk);
269         spin_unlock_bh(&vsock_table_lock);
270 }
271
272 void vsock_insert_connected(struct vsock_sock *vsk)
273 {
274         struct list_head *list = vsock_connected_sockets(
275                 &vsk->remote_addr, &vsk->local_addr);
276
277         spin_lock_bh(&vsock_table_lock);
278         __vsock_insert_connected(list, vsk);
279         spin_unlock_bh(&vsock_table_lock);
280 }
281 EXPORT_SYMBOL_GPL(vsock_insert_connected);
282
283 void vsock_remove_bound(struct vsock_sock *vsk)
284 {
285         spin_lock_bh(&vsock_table_lock);
286         if (__vsock_in_bound_table(vsk))
287                 __vsock_remove_bound(vsk);
288         spin_unlock_bh(&vsock_table_lock);
289 }
290 EXPORT_SYMBOL_GPL(vsock_remove_bound);
291
292 void vsock_remove_connected(struct vsock_sock *vsk)
293 {
294         spin_lock_bh(&vsock_table_lock);
295         if (__vsock_in_connected_table(vsk))
296                 __vsock_remove_connected(vsk);
297         spin_unlock_bh(&vsock_table_lock);
298 }
299 EXPORT_SYMBOL_GPL(vsock_remove_connected);
300
301 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
302 {
303         struct sock *sk;
304
305         spin_lock_bh(&vsock_table_lock);
306         sk = __vsock_find_bound_socket(addr);
307         if (sk)
308                 sock_hold(sk);
309
310         spin_unlock_bh(&vsock_table_lock);
311
312         return sk;
313 }
314 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
315
316 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
317                                          struct sockaddr_vm *dst)
318 {
319         struct sock *sk;
320
321         spin_lock_bh(&vsock_table_lock);
322         sk = __vsock_find_connected_socket(src, dst);
323         if (sk)
324                 sock_hold(sk);
325
326         spin_unlock_bh(&vsock_table_lock);
327
328         return sk;
329 }
330 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
331
332 void vsock_remove_sock(struct vsock_sock *vsk)
333 {
334         vsock_remove_bound(vsk);
335         vsock_remove_connected(vsk);
336 }
337 EXPORT_SYMBOL_GPL(vsock_remove_sock);
338
339 void vsock_for_each_connected_socket(struct vsock_transport *transport,
340                                      void (*fn)(struct sock *sk))
341 {
342         int i;
343
344         spin_lock_bh(&vsock_table_lock);
345
346         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
347                 struct vsock_sock *vsk;
348                 list_for_each_entry(vsk, &vsock_connected_table[i],
349                                     connected_table) {
350                         if (vsk->transport != transport)
351                                 continue;
352
353                         fn(sk_vsock(vsk));
354                 }
355         }
356
357         spin_unlock_bh(&vsock_table_lock);
358 }
359 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
360
361 void vsock_add_pending(struct sock *listener, struct sock *pending)
362 {
363         struct vsock_sock *vlistener;
364         struct vsock_sock *vpending;
365
366         vlistener = vsock_sk(listener);
367         vpending = vsock_sk(pending);
368
369         sock_hold(pending);
370         sock_hold(listener);
371         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
372 }
373 EXPORT_SYMBOL_GPL(vsock_add_pending);
374
375 void vsock_remove_pending(struct sock *listener, struct sock *pending)
376 {
377         struct vsock_sock *vpending = vsock_sk(pending);
378
379         list_del_init(&vpending->pending_links);
380         sock_put(listener);
381         sock_put(pending);
382 }
383 EXPORT_SYMBOL_GPL(vsock_remove_pending);
384
385 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
386 {
387         struct vsock_sock *vlistener;
388         struct vsock_sock *vconnected;
389
390         vlistener = vsock_sk(listener);
391         vconnected = vsock_sk(connected);
392
393         sock_hold(connected);
394         sock_hold(listener);
395         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
396 }
397 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
398
399 static bool vsock_use_local_transport(unsigned int remote_cid)
400 {
401         if (!transport_local)
402                 return false;
403
404         if (remote_cid == VMADDR_CID_LOCAL)
405                 return true;
406
407         if (transport_g2h) {
408                 return remote_cid == transport_g2h->get_local_cid();
409         } else {
410                 return remote_cid == VMADDR_CID_HOST;
411         }
412 }
413
414 static void vsock_deassign_transport(struct vsock_sock *vsk)
415 {
416         if (!vsk->transport)
417                 return;
418
419         vsk->transport->destruct(vsk);
420         module_put(vsk->transport->module);
421         vsk->transport = NULL;
422 }
423
424 /* Assign a transport to a socket and call the .init transport callback.
425  *
426  * Note: for connection oriented socket this must be called when vsk->remote_addr
427  * is set (e.g. during the connect() or when a connection request on a listener
428  * socket is received).
429  * The vsk->remote_addr is used to decide which transport to use:
430  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
431  *    g2h is not loaded, will use local transport;
432  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
433  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
434  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
435  */
436 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
437 {
438         const struct vsock_transport *new_transport;
439         struct sock *sk = sk_vsock(vsk);
440         unsigned int remote_cid = vsk->remote_addr.svm_cid;
441         __u8 remote_flags;
442         int ret;
443
444         /* If the packet is coming with the source and destination CIDs higher
445          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
446          * forwarded to the host should be established. Then the host will
447          * need to forward the packets to the guest.
448          *
449          * The flag is set on the (listen) receive path (psk is not NULL). On
450          * the connect path the flag can be set by the user space application.
451          */
452         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
453             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
454                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
455
456         remote_flags = vsk->remote_addr.svm_flags;
457
458         switch (sk->sk_type) {
459         case SOCK_DGRAM:
460                 new_transport = transport_dgram;
461                 break;
462         case SOCK_STREAM:
463         case SOCK_SEQPACKET:
464                 if (vsock_use_local_transport(remote_cid))
465                         new_transport = transport_local;
466                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
467                          (remote_flags & VMADDR_FLAG_TO_HOST))
468                         new_transport = transport_g2h;
469                 else
470                         new_transport = transport_h2g;
471                 break;
472         default:
473                 return -ESOCKTNOSUPPORT;
474         }
475
476         if (vsk->transport) {
477                 if (vsk->transport == new_transport)
478                         return 0;
479
480                 /* transport->release() must be called with sock lock acquired.
481                  * This path can only be taken during vsock_connect(), where we
482                  * have already held the sock lock. In the other cases, this
483                  * function is called on a new socket which is not assigned to
484                  * any transport.
485                  */
486                 vsk->transport->release(vsk);
487                 vsock_deassign_transport(vsk);
488         }
489
490         /* We increase the module refcnt to prevent the transport unloading
491          * while there are open sockets assigned to it.
492          */
493         if (!new_transport || !try_module_get(new_transport->module))
494                 return -ENODEV;
495
496         if (sk->sk_type == SOCK_SEQPACKET) {
497                 if (!new_transport->seqpacket_allow ||
498                     !new_transport->seqpacket_allow(remote_cid)) {
499                         module_put(new_transport->module);
500                         return -ESOCKTNOSUPPORT;
501                 }
502         }
503
504         ret = new_transport->init(vsk, psk);
505         if (ret) {
506                 module_put(new_transport->module);
507                 return ret;
508         }
509
510         vsk->transport = new_transport;
511
512         return 0;
513 }
514 EXPORT_SYMBOL_GPL(vsock_assign_transport);
515
516 bool vsock_find_cid(unsigned int cid)
517 {
518         if (transport_g2h && cid == transport_g2h->get_local_cid())
519                 return true;
520
521         if (transport_h2g && cid == VMADDR_CID_HOST)
522                 return true;
523
524         if (transport_local && cid == VMADDR_CID_LOCAL)
525                 return true;
526
527         return false;
528 }
529 EXPORT_SYMBOL_GPL(vsock_find_cid);
530
531 static struct sock *vsock_dequeue_accept(struct sock *listener)
532 {
533         struct vsock_sock *vlistener;
534         struct vsock_sock *vconnected;
535
536         vlistener = vsock_sk(listener);
537
538         if (list_empty(&vlistener->accept_queue))
539                 return NULL;
540
541         vconnected = list_entry(vlistener->accept_queue.next,
542                                 struct vsock_sock, accept_queue);
543
544         list_del_init(&vconnected->accept_queue);
545         sock_put(listener);
546         /* The caller will need a reference on the connected socket so we let
547          * it call sock_put().
548          */
549
550         return sk_vsock(vconnected);
551 }
552
553 static bool vsock_is_accept_queue_empty(struct sock *sk)
554 {
555         struct vsock_sock *vsk = vsock_sk(sk);
556         return list_empty(&vsk->accept_queue);
557 }
558
559 static bool vsock_is_pending(struct sock *sk)
560 {
561         struct vsock_sock *vsk = vsock_sk(sk);
562         return !list_empty(&vsk->pending_links);
563 }
564
565 static int vsock_send_shutdown(struct sock *sk, int mode)
566 {
567         struct vsock_sock *vsk = vsock_sk(sk);
568
569         if (!vsk->transport)
570                 return -ENODEV;
571
572         return vsk->transport->shutdown(vsk, mode);
573 }
574
575 static void vsock_pending_work(struct work_struct *work)
576 {
577         struct sock *sk;
578         struct sock *listener;
579         struct vsock_sock *vsk;
580         bool cleanup;
581
582         vsk = container_of(work, struct vsock_sock, pending_work.work);
583         sk = sk_vsock(vsk);
584         listener = vsk->listener;
585         cleanup = true;
586
587         lock_sock(listener);
588         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
589
590         if (vsock_is_pending(sk)) {
591                 vsock_remove_pending(listener, sk);
592
593                 sk_acceptq_removed(listener);
594         } else if (!vsk->rejected) {
595                 /* We are not on the pending list and accept() did not reject
596                  * us, so we must have been accepted by our user process.  We
597                  * just need to drop our references to the sockets and be on
598                  * our way.
599                  */
600                 cleanup = false;
601                 goto out;
602         }
603
604         /* We need to remove ourself from the global connected sockets list so
605          * incoming packets can't find this socket, and to reduce the reference
606          * count.
607          */
608         vsock_remove_connected(vsk);
609
610         sk->sk_state = TCP_CLOSE;
611
612 out:
613         release_sock(sk);
614         release_sock(listener);
615         if (cleanup)
616                 sock_put(sk);
617
618         sock_put(sk);
619         sock_put(listener);
620 }
621
622 /**** SOCKET OPERATIONS ****/
623
624 static int __vsock_bind_connectible(struct vsock_sock *vsk,
625                                     struct sockaddr_vm *addr)
626 {
627         static u32 port;
628         struct sockaddr_vm new_addr;
629
630         if (!port)
631                 port = LAST_RESERVED_PORT + 1 +
632                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
633
634         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
635
636         if (addr->svm_port == VMADDR_PORT_ANY) {
637                 bool found = false;
638                 unsigned int i;
639
640                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
641                         if (port <= LAST_RESERVED_PORT)
642                                 port = LAST_RESERVED_PORT + 1;
643
644                         new_addr.svm_port = port++;
645
646                         if (!__vsock_find_bound_socket(&new_addr)) {
647                                 found = true;
648                                 break;
649                         }
650                 }
651
652                 if (!found)
653                         return -EADDRNOTAVAIL;
654         } else {
655                 /* If port is in reserved range, ensure caller
656                  * has necessary privileges.
657                  */
658                 if (addr->svm_port <= LAST_RESERVED_PORT &&
659                     !capable(CAP_NET_BIND_SERVICE)) {
660                         return -EACCES;
661                 }
662
663                 if (__vsock_find_bound_socket(&new_addr))
664                         return -EADDRINUSE;
665         }
666
667         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
668
669         /* Remove connection oriented sockets from the unbound list and add them
670          * to the hash table for easy lookup by its address.  The unbound list
671          * is simply an extra entry at the end of the hash table, a trick used
672          * by AF_UNIX.
673          */
674         __vsock_remove_bound(vsk);
675         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
676
677         return 0;
678 }
679
680 static int __vsock_bind_dgram(struct vsock_sock *vsk,
681                               struct sockaddr_vm *addr)
682 {
683         return vsk->transport->dgram_bind(vsk, addr);
684 }
685
686 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
687 {
688         struct vsock_sock *vsk = vsock_sk(sk);
689         int retval;
690
691         /* First ensure this socket isn't already bound. */
692         if (vsock_addr_bound(&vsk->local_addr))
693                 return -EINVAL;
694
695         /* Now bind to the provided address or select appropriate values if
696          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
697          * like AF_INET prevents binding to a non-local IP address (in most
698          * cases), we only allow binding to a local CID.
699          */
700         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
701                 return -EADDRNOTAVAIL;
702
703         switch (sk->sk_socket->type) {
704         case SOCK_STREAM:
705         case SOCK_SEQPACKET:
706                 spin_lock_bh(&vsock_table_lock);
707                 retval = __vsock_bind_connectible(vsk, addr);
708                 spin_unlock_bh(&vsock_table_lock);
709                 break;
710
711         case SOCK_DGRAM:
712                 retval = __vsock_bind_dgram(vsk, addr);
713                 break;
714
715         default:
716                 retval = -EINVAL;
717                 break;
718         }
719
720         return retval;
721 }
722
723 static void vsock_connect_timeout(struct work_struct *work);
724
725 static struct sock *__vsock_create(struct net *net,
726                                    struct socket *sock,
727                                    struct sock *parent,
728                                    gfp_t priority,
729                                    unsigned short type,
730                                    int kern)
731 {
732         struct sock *sk;
733         struct vsock_sock *psk;
734         struct vsock_sock *vsk;
735
736         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
737         if (!sk)
738                 return NULL;
739
740         sock_init_data(sock, sk);
741
742         /* sk->sk_type is normally set in sock_init_data, but only if sock is
743          * non-NULL. We make sure that our sockets always have a type by
744          * setting it here if needed.
745          */
746         if (!sock)
747                 sk->sk_type = type;
748
749         vsk = vsock_sk(sk);
750         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
751         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
752
753         sk->sk_destruct = vsock_sk_destruct;
754         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
755         sock_reset_flag(sk, SOCK_DONE);
756
757         INIT_LIST_HEAD(&vsk->bound_table);
758         INIT_LIST_HEAD(&vsk->connected_table);
759         vsk->listener = NULL;
760         INIT_LIST_HEAD(&vsk->pending_links);
761         INIT_LIST_HEAD(&vsk->accept_queue);
762         vsk->rejected = false;
763         vsk->sent_request = false;
764         vsk->ignore_connecting_rst = false;
765         vsk->peer_shutdown = 0;
766         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
767         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
768
769         psk = parent ? vsock_sk(parent) : NULL;
770         if (parent) {
771                 vsk->trusted = psk->trusted;
772                 vsk->owner = get_cred(psk->owner);
773                 vsk->connect_timeout = psk->connect_timeout;
774                 vsk->buffer_size = psk->buffer_size;
775                 vsk->buffer_min_size = psk->buffer_min_size;
776                 vsk->buffer_max_size = psk->buffer_max_size;
777                 security_sk_clone(parent, sk);
778         } else {
779                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
780                 vsk->owner = get_current_cred();
781                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
782                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
783                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
784                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
785         }
786
787         return sk;
788 }
789
790 static bool sock_type_connectible(u16 type)
791 {
792         return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
793 }
794
795 static void __vsock_release(struct sock *sk, int level)
796 {
797         if (sk) {
798                 struct sock *pending;
799                 struct vsock_sock *vsk;
800
801                 vsk = vsock_sk(sk);
802                 pending = NULL; /* Compiler warning. */
803
804                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
805                  * version to avoid the warning "possible recursive locking
806                  * detected". When "level" is 0, lock_sock_nested(sk, level)
807                  * is the same as lock_sock(sk).
808                  */
809                 lock_sock_nested(sk, level);
810
811                 if (vsk->transport)
812                         vsk->transport->release(vsk);
813                 else if (sock_type_connectible(sk->sk_type))
814                         vsock_remove_sock(vsk);
815
816                 sock_orphan(sk);
817                 sk->sk_shutdown = SHUTDOWN_MASK;
818
819                 skb_queue_purge(&sk->sk_receive_queue);
820
821                 /* Clean up any sockets that never were accepted. */
822                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
823                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
824                         sock_put(pending);
825                 }
826
827                 release_sock(sk);
828                 sock_put(sk);
829         }
830 }
831
832 static void vsock_sk_destruct(struct sock *sk)
833 {
834         struct vsock_sock *vsk = vsock_sk(sk);
835
836         vsock_deassign_transport(vsk);
837
838         /* When clearing these addresses, there's no need to set the family and
839          * possibly register the address family with the kernel.
840          */
841         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
842         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
843
844         put_cred(vsk->owner);
845 }
846
847 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
848 {
849         int err;
850
851         err = sock_queue_rcv_skb(sk, skb);
852         if (err)
853                 kfree_skb(skb);
854
855         return err;
856 }
857
858 struct sock *vsock_create_connected(struct sock *parent)
859 {
860         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
861                               parent->sk_type, 0);
862 }
863 EXPORT_SYMBOL_GPL(vsock_create_connected);
864
865 s64 vsock_stream_has_data(struct vsock_sock *vsk)
866 {
867         return vsk->transport->stream_has_data(vsk);
868 }
869 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
870
871 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
872 {
873         struct sock *sk = sk_vsock(vsk);
874
875         if (sk->sk_type == SOCK_SEQPACKET)
876                 return vsk->transport->seqpacket_has_data(vsk);
877         else
878                 return vsock_stream_has_data(vsk);
879 }
880
881 s64 vsock_stream_has_space(struct vsock_sock *vsk)
882 {
883         return vsk->transport->stream_has_space(vsk);
884 }
885 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
886
887 void vsock_data_ready(struct sock *sk)
888 {
889         struct vsock_sock *vsk = vsock_sk(sk);
890
891         if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
892             sock_flag(sk, SOCK_DONE))
893                 sk->sk_data_ready(sk);
894 }
895 EXPORT_SYMBOL_GPL(vsock_data_ready);
896
897 static int vsock_release(struct socket *sock)
898 {
899         __vsock_release(sock->sk, 0);
900         sock->sk = NULL;
901         sock->state = SS_FREE;
902
903         return 0;
904 }
905
906 static int
907 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
908 {
909         int err;
910         struct sock *sk;
911         struct sockaddr_vm *vm_addr;
912
913         sk = sock->sk;
914
915         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
916                 return -EINVAL;
917
918         lock_sock(sk);
919         err = __vsock_bind(sk, vm_addr);
920         release_sock(sk);
921
922         return err;
923 }
924
925 static int vsock_getname(struct socket *sock,
926                          struct sockaddr *addr, int peer)
927 {
928         int err;
929         struct sock *sk;
930         struct vsock_sock *vsk;
931         struct sockaddr_vm *vm_addr;
932
933         sk = sock->sk;
934         vsk = vsock_sk(sk);
935         err = 0;
936
937         lock_sock(sk);
938
939         if (peer) {
940                 if (sock->state != SS_CONNECTED) {
941                         err = -ENOTCONN;
942                         goto out;
943                 }
944                 vm_addr = &vsk->remote_addr;
945         } else {
946                 vm_addr = &vsk->local_addr;
947         }
948
949         if (!vm_addr) {
950                 err = -EINVAL;
951                 goto out;
952         }
953
954         /* sys_getsockname() and sys_getpeername() pass us a
955          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
956          * that macro is defined in socket.c instead of .h, so we hardcode its
957          * value here.
958          */
959         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
960         memcpy(addr, vm_addr, sizeof(*vm_addr));
961         err = sizeof(*vm_addr);
962
963 out:
964         release_sock(sk);
965         return err;
966 }
967
968 static int vsock_shutdown(struct socket *sock, int mode)
969 {
970         int err;
971         struct sock *sk;
972
973         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
974          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
975          * here like the other address families do.  Note also that the
976          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
977          * which is what we want.
978          */
979         mode++;
980
981         if ((mode & ~SHUTDOWN_MASK) || !mode)
982                 return -EINVAL;
983
984         /* If this is a connection oriented socket and it is not connected then
985          * bail out immediately.  If it is a DGRAM socket then we must first
986          * kick the socket so that it wakes up from any sleeping calls, for
987          * example recv(), and then afterwards return the error.
988          */
989
990         sk = sock->sk;
991
992         lock_sock(sk);
993         if (sock->state == SS_UNCONNECTED) {
994                 err = -ENOTCONN;
995                 if (sock_type_connectible(sk->sk_type))
996                         goto out;
997         } else {
998                 sock->state = SS_DISCONNECTING;
999                 err = 0;
1000         }
1001
1002         /* Receive and send shutdowns are treated alike. */
1003         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1004         if (mode) {
1005                 sk->sk_shutdown |= mode;
1006                 sk->sk_state_change(sk);
1007
1008                 if (sock_type_connectible(sk->sk_type)) {
1009                         sock_reset_flag(sk, SOCK_DONE);
1010                         vsock_send_shutdown(sk, mode);
1011                 }
1012         }
1013
1014 out:
1015         release_sock(sk);
1016         return err;
1017 }
1018
1019 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1020                                poll_table *wait)
1021 {
1022         struct sock *sk;
1023         __poll_t mask;
1024         struct vsock_sock *vsk;
1025
1026         sk = sock->sk;
1027         vsk = vsock_sk(sk);
1028
1029         poll_wait(file, sk_sleep(sk), wait);
1030         mask = 0;
1031
1032         if (sk->sk_err)
1033                 /* Signify that there has been an error on this socket. */
1034                 mask |= EPOLLERR;
1035
1036         /* INET sockets treat local write shutdown and peer write shutdown as a
1037          * case of EPOLLHUP set.
1038          */
1039         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1040             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1041              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1042                 mask |= EPOLLHUP;
1043         }
1044
1045         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1046             vsk->peer_shutdown & SEND_SHUTDOWN) {
1047                 mask |= EPOLLRDHUP;
1048         }
1049
1050         if (sock->type == SOCK_DGRAM) {
1051                 /* For datagram sockets we can read if there is something in
1052                  * the queue and write as long as the socket isn't shutdown for
1053                  * sending.
1054                  */
1055                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1056                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1057                         mask |= EPOLLIN | EPOLLRDNORM;
1058                 }
1059
1060                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1061                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1062
1063         } else if (sock_type_connectible(sk->sk_type)) {
1064                 const struct vsock_transport *transport;
1065
1066                 lock_sock(sk);
1067
1068                 transport = vsk->transport;
1069
1070                 /* Listening sockets that have connections in their accept
1071                  * queue can be read.
1072                  */
1073                 if (sk->sk_state == TCP_LISTEN
1074                     && !vsock_is_accept_queue_empty(sk))
1075                         mask |= EPOLLIN | EPOLLRDNORM;
1076
1077                 /* If there is something in the queue then we can read. */
1078                 if (transport && transport->stream_is_active(vsk) &&
1079                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1080                         bool data_ready_now = false;
1081                         int target = sock_rcvlowat(sk, 0, INT_MAX);
1082                         int ret = transport->notify_poll_in(
1083                                         vsk, target, &data_ready_now);
1084                         if (ret < 0) {
1085                                 mask |= EPOLLERR;
1086                         } else {
1087                                 if (data_ready_now)
1088                                         mask |= EPOLLIN | EPOLLRDNORM;
1089
1090                         }
1091                 }
1092
1093                 /* Sockets whose connections have been closed, reset, or
1094                  * terminated should also be considered read, and we check the
1095                  * shutdown flag for that.
1096                  */
1097                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1098                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1099                         mask |= EPOLLIN | EPOLLRDNORM;
1100                 }
1101
1102                 /* Connected sockets that can produce data can be written. */
1103                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1104                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1105                                 bool space_avail_now = false;
1106                                 int ret = transport->notify_poll_out(
1107                                                 vsk, 1, &space_avail_now);
1108                                 if (ret < 0) {
1109                                         mask |= EPOLLERR;
1110                                 } else {
1111                                         if (space_avail_now)
1112                                                 /* Remove EPOLLWRBAND since INET
1113                                                  * sockets are not setting it.
1114                                                  */
1115                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1116
1117                                 }
1118                         }
1119                 }
1120
1121                 /* Simulate INET socket poll behaviors, which sets
1122                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1123                  * but local send is not shutdown.
1124                  */
1125                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1126                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1127                                 mask |= EPOLLOUT | EPOLLWRNORM;
1128
1129                 }
1130
1131                 release_sock(sk);
1132         }
1133
1134         return mask;
1135 }
1136
1137 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1138                                size_t len)
1139 {
1140         int err;
1141         struct sock *sk;
1142         struct vsock_sock *vsk;
1143         struct sockaddr_vm *remote_addr;
1144         const struct vsock_transport *transport;
1145
1146         if (msg->msg_flags & MSG_OOB)
1147                 return -EOPNOTSUPP;
1148
1149         /* For now, MSG_DONTWAIT is always assumed... */
1150         err = 0;
1151         sk = sock->sk;
1152         vsk = vsock_sk(sk);
1153
1154         lock_sock(sk);
1155
1156         transport = vsk->transport;
1157
1158         err = vsock_auto_bind(vsk);
1159         if (err)
1160                 goto out;
1161
1162
1163         /* If the provided message contains an address, use that.  Otherwise
1164          * fall back on the socket's remote handle (if it has been connected).
1165          */
1166         if (msg->msg_name &&
1167             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1168                             &remote_addr) == 0) {
1169                 /* Ensure this address is of the right type and is a valid
1170                  * destination.
1171                  */
1172
1173                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1174                         remote_addr->svm_cid = transport->get_local_cid();
1175
1176                 if (!vsock_addr_bound(remote_addr)) {
1177                         err = -EINVAL;
1178                         goto out;
1179                 }
1180         } else if (sock->state == SS_CONNECTED) {
1181                 remote_addr = &vsk->remote_addr;
1182
1183                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1184                         remote_addr->svm_cid = transport->get_local_cid();
1185
1186                 /* XXX Should connect() or this function ensure remote_addr is
1187                  * bound?
1188                  */
1189                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1190                         err = -EINVAL;
1191                         goto out;
1192                 }
1193         } else {
1194                 err = -EINVAL;
1195                 goto out;
1196         }
1197
1198         if (!transport->dgram_allow(remote_addr->svm_cid,
1199                                     remote_addr->svm_port)) {
1200                 err = -EINVAL;
1201                 goto out;
1202         }
1203
1204         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1205
1206 out:
1207         release_sock(sk);
1208         return err;
1209 }
1210
1211 static int vsock_dgram_connect(struct socket *sock,
1212                                struct sockaddr *addr, int addr_len, int flags)
1213 {
1214         int err;
1215         struct sock *sk;
1216         struct vsock_sock *vsk;
1217         struct sockaddr_vm *remote_addr;
1218
1219         sk = sock->sk;
1220         vsk = vsock_sk(sk);
1221
1222         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1223         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1224                 lock_sock(sk);
1225                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1226                                 VMADDR_PORT_ANY);
1227                 sock->state = SS_UNCONNECTED;
1228                 release_sock(sk);
1229                 return 0;
1230         } else if (err != 0)
1231                 return -EINVAL;
1232
1233         lock_sock(sk);
1234
1235         err = vsock_auto_bind(vsk);
1236         if (err)
1237                 goto out;
1238
1239         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1240                                          remote_addr->svm_port)) {
1241                 err = -EINVAL;
1242                 goto out;
1243         }
1244
1245         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1246         sock->state = SS_CONNECTED;
1247
1248 out:
1249         release_sock(sk);
1250         return err;
1251 }
1252
1253 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1254                                size_t len, int flags)
1255 {
1256         struct vsock_sock *vsk = vsock_sk(sock->sk);
1257
1258         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1259 }
1260
1261 static const struct proto_ops vsock_dgram_ops = {
1262         .family = PF_VSOCK,
1263         .owner = THIS_MODULE,
1264         .release = vsock_release,
1265         .bind = vsock_bind,
1266         .connect = vsock_dgram_connect,
1267         .socketpair = sock_no_socketpair,
1268         .accept = sock_no_accept,
1269         .getname = vsock_getname,
1270         .poll = vsock_poll,
1271         .ioctl = sock_no_ioctl,
1272         .listen = sock_no_listen,
1273         .shutdown = vsock_shutdown,
1274         .sendmsg = vsock_dgram_sendmsg,
1275         .recvmsg = vsock_dgram_recvmsg,
1276         .mmap = sock_no_mmap,
1277         .sendpage = sock_no_sendpage,
1278 };
1279
1280 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1281 {
1282         const struct vsock_transport *transport = vsk->transport;
1283
1284         if (!transport || !transport->cancel_pkt)
1285                 return -EOPNOTSUPP;
1286
1287         return transport->cancel_pkt(vsk);
1288 }
1289
1290 static void vsock_connect_timeout(struct work_struct *work)
1291 {
1292         struct sock *sk;
1293         struct vsock_sock *vsk;
1294
1295         vsk = container_of(work, struct vsock_sock, connect_work.work);
1296         sk = sk_vsock(vsk);
1297
1298         lock_sock(sk);
1299         if (sk->sk_state == TCP_SYN_SENT &&
1300             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1301                 sk->sk_state = TCP_CLOSE;
1302                 sk->sk_socket->state = SS_UNCONNECTED;
1303                 sk->sk_err = ETIMEDOUT;
1304                 sk_error_report(sk);
1305                 vsock_transport_cancel_pkt(vsk);
1306         }
1307         release_sock(sk);
1308
1309         sock_put(sk);
1310 }
1311
1312 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1313                          int addr_len, int flags)
1314 {
1315         int err;
1316         struct sock *sk;
1317         struct vsock_sock *vsk;
1318         const struct vsock_transport *transport;
1319         struct sockaddr_vm *remote_addr;
1320         long timeout;
1321         DEFINE_WAIT(wait);
1322
1323         err = 0;
1324         sk = sock->sk;
1325         vsk = vsock_sk(sk);
1326
1327         lock_sock(sk);
1328
1329         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1330         switch (sock->state) {
1331         case SS_CONNECTED:
1332                 err = -EISCONN;
1333                 goto out;
1334         case SS_DISCONNECTING:
1335                 err = -EINVAL;
1336                 goto out;
1337         case SS_CONNECTING:
1338                 /* This continues on so we can move sock into the SS_CONNECTED
1339                  * state once the connection has completed (at which point err
1340                  * will be set to zero also).  Otherwise, we will either wait
1341                  * for the connection or return -EALREADY should this be a
1342                  * non-blocking call.
1343                  */
1344                 err = -EALREADY;
1345                 if (flags & O_NONBLOCK)
1346                         goto out;
1347                 break;
1348         default:
1349                 if ((sk->sk_state == TCP_LISTEN) ||
1350                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1351                         err = -EINVAL;
1352                         goto out;
1353                 }
1354
1355                 /* Set the remote address that we are connecting to. */
1356                 memcpy(&vsk->remote_addr, remote_addr,
1357                        sizeof(vsk->remote_addr));
1358
1359                 err = vsock_assign_transport(vsk, NULL);
1360                 if (err)
1361                         goto out;
1362
1363                 transport = vsk->transport;
1364
1365                 /* The hypervisor and well-known contexts do not have socket
1366                  * endpoints.
1367                  */
1368                 if (!transport ||
1369                     !transport->stream_allow(remote_addr->svm_cid,
1370                                              remote_addr->svm_port)) {
1371                         err = -ENETUNREACH;
1372                         goto out;
1373                 }
1374
1375                 err = vsock_auto_bind(vsk);
1376                 if (err)
1377                         goto out;
1378
1379                 sk->sk_state = TCP_SYN_SENT;
1380
1381                 err = transport->connect(vsk);
1382                 if (err < 0)
1383                         goto out;
1384
1385                 /* Mark sock as connecting and set the error code to in
1386                  * progress in case this is a non-blocking connect.
1387                  */
1388                 sock->state = SS_CONNECTING;
1389                 err = -EINPROGRESS;
1390         }
1391
1392         /* The receive path will handle all communication until we are able to
1393          * enter the connected state.  Here we wait for the connection to be
1394          * completed or a notification of an error.
1395          */
1396         timeout = vsk->connect_timeout;
1397         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1398
1399         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1400                 if (flags & O_NONBLOCK) {
1401                         /* If we're not going to block, we schedule a timeout
1402                          * function to generate a timeout on the connection
1403                          * attempt, in case the peer doesn't respond in a
1404                          * timely manner. We hold on to the socket until the
1405                          * timeout fires.
1406                          */
1407                         sock_hold(sk);
1408
1409                         /* If the timeout function is already scheduled,
1410                          * reschedule it, then ungrab the socket refcount to
1411                          * keep it balanced.
1412                          */
1413                         if (mod_delayed_work(system_wq, &vsk->connect_work,
1414                                              timeout))
1415                                 sock_put(sk);
1416
1417                         /* Skip ahead to preserve error code set above. */
1418                         goto out_wait;
1419                 }
1420
1421                 release_sock(sk);
1422                 timeout = schedule_timeout(timeout);
1423                 lock_sock(sk);
1424
1425                 if (signal_pending(current)) {
1426                         err = sock_intr_errno(timeout);
1427                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1428                         sock->state = SS_UNCONNECTED;
1429                         vsock_transport_cancel_pkt(vsk);
1430                         vsock_remove_connected(vsk);
1431                         goto out_wait;
1432                 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1433                         err = -ETIMEDOUT;
1434                         sk->sk_state = TCP_CLOSE;
1435                         sock->state = SS_UNCONNECTED;
1436                         vsock_transport_cancel_pkt(vsk);
1437                         goto out_wait;
1438                 }
1439
1440                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1441         }
1442
1443         if (sk->sk_err) {
1444                 err = -sk->sk_err;
1445                 sk->sk_state = TCP_CLOSE;
1446                 sock->state = SS_UNCONNECTED;
1447         } else {
1448                 err = 0;
1449         }
1450
1451 out_wait:
1452         finish_wait(sk_sleep(sk), &wait);
1453 out:
1454         release_sock(sk);
1455         return err;
1456 }
1457
1458 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1459                         bool kern)
1460 {
1461         struct sock *listener;
1462         int err;
1463         struct sock *connected;
1464         struct vsock_sock *vconnected;
1465         long timeout;
1466         DEFINE_WAIT(wait);
1467
1468         err = 0;
1469         listener = sock->sk;
1470
1471         lock_sock(listener);
1472
1473         if (!sock_type_connectible(sock->type)) {
1474                 err = -EOPNOTSUPP;
1475                 goto out;
1476         }
1477
1478         if (listener->sk_state != TCP_LISTEN) {
1479                 err = -EINVAL;
1480                 goto out;
1481         }
1482
1483         /* Wait for children sockets to appear; these are the new sockets
1484          * created upon connection establishment.
1485          */
1486         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1487         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1488
1489         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1490                listener->sk_err == 0) {
1491                 release_sock(listener);
1492                 timeout = schedule_timeout(timeout);
1493                 finish_wait(sk_sleep(listener), &wait);
1494                 lock_sock(listener);
1495
1496                 if (signal_pending(current)) {
1497                         err = sock_intr_errno(timeout);
1498                         goto out;
1499                 } else if (timeout == 0) {
1500                         err = -EAGAIN;
1501                         goto out;
1502                 }
1503
1504                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1505         }
1506         finish_wait(sk_sleep(listener), &wait);
1507
1508         if (listener->sk_err)
1509                 err = -listener->sk_err;
1510
1511         if (connected) {
1512                 sk_acceptq_removed(listener);
1513
1514                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1515                 vconnected = vsock_sk(connected);
1516
1517                 /* If the listener socket has received an error, then we should
1518                  * reject this socket and return.  Note that we simply mark the
1519                  * socket rejected, drop our reference, and let the cleanup
1520                  * function handle the cleanup; the fact that we found it in
1521                  * the listener's accept queue guarantees that the cleanup
1522                  * function hasn't run yet.
1523                  */
1524                 if (err) {
1525                         vconnected->rejected = true;
1526                 } else {
1527                         newsock->state = SS_CONNECTED;
1528                         sock_graft(connected, newsock);
1529                 }
1530
1531                 release_sock(connected);
1532                 sock_put(connected);
1533         }
1534
1535 out:
1536         release_sock(listener);
1537         return err;
1538 }
1539
1540 static int vsock_listen(struct socket *sock, int backlog)
1541 {
1542         int err;
1543         struct sock *sk;
1544         struct vsock_sock *vsk;
1545
1546         sk = sock->sk;
1547
1548         lock_sock(sk);
1549
1550         if (!sock_type_connectible(sk->sk_type)) {
1551                 err = -EOPNOTSUPP;
1552                 goto out;
1553         }
1554
1555         if (sock->state != SS_UNCONNECTED) {
1556                 err = -EINVAL;
1557                 goto out;
1558         }
1559
1560         vsk = vsock_sk(sk);
1561
1562         if (!vsock_addr_bound(&vsk->local_addr)) {
1563                 err = -EINVAL;
1564                 goto out;
1565         }
1566
1567         sk->sk_max_ack_backlog = backlog;
1568         sk->sk_state = TCP_LISTEN;
1569
1570         err = 0;
1571
1572 out:
1573         release_sock(sk);
1574         return err;
1575 }
1576
1577 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1578                                      const struct vsock_transport *transport,
1579                                      u64 val)
1580 {
1581         if (val > vsk->buffer_max_size)
1582                 val = vsk->buffer_max_size;
1583
1584         if (val < vsk->buffer_min_size)
1585                 val = vsk->buffer_min_size;
1586
1587         if (val != vsk->buffer_size &&
1588             transport && transport->notify_buffer_size)
1589                 transport->notify_buffer_size(vsk, &val);
1590
1591         vsk->buffer_size = val;
1592 }
1593
1594 static int vsock_connectible_setsockopt(struct socket *sock,
1595                                         int level,
1596                                         int optname,
1597                                         sockptr_t optval,
1598                                         unsigned int optlen)
1599 {
1600         int err;
1601         struct sock *sk;
1602         struct vsock_sock *vsk;
1603         const struct vsock_transport *transport;
1604         u64 val;
1605
1606         if (level != AF_VSOCK)
1607                 return -ENOPROTOOPT;
1608
1609 #define COPY_IN(_v)                                       \
1610         do {                                              \
1611                 if (optlen < sizeof(_v)) {                \
1612                         err = -EINVAL;                    \
1613                         goto exit;                        \
1614                 }                                         \
1615                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1616                         err = -EFAULT;                                  \
1617                         goto exit;                                      \
1618                 }                                                       \
1619         } while (0)
1620
1621         err = 0;
1622         sk = sock->sk;
1623         vsk = vsock_sk(sk);
1624
1625         lock_sock(sk);
1626
1627         transport = vsk->transport;
1628
1629         switch (optname) {
1630         case SO_VM_SOCKETS_BUFFER_SIZE:
1631                 COPY_IN(val);
1632                 vsock_update_buffer_size(vsk, transport, val);
1633                 break;
1634
1635         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1636                 COPY_IN(val);
1637                 vsk->buffer_max_size = val;
1638                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1639                 break;
1640
1641         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1642                 COPY_IN(val);
1643                 vsk->buffer_min_size = val;
1644                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1645                 break;
1646
1647         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1648         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1649                 struct __kernel_sock_timeval tv;
1650
1651                 err = sock_copy_user_timeval(&tv, optval, optlen,
1652                                              optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1653                 if (err)
1654                         break;
1655                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1656                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1657                         vsk->connect_timeout = tv.tv_sec * HZ +
1658                                 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1659                         if (vsk->connect_timeout == 0)
1660                                 vsk->connect_timeout =
1661                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1662
1663                 } else {
1664                         err = -ERANGE;
1665                 }
1666                 break;
1667         }
1668
1669         default:
1670                 err = -ENOPROTOOPT;
1671                 break;
1672         }
1673
1674 #undef COPY_IN
1675
1676 exit:
1677         release_sock(sk);
1678         return err;
1679 }
1680
1681 static int vsock_connectible_getsockopt(struct socket *sock,
1682                                         int level, int optname,
1683                                         char __user *optval,
1684                                         int __user *optlen)
1685 {
1686         struct sock *sk = sock->sk;
1687         struct vsock_sock *vsk = vsock_sk(sk);
1688
1689         union {
1690                 u64 val64;
1691                 struct old_timeval32 tm32;
1692                 struct __kernel_old_timeval tm;
1693                 struct  __kernel_sock_timeval stm;
1694         } v;
1695
1696         int lv = sizeof(v.val64);
1697         int len;
1698
1699         if (level != AF_VSOCK)
1700                 return -ENOPROTOOPT;
1701
1702         if (get_user(len, optlen))
1703                 return -EFAULT;
1704
1705         memset(&v, 0, sizeof(v));
1706
1707         switch (optname) {
1708         case SO_VM_SOCKETS_BUFFER_SIZE:
1709                 v.val64 = vsk->buffer_size;
1710                 break;
1711
1712         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1713                 v.val64 = vsk->buffer_max_size;
1714                 break;
1715
1716         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1717                 v.val64 = vsk->buffer_min_size;
1718                 break;
1719
1720         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1721         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1722                 lv = sock_get_timeout(vsk->connect_timeout, &v,
1723                                       optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1724                 break;
1725
1726         default:
1727                 return -ENOPROTOOPT;
1728         }
1729
1730         if (len < lv)
1731                 return -EINVAL;
1732         if (len > lv)
1733                 len = lv;
1734         if (copy_to_user(optval, &v, len))
1735                 return -EFAULT;
1736
1737         if (put_user(len, optlen))
1738                 return -EFAULT;
1739
1740         return 0;
1741 }
1742
1743 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1744                                      size_t len)
1745 {
1746         struct sock *sk;
1747         struct vsock_sock *vsk;
1748         const struct vsock_transport *transport;
1749         ssize_t total_written;
1750         long timeout;
1751         int err;
1752         struct vsock_transport_send_notify_data send_data;
1753         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1754
1755         sk = sock->sk;
1756         vsk = vsock_sk(sk);
1757         total_written = 0;
1758         err = 0;
1759
1760         if (msg->msg_flags & MSG_OOB)
1761                 return -EOPNOTSUPP;
1762
1763         lock_sock(sk);
1764
1765         transport = vsk->transport;
1766
1767         /* Callers should not provide a destination with connection oriented
1768          * sockets.
1769          */
1770         if (msg->msg_namelen) {
1771                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1772                 goto out;
1773         }
1774
1775         /* Send data only if both sides are not shutdown in the direction. */
1776         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1777             vsk->peer_shutdown & RCV_SHUTDOWN) {
1778                 err = -EPIPE;
1779                 goto out;
1780         }
1781
1782         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1783             !vsock_addr_bound(&vsk->local_addr)) {
1784                 err = -ENOTCONN;
1785                 goto out;
1786         }
1787
1788         if (!vsock_addr_bound(&vsk->remote_addr)) {
1789                 err = -EDESTADDRREQ;
1790                 goto out;
1791         }
1792
1793         /* Wait for room in the produce queue to enqueue our user's data. */
1794         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1795
1796         err = transport->notify_send_init(vsk, &send_data);
1797         if (err < 0)
1798                 goto out;
1799
1800         while (total_written < len) {
1801                 ssize_t written;
1802
1803                 add_wait_queue(sk_sleep(sk), &wait);
1804                 while (vsock_stream_has_space(vsk) == 0 &&
1805                        sk->sk_err == 0 &&
1806                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1807                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1808
1809                         /* Don't wait for non-blocking sockets. */
1810                         if (timeout == 0) {
1811                                 err = -EAGAIN;
1812                                 remove_wait_queue(sk_sleep(sk), &wait);
1813                                 goto out_err;
1814                         }
1815
1816                         err = transport->notify_send_pre_block(vsk, &send_data);
1817                         if (err < 0) {
1818                                 remove_wait_queue(sk_sleep(sk), &wait);
1819                                 goto out_err;
1820                         }
1821
1822                         release_sock(sk);
1823                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1824                         lock_sock(sk);
1825                         if (signal_pending(current)) {
1826                                 err = sock_intr_errno(timeout);
1827                                 remove_wait_queue(sk_sleep(sk), &wait);
1828                                 goto out_err;
1829                         } else if (timeout == 0) {
1830                                 err = -EAGAIN;
1831                                 remove_wait_queue(sk_sleep(sk), &wait);
1832                                 goto out_err;
1833                         }
1834                 }
1835                 remove_wait_queue(sk_sleep(sk), &wait);
1836
1837                 /* These checks occur both as part of and after the loop
1838                  * conditional since we need to check before and after
1839                  * sleeping.
1840                  */
1841                 if (sk->sk_err) {
1842                         err = -sk->sk_err;
1843                         goto out_err;
1844                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1845                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1846                         err = -EPIPE;
1847                         goto out_err;
1848                 }
1849
1850                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1851                 if (err < 0)
1852                         goto out_err;
1853
1854                 /* Note that enqueue will only write as many bytes as are free
1855                  * in the produce queue, so we don't need to ensure len is
1856                  * smaller than the queue size.  It is the caller's
1857                  * responsibility to check how many bytes we were able to send.
1858                  */
1859
1860                 if (sk->sk_type == SOCK_SEQPACKET) {
1861                         written = transport->seqpacket_enqueue(vsk,
1862                                                 msg, len - total_written);
1863                 } else {
1864                         written = transport->stream_enqueue(vsk,
1865                                         msg, len - total_written);
1866                 }
1867                 if (written < 0) {
1868                         err = -ENOMEM;
1869                         goto out_err;
1870                 }
1871
1872                 total_written += written;
1873
1874                 err = transport->notify_send_post_enqueue(
1875                                 vsk, written, &send_data);
1876                 if (err < 0)
1877                         goto out_err;
1878
1879         }
1880
1881 out_err:
1882         if (total_written > 0) {
1883                 /* Return number of written bytes only if:
1884                  * 1) SOCK_STREAM socket.
1885                  * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1886                  */
1887                 if (sk->sk_type == SOCK_STREAM || total_written == len)
1888                         err = total_written;
1889         }
1890 out:
1891         release_sock(sk);
1892         return err;
1893 }
1894
1895 static int vsock_connectible_wait_data(struct sock *sk,
1896                                        struct wait_queue_entry *wait,
1897                                        long timeout,
1898                                        struct vsock_transport_recv_notify_data *recv_data,
1899                                        size_t target)
1900 {
1901         const struct vsock_transport *transport;
1902         struct vsock_sock *vsk;
1903         s64 data;
1904         int err;
1905
1906         vsk = vsock_sk(sk);
1907         err = 0;
1908         transport = vsk->transport;
1909
1910         while (1) {
1911                 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1912                 data = vsock_connectible_has_data(vsk);
1913                 if (data != 0)
1914                         break;
1915
1916                 if (sk->sk_err != 0 ||
1917                     (sk->sk_shutdown & RCV_SHUTDOWN) ||
1918                     (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1919                         break;
1920                 }
1921
1922                 /* Don't wait for non-blocking sockets. */
1923                 if (timeout == 0) {
1924                         err = -EAGAIN;
1925                         break;
1926                 }
1927
1928                 if (recv_data) {
1929                         err = transport->notify_recv_pre_block(vsk, target, recv_data);
1930                         if (err < 0)
1931                                 break;
1932                 }
1933
1934                 release_sock(sk);
1935                 timeout = schedule_timeout(timeout);
1936                 lock_sock(sk);
1937
1938                 if (signal_pending(current)) {
1939                         err = sock_intr_errno(timeout);
1940                         break;
1941                 } else if (timeout == 0) {
1942                         err = -EAGAIN;
1943                         break;
1944                 }
1945         }
1946
1947         finish_wait(sk_sleep(sk), wait);
1948
1949         if (err)
1950                 return err;
1951
1952         /* Internal transport error when checking for available
1953          * data. XXX This should be changed to a connection
1954          * reset in a later change.
1955          */
1956         if (data < 0)
1957                 return -ENOMEM;
1958
1959         return data;
1960 }
1961
1962 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1963                                   size_t len, int flags)
1964 {
1965         struct vsock_transport_recv_notify_data recv_data;
1966         const struct vsock_transport *transport;
1967         struct vsock_sock *vsk;
1968         ssize_t copied;
1969         size_t target;
1970         long timeout;
1971         int err;
1972
1973         DEFINE_WAIT(wait);
1974
1975         vsk = vsock_sk(sk);
1976         transport = vsk->transport;
1977
1978         /* We must not copy less than target bytes into the user's buffer
1979          * before returning successfully, so we wait for the consume queue to
1980          * have that much data to consume before dequeueing.  Note that this
1981          * makes it impossible to handle cases where target is greater than the
1982          * queue size.
1983          */
1984         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1985         if (target >= transport->stream_rcvhiwat(vsk)) {
1986                 err = -ENOMEM;
1987                 goto out;
1988         }
1989         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1990         copied = 0;
1991
1992         err = transport->notify_recv_init(vsk, target, &recv_data);
1993         if (err < 0)
1994                 goto out;
1995
1996
1997         while (1) {
1998                 ssize_t read;
1999
2000                 err = vsock_connectible_wait_data(sk, &wait, timeout,
2001                                                   &recv_data, target);
2002                 if (err <= 0)
2003                         break;
2004
2005                 err = transport->notify_recv_pre_dequeue(vsk, target,
2006                                                          &recv_data);
2007                 if (err < 0)
2008                         break;
2009
2010                 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2011                 if (read < 0) {
2012                         err = -ENOMEM;
2013                         break;
2014                 }
2015
2016                 copied += read;
2017
2018                 err = transport->notify_recv_post_dequeue(vsk, target, read,
2019                                                 !(flags & MSG_PEEK), &recv_data);
2020                 if (err < 0)
2021                         goto out;
2022
2023                 if (read >= target || flags & MSG_PEEK)
2024                         break;
2025
2026                 target -= read;
2027         }
2028
2029         if (sk->sk_err)
2030                 err = -sk->sk_err;
2031         else if (sk->sk_shutdown & RCV_SHUTDOWN)
2032                 err = 0;
2033
2034         if (copied > 0)
2035                 err = copied;
2036
2037 out:
2038         return err;
2039 }
2040
2041 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2042                                      size_t len, int flags)
2043 {
2044         const struct vsock_transport *transport;
2045         struct vsock_sock *vsk;
2046         ssize_t msg_len;
2047         long timeout;
2048         int err = 0;
2049         DEFINE_WAIT(wait);
2050
2051         vsk = vsock_sk(sk);
2052         transport = vsk->transport;
2053
2054         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2055
2056         err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2057         if (err <= 0)
2058                 goto out;
2059
2060         msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2061
2062         if (msg_len < 0) {
2063                 err = -ENOMEM;
2064                 goto out;
2065         }
2066
2067         if (sk->sk_err) {
2068                 err = -sk->sk_err;
2069         } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2070                 err = 0;
2071         } else {
2072                 /* User sets MSG_TRUNC, so return real length of
2073                  * packet.
2074                  */
2075                 if (flags & MSG_TRUNC)
2076                         err = msg_len;
2077                 else
2078                         err = len - msg_data_left(msg);
2079
2080                 /* Always set MSG_TRUNC if real length of packet is
2081                  * bigger than user's buffer.
2082                  */
2083                 if (msg_len > len)
2084                         msg->msg_flags |= MSG_TRUNC;
2085         }
2086
2087 out:
2088         return err;
2089 }
2090
2091 static int
2092 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2093                           int flags)
2094 {
2095         struct sock *sk;
2096         struct vsock_sock *vsk;
2097         const struct vsock_transport *transport;
2098         int err;
2099
2100         sk = sock->sk;
2101
2102         if (unlikely(flags & MSG_ERRQUEUE))
2103                 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2104
2105         vsk = vsock_sk(sk);
2106         err = 0;
2107
2108         lock_sock(sk);
2109
2110         transport = vsk->transport;
2111
2112         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2113                 /* Recvmsg is supposed to return 0 if a peer performs an
2114                  * orderly shutdown. Differentiate between that case and when a
2115                  * peer has not connected or a local shutdown occurred with the
2116                  * SOCK_DONE flag.
2117                  */
2118                 if (sock_flag(sk, SOCK_DONE))
2119                         err = 0;
2120                 else
2121                         err = -ENOTCONN;
2122
2123                 goto out;
2124         }
2125
2126         if (flags & MSG_OOB) {
2127                 err = -EOPNOTSUPP;
2128                 goto out;
2129         }
2130
2131         /* We don't check peer_shutdown flag here since peer may actually shut
2132          * down, but there can be data in the queue that a local socket can
2133          * receive.
2134          */
2135         if (sk->sk_shutdown & RCV_SHUTDOWN) {
2136                 err = 0;
2137                 goto out;
2138         }
2139
2140         /* It is valid on Linux to pass in a zero-length receive buffer.  This
2141          * is not an error.  We may as well bail out now.
2142          */
2143         if (!len) {
2144                 err = 0;
2145                 goto out;
2146         }
2147
2148         if (sk->sk_type == SOCK_STREAM)
2149                 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2150         else
2151                 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2152
2153 out:
2154         release_sock(sk);
2155         return err;
2156 }
2157
2158 static int vsock_set_rcvlowat(struct sock *sk, int val)
2159 {
2160         const struct vsock_transport *transport;
2161         struct vsock_sock *vsk;
2162
2163         vsk = vsock_sk(sk);
2164
2165         if (val > vsk->buffer_size)
2166                 return -EINVAL;
2167
2168         transport = vsk->transport;
2169
2170         if (transport && transport->set_rcvlowat)
2171                 return transport->set_rcvlowat(vsk, val);
2172
2173         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2174         return 0;
2175 }
2176
2177 static const struct proto_ops vsock_stream_ops = {
2178         .family = PF_VSOCK,
2179         .owner = THIS_MODULE,
2180         .release = vsock_release,
2181         .bind = vsock_bind,
2182         .connect = vsock_connect,
2183         .socketpair = sock_no_socketpair,
2184         .accept = vsock_accept,
2185         .getname = vsock_getname,
2186         .poll = vsock_poll,
2187         .ioctl = sock_no_ioctl,
2188         .listen = vsock_listen,
2189         .shutdown = vsock_shutdown,
2190         .setsockopt = vsock_connectible_setsockopt,
2191         .getsockopt = vsock_connectible_getsockopt,
2192         .sendmsg = vsock_connectible_sendmsg,
2193         .recvmsg = vsock_connectible_recvmsg,
2194         .mmap = sock_no_mmap,
2195         .sendpage = sock_no_sendpage,
2196         .set_rcvlowat = vsock_set_rcvlowat,
2197 };
2198
2199 static const struct proto_ops vsock_seqpacket_ops = {
2200         .family = PF_VSOCK,
2201         .owner = THIS_MODULE,
2202         .release = vsock_release,
2203         .bind = vsock_bind,
2204         .connect = vsock_connect,
2205         .socketpair = sock_no_socketpair,
2206         .accept = vsock_accept,
2207         .getname = vsock_getname,
2208         .poll = vsock_poll,
2209         .ioctl = sock_no_ioctl,
2210         .listen = vsock_listen,
2211         .shutdown = vsock_shutdown,
2212         .setsockopt = vsock_connectible_setsockopt,
2213         .getsockopt = vsock_connectible_getsockopt,
2214         .sendmsg = vsock_connectible_sendmsg,
2215         .recvmsg = vsock_connectible_recvmsg,
2216         .mmap = sock_no_mmap,
2217         .sendpage = sock_no_sendpage,
2218 };
2219
2220 static int vsock_create(struct net *net, struct socket *sock,
2221                         int protocol, int kern)
2222 {
2223         struct vsock_sock *vsk;
2224         struct sock *sk;
2225         int ret;
2226
2227         if (!sock)
2228                 return -EINVAL;
2229
2230         if (protocol && protocol != PF_VSOCK)
2231                 return -EPROTONOSUPPORT;
2232
2233         switch (sock->type) {
2234         case SOCK_DGRAM:
2235                 sock->ops = &vsock_dgram_ops;
2236                 break;
2237         case SOCK_STREAM:
2238                 sock->ops = &vsock_stream_ops;
2239                 break;
2240         case SOCK_SEQPACKET:
2241                 sock->ops = &vsock_seqpacket_ops;
2242                 break;
2243         default:
2244                 return -ESOCKTNOSUPPORT;
2245         }
2246
2247         sock->state = SS_UNCONNECTED;
2248
2249         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2250         if (!sk)
2251                 return -ENOMEM;
2252
2253         vsk = vsock_sk(sk);
2254
2255         if (sock->type == SOCK_DGRAM) {
2256                 ret = vsock_assign_transport(vsk, NULL);
2257                 if (ret < 0) {
2258                         sock_put(sk);
2259                         return ret;
2260                 }
2261         }
2262
2263         vsock_insert_unbound(vsk);
2264
2265         return 0;
2266 }
2267
2268 static const struct net_proto_family vsock_family_ops = {
2269         .family = AF_VSOCK,
2270         .create = vsock_create,
2271         .owner = THIS_MODULE,
2272 };
2273
2274 static long vsock_dev_do_ioctl(struct file *filp,
2275                                unsigned int cmd, void __user *ptr)
2276 {
2277         u32 __user *p = ptr;
2278         u32 cid = VMADDR_CID_ANY;
2279         int retval = 0;
2280
2281         switch (cmd) {
2282         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2283                 /* To be compatible with the VMCI behavior, we prioritize the
2284                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2285                  */
2286                 if (transport_g2h)
2287                         cid = transport_g2h->get_local_cid();
2288                 else if (transport_h2g)
2289                         cid = transport_h2g->get_local_cid();
2290
2291                 if (put_user(cid, p) != 0)
2292                         retval = -EFAULT;
2293                 break;
2294
2295         default:
2296                 retval = -ENOIOCTLCMD;
2297         }
2298
2299         return retval;
2300 }
2301
2302 static long vsock_dev_ioctl(struct file *filp,
2303                             unsigned int cmd, unsigned long arg)
2304 {
2305         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2306 }
2307
2308 #ifdef CONFIG_COMPAT
2309 static long vsock_dev_compat_ioctl(struct file *filp,
2310                                    unsigned int cmd, unsigned long arg)
2311 {
2312         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2313 }
2314 #endif
2315
2316 static const struct file_operations vsock_device_ops = {
2317         .owner          = THIS_MODULE,
2318         .unlocked_ioctl = vsock_dev_ioctl,
2319 #ifdef CONFIG_COMPAT
2320         .compat_ioctl   = vsock_dev_compat_ioctl,
2321 #endif
2322         .open           = nonseekable_open,
2323 };
2324
2325 static struct miscdevice vsock_device = {
2326         .name           = "vsock",
2327         .fops           = &vsock_device_ops,
2328 };
2329
2330 static int __init vsock_init(void)
2331 {
2332         int err = 0;
2333
2334         vsock_init_tables();
2335
2336         vsock_proto.owner = THIS_MODULE;
2337         vsock_device.minor = MISC_DYNAMIC_MINOR;
2338         err = misc_register(&vsock_device);
2339         if (err) {
2340                 pr_err("Failed to register misc device\n");
2341                 goto err_reset_transport;
2342         }
2343
2344         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2345         if (err) {
2346                 pr_err("Cannot register vsock protocol\n");
2347                 goto err_deregister_misc;
2348         }
2349
2350         err = sock_register(&vsock_family_ops);
2351         if (err) {
2352                 pr_err("could not register af_vsock (%d) address family: %d\n",
2353                        AF_VSOCK, err);
2354                 goto err_unregister_proto;
2355         }
2356
2357         return 0;
2358
2359 err_unregister_proto:
2360         proto_unregister(&vsock_proto);
2361 err_deregister_misc:
2362         misc_deregister(&vsock_device);
2363 err_reset_transport:
2364         return err;
2365 }
2366
2367 static void __exit vsock_exit(void)
2368 {
2369         misc_deregister(&vsock_device);
2370         sock_unregister(AF_VSOCK);
2371         proto_unregister(&vsock_proto);
2372 }
2373
2374 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2375 {
2376         return vsk->transport;
2377 }
2378 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2379
2380 int vsock_core_register(const struct vsock_transport *t, int features)
2381 {
2382         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2383         int err = mutex_lock_interruptible(&vsock_register_mutex);
2384
2385         if (err)
2386                 return err;
2387
2388         t_h2g = transport_h2g;
2389         t_g2h = transport_g2h;
2390         t_dgram = transport_dgram;
2391         t_local = transport_local;
2392
2393         if (features & VSOCK_TRANSPORT_F_H2G) {
2394                 if (t_h2g) {
2395                         err = -EBUSY;
2396                         goto err_busy;
2397                 }
2398                 t_h2g = t;
2399         }
2400
2401         if (features & VSOCK_TRANSPORT_F_G2H) {
2402                 if (t_g2h) {
2403                         err = -EBUSY;
2404                         goto err_busy;
2405                 }
2406                 t_g2h = t;
2407         }
2408
2409         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2410                 if (t_dgram) {
2411                         err = -EBUSY;
2412                         goto err_busy;
2413                 }
2414                 t_dgram = t;
2415         }
2416
2417         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2418                 if (t_local) {
2419                         err = -EBUSY;
2420                         goto err_busy;
2421                 }
2422                 t_local = t;
2423         }
2424
2425         transport_h2g = t_h2g;
2426         transport_g2h = t_g2h;
2427         transport_dgram = t_dgram;
2428         transport_local = t_local;
2429
2430 err_busy:
2431         mutex_unlock(&vsock_register_mutex);
2432         return err;
2433 }
2434 EXPORT_SYMBOL_GPL(vsock_core_register);
2435
2436 void vsock_core_unregister(const struct vsock_transport *t)
2437 {
2438         mutex_lock(&vsock_register_mutex);
2439
2440         if (transport_h2g == t)
2441                 transport_h2g = NULL;
2442
2443         if (transport_g2h == t)
2444                 transport_g2h = NULL;
2445
2446         if (transport_dgram == t)
2447                 transport_dgram = NULL;
2448
2449         if (transport_local == t)
2450                 transport_local = NULL;
2451
2452         mutex_unlock(&vsock_register_mutex);
2453 }
2454 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2455
2456 module_init(vsock_init);
2457 module_exit(vsock_exit);
2458
2459 MODULE_AUTHOR("VMware, Inc.");
2460 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2461 MODULE_VERSION("1.0.2.0-k");
2462 MODULE_LICENSE("GPL v2");