GNU Linux-libre 5.10.217-gnu1
[releases.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static struct file_operations kvm_chardev_ops;
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120                            unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123                                   unsigned long arg);
124 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
125 #else
126 /*
127  * For architectures that don't implement a compat infrastructure,
128  * adopt a double line of defense:
129  * - Prevent a compat task from opening /dev/kvm
130  * - If the open has been done by a 64bit task, and the KVM fd
131  *   passed to a compat task, let the ioctls fail.
132  */
133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134                                 unsigned long arg) { return -EINVAL; }
135
136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 {
138         return is_compat_task() ? -ENODEV : 0;
139 }
140 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
141                         .open           = kvm_no_compat_open
142 #endif
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
145
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158
159 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
160                                                    unsigned long start, unsigned long end)
161 {
162 }
163
164 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
165 {
166 }
167
168 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
169 {
170         /*
171          * The metadata used by is_zone_device_page() to determine whether or
172          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
173          * the device has been pinned, e.g. by get_user_pages().  WARN if the
174          * page_count() is zero to help detect bad usage of this helper.
175          */
176         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
177                 return false;
178
179         return is_zone_device_page(pfn_to_page(pfn));
180 }
181
182 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
183 {
184         /*
185          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
186          * perspective they are "normal" pages, albeit with slightly different
187          * usage rules.
188          */
189         if (pfn_valid(pfn))
190                 return PageReserved(pfn_to_page(pfn)) &&
191                        !is_zero_pfn(pfn) &&
192                        !kvm_is_zone_device_pfn(pfn);
193
194         return true;
195 }
196
197 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
198 {
199         struct page *page = pfn_to_page(pfn);
200
201         if (!PageTransCompoundMap(page))
202                 return false;
203
204         return is_transparent_hugepage(compound_head(page));
205 }
206
207 /*
208  * Switches to specified vcpu, until a matching vcpu_put()
209  */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212         int cpu = get_cpu();
213
214         __this_cpu_write(kvm_running_vcpu, vcpu);
215         preempt_notifier_register(&vcpu->preempt_notifier);
216         kvm_arch_vcpu_load(vcpu, cpu);
217         put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223         preempt_disable();
224         kvm_arch_vcpu_put(vcpu);
225         preempt_notifier_unregister(&vcpu->preempt_notifier);
226         __this_cpu_write(kvm_running_vcpu, NULL);
227         preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236         /*
237          * We need to wait for the VCPU to reenable interrupts and get out of
238          * READING_SHADOW_PAGE_TABLES mode.
239          */
240         if (req & KVM_REQUEST_WAIT)
241                 return mode != OUTSIDE_GUEST_MODE;
242
243         /*
244          * Need to kick a running VCPU, but otherwise there is nothing to do.
245          */
246         return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_flush(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
254 {
255         const struct cpumask *cpus;
256
257         if (likely(cpumask_available(tmp)))
258                 cpus = tmp;
259         else
260                 cpus = cpu_online_mask;
261
262         if (cpumask_empty(cpus))
263                 return false;
264
265         smp_call_function_many(cpus, ack_flush, NULL, wait);
266         return true;
267 }
268
269 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
270                                   unsigned int req, cpumask_var_t tmp,
271                                   int current_cpu)
272 {
273         int cpu;
274
275         kvm_make_request(req, vcpu);
276
277         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                 return;
279
280         /*
281          * tmp can be "unavailable" if cpumasks are allocated off stack as
282          * allocation of the mask is deliberately not fatal and is handled by
283          * falling back to kicking all online CPUs.
284          */
285         if (!cpumask_available(tmp))
286                 return;
287
288         /*
289          * Note, the vCPU could get migrated to a different pCPU at any point
290          * after kvm_request_needs_ipi(), which could result in sending an IPI
291          * to the previous pCPU.  But, that's OK because the purpose of the IPI
292          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
293          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
294          * after this point is also OK, as the requirement is only that KVM wait
295          * for vCPUs that were reading SPTEs _before_ any changes were
296          * finalized. See kvm_vcpu_kick() for more details on handling requests.
297          */
298         if (kvm_request_needs_ipi(vcpu, req)) {
299                 cpu = READ_ONCE(vcpu->cpu);
300                 if (cpu != -1 && cpu != current_cpu)
301                         __cpumask_set_cpu(cpu, tmp);
302         }
303 }
304
305 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
306                                  struct kvm_vcpu *except,
307                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
308 {
309         struct kvm_vcpu *vcpu;
310         int i, me;
311         bool called;
312
313         me = get_cpu();
314
315         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
316                 vcpu = kvm_get_vcpu(kvm, i);
317                 if (!vcpu || vcpu == except)
318                         continue;
319                 kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
320         }
321
322         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
323         put_cpu();
324
325         return called;
326 }
327
328 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
329                                       struct kvm_vcpu *except)
330 {
331         struct kvm_vcpu *vcpu;
332         struct cpumask *cpus;
333         bool called;
334         int i, me;
335
336         me = get_cpu();
337
338         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
339         cpumask_clear(cpus);
340
341         kvm_for_each_vcpu(i, vcpu, kvm) {
342                 if (vcpu == except)
343                         continue;
344                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
345         }
346
347         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
348         put_cpu();
349
350         return called;
351 }
352
353 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
354 {
355         return kvm_make_all_cpus_request_except(kvm, req, NULL);
356 }
357
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361         /*
362          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
363          * kvm_make_all_cpus_request.
364          */
365         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
366
367         /*
368          * We want to publish modifications to the page tables before reading
369          * mode. Pairs with a memory barrier in arch-specific code.
370          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
371          * and smp_mb in walk_shadow_page_lockless_begin/end.
372          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
373          *
374          * There is already an smp_mb__after_atomic() before
375          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
376          * barrier here.
377          */
378         if (!kvm_arch_flush_remote_tlb(kvm)
379             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
380                 ++kvm->stat.remote_tlb_flush;
381         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
382 }
383 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
384 #endif
385
386 void kvm_reload_remote_mmus(struct kvm *kvm)
387 {
388         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
389 }
390
391 static void kvm_flush_shadow_all(struct kvm *kvm)
392 {
393         kvm_arch_flush_shadow_all(kvm);
394         kvm_arch_guest_memory_reclaimed(kvm);
395 }
396
397 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
398 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
399                                                gfp_t gfp_flags)
400 {
401         gfp_flags |= mc->gfp_zero;
402
403         if (mc->kmem_cache)
404                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
405         else
406                 return (void *)__get_free_page(gfp_flags);
407 }
408
409 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
410 {
411         void *obj;
412
413         if (mc->nobjs >= min)
414                 return 0;
415         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
416                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
417                 if (!obj)
418                         return mc->nobjs >= min ? 0 : -ENOMEM;
419                 mc->objects[mc->nobjs++] = obj;
420         }
421         return 0;
422 }
423
424 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
425 {
426         return mc->nobjs;
427 }
428
429 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
430 {
431         while (mc->nobjs) {
432                 if (mc->kmem_cache)
433                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
434                 else
435                         free_page((unsigned long)mc->objects[--mc->nobjs]);
436         }
437 }
438
439 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
440 {
441         void *p;
442
443         if (WARN_ON(!mc->nobjs))
444                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
445         else
446                 p = mc->objects[--mc->nobjs];
447         BUG_ON(!p);
448         return p;
449 }
450 #endif
451
452 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
453 {
454         mutex_init(&vcpu->mutex);
455         vcpu->cpu = -1;
456         vcpu->kvm = kvm;
457         vcpu->vcpu_id = id;
458         vcpu->pid = NULL;
459         rcuwait_init(&vcpu->wait);
460         kvm_async_pf_vcpu_init(vcpu);
461
462         vcpu->pre_pcpu = -1;
463         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
464
465         kvm_vcpu_set_in_spin_loop(vcpu, false);
466         kvm_vcpu_set_dy_eligible(vcpu, false);
467         vcpu->preempted = false;
468         vcpu->ready = false;
469         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
470 }
471
472 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
473 {
474         kvm_arch_vcpu_destroy(vcpu);
475
476         /*
477          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
478          * the vcpu->pid pointer, and at destruction time all file descriptors
479          * are already gone.
480          */
481         put_pid(rcu_dereference_protected(vcpu->pid, 1));
482
483         free_page((unsigned long)vcpu->run);
484         kmem_cache_free(kvm_vcpu_cache, vcpu);
485 }
486 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
487
488 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
489 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
490 {
491         return container_of(mn, struct kvm, mmu_notifier);
492 }
493
494 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
495                                               struct mm_struct *mm,
496                                               unsigned long start, unsigned long end)
497 {
498         struct kvm *kvm = mmu_notifier_to_kvm(mn);
499         int idx;
500
501         idx = srcu_read_lock(&kvm->srcu);
502         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
503         srcu_read_unlock(&kvm->srcu, idx);
504 }
505
506 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
507                                         struct mm_struct *mm,
508                                         unsigned long address,
509                                         pte_t pte)
510 {
511         struct kvm *kvm = mmu_notifier_to_kvm(mn);
512         int idx;
513
514         idx = srcu_read_lock(&kvm->srcu);
515         spin_lock(&kvm->mmu_lock);
516         kvm->mmu_notifier_seq++;
517
518         if (kvm_set_spte_hva(kvm, address, pte))
519                 kvm_flush_remote_tlbs(kvm);
520
521         spin_unlock(&kvm->mmu_lock);
522         srcu_read_unlock(&kvm->srcu, idx);
523 }
524
525 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
526                                         const struct mmu_notifier_range *range)
527 {
528         struct kvm *kvm = mmu_notifier_to_kvm(mn);
529         int need_tlb_flush = 0, idx;
530
531         idx = srcu_read_lock(&kvm->srcu);
532         spin_lock(&kvm->mmu_lock);
533         /*
534          * The count increase must become visible at unlock time as no
535          * spte can be established without taking the mmu_lock and
536          * count is also read inside the mmu_lock critical section.
537          */
538         kvm->mmu_notifier_count++;
539         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
540                                              range->flags);
541         /* we've to flush the tlb before the pages can be freed */
542         if (need_tlb_flush || kvm->tlbs_dirty)
543                 kvm_flush_remote_tlbs(kvm);
544
545         spin_unlock(&kvm->mmu_lock);
546         kvm_arch_guest_memory_reclaimed(kvm);
547         srcu_read_unlock(&kvm->srcu, idx);
548
549         return 0;
550 }
551
552 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
553                                         const struct mmu_notifier_range *range)
554 {
555         struct kvm *kvm = mmu_notifier_to_kvm(mn);
556
557         spin_lock(&kvm->mmu_lock);
558         /*
559          * This sequence increase will notify the kvm page fault that
560          * the page that is going to be mapped in the spte could have
561          * been freed.
562          */
563         kvm->mmu_notifier_seq++;
564         smp_wmb();
565         /*
566          * The above sequence increase must be visible before the
567          * below count decrease, which is ensured by the smp_wmb above
568          * in conjunction with the smp_rmb in mmu_notifier_retry().
569          */
570         kvm->mmu_notifier_count--;
571         spin_unlock(&kvm->mmu_lock);
572
573         BUG_ON(kvm->mmu_notifier_count < 0);
574 }
575
576 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
577                                               struct mm_struct *mm,
578                                               unsigned long start,
579                                               unsigned long end)
580 {
581         struct kvm *kvm = mmu_notifier_to_kvm(mn);
582         int young, idx;
583
584         idx = srcu_read_lock(&kvm->srcu);
585         spin_lock(&kvm->mmu_lock);
586
587         young = kvm_age_hva(kvm, start, end);
588         if (young)
589                 kvm_flush_remote_tlbs(kvm);
590
591         spin_unlock(&kvm->mmu_lock);
592         srcu_read_unlock(&kvm->srcu, idx);
593
594         return young;
595 }
596
597 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
598                                         struct mm_struct *mm,
599                                         unsigned long start,
600                                         unsigned long end)
601 {
602         struct kvm *kvm = mmu_notifier_to_kvm(mn);
603         int young, idx;
604
605         idx = srcu_read_lock(&kvm->srcu);
606         spin_lock(&kvm->mmu_lock);
607         /*
608          * Even though we do not flush TLB, this will still adversely
609          * affect performance on pre-Haswell Intel EPT, where there is
610          * no EPT Access Bit to clear so that we have to tear down EPT
611          * tables instead. If we find this unacceptable, we can always
612          * add a parameter to kvm_age_hva so that it effectively doesn't
613          * do anything on clear_young.
614          *
615          * Also note that currently we never issue secondary TLB flushes
616          * from clear_young, leaving this job up to the regular system
617          * cadence. If we find this inaccurate, we might come up with a
618          * more sophisticated heuristic later.
619          */
620         young = kvm_age_hva(kvm, start, end);
621         spin_unlock(&kvm->mmu_lock);
622         srcu_read_unlock(&kvm->srcu, idx);
623
624         return young;
625 }
626
627 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
628                                        struct mm_struct *mm,
629                                        unsigned long address)
630 {
631         struct kvm *kvm = mmu_notifier_to_kvm(mn);
632         int young, idx;
633
634         idx = srcu_read_lock(&kvm->srcu);
635         spin_lock(&kvm->mmu_lock);
636         young = kvm_test_age_hva(kvm, address);
637         spin_unlock(&kvm->mmu_lock);
638         srcu_read_unlock(&kvm->srcu, idx);
639
640         return young;
641 }
642
643 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
644                                      struct mm_struct *mm)
645 {
646         struct kvm *kvm = mmu_notifier_to_kvm(mn);
647         int idx;
648
649         idx = srcu_read_lock(&kvm->srcu);
650         kvm_flush_shadow_all(kvm);
651         srcu_read_unlock(&kvm->srcu, idx);
652 }
653
654 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
655         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
656         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
657         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
658         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
659         .clear_young            = kvm_mmu_notifier_clear_young,
660         .test_young             = kvm_mmu_notifier_test_young,
661         .change_pte             = kvm_mmu_notifier_change_pte,
662         .release                = kvm_mmu_notifier_release,
663 };
664
665 static int kvm_init_mmu_notifier(struct kvm *kvm)
666 {
667         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
668         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
669 }
670
671 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
672
673 static int kvm_init_mmu_notifier(struct kvm *kvm)
674 {
675         return 0;
676 }
677
678 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
679
680 static struct kvm_memslots *kvm_alloc_memslots(void)
681 {
682         int i;
683         struct kvm_memslots *slots;
684
685         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
686         if (!slots)
687                 return NULL;
688
689         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
690                 slots->id_to_index[i] = -1;
691
692         return slots;
693 }
694
695 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
696 {
697         if (!memslot->dirty_bitmap)
698                 return;
699
700         kvfree(memslot->dirty_bitmap);
701         memslot->dirty_bitmap = NULL;
702 }
703
704 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
705 {
706         kvm_destroy_dirty_bitmap(slot);
707
708         kvm_arch_free_memslot(kvm, slot);
709
710         slot->flags = 0;
711         slot->npages = 0;
712 }
713
714 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
715 {
716         struct kvm_memory_slot *memslot;
717
718         if (!slots)
719                 return;
720
721         kvm_for_each_memslot(memslot, slots)
722                 kvm_free_memslot(kvm, memslot);
723
724         kvfree(slots);
725 }
726
727 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
728 {
729         int i;
730
731         if (!kvm->debugfs_dentry)
732                 return;
733
734         debugfs_remove_recursive(kvm->debugfs_dentry);
735
736         if (kvm->debugfs_stat_data) {
737                 for (i = 0; i < kvm_debugfs_num_entries; i++)
738                         kfree(kvm->debugfs_stat_data[i]);
739                 kfree(kvm->debugfs_stat_data);
740         }
741 }
742
743 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
744 {
745         static DEFINE_MUTEX(kvm_debugfs_lock);
746         struct dentry *dent;
747         char dir_name[ITOA_MAX_LEN * 2];
748         struct kvm_stat_data *stat_data;
749         struct kvm_stats_debugfs_item *p;
750
751         if (!debugfs_initialized())
752                 return 0;
753
754         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
755         mutex_lock(&kvm_debugfs_lock);
756         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
757         if (dent) {
758                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
759                 dput(dent);
760                 mutex_unlock(&kvm_debugfs_lock);
761                 return 0;
762         }
763         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
764         mutex_unlock(&kvm_debugfs_lock);
765         if (IS_ERR(dent))
766                 return 0;
767
768         kvm->debugfs_dentry = dent;
769         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
770                                          sizeof(*kvm->debugfs_stat_data),
771                                          GFP_KERNEL_ACCOUNT);
772         if (!kvm->debugfs_stat_data)
773                 return -ENOMEM;
774
775         for (p = debugfs_entries; p->name; p++) {
776                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
777                 if (!stat_data)
778                         return -ENOMEM;
779
780                 stat_data->kvm = kvm;
781                 stat_data->dbgfs_item = p;
782                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
783                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
784                                     kvm->debugfs_dentry, stat_data,
785                                     &stat_fops_per_vm);
786         }
787         return 0;
788 }
789
790 /*
791  * Called after the VM is otherwise initialized, but just before adding it to
792  * the vm_list.
793  */
794 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
795 {
796         return 0;
797 }
798
799 /*
800  * Called just after removing the VM from the vm_list, but before doing any
801  * other destruction.
802  */
803 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
804 {
805 }
806
807 static struct kvm *kvm_create_vm(unsigned long type)
808 {
809         struct kvm *kvm = kvm_arch_alloc_vm();
810         int r = -ENOMEM;
811         int i;
812
813         if (!kvm)
814                 return ERR_PTR(-ENOMEM);
815
816         spin_lock_init(&kvm->mmu_lock);
817         mmgrab(current->mm);
818         kvm->mm = current->mm;
819         kvm_eventfd_init(kvm);
820         mutex_init(&kvm->lock);
821         mutex_init(&kvm->irq_lock);
822         mutex_init(&kvm->slots_lock);
823         INIT_LIST_HEAD(&kvm->devices);
824
825         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
826
827         if (init_srcu_struct(&kvm->srcu))
828                 goto out_err_no_srcu;
829         if (init_srcu_struct(&kvm->irq_srcu))
830                 goto out_err_no_irq_srcu;
831
832         refcount_set(&kvm->users_count, 1);
833         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
834                 struct kvm_memslots *slots = kvm_alloc_memslots();
835
836                 if (!slots)
837                         goto out_err_no_arch_destroy_vm;
838                 /* Generations must be different for each address space. */
839                 slots->generation = i;
840                 rcu_assign_pointer(kvm->memslots[i], slots);
841         }
842
843         for (i = 0; i < KVM_NR_BUSES; i++) {
844                 rcu_assign_pointer(kvm->buses[i],
845                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
846                 if (!kvm->buses[i])
847                         goto out_err_no_arch_destroy_vm;
848         }
849
850         kvm->max_halt_poll_ns = halt_poll_ns;
851
852         r = kvm_arch_init_vm(kvm, type);
853         if (r)
854                 goto out_err_no_arch_destroy_vm;
855
856         r = hardware_enable_all();
857         if (r)
858                 goto out_err_no_disable;
859
860 #ifdef CONFIG_HAVE_KVM_IRQFD
861         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
862 #endif
863
864         r = kvm_init_mmu_notifier(kvm);
865         if (r)
866                 goto out_err_no_mmu_notifier;
867
868         r = kvm_arch_post_init_vm(kvm);
869         if (r)
870                 goto out_err;
871
872         mutex_lock(&kvm_lock);
873         list_add(&kvm->vm_list, &vm_list);
874         mutex_unlock(&kvm_lock);
875
876         preempt_notifier_inc();
877
878         /*
879          * When the fd passed to this ioctl() is opened it pins the module,
880          * but try_module_get() also prevents getting a reference if the module
881          * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
882          */
883         if (!try_module_get(kvm_chardev_ops.owner)) {
884                 r = -ENODEV;
885                 goto out_err;
886         }
887
888         return kvm;
889
890 out_err:
891 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
892         if (kvm->mmu_notifier.ops)
893                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
894 #endif
895 out_err_no_mmu_notifier:
896         hardware_disable_all();
897 out_err_no_disable:
898         kvm_arch_destroy_vm(kvm);
899 out_err_no_arch_destroy_vm:
900         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
901         for (i = 0; i < KVM_NR_BUSES; i++)
902                 kfree(kvm_get_bus(kvm, i));
903         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
904                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
905         cleanup_srcu_struct(&kvm->irq_srcu);
906 out_err_no_irq_srcu:
907         cleanup_srcu_struct(&kvm->srcu);
908 out_err_no_srcu:
909         kvm_arch_free_vm(kvm);
910         mmdrop(current->mm);
911         return ERR_PTR(r);
912 }
913
914 static void kvm_destroy_devices(struct kvm *kvm)
915 {
916         struct kvm_device *dev, *tmp;
917
918         /*
919          * We do not need to take the kvm->lock here, because nobody else
920          * has a reference to the struct kvm at this point and therefore
921          * cannot access the devices list anyhow.
922          */
923         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
924                 list_del(&dev->vm_node);
925                 dev->ops->destroy(dev);
926         }
927 }
928
929 static void kvm_destroy_vm(struct kvm *kvm)
930 {
931         int i;
932         struct mm_struct *mm = kvm->mm;
933
934         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
935         kvm_destroy_vm_debugfs(kvm);
936         kvm_arch_sync_events(kvm);
937         mutex_lock(&kvm_lock);
938         list_del(&kvm->vm_list);
939         mutex_unlock(&kvm_lock);
940         kvm_arch_pre_destroy_vm(kvm);
941
942         kvm_free_irq_routing(kvm);
943         for (i = 0; i < KVM_NR_BUSES; i++) {
944                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
945
946                 if (bus)
947                         kvm_io_bus_destroy(bus);
948                 kvm->buses[i] = NULL;
949         }
950         kvm_coalesced_mmio_free(kvm);
951 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
952         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
953 #else
954         kvm_flush_shadow_all(kvm);
955 #endif
956         kvm_arch_destroy_vm(kvm);
957         kvm_destroy_devices(kvm);
958         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
959                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
960         cleanup_srcu_struct(&kvm->irq_srcu);
961         cleanup_srcu_struct(&kvm->srcu);
962         kvm_arch_free_vm(kvm);
963         preempt_notifier_dec();
964         hardware_disable_all();
965         mmdrop(mm);
966         module_put(kvm_chardev_ops.owner);
967 }
968
969 void kvm_get_kvm(struct kvm *kvm)
970 {
971         refcount_inc(&kvm->users_count);
972 }
973 EXPORT_SYMBOL_GPL(kvm_get_kvm);
974
975 void kvm_put_kvm(struct kvm *kvm)
976 {
977         if (refcount_dec_and_test(&kvm->users_count))
978                 kvm_destroy_vm(kvm);
979 }
980 EXPORT_SYMBOL_GPL(kvm_put_kvm);
981
982 /*
983  * Used to put a reference that was taken on behalf of an object associated
984  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
985  * of the new file descriptor fails and the reference cannot be transferred to
986  * its final owner.  In such cases, the caller is still actively using @kvm and
987  * will fail miserably if the refcount unexpectedly hits zero.
988  */
989 void kvm_put_kvm_no_destroy(struct kvm *kvm)
990 {
991         WARN_ON(refcount_dec_and_test(&kvm->users_count));
992 }
993 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
994
995 static int kvm_vm_release(struct inode *inode, struct file *filp)
996 {
997         struct kvm *kvm = filp->private_data;
998
999         kvm_irqfd_release(kvm);
1000
1001         kvm_put_kvm(kvm);
1002         return 0;
1003 }
1004
1005 /*
1006  * Allocation size is twice as large as the actual dirty bitmap size.
1007  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1008  */
1009 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1010 {
1011         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1012
1013         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1014         if (!memslot->dirty_bitmap)
1015                 return -ENOMEM;
1016
1017         return 0;
1018 }
1019
1020 /*
1021  * Delete a memslot by decrementing the number of used slots and shifting all
1022  * other entries in the array forward one spot.
1023  */
1024 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1025                                       struct kvm_memory_slot *memslot)
1026 {
1027         struct kvm_memory_slot *mslots = slots->memslots;
1028         int i;
1029
1030         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1031                 return;
1032
1033         slots->used_slots--;
1034
1035         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1036                 atomic_set(&slots->lru_slot, 0);
1037
1038         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1039                 mslots[i] = mslots[i + 1];
1040                 slots->id_to_index[mslots[i].id] = i;
1041         }
1042         mslots[i] = *memslot;
1043         slots->id_to_index[memslot->id] = -1;
1044 }
1045
1046 /*
1047  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1048  * the new slot's initial index into the memslots array.
1049  */
1050 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1051 {
1052         return slots->used_slots++;
1053 }
1054
1055 /*
1056  * Move a changed memslot backwards in the array by shifting existing slots
1057  * with a higher GFN toward the front of the array.  Note, the changed memslot
1058  * itself is not preserved in the array, i.e. not swapped at this time, only
1059  * its new index into the array is tracked.  Returns the changed memslot's
1060  * current index into the memslots array.
1061  */
1062 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1063                                             struct kvm_memory_slot *memslot)
1064 {
1065         struct kvm_memory_slot *mslots = slots->memslots;
1066         int i;
1067
1068         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1069             WARN_ON_ONCE(!slots->used_slots))
1070                 return -1;
1071
1072         /*
1073          * Move the target memslot backward in the array by shifting existing
1074          * memslots with a higher GFN (than the target memslot) towards the
1075          * front of the array.
1076          */
1077         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1078                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1079                         break;
1080
1081                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1082
1083                 /* Shift the next memslot forward one and update its index. */
1084                 mslots[i] = mslots[i + 1];
1085                 slots->id_to_index[mslots[i].id] = i;
1086         }
1087         return i;
1088 }
1089
1090 /*
1091  * Move a changed memslot forwards in the array by shifting existing slots with
1092  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1093  * is not preserved in the array, i.e. not swapped at this time, only its new
1094  * index into the array is tracked.  Returns the changed memslot's final index
1095  * into the memslots array.
1096  */
1097 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1098                                            struct kvm_memory_slot *memslot,
1099                                            int start)
1100 {
1101         struct kvm_memory_slot *mslots = slots->memslots;
1102         int i;
1103
1104         for (i = start; i > 0; i--) {
1105                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1106                         break;
1107
1108                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1109
1110                 /* Shift the next memslot back one and update its index. */
1111                 mslots[i] = mslots[i - 1];
1112                 slots->id_to_index[mslots[i].id] = i;
1113         }
1114         return i;
1115 }
1116
1117 /*
1118  * Re-sort memslots based on their GFN to account for an added, deleted, or
1119  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1120  * memslot lookup.
1121  *
1122  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1123  * at memslots[0] has the highest GFN.
1124  *
1125  * The sorting algorithm takes advantage of having initially sorted memslots
1126  * and knowing the position of the changed memslot.  Sorting is also optimized
1127  * by not swapping the updated memslot and instead only shifting other memslots
1128  * and tracking the new index for the update memslot.  Only once its final
1129  * index is known is the updated memslot copied into its position in the array.
1130  *
1131  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1132  *    the end of the array.
1133  *
1134  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1135  *    end of the array and then it forward to its correct location.
1136  *
1137  *  - When moving a memslot, the algorithm first moves the updated memslot
1138  *    backward to handle the scenario where the memslot's GFN was changed to a
1139  *    lower value.  update_memslots() then falls through and runs the same flow
1140  *    as creating a memslot to move the memslot forward to handle the scenario
1141  *    where its GFN was changed to a higher value.
1142  *
1143  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1144  * historical reasons.  Originally, invalid memslots where denoted by having
1145  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1146  * to the end of the array.  The current algorithm uses dedicated logic to
1147  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1148  *
1149  * The other historical motiviation for highest->lowest was to improve the
1150  * performance of memslot lookup.  KVM originally used a linear search starting
1151  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1152  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1153  * single memslot above the 4gb boundary.  As the largest memslot is also the
1154  * most likely to be referenced, sorting it to the front of the array was
1155  * advantageous.  The current binary search starts from the middle of the array
1156  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1157  */
1158 static void update_memslots(struct kvm_memslots *slots,
1159                             struct kvm_memory_slot *memslot,
1160                             enum kvm_mr_change change)
1161 {
1162         int i;
1163
1164         if (change == KVM_MR_DELETE) {
1165                 kvm_memslot_delete(slots, memslot);
1166         } else {
1167                 if (change == KVM_MR_CREATE)
1168                         i = kvm_memslot_insert_back(slots);
1169                 else
1170                         i = kvm_memslot_move_backward(slots, memslot);
1171                 i = kvm_memslot_move_forward(slots, memslot, i);
1172
1173                 /*
1174                  * Copy the memslot to its new position in memslots and update
1175                  * its index accordingly.
1176                  */
1177                 slots->memslots[i] = *memslot;
1178                 slots->id_to_index[memslot->id] = i;
1179         }
1180 }
1181
1182 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1183 {
1184         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1185
1186 #ifdef __KVM_HAVE_READONLY_MEM
1187         valid_flags |= KVM_MEM_READONLY;
1188 #endif
1189
1190         if (mem->flags & ~valid_flags)
1191                 return -EINVAL;
1192
1193         return 0;
1194 }
1195
1196 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1197                 int as_id, struct kvm_memslots *slots)
1198 {
1199         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1200         u64 gen = old_memslots->generation;
1201
1202         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1203         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1204
1205         rcu_assign_pointer(kvm->memslots[as_id], slots);
1206         synchronize_srcu_expedited(&kvm->srcu);
1207
1208         /*
1209          * Increment the new memslot generation a second time, dropping the
1210          * update in-progress flag and incrementing the generation based on
1211          * the number of address spaces.  This provides a unique and easily
1212          * identifiable generation number while the memslots are in flux.
1213          */
1214         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1215
1216         /*
1217          * Generations must be unique even across address spaces.  We do not need
1218          * a global counter for that, instead the generation space is evenly split
1219          * across address spaces.  For example, with two address spaces, address
1220          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1221          * use generations 1, 3, 5, ...
1222          */
1223         gen += KVM_ADDRESS_SPACE_NUM;
1224
1225         kvm_arch_memslots_updated(kvm, gen);
1226
1227         slots->generation = gen;
1228
1229         return old_memslots;
1230 }
1231
1232 /*
1233  * Note, at a minimum, the current number of used slots must be allocated, even
1234  * when deleting a memslot, as we need a complete duplicate of the memslots for
1235  * use when invalidating a memslot prior to deleting/moving the memslot.
1236  */
1237 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1238                                              enum kvm_mr_change change)
1239 {
1240         struct kvm_memslots *slots;
1241         size_t old_size, new_size;
1242
1243         old_size = sizeof(struct kvm_memslots) +
1244                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1245
1246         if (change == KVM_MR_CREATE)
1247                 new_size = old_size + sizeof(struct kvm_memory_slot);
1248         else
1249                 new_size = old_size;
1250
1251         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1252         if (likely(slots))
1253                 memcpy(slots, old, old_size);
1254
1255         return slots;
1256 }
1257
1258 static int kvm_set_memslot(struct kvm *kvm,
1259                            const struct kvm_userspace_memory_region *mem,
1260                            struct kvm_memory_slot *old,
1261                            struct kvm_memory_slot *new, int as_id,
1262                            enum kvm_mr_change change)
1263 {
1264         struct kvm_memory_slot *slot;
1265         struct kvm_memslots *slots;
1266         int r;
1267
1268         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1269         if (!slots)
1270                 return -ENOMEM;
1271
1272         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1273                 /*
1274                  * Note, the INVALID flag needs to be in the appropriate entry
1275                  * in the freshly allocated memslots, not in @old or @new.
1276                  */
1277                 slot = id_to_memslot(slots, old->id);
1278                 slot->flags |= KVM_MEMSLOT_INVALID;
1279
1280                 /*
1281                  * We can re-use the old memslots, the only difference from the
1282                  * newly installed memslots is the invalid flag, which will get
1283                  * dropped by update_memslots anyway.  We'll also revert to the
1284                  * old memslots if preparing the new memory region fails.
1285                  */
1286                 slots = install_new_memslots(kvm, as_id, slots);
1287
1288                 /* From this point no new shadow pages pointing to a deleted,
1289                  * or moved, memslot will be created.
1290                  *
1291                  * validation of sp->gfn happens in:
1292                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1293                  *      - kvm_is_visible_gfn (mmu_check_root)
1294                  */
1295                 kvm_arch_flush_shadow_memslot(kvm, slot);
1296                 kvm_arch_guest_memory_reclaimed(kvm);
1297         }
1298
1299         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1300         if (r)
1301                 goto out_slots;
1302
1303         update_memslots(slots, new, change);
1304         slots = install_new_memslots(kvm, as_id, slots);
1305
1306         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1307
1308         kvfree(slots);
1309         return 0;
1310
1311 out_slots:
1312         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1313                 slots = install_new_memslots(kvm, as_id, slots);
1314         kvfree(slots);
1315         return r;
1316 }
1317
1318 static int kvm_delete_memslot(struct kvm *kvm,
1319                               const struct kvm_userspace_memory_region *mem,
1320                               struct kvm_memory_slot *old, int as_id)
1321 {
1322         struct kvm_memory_slot new;
1323         int r;
1324
1325         if (!old->npages)
1326                 return -EINVAL;
1327
1328         memset(&new, 0, sizeof(new));
1329         new.id = old->id;
1330         /*
1331          * This is only for debugging purpose; it should never be referenced
1332          * for a removed memslot.
1333          */
1334         new.as_id = as_id;
1335
1336         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1337         if (r)
1338                 return r;
1339
1340         kvm_free_memslot(kvm, old);
1341         return 0;
1342 }
1343
1344 /*
1345  * Allocate some memory and give it an address in the guest physical address
1346  * space.
1347  *
1348  * Discontiguous memory is allowed, mostly for framebuffers.
1349  *
1350  * Must be called holding kvm->slots_lock for write.
1351  */
1352 int __kvm_set_memory_region(struct kvm *kvm,
1353                             const struct kvm_userspace_memory_region *mem)
1354 {
1355         struct kvm_memory_slot old, new;
1356         struct kvm_memory_slot *tmp;
1357         enum kvm_mr_change change;
1358         int as_id, id;
1359         int r;
1360
1361         r = check_memory_region_flags(mem);
1362         if (r)
1363                 return r;
1364
1365         as_id = mem->slot >> 16;
1366         id = (u16)mem->slot;
1367
1368         /* General sanity checks */
1369         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1370             (mem->memory_size != (unsigned long)mem->memory_size))
1371                 return -EINVAL;
1372         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1373                 return -EINVAL;
1374         /* We can read the guest memory with __xxx_user() later on. */
1375         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1376             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1377              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1378                         mem->memory_size))
1379                 return -EINVAL;
1380         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1381                 return -EINVAL;
1382         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1383                 return -EINVAL;
1384
1385         /*
1386          * Make a full copy of the old memslot, the pointer will become stale
1387          * when the memslots are re-sorted by update_memslots(), and the old
1388          * memslot needs to be referenced after calling update_memslots(), e.g.
1389          * to free its resources and for arch specific behavior.
1390          */
1391         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1392         if (tmp) {
1393                 old = *tmp;
1394                 tmp = NULL;
1395         } else {
1396                 memset(&old, 0, sizeof(old));
1397                 old.id = id;
1398         }
1399
1400         if (!mem->memory_size)
1401                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1402
1403         new.as_id = as_id;
1404         new.id = id;
1405         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1406         new.npages = mem->memory_size >> PAGE_SHIFT;
1407         new.flags = mem->flags;
1408         new.userspace_addr = mem->userspace_addr;
1409
1410         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1411                 return -EINVAL;
1412
1413         if (!old.npages) {
1414                 change = KVM_MR_CREATE;
1415                 new.dirty_bitmap = NULL;
1416                 memset(&new.arch, 0, sizeof(new.arch));
1417         } else { /* Modify an existing slot. */
1418                 if ((new.userspace_addr != old.userspace_addr) ||
1419                     (new.npages != old.npages) ||
1420                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1421                         return -EINVAL;
1422
1423                 if (new.base_gfn != old.base_gfn)
1424                         change = KVM_MR_MOVE;
1425                 else if (new.flags != old.flags)
1426                         change = KVM_MR_FLAGS_ONLY;
1427                 else /* Nothing to change. */
1428                         return 0;
1429
1430                 /* Copy dirty_bitmap and arch from the current memslot. */
1431                 new.dirty_bitmap = old.dirty_bitmap;
1432                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1433         }
1434
1435         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1436                 /* Check for overlaps */
1437                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1438                         if (tmp->id == id)
1439                                 continue;
1440                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1441                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1442                                 return -EEXIST;
1443                 }
1444         }
1445
1446         /* Allocate/free page dirty bitmap as needed */
1447         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1448                 new.dirty_bitmap = NULL;
1449         else if (!new.dirty_bitmap) {
1450                 r = kvm_alloc_dirty_bitmap(&new);
1451                 if (r)
1452                         return r;
1453
1454                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1455                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1456         }
1457
1458         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1459         if (r)
1460                 goto out_bitmap;
1461
1462         if (old.dirty_bitmap && !new.dirty_bitmap)
1463                 kvm_destroy_dirty_bitmap(&old);
1464         return 0;
1465
1466 out_bitmap:
1467         if (new.dirty_bitmap && !old.dirty_bitmap)
1468                 kvm_destroy_dirty_bitmap(&new);
1469         return r;
1470 }
1471 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1472
1473 int kvm_set_memory_region(struct kvm *kvm,
1474                           const struct kvm_userspace_memory_region *mem)
1475 {
1476         int r;
1477
1478         mutex_lock(&kvm->slots_lock);
1479         r = __kvm_set_memory_region(kvm, mem);
1480         mutex_unlock(&kvm->slots_lock);
1481         return r;
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1484
1485 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1486                                           struct kvm_userspace_memory_region *mem)
1487 {
1488         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1489                 return -EINVAL;
1490
1491         return kvm_set_memory_region(kvm, mem);
1492 }
1493
1494 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1495 /**
1496  * kvm_get_dirty_log - get a snapshot of dirty pages
1497  * @kvm:        pointer to kvm instance
1498  * @log:        slot id and address to which we copy the log
1499  * @is_dirty:   set to '1' if any dirty pages were found
1500  * @memslot:    set to the associated memslot, always valid on success
1501  */
1502 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1503                       int *is_dirty, struct kvm_memory_slot **memslot)
1504 {
1505         struct kvm_memslots *slots;
1506         int i, as_id, id;
1507         unsigned long n;
1508         unsigned long any = 0;
1509
1510         *memslot = NULL;
1511         *is_dirty = 0;
1512
1513         as_id = log->slot >> 16;
1514         id = (u16)log->slot;
1515         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1516                 return -EINVAL;
1517
1518         slots = __kvm_memslots(kvm, as_id);
1519         *memslot = id_to_memslot(slots, id);
1520         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1521                 return -ENOENT;
1522
1523         kvm_arch_sync_dirty_log(kvm, *memslot);
1524
1525         n = kvm_dirty_bitmap_bytes(*memslot);
1526
1527         for (i = 0; !any && i < n/sizeof(long); ++i)
1528                 any = (*memslot)->dirty_bitmap[i];
1529
1530         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1531                 return -EFAULT;
1532
1533         if (any)
1534                 *is_dirty = 1;
1535         return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1538
1539 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1540 /**
1541  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1542  *      and reenable dirty page tracking for the corresponding pages.
1543  * @kvm:        pointer to kvm instance
1544  * @log:        slot id and address to which we copy the log
1545  *
1546  * We need to keep it in mind that VCPU threads can write to the bitmap
1547  * concurrently. So, to avoid losing track of dirty pages we keep the
1548  * following order:
1549  *
1550  *    1. Take a snapshot of the bit and clear it if needed.
1551  *    2. Write protect the corresponding page.
1552  *    3. Copy the snapshot to the userspace.
1553  *    4. Upon return caller flushes TLB's if needed.
1554  *
1555  * Between 2 and 4, the guest may write to the page using the remaining TLB
1556  * entry.  This is not a problem because the page is reported dirty using
1557  * the snapshot taken before and step 4 ensures that writes done after
1558  * exiting to userspace will be logged for the next call.
1559  *
1560  */
1561 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1562 {
1563         struct kvm_memslots *slots;
1564         struct kvm_memory_slot *memslot;
1565         int i, as_id, id;
1566         unsigned long n;
1567         unsigned long *dirty_bitmap;
1568         unsigned long *dirty_bitmap_buffer;
1569         bool flush;
1570
1571         as_id = log->slot >> 16;
1572         id = (u16)log->slot;
1573         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1574                 return -EINVAL;
1575
1576         slots = __kvm_memslots(kvm, as_id);
1577         memslot = id_to_memslot(slots, id);
1578         if (!memslot || !memslot->dirty_bitmap)
1579                 return -ENOENT;
1580
1581         dirty_bitmap = memslot->dirty_bitmap;
1582
1583         kvm_arch_sync_dirty_log(kvm, memslot);
1584
1585         n = kvm_dirty_bitmap_bytes(memslot);
1586         flush = false;
1587         if (kvm->manual_dirty_log_protect) {
1588                 /*
1589                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1590                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1591                  * is some code duplication between this function and
1592                  * kvm_get_dirty_log, but hopefully all architecture
1593                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1594                  * can be eliminated.
1595                  */
1596                 dirty_bitmap_buffer = dirty_bitmap;
1597         } else {
1598                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1599                 memset(dirty_bitmap_buffer, 0, n);
1600
1601                 spin_lock(&kvm->mmu_lock);
1602                 for (i = 0; i < n / sizeof(long); i++) {
1603                         unsigned long mask;
1604                         gfn_t offset;
1605
1606                         if (!dirty_bitmap[i])
1607                                 continue;
1608
1609                         flush = true;
1610                         mask = xchg(&dirty_bitmap[i], 0);
1611                         dirty_bitmap_buffer[i] = mask;
1612
1613                         offset = i * BITS_PER_LONG;
1614                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1615                                                                 offset, mask);
1616                 }
1617                 spin_unlock(&kvm->mmu_lock);
1618         }
1619
1620         if (flush)
1621                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1622
1623         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1624                 return -EFAULT;
1625         return 0;
1626 }
1627
1628
1629 /**
1630  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1631  * @kvm: kvm instance
1632  * @log: slot id and address to which we copy the log
1633  *
1634  * Steps 1-4 below provide general overview of dirty page logging. See
1635  * kvm_get_dirty_log_protect() function description for additional details.
1636  *
1637  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1638  * always flush the TLB (step 4) even if previous step failed  and the dirty
1639  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1640  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1641  * writes will be marked dirty for next log read.
1642  *
1643  *   1. Take a snapshot of the bit and clear it if needed.
1644  *   2. Write protect the corresponding page.
1645  *   3. Copy the snapshot to the userspace.
1646  *   4. Flush TLB's if needed.
1647  */
1648 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1649                                       struct kvm_dirty_log *log)
1650 {
1651         int r;
1652
1653         mutex_lock(&kvm->slots_lock);
1654
1655         r = kvm_get_dirty_log_protect(kvm, log);
1656
1657         mutex_unlock(&kvm->slots_lock);
1658         return r;
1659 }
1660
1661 /**
1662  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1663  *      and reenable dirty page tracking for the corresponding pages.
1664  * @kvm:        pointer to kvm instance
1665  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1666  */
1667 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1668                                        struct kvm_clear_dirty_log *log)
1669 {
1670         struct kvm_memslots *slots;
1671         struct kvm_memory_slot *memslot;
1672         int as_id, id;
1673         gfn_t offset;
1674         unsigned long i, n;
1675         unsigned long *dirty_bitmap;
1676         unsigned long *dirty_bitmap_buffer;
1677         bool flush;
1678
1679         as_id = log->slot >> 16;
1680         id = (u16)log->slot;
1681         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1682                 return -EINVAL;
1683
1684         if (log->first_page & 63)
1685                 return -EINVAL;
1686
1687         slots = __kvm_memslots(kvm, as_id);
1688         memslot = id_to_memslot(slots, id);
1689         if (!memslot || !memslot->dirty_bitmap)
1690                 return -ENOENT;
1691
1692         dirty_bitmap = memslot->dirty_bitmap;
1693
1694         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1695
1696         if (log->first_page > memslot->npages ||
1697             log->num_pages > memslot->npages - log->first_page ||
1698             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1699             return -EINVAL;
1700
1701         kvm_arch_sync_dirty_log(kvm, memslot);
1702
1703         flush = false;
1704         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1705         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1706                 return -EFAULT;
1707
1708         spin_lock(&kvm->mmu_lock);
1709         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1710                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1711              i++, offset += BITS_PER_LONG) {
1712                 unsigned long mask = *dirty_bitmap_buffer++;
1713                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1714                 if (!mask)
1715                         continue;
1716
1717                 mask &= atomic_long_fetch_andnot(mask, p);
1718
1719                 /*
1720                  * mask contains the bits that really have been cleared.  This
1721                  * never includes any bits beyond the length of the memslot (if
1722                  * the length is not aligned to 64 pages), therefore it is not
1723                  * a problem if userspace sets them in log->dirty_bitmap.
1724                 */
1725                 if (mask) {
1726                         flush = true;
1727                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1728                                                                 offset, mask);
1729                 }
1730         }
1731         spin_unlock(&kvm->mmu_lock);
1732
1733         if (flush)
1734                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1735
1736         return 0;
1737 }
1738
1739 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1740                                         struct kvm_clear_dirty_log *log)
1741 {
1742         int r;
1743
1744         mutex_lock(&kvm->slots_lock);
1745
1746         r = kvm_clear_dirty_log_protect(kvm, log);
1747
1748         mutex_unlock(&kvm->slots_lock);
1749         return r;
1750 }
1751 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1752
1753 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1754 {
1755         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1756 }
1757 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1758
1759 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1760 {
1761         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1762 }
1763
1764 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1765 {
1766         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1767
1768         return kvm_is_visible_memslot(memslot);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1771
1772 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1773 {
1774         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775
1776         return kvm_is_visible_memslot(memslot);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1779
1780 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1781 {
1782         struct vm_area_struct *vma;
1783         unsigned long addr, size;
1784
1785         size = PAGE_SIZE;
1786
1787         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1788         if (kvm_is_error_hva(addr))
1789                 return PAGE_SIZE;
1790
1791         mmap_read_lock(current->mm);
1792         vma = find_vma(current->mm, addr);
1793         if (!vma)
1794                 goto out;
1795
1796         size = vma_kernel_pagesize(vma);
1797
1798 out:
1799         mmap_read_unlock(current->mm);
1800
1801         return size;
1802 }
1803
1804 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1805 {
1806         return slot->flags & KVM_MEM_READONLY;
1807 }
1808
1809 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1810                                        gfn_t *nr_pages, bool write)
1811 {
1812         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1813                 return KVM_HVA_ERR_BAD;
1814
1815         if (memslot_is_readonly(slot) && write)
1816                 return KVM_HVA_ERR_RO_BAD;
1817
1818         if (nr_pages)
1819                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1820
1821         return __gfn_to_hva_memslot(slot, gfn);
1822 }
1823
1824 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1825                                      gfn_t *nr_pages)
1826 {
1827         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1828 }
1829
1830 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1831                                         gfn_t gfn)
1832 {
1833         return gfn_to_hva_many(slot, gfn, NULL);
1834 }
1835 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1836
1837 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1838 {
1839         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1840 }
1841 EXPORT_SYMBOL_GPL(gfn_to_hva);
1842
1843 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1844 {
1845         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1848
1849 /*
1850  * Return the hva of a @gfn and the R/W attribute if possible.
1851  *
1852  * @slot: the kvm_memory_slot which contains @gfn
1853  * @gfn: the gfn to be translated
1854  * @writable: used to return the read/write attribute of the @slot if the hva
1855  * is valid and @writable is not NULL
1856  */
1857 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1858                                       gfn_t gfn, bool *writable)
1859 {
1860         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1861
1862         if (!kvm_is_error_hva(hva) && writable)
1863                 *writable = !memslot_is_readonly(slot);
1864
1865         return hva;
1866 }
1867
1868 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1869 {
1870         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1871
1872         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1873 }
1874
1875 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1876 {
1877         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1878
1879         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1880 }
1881
1882 static inline int check_user_page_hwpoison(unsigned long addr)
1883 {
1884         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1885
1886         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1887         return rc == -EHWPOISON;
1888 }
1889
1890 /*
1891  * The fast path to get the writable pfn which will be stored in @pfn,
1892  * true indicates success, otherwise false is returned.  It's also the
1893  * only part that runs if we can in atomic context.
1894  */
1895 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1896                             bool *writable, kvm_pfn_t *pfn)
1897 {
1898         struct page *page[1];
1899
1900         /*
1901          * Fast pin a writable pfn only if it is a write fault request
1902          * or the caller allows to map a writable pfn for a read fault
1903          * request.
1904          */
1905         if (!(write_fault || writable))
1906                 return false;
1907
1908         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1909                 *pfn = page_to_pfn(page[0]);
1910
1911                 if (writable)
1912                         *writable = true;
1913                 return true;
1914         }
1915
1916         return false;
1917 }
1918
1919 /*
1920  * The slow path to get the pfn of the specified host virtual address,
1921  * 1 indicates success, -errno is returned if error is detected.
1922  */
1923 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1924                            bool *writable, kvm_pfn_t *pfn)
1925 {
1926         unsigned int flags = FOLL_HWPOISON;
1927         struct page *page;
1928         int npages = 0;
1929
1930         might_sleep();
1931
1932         if (writable)
1933                 *writable = write_fault;
1934
1935         if (write_fault)
1936                 flags |= FOLL_WRITE;
1937         if (async)
1938                 flags |= FOLL_NOWAIT;
1939
1940         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1941         if (npages != 1)
1942                 return npages;
1943
1944         /* map read fault as writable if possible */
1945         if (unlikely(!write_fault) && writable) {
1946                 struct page *wpage;
1947
1948                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1949                         *writable = true;
1950                         put_page(page);
1951                         page = wpage;
1952                 }
1953         }
1954         *pfn = page_to_pfn(page);
1955         return npages;
1956 }
1957
1958 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1959 {
1960         if (unlikely(!(vma->vm_flags & VM_READ)))
1961                 return false;
1962
1963         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1964                 return false;
1965
1966         return true;
1967 }
1968
1969 static int kvm_try_get_pfn(kvm_pfn_t pfn)
1970 {
1971         if (kvm_is_reserved_pfn(pfn))
1972                 return 1;
1973         return get_page_unless_zero(pfn_to_page(pfn));
1974 }
1975
1976 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1977                                unsigned long addr, bool *async,
1978                                bool write_fault, bool *writable,
1979                                kvm_pfn_t *p_pfn)
1980 {
1981         kvm_pfn_t pfn;
1982         pte_t *ptep;
1983         spinlock_t *ptl;
1984         int r;
1985
1986         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1987         if (r) {
1988                 /*
1989                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1990                  * not call the fault handler, so do it here.
1991                  */
1992                 bool unlocked = false;
1993                 r = fixup_user_fault(current->mm, addr,
1994                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1995                                      &unlocked);
1996                 if (unlocked)
1997                         return -EAGAIN;
1998                 if (r)
1999                         return r;
2000
2001                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2002                 if (r)
2003                         return r;
2004         }
2005
2006         if (write_fault && !pte_write(*ptep)) {
2007                 pfn = KVM_PFN_ERR_RO_FAULT;
2008                 goto out;
2009         }
2010
2011         if (writable)
2012                 *writable = pte_write(*ptep);
2013         pfn = pte_pfn(*ptep);
2014
2015         /*
2016          * Get a reference here because callers of *hva_to_pfn* and
2017          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2018          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2019          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2020          * simply do nothing for reserved pfns.
2021          *
2022          * Whoever called remap_pfn_range is also going to call e.g.
2023          * unmap_mapping_range before the underlying pages are freed,
2024          * causing a call to our MMU notifier.
2025          *
2026          * Certain IO or PFNMAP mappings can be backed with valid
2027          * struct pages, but be allocated without refcounting e.g.,
2028          * tail pages of non-compound higher order allocations, which
2029          * would then underflow the refcount when the caller does the
2030          * required put_page. Don't allow those pages here.
2031          */ 
2032         if (!kvm_try_get_pfn(pfn))
2033                 r = -EFAULT;
2034
2035 out:
2036         pte_unmap_unlock(ptep, ptl);
2037         *p_pfn = pfn;
2038
2039         return r;
2040 }
2041
2042 /*
2043  * Pin guest page in memory and return its pfn.
2044  * @addr: host virtual address which maps memory to the guest
2045  * @atomic: whether this function can sleep
2046  * @async: whether this function need to wait IO complete if the
2047  *         host page is not in the memory
2048  * @write_fault: whether we should get a writable host page
2049  * @writable: whether it allows to map a writable host page for !@write_fault
2050  *
2051  * The function will map a writable host page for these two cases:
2052  * 1): @write_fault = true
2053  * 2): @write_fault = false && @writable, @writable will tell the caller
2054  *     whether the mapping is writable.
2055  */
2056 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2057                         bool write_fault, bool *writable)
2058 {
2059         struct vm_area_struct *vma;
2060         kvm_pfn_t pfn = 0;
2061         int npages, r;
2062
2063         /* we can do it either atomically or asynchronously, not both */
2064         BUG_ON(atomic && async);
2065
2066         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2067                 return pfn;
2068
2069         if (atomic)
2070                 return KVM_PFN_ERR_FAULT;
2071
2072         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2073         if (npages == 1)
2074                 return pfn;
2075
2076         mmap_read_lock(current->mm);
2077         if (npages == -EHWPOISON ||
2078               (!async && check_user_page_hwpoison(addr))) {
2079                 pfn = KVM_PFN_ERR_HWPOISON;
2080                 goto exit;
2081         }
2082
2083 retry:
2084         vma = find_vma_intersection(current->mm, addr, addr + 1);
2085
2086         if (vma == NULL)
2087                 pfn = KVM_PFN_ERR_FAULT;
2088         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2089                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2090                 if (r == -EAGAIN)
2091                         goto retry;
2092                 if (r < 0)
2093                         pfn = KVM_PFN_ERR_FAULT;
2094         } else {
2095                 if (async && vma_is_valid(vma, write_fault))
2096                         *async = true;
2097                 pfn = KVM_PFN_ERR_FAULT;
2098         }
2099 exit:
2100         mmap_read_unlock(current->mm);
2101         return pfn;
2102 }
2103
2104 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2105                                bool atomic, bool *async, bool write_fault,
2106                                bool *writable)
2107 {
2108         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2109
2110         if (addr == KVM_HVA_ERR_RO_BAD) {
2111                 if (writable)
2112                         *writable = false;
2113                 return KVM_PFN_ERR_RO_FAULT;
2114         }
2115
2116         if (kvm_is_error_hva(addr)) {
2117                 if (writable)
2118                         *writable = false;
2119                 return KVM_PFN_NOSLOT;
2120         }
2121
2122         /* Do not map writable pfn in the readonly memslot. */
2123         if (writable && memslot_is_readonly(slot)) {
2124                 *writable = false;
2125                 writable = NULL;
2126         }
2127
2128         return hva_to_pfn(addr, atomic, async, write_fault,
2129                           writable);
2130 }
2131 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2132
2133 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2134                       bool *writable)
2135 {
2136         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2137                                     write_fault, writable);
2138 }
2139 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2140
2141 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2142 {
2143         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2144 }
2145 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2146
2147 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2148 {
2149         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2150 }
2151 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2152
2153 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2154 {
2155         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2158
2159 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2160 {
2161         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2162 }
2163 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2164
2165 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2166 {
2167         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2168 }
2169 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2170
2171 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2172                             struct page **pages, int nr_pages)
2173 {
2174         unsigned long addr;
2175         gfn_t entry = 0;
2176
2177         addr = gfn_to_hva_many(slot, gfn, &entry);
2178         if (kvm_is_error_hva(addr))
2179                 return -1;
2180
2181         if (entry < nr_pages)
2182                 return 0;
2183
2184         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2185 }
2186 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2187
2188 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2189 {
2190         if (is_error_noslot_pfn(pfn))
2191                 return KVM_ERR_PTR_BAD_PAGE;
2192
2193         if (kvm_is_reserved_pfn(pfn)) {
2194                 WARN_ON(1);
2195                 return KVM_ERR_PTR_BAD_PAGE;
2196         }
2197
2198         return pfn_to_page(pfn);
2199 }
2200
2201 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2202 {
2203         kvm_pfn_t pfn;
2204
2205         pfn = gfn_to_pfn(kvm, gfn);
2206
2207         return kvm_pfn_to_page(pfn);
2208 }
2209 EXPORT_SYMBOL_GPL(gfn_to_page);
2210
2211 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2212 {
2213         if (pfn == 0)
2214                 return;
2215
2216         if (cache)
2217                 cache->pfn = cache->gfn = 0;
2218
2219         if (dirty)
2220                 kvm_release_pfn_dirty(pfn);
2221         else
2222                 kvm_release_pfn_clean(pfn);
2223 }
2224
2225 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2226                                  struct gfn_to_pfn_cache *cache, u64 gen)
2227 {
2228         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2229
2230         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2231         cache->gfn = gfn;
2232         cache->dirty = false;
2233         cache->generation = gen;
2234 }
2235
2236 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2237                          struct kvm_host_map *map,
2238                          struct gfn_to_pfn_cache *cache,
2239                          bool atomic)
2240 {
2241         kvm_pfn_t pfn;
2242         void *hva = NULL;
2243         struct page *page = KVM_UNMAPPED_PAGE;
2244         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2245         u64 gen = slots->generation;
2246
2247         if (!map)
2248                 return -EINVAL;
2249
2250         if (cache) {
2251                 if (!cache->pfn || cache->gfn != gfn ||
2252                         cache->generation != gen) {
2253                         if (atomic)
2254                                 return -EAGAIN;
2255                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2256                 }
2257                 pfn = cache->pfn;
2258         } else {
2259                 if (atomic)
2260                         return -EAGAIN;
2261                 pfn = gfn_to_pfn_memslot(slot, gfn);
2262         }
2263         if (is_error_noslot_pfn(pfn))
2264                 return -EINVAL;
2265
2266         if (pfn_valid(pfn)) {
2267                 page = pfn_to_page(pfn);
2268                 if (atomic)
2269                         hva = kmap_atomic(page);
2270                 else
2271                         hva = kmap(page);
2272 #ifdef CONFIG_HAS_IOMEM
2273         } else if (!atomic) {
2274                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2275         } else {
2276                 return -EINVAL;
2277 #endif
2278         }
2279
2280         if (!hva)
2281                 return -EFAULT;
2282
2283         map->page = page;
2284         map->hva = hva;
2285         map->pfn = pfn;
2286         map->gfn = gfn;
2287
2288         return 0;
2289 }
2290
2291 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2292                 struct gfn_to_pfn_cache *cache, bool atomic)
2293 {
2294         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2295                         cache, atomic);
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2298
2299 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2300 {
2301         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2302                 NULL, false);
2303 }
2304 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2305
2306 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2307                         struct kvm_host_map *map,
2308                         struct gfn_to_pfn_cache *cache,
2309                         bool dirty, bool atomic)
2310 {
2311         if (!map)
2312                 return;
2313
2314         if (!map->hva)
2315                 return;
2316
2317         if (map->page != KVM_UNMAPPED_PAGE) {
2318                 if (atomic)
2319                         kunmap_atomic(map->hva);
2320                 else
2321                         kunmap(map->page);
2322         }
2323 #ifdef CONFIG_HAS_IOMEM
2324         else if (!atomic)
2325                 memunmap(map->hva);
2326         else
2327                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2328 #endif
2329
2330         if (dirty)
2331                 mark_page_dirty_in_slot(memslot, map->gfn);
2332
2333         if (cache)
2334                 cache->dirty |= dirty;
2335         else
2336                 kvm_release_pfn(map->pfn, dirty, NULL);
2337
2338         map->hva = NULL;
2339         map->page = NULL;
2340 }
2341
2342 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2343                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2344 {
2345         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2346                         cache, dirty, atomic);
2347         return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2350
2351 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2352 {
2353         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2354                         dirty, false);
2355 }
2356 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2357
2358 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2359 {
2360         kvm_pfn_t pfn;
2361
2362         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2363
2364         return kvm_pfn_to_page(pfn);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2367
2368 void kvm_release_page_clean(struct page *page)
2369 {
2370         WARN_ON(is_error_page(page));
2371
2372         kvm_release_pfn_clean(page_to_pfn(page));
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2375
2376 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2377 {
2378         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2379                 put_page(pfn_to_page(pfn));
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2382
2383 void kvm_release_page_dirty(struct page *page)
2384 {
2385         WARN_ON(is_error_page(page));
2386
2387         kvm_release_pfn_dirty(page_to_pfn(page));
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2390
2391 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2392 {
2393         kvm_set_pfn_dirty(pfn);
2394         kvm_release_pfn_clean(pfn);
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2397
2398 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2399 {
2400         if (!pfn_valid(pfn))
2401                 return false;
2402
2403         /*
2404          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2405          * touched (e.g. set dirty) except by its owner".
2406          */
2407         return !PageReserved(pfn_to_page(pfn));
2408 }
2409
2410 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2411 {
2412         if (kvm_is_ad_tracked_pfn(pfn))
2413                 SetPageDirty(pfn_to_page(pfn));
2414 }
2415 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2416
2417 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2418 {
2419         if (kvm_is_ad_tracked_pfn(pfn))
2420                 mark_page_accessed(pfn_to_page(pfn));
2421 }
2422 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2423
2424 void kvm_get_pfn(kvm_pfn_t pfn)
2425 {
2426         if (!kvm_is_reserved_pfn(pfn))
2427                 get_page(pfn_to_page(pfn));
2428 }
2429 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2430
2431 static int next_segment(unsigned long len, int offset)
2432 {
2433         if (len > PAGE_SIZE - offset)
2434                 return PAGE_SIZE - offset;
2435         else
2436                 return len;
2437 }
2438
2439 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2440                                  void *data, int offset, int len)
2441 {
2442         int r;
2443         unsigned long addr;
2444
2445         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2446         if (kvm_is_error_hva(addr))
2447                 return -EFAULT;
2448         r = __copy_from_user(data, (void __user *)addr + offset, len);
2449         if (r)
2450                 return -EFAULT;
2451         return 0;
2452 }
2453
2454 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2455                         int len)
2456 {
2457         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2458
2459         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2462
2463 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2464                              int offset, int len)
2465 {
2466         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2467
2468         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2471
2472 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2473 {
2474         gfn_t gfn = gpa >> PAGE_SHIFT;
2475         int seg;
2476         int offset = offset_in_page(gpa);
2477         int ret;
2478
2479         while ((seg = next_segment(len, offset)) != 0) {
2480                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2481                 if (ret < 0)
2482                         return ret;
2483                 offset = 0;
2484                 len -= seg;
2485                 data += seg;
2486                 ++gfn;
2487         }
2488         return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(kvm_read_guest);
2491
2492 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2493 {
2494         gfn_t gfn = gpa >> PAGE_SHIFT;
2495         int seg;
2496         int offset = offset_in_page(gpa);
2497         int ret;
2498
2499         while ((seg = next_segment(len, offset)) != 0) {
2500                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2501                 if (ret < 0)
2502                         return ret;
2503                 offset = 0;
2504                 len -= seg;
2505                 data += seg;
2506                 ++gfn;
2507         }
2508         return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2511
2512 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2513                                    void *data, int offset, unsigned long len)
2514 {
2515         int r;
2516         unsigned long addr;
2517
2518         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2519         if (kvm_is_error_hva(addr))
2520                 return -EFAULT;
2521         pagefault_disable();
2522         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2523         pagefault_enable();
2524         if (r)
2525                 return -EFAULT;
2526         return 0;
2527 }
2528
2529 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2530                                void *data, unsigned long len)
2531 {
2532         gfn_t gfn = gpa >> PAGE_SHIFT;
2533         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2534         int offset = offset_in_page(gpa);
2535
2536         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2539
2540 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2541                                   const void *data, int offset, int len)
2542 {
2543         int r;
2544         unsigned long addr;
2545
2546         addr = gfn_to_hva_memslot(memslot, gfn);
2547         if (kvm_is_error_hva(addr))
2548                 return -EFAULT;
2549         r = __copy_to_user((void __user *)addr + offset, data, len);
2550         if (r)
2551                 return -EFAULT;
2552         mark_page_dirty_in_slot(memslot, gfn);
2553         return 0;
2554 }
2555
2556 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2557                          const void *data, int offset, int len)
2558 {
2559         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2560
2561         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2564
2565 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2566                               const void *data, int offset, int len)
2567 {
2568         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2569
2570         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2573
2574 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2575                     unsigned long len)
2576 {
2577         gfn_t gfn = gpa >> PAGE_SHIFT;
2578         int seg;
2579         int offset = offset_in_page(gpa);
2580         int ret;
2581
2582         while ((seg = next_segment(len, offset)) != 0) {
2583                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2584                 if (ret < 0)
2585                         return ret;
2586                 offset = 0;
2587                 len -= seg;
2588                 data += seg;
2589                 ++gfn;
2590         }
2591         return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(kvm_write_guest);
2594
2595 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2596                          unsigned long len)
2597 {
2598         gfn_t gfn = gpa >> PAGE_SHIFT;
2599         int seg;
2600         int offset = offset_in_page(gpa);
2601         int ret;
2602
2603         while ((seg = next_segment(len, offset)) != 0) {
2604                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2605                 if (ret < 0)
2606                         return ret;
2607                 offset = 0;
2608                 len -= seg;
2609                 data += seg;
2610                 ++gfn;
2611         }
2612         return 0;
2613 }
2614 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2615
2616 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2617                                        struct gfn_to_hva_cache *ghc,
2618                                        gpa_t gpa, unsigned long len)
2619 {
2620         int offset = offset_in_page(gpa);
2621         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2622         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2623         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2624         gfn_t nr_pages_avail;
2625
2626         /* Update ghc->generation before performing any error checks. */
2627         ghc->generation = slots->generation;
2628
2629         if (start_gfn > end_gfn) {
2630                 ghc->hva = KVM_HVA_ERR_BAD;
2631                 return -EINVAL;
2632         }
2633
2634         /*
2635          * If the requested region crosses two memslots, we still
2636          * verify that the entire region is valid here.
2637          */
2638         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2639                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2640                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2641                                            &nr_pages_avail);
2642                 if (kvm_is_error_hva(ghc->hva))
2643                         return -EFAULT;
2644         }
2645
2646         /* Use the slow path for cross page reads and writes. */
2647         if (nr_pages_needed == 1)
2648                 ghc->hva += offset;
2649         else
2650                 ghc->memslot = NULL;
2651
2652         ghc->gpa = gpa;
2653         ghc->len = len;
2654         return 0;
2655 }
2656
2657 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2658                               gpa_t gpa, unsigned long len)
2659 {
2660         struct kvm_memslots *slots = kvm_memslots(kvm);
2661         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2662 }
2663 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2664
2665 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2666                                   void *data, unsigned int offset,
2667                                   unsigned long len)
2668 {
2669         struct kvm_memslots *slots = kvm_memslots(kvm);
2670         int r;
2671         gpa_t gpa = ghc->gpa + offset;
2672
2673         if (WARN_ON_ONCE(len + offset > ghc->len))
2674                 return -EINVAL;
2675
2676         if (slots->generation != ghc->generation) {
2677                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2678                         return -EFAULT;
2679         }
2680
2681         if (kvm_is_error_hva(ghc->hva))
2682                 return -EFAULT;
2683
2684         if (unlikely(!ghc->memslot))
2685                 return kvm_write_guest(kvm, gpa, data, len);
2686
2687         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2688         if (r)
2689                 return -EFAULT;
2690         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2691
2692         return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2695
2696 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2697                            void *data, unsigned long len)
2698 {
2699         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2700 }
2701 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2702
2703 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2704                                  void *data, unsigned int offset,
2705                                  unsigned long len)
2706 {
2707         struct kvm_memslots *slots = kvm_memslots(kvm);
2708         int r;
2709         gpa_t gpa = ghc->gpa + offset;
2710
2711         if (WARN_ON_ONCE(len + offset > ghc->len))
2712                 return -EINVAL;
2713
2714         if (slots->generation != ghc->generation) {
2715                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2716                         return -EFAULT;
2717         }
2718
2719         if (kvm_is_error_hva(ghc->hva))
2720                 return -EFAULT;
2721
2722         if (unlikely(!ghc->memslot))
2723                 return kvm_read_guest(kvm, gpa, data, len);
2724
2725         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2726         if (r)
2727                 return -EFAULT;
2728
2729         return 0;
2730 }
2731 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2732
2733 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2734                           void *data, unsigned long len)
2735 {
2736         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2737 }
2738 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2739
2740 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2741 {
2742         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2743
2744         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2747
2748 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2749 {
2750         gfn_t gfn = gpa >> PAGE_SHIFT;
2751         int seg;
2752         int offset = offset_in_page(gpa);
2753         int ret;
2754
2755         while ((seg = next_segment(len, offset)) != 0) {
2756                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2757                 if (ret < 0)
2758                         return ret;
2759                 offset = 0;
2760                 len -= seg;
2761                 ++gfn;
2762         }
2763         return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2766
2767 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2768 {
2769         if (memslot && memslot->dirty_bitmap) {
2770                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2771
2772                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2773         }
2774 }
2775 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2776
2777 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2778 {
2779         struct kvm_memory_slot *memslot;
2780
2781         memslot = gfn_to_memslot(kvm, gfn);
2782         mark_page_dirty_in_slot(memslot, gfn);
2783 }
2784 EXPORT_SYMBOL_GPL(mark_page_dirty);
2785
2786 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2787 {
2788         struct kvm_memory_slot *memslot;
2789
2790         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2791         mark_page_dirty_in_slot(memslot, gfn);
2792 }
2793 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2794
2795 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2796 {
2797         if (!vcpu->sigset_active)
2798                 return;
2799
2800         /*
2801          * This does a lockless modification of ->real_blocked, which is fine
2802          * because, only current can change ->real_blocked and all readers of
2803          * ->real_blocked don't care as long ->real_blocked is always a subset
2804          * of ->blocked.
2805          */
2806         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2807 }
2808
2809 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2810 {
2811         if (!vcpu->sigset_active)
2812                 return;
2813
2814         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2815         sigemptyset(&current->real_blocked);
2816 }
2817
2818 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2819 {
2820         unsigned int old, val, grow, grow_start;
2821
2822         old = val = vcpu->halt_poll_ns;
2823         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2824         grow = READ_ONCE(halt_poll_ns_grow);
2825         if (!grow)
2826                 goto out;
2827
2828         val *= grow;
2829         if (val < grow_start)
2830                 val = grow_start;
2831
2832         if (val > vcpu->kvm->max_halt_poll_ns)
2833                 val = vcpu->kvm->max_halt_poll_ns;
2834
2835         vcpu->halt_poll_ns = val;
2836 out:
2837         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2838 }
2839
2840 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2841 {
2842         unsigned int old, val, shrink, grow_start;
2843
2844         old = val = vcpu->halt_poll_ns;
2845         shrink = READ_ONCE(halt_poll_ns_shrink);
2846         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2847         if (shrink == 0)
2848                 val = 0;
2849         else
2850                 val /= shrink;
2851
2852         if (val < grow_start)
2853                 val = 0;
2854
2855         vcpu->halt_poll_ns = val;
2856         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2857 }
2858
2859 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2860 {
2861         int ret = -EINTR;
2862         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2863
2864         if (kvm_arch_vcpu_runnable(vcpu)) {
2865                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2866                 goto out;
2867         }
2868         if (kvm_cpu_has_pending_timer(vcpu))
2869                 goto out;
2870         if (signal_pending(current))
2871                 goto out;
2872
2873         ret = 0;
2874 out:
2875         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2876         return ret;
2877 }
2878
2879 static inline void
2880 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2881 {
2882         if (waited)
2883                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2884         else
2885                 vcpu->stat.halt_poll_success_ns += poll_ns;
2886 }
2887
2888 /*
2889  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2890  */
2891 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2892 {
2893         ktime_t start, cur, poll_end;
2894         bool waited = false;
2895         u64 block_ns;
2896
2897         kvm_arch_vcpu_blocking(vcpu);
2898
2899         start = cur = poll_end = ktime_get();
2900         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2901                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2902
2903                 ++vcpu->stat.halt_attempted_poll;
2904                 do {
2905                         /*
2906                          * This sets KVM_REQ_UNHALT if an interrupt
2907                          * arrives.
2908                          */
2909                         if (kvm_vcpu_check_block(vcpu) < 0) {
2910                                 ++vcpu->stat.halt_successful_poll;
2911                                 if (!vcpu_valid_wakeup(vcpu))
2912                                         ++vcpu->stat.halt_poll_invalid;
2913                                 goto out;
2914                         }
2915                         poll_end = cur = ktime_get();
2916                 } while (single_task_running() && !need_resched() &&
2917                          ktime_before(cur, stop));
2918         }
2919
2920         prepare_to_rcuwait(&vcpu->wait);
2921         for (;;) {
2922                 set_current_state(TASK_INTERRUPTIBLE);
2923
2924                 if (kvm_vcpu_check_block(vcpu) < 0)
2925                         break;
2926
2927                 waited = true;
2928                 schedule();
2929         }
2930         finish_rcuwait(&vcpu->wait);
2931         cur = ktime_get();
2932 out:
2933         kvm_arch_vcpu_unblocking(vcpu);
2934         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2935
2936         update_halt_poll_stats(
2937                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2938
2939         if (!kvm_arch_no_poll(vcpu)) {
2940                 if (!vcpu_valid_wakeup(vcpu)) {
2941                         shrink_halt_poll_ns(vcpu);
2942                 } else if (vcpu->kvm->max_halt_poll_ns) {
2943                         if (block_ns <= vcpu->halt_poll_ns)
2944                                 ;
2945                         /* we had a long block, shrink polling */
2946                         else if (vcpu->halt_poll_ns &&
2947                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2948                                 shrink_halt_poll_ns(vcpu);
2949                         /* we had a short halt and our poll time is too small */
2950                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2951                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2952                                 grow_halt_poll_ns(vcpu);
2953                 } else {
2954                         vcpu->halt_poll_ns = 0;
2955                 }
2956         }
2957
2958         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2959         kvm_arch_vcpu_block_finish(vcpu);
2960 }
2961 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2962
2963 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2964 {
2965         struct rcuwait *waitp;
2966
2967         waitp = kvm_arch_vcpu_get_wait(vcpu);
2968         if (rcuwait_wake_up(waitp)) {
2969                 WRITE_ONCE(vcpu->ready, true);
2970                 ++vcpu->stat.halt_wakeup;
2971                 return true;
2972         }
2973
2974         return false;
2975 }
2976 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2977
2978 #ifndef CONFIG_S390
2979 /*
2980  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2981  */
2982 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2983 {
2984         int me, cpu;
2985
2986         if (kvm_vcpu_wake_up(vcpu))
2987                 return;
2988
2989         /*
2990          * Note, the vCPU could get migrated to a different pCPU at any point
2991          * after kvm_arch_vcpu_should_kick(), which could result in sending an
2992          * IPI to the previous pCPU.  But, that's ok because the purpose of the
2993          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
2994          * vCPU also requires it to leave IN_GUEST_MODE.
2995          */
2996         me = get_cpu();
2997         if (kvm_arch_vcpu_should_kick(vcpu)) {
2998                 cpu = READ_ONCE(vcpu->cpu);
2999                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3000                         smp_send_reschedule(cpu);
3001         }
3002         put_cpu();
3003 }
3004 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3005 #endif /* !CONFIG_S390 */
3006
3007 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3008 {
3009         struct pid *pid;
3010         struct task_struct *task = NULL;
3011         int ret = 0;
3012
3013         rcu_read_lock();
3014         pid = rcu_dereference(target->pid);
3015         if (pid)
3016                 task = get_pid_task(pid, PIDTYPE_PID);
3017         rcu_read_unlock();
3018         if (!task)
3019                 return ret;
3020         ret = yield_to(task, 1);
3021         put_task_struct(task);
3022
3023         return ret;
3024 }
3025 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3026
3027 /*
3028  * Helper that checks whether a VCPU is eligible for directed yield.
3029  * Most eligible candidate to yield is decided by following heuristics:
3030  *
3031  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3032  *  (preempted lock holder), indicated by @in_spin_loop.
3033  *  Set at the beginning and cleared at the end of interception/PLE handler.
3034  *
3035  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3036  *  chance last time (mostly it has become eligible now since we have probably
3037  *  yielded to lockholder in last iteration. This is done by toggling
3038  *  @dy_eligible each time a VCPU checked for eligibility.)
3039  *
3040  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3041  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3042  *  burning. Giving priority for a potential lock-holder increases lock
3043  *  progress.
3044  *
3045  *  Since algorithm is based on heuristics, accessing another VCPU data without
3046  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3047  *  and continue with next VCPU and so on.
3048  */
3049 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3050 {
3051 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3052         bool eligible;
3053
3054         eligible = !vcpu->spin_loop.in_spin_loop ||
3055                     vcpu->spin_loop.dy_eligible;
3056
3057         if (vcpu->spin_loop.in_spin_loop)
3058                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3059
3060         return eligible;
3061 #else
3062         return true;
3063 #endif
3064 }
3065
3066 /*
3067  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3068  * a vcpu_load/vcpu_put pair.  However, for most architectures
3069  * kvm_arch_vcpu_runnable does not require vcpu_load.
3070  */
3071 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3072 {
3073         return kvm_arch_vcpu_runnable(vcpu);
3074 }
3075
3076 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3077 {
3078         if (kvm_arch_dy_runnable(vcpu))
3079                 return true;
3080
3081 #ifdef CONFIG_KVM_ASYNC_PF
3082         if (!list_empty_careful(&vcpu->async_pf.done))
3083                 return true;
3084 #endif
3085
3086         return false;
3087 }
3088
3089 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3090 {
3091         struct kvm *kvm = me->kvm;
3092         struct kvm_vcpu *vcpu;
3093         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3094         int yielded = 0;
3095         int try = 3;
3096         int pass;
3097         int i;
3098
3099         kvm_vcpu_set_in_spin_loop(me, true);
3100         /*
3101          * We boost the priority of a VCPU that is runnable but not
3102          * currently running, because it got preempted by something
3103          * else and called schedule in __vcpu_run.  Hopefully that
3104          * VCPU is holding the lock that we need and will release it.
3105          * We approximate round-robin by starting at the last boosted VCPU.
3106          */
3107         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3108                 kvm_for_each_vcpu(i, vcpu, kvm) {
3109                         if (!pass && i <= last_boosted_vcpu) {
3110                                 i = last_boosted_vcpu;
3111                                 continue;
3112                         } else if (pass && i > last_boosted_vcpu)
3113                                 break;
3114                         if (!READ_ONCE(vcpu->ready))
3115                                 continue;
3116                         if (vcpu == me)
3117                                 continue;
3118                         if (rcuwait_active(&vcpu->wait) &&
3119                             !vcpu_dy_runnable(vcpu))
3120                                 continue;
3121                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3122                                 !kvm_arch_vcpu_in_kernel(vcpu))
3123                                 continue;
3124                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3125                                 continue;
3126
3127                         yielded = kvm_vcpu_yield_to(vcpu);
3128                         if (yielded > 0) {
3129                                 kvm->last_boosted_vcpu = i;
3130                                 break;
3131                         } else if (yielded < 0) {
3132                                 try--;
3133                                 if (!try)
3134                                         break;
3135                         }
3136                 }
3137         }
3138         kvm_vcpu_set_in_spin_loop(me, false);
3139
3140         /* Ensure vcpu is not eligible during next spinloop */
3141         kvm_vcpu_set_dy_eligible(me, false);
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3144
3145 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3146 {
3147         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3148         struct page *page;
3149
3150         if (vmf->pgoff == 0)
3151                 page = virt_to_page(vcpu->run);
3152 #ifdef CONFIG_X86
3153         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3154                 page = virt_to_page(vcpu->arch.pio_data);
3155 #endif
3156 #ifdef CONFIG_KVM_MMIO
3157         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3158                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3159 #endif
3160         else
3161                 return kvm_arch_vcpu_fault(vcpu, vmf);
3162         get_page(page);
3163         vmf->page = page;
3164         return 0;
3165 }
3166
3167 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3168         .fault = kvm_vcpu_fault,
3169 };
3170
3171 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3172 {
3173         vma->vm_ops = &kvm_vcpu_vm_ops;
3174         return 0;
3175 }
3176
3177 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3178 {
3179         struct kvm_vcpu *vcpu = filp->private_data;
3180
3181         kvm_put_kvm(vcpu->kvm);
3182         return 0;
3183 }
3184
3185 static struct file_operations kvm_vcpu_fops = {
3186         .release        = kvm_vcpu_release,
3187         .unlocked_ioctl = kvm_vcpu_ioctl,
3188         .mmap           = kvm_vcpu_mmap,
3189         .llseek         = noop_llseek,
3190         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3191 };
3192
3193 /*
3194  * Allocates an inode for the vcpu.
3195  */
3196 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3197 {
3198         char name[8 + 1 + ITOA_MAX_LEN + 1];
3199
3200         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3201         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3202 }
3203
3204 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3205 {
3206 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3207         struct dentry *debugfs_dentry;
3208         char dir_name[ITOA_MAX_LEN * 2];
3209
3210         if (!debugfs_initialized())
3211                 return;
3212
3213         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3214         debugfs_dentry = debugfs_create_dir(dir_name,
3215                                             vcpu->kvm->debugfs_dentry);
3216
3217         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3218 #endif
3219 }
3220
3221 /*
3222  * Creates some virtual cpus.  Good luck creating more than one.
3223  */
3224 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3225 {
3226         int r;
3227         struct kvm_vcpu *vcpu;
3228         struct page *page;
3229
3230         if (id >= KVM_MAX_VCPU_ID)
3231                 return -EINVAL;
3232
3233         mutex_lock(&kvm->lock);
3234         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3235                 mutex_unlock(&kvm->lock);
3236                 return -EINVAL;
3237         }
3238
3239         kvm->created_vcpus++;
3240         mutex_unlock(&kvm->lock);
3241
3242         r = kvm_arch_vcpu_precreate(kvm, id);
3243         if (r)
3244                 goto vcpu_decrement;
3245
3246         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3247         if (!vcpu) {
3248                 r = -ENOMEM;
3249                 goto vcpu_decrement;
3250         }
3251
3252         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3253         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3254         if (!page) {
3255                 r = -ENOMEM;
3256                 goto vcpu_free;
3257         }
3258         vcpu->run = page_address(page);
3259
3260         kvm_vcpu_init(vcpu, kvm, id);
3261
3262         r = kvm_arch_vcpu_create(vcpu);
3263         if (r)
3264                 goto vcpu_free_run_page;
3265
3266         mutex_lock(&kvm->lock);
3267         if (kvm_get_vcpu_by_id(kvm, id)) {
3268                 r = -EEXIST;
3269                 goto unlock_vcpu_destroy;
3270         }
3271
3272         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3273         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3274
3275         /* Now it's all set up, let userspace reach it */
3276         kvm_get_kvm(kvm);
3277         r = create_vcpu_fd(vcpu);
3278         if (r < 0) {
3279                 kvm_put_kvm_no_destroy(kvm);
3280                 goto unlock_vcpu_destroy;
3281         }
3282
3283         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3284
3285         /*
3286          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3287          * before kvm->online_vcpu's incremented value.
3288          */
3289         smp_wmb();
3290         atomic_inc(&kvm->online_vcpus);
3291
3292         mutex_unlock(&kvm->lock);
3293         kvm_arch_vcpu_postcreate(vcpu);
3294         kvm_create_vcpu_debugfs(vcpu);
3295         return r;
3296
3297 unlock_vcpu_destroy:
3298         mutex_unlock(&kvm->lock);
3299         kvm_arch_vcpu_destroy(vcpu);
3300 vcpu_free_run_page:
3301         free_page((unsigned long)vcpu->run);
3302 vcpu_free:
3303         kmem_cache_free(kvm_vcpu_cache, vcpu);
3304 vcpu_decrement:
3305         mutex_lock(&kvm->lock);
3306         kvm->created_vcpus--;
3307         mutex_unlock(&kvm->lock);
3308         return r;
3309 }
3310
3311 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3312 {
3313         if (sigset) {
3314                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3315                 vcpu->sigset_active = 1;
3316                 vcpu->sigset = *sigset;
3317         } else
3318                 vcpu->sigset_active = 0;
3319         return 0;
3320 }
3321
3322 static long kvm_vcpu_ioctl(struct file *filp,
3323                            unsigned int ioctl, unsigned long arg)
3324 {
3325         struct kvm_vcpu *vcpu = filp->private_data;
3326         void __user *argp = (void __user *)arg;
3327         int r;
3328         struct kvm_fpu *fpu = NULL;
3329         struct kvm_sregs *kvm_sregs = NULL;
3330
3331         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3332                 return -EIO;
3333
3334         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3335                 return -EINVAL;
3336
3337         /*
3338          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3339          * execution; mutex_lock() would break them.
3340          */
3341         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3342         if (r != -ENOIOCTLCMD)
3343                 return r;
3344
3345         if (mutex_lock_killable(&vcpu->mutex))
3346                 return -EINTR;
3347         switch (ioctl) {
3348         case KVM_RUN: {
3349                 struct pid *oldpid;
3350                 r = -EINVAL;
3351                 if (arg)
3352                         goto out;
3353                 oldpid = rcu_access_pointer(vcpu->pid);
3354                 if (unlikely(oldpid != task_pid(current))) {
3355                         /* The thread running this VCPU changed. */
3356                         struct pid *newpid;
3357
3358                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3359                         if (r)
3360                                 break;
3361
3362                         newpid = get_task_pid(current, PIDTYPE_PID);
3363                         rcu_assign_pointer(vcpu->pid, newpid);
3364                         if (oldpid)
3365                                 synchronize_rcu();
3366                         put_pid(oldpid);
3367                 }
3368                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3369                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3370                 break;
3371         }
3372         case KVM_GET_REGS: {
3373                 struct kvm_regs *kvm_regs;
3374
3375                 r = -ENOMEM;
3376                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3377                 if (!kvm_regs)
3378                         goto out;
3379                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3380                 if (r)
3381                         goto out_free1;
3382                 r = -EFAULT;
3383                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3384                         goto out_free1;
3385                 r = 0;
3386 out_free1:
3387                 kfree(kvm_regs);
3388                 break;
3389         }
3390         case KVM_SET_REGS: {
3391                 struct kvm_regs *kvm_regs;
3392
3393                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3394                 if (IS_ERR(kvm_regs)) {
3395                         r = PTR_ERR(kvm_regs);
3396                         goto out;
3397                 }
3398                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3399                 kfree(kvm_regs);
3400                 break;
3401         }
3402         case KVM_GET_SREGS: {
3403                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3404                                     GFP_KERNEL_ACCOUNT);
3405                 r = -ENOMEM;
3406                 if (!kvm_sregs)
3407                         goto out;
3408                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3409                 if (r)
3410                         goto out;
3411                 r = -EFAULT;
3412                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3413                         goto out;
3414                 r = 0;
3415                 break;
3416         }
3417         case KVM_SET_SREGS: {
3418                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3419                 if (IS_ERR(kvm_sregs)) {
3420                         r = PTR_ERR(kvm_sregs);
3421                         kvm_sregs = NULL;
3422                         goto out;
3423                 }
3424                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3425                 break;
3426         }
3427         case KVM_GET_MP_STATE: {
3428                 struct kvm_mp_state mp_state;
3429
3430                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3431                 if (r)
3432                         goto out;
3433                 r = -EFAULT;
3434                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3435                         goto out;
3436                 r = 0;
3437                 break;
3438         }
3439         case KVM_SET_MP_STATE: {
3440                 struct kvm_mp_state mp_state;
3441
3442                 r = -EFAULT;
3443                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3444                         goto out;
3445                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3446                 break;
3447         }
3448         case KVM_TRANSLATE: {
3449                 struct kvm_translation tr;
3450
3451                 r = -EFAULT;
3452                 if (copy_from_user(&tr, argp, sizeof(tr)))
3453                         goto out;
3454                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3455                 if (r)
3456                         goto out;
3457                 r = -EFAULT;
3458                 if (copy_to_user(argp, &tr, sizeof(tr)))
3459                         goto out;
3460                 r = 0;
3461                 break;
3462         }
3463         case KVM_SET_GUEST_DEBUG: {
3464                 struct kvm_guest_debug dbg;
3465
3466                 r = -EFAULT;
3467                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3468                         goto out;
3469                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3470                 break;
3471         }
3472         case KVM_SET_SIGNAL_MASK: {
3473                 struct kvm_signal_mask __user *sigmask_arg = argp;
3474                 struct kvm_signal_mask kvm_sigmask;
3475                 sigset_t sigset, *p;
3476
3477                 p = NULL;
3478                 if (argp) {
3479                         r = -EFAULT;
3480                         if (copy_from_user(&kvm_sigmask, argp,
3481                                            sizeof(kvm_sigmask)))
3482                                 goto out;
3483                         r = -EINVAL;
3484                         if (kvm_sigmask.len != sizeof(sigset))
3485                                 goto out;
3486                         r = -EFAULT;
3487                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3488                                            sizeof(sigset)))
3489                                 goto out;
3490                         p = &sigset;
3491                 }
3492                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3493                 break;
3494         }
3495         case KVM_GET_FPU: {
3496                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3497                 r = -ENOMEM;
3498                 if (!fpu)
3499                         goto out;
3500                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3501                 if (r)
3502                         goto out;
3503                 r = -EFAULT;
3504                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3505                         goto out;
3506                 r = 0;
3507                 break;
3508         }
3509         case KVM_SET_FPU: {
3510                 fpu = memdup_user(argp, sizeof(*fpu));
3511                 if (IS_ERR(fpu)) {
3512                         r = PTR_ERR(fpu);
3513                         fpu = NULL;
3514                         goto out;
3515                 }
3516                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3517                 break;
3518         }
3519         default:
3520                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3521         }
3522 out:
3523         mutex_unlock(&vcpu->mutex);
3524         kfree(fpu);
3525         kfree(kvm_sregs);
3526         return r;
3527 }
3528
3529 #ifdef CONFIG_KVM_COMPAT
3530 static long kvm_vcpu_compat_ioctl(struct file *filp,
3531                                   unsigned int ioctl, unsigned long arg)
3532 {
3533         struct kvm_vcpu *vcpu = filp->private_data;
3534         void __user *argp = compat_ptr(arg);
3535         int r;
3536
3537         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3538                 return -EIO;
3539
3540         switch (ioctl) {
3541         case KVM_SET_SIGNAL_MASK: {
3542                 struct kvm_signal_mask __user *sigmask_arg = argp;
3543                 struct kvm_signal_mask kvm_sigmask;
3544                 sigset_t sigset;
3545
3546                 if (argp) {
3547                         r = -EFAULT;
3548                         if (copy_from_user(&kvm_sigmask, argp,
3549                                            sizeof(kvm_sigmask)))
3550                                 goto out;
3551                         r = -EINVAL;
3552                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3553                                 goto out;
3554                         r = -EFAULT;
3555                         if (get_compat_sigset(&sigset,
3556                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3557                                 goto out;
3558                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3559                 } else
3560                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3561                 break;
3562         }
3563         default:
3564                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3565         }
3566
3567 out:
3568         return r;
3569 }
3570 #endif
3571
3572 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3573 {
3574         struct kvm_device *dev = filp->private_data;
3575
3576         if (dev->ops->mmap)
3577                 return dev->ops->mmap(dev, vma);
3578
3579         return -ENODEV;
3580 }
3581
3582 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3583                                  int (*accessor)(struct kvm_device *dev,
3584                                                  struct kvm_device_attr *attr),
3585                                  unsigned long arg)
3586 {
3587         struct kvm_device_attr attr;
3588
3589         if (!accessor)
3590                 return -EPERM;
3591
3592         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3593                 return -EFAULT;
3594
3595         return accessor(dev, &attr);
3596 }
3597
3598 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3599                              unsigned long arg)
3600 {
3601         struct kvm_device *dev = filp->private_data;
3602
3603         if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3604                 return -EIO;
3605
3606         switch (ioctl) {
3607         case KVM_SET_DEVICE_ATTR:
3608                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3609         case KVM_GET_DEVICE_ATTR:
3610                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3611         case KVM_HAS_DEVICE_ATTR:
3612                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3613         default:
3614                 if (dev->ops->ioctl)
3615                         return dev->ops->ioctl(dev, ioctl, arg);
3616
3617                 return -ENOTTY;
3618         }
3619 }
3620
3621 static int kvm_device_release(struct inode *inode, struct file *filp)
3622 {
3623         struct kvm_device *dev = filp->private_data;
3624         struct kvm *kvm = dev->kvm;
3625
3626         if (dev->ops->release) {
3627                 mutex_lock(&kvm->lock);
3628                 list_del(&dev->vm_node);
3629                 dev->ops->release(dev);
3630                 mutex_unlock(&kvm->lock);
3631         }
3632
3633         kvm_put_kvm(kvm);
3634         return 0;
3635 }
3636
3637 static const struct file_operations kvm_device_fops = {
3638         .unlocked_ioctl = kvm_device_ioctl,
3639         .release = kvm_device_release,
3640         KVM_COMPAT(kvm_device_ioctl),
3641         .mmap = kvm_device_mmap,
3642 };
3643
3644 struct kvm_device *kvm_device_from_filp(struct file *filp)
3645 {
3646         if (filp->f_op != &kvm_device_fops)
3647                 return NULL;
3648
3649         return filp->private_data;
3650 }
3651
3652 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3653 #ifdef CONFIG_KVM_MPIC
3654         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3655         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3656 #endif
3657 };
3658
3659 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3660 {
3661         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3662                 return -ENOSPC;
3663
3664         if (kvm_device_ops_table[type] != NULL)
3665                 return -EEXIST;
3666
3667         kvm_device_ops_table[type] = ops;
3668         return 0;
3669 }
3670
3671 void kvm_unregister_device_ops(u32 type)
3672 {
3673         if (kvm_device_ops_table[type] != NULL)
3674                 kvm_device_ops_table[type] = NULL;
3675 }
3676
3677 static int kvm_ioctl_create_device(struct kvm *kvm,
3678                                    struct kvm_create_device *cd)
3679 {
3680         const struct kvm_device_ops *ops = NULL;
3681         struct kvm_device *dev;
3682         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3683         int type;
3684         int ret;
3685
3686         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3687                 return -ENODEV;
3688
3689         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3690         ops = kvm_device_ops_table[type];
3691         if (ops == NULL)
3692                 return -ENODEV;
3693
3694         if (test)
3695                 return 0;
3696
3697         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3698         if (!dev)
3699                 return -ENOMEM;
3700
3701         dev->ops = ops;
3702         dev->kvm = kvm;
3703
3704         mutex_lock(&kvm->lock);
3705         ret = ops->create(dev, type);
3706         if (ret < 0) {
3707                 mutex_unlock(&kvm->lock);
3708                 kfree(dev);
3709                 return ret;
3710         }
3711         list_add(&dev->vm_node, &kvm->devices);
3712         mutex_unlock(&kvm->lock);
3713
3714         if (ops->init)
3715                 ops->init(dev);
3716
3717         kvm_get_kvm(kvm);
3718         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3719         if (ret < 0) {
3720                 kvm_put_kvm_no_destroy(kvm);
3721                 mutex_lock(&kvm->lock);
3722                 list_del(&dev->vm_node);
3723                 if (ops->release)
3724                         ops->release(dev);
3725                 mutex_unlock(&kvm->lock);
3726                 if (ops->destroy)
3727                         ops->destroy(dev);
3728                 return ret;
3729         }
3730
3731         cd->fd = ret;
3732         return 0;
3733 }
3734
3735 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3736 {
3737         switch (arg) {
3738         case KVM_CAP_USER_MEMORY:
3739         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3740         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3741         case KVM_CAP_INTERNAL_ERROR_DATA:
3742 #ifdef CONFIG_HAVE_KVM_MSI
3743         case KVM_CAP_SIGNAL_MSI:
3744 #endif
3745 #ifdef CONFIG_HAVE_KVM_IRQFD
3746         case KVM_CAP_IRQFD:
3747         case KVM_CAP_IRQFD_RESAMPLE:
3748 #endif
3749         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3750         case KVM_CAP_CHECK_EXTENSION_VM:
3751         case KVM_CAP_ENABLE_CAP_VM:
3752         case KVM_CAP_HALT_POLL:
3753                 return 1;
3754 #ifdef CONFIG_KVM_MMIO
3755         case KVM_CAP_COALESCED_MMIO:
3756                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3757         case KVM_CAP_COALESCED_PIO:
3758                 return 1;
3759 #endif
3760 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3761         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3762                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3763 #endif
3764 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3765         case KVM_CAP_IRQ_ROUTING:
3766                 return KVM_MAX_IRQ_ROUTES;
3767 #endif
3768 #if KVM_ADDRESS_SPACE_NUM > 1
3769         case KVM_CAP_MULTI_ADDRESS_SPACE:
3770                 return KVM_ADDRESS_SPACE_NUM;
3771 #endif
3772         case KVM_CAP_NR_MEMSLOTS:
3773                 return KVM_USER_MEM_SLOTS;
3774         default:
3775                 break;
3776         }
3777         return kvm_vm_ioctl_check_extension(kvm, arg);
3778 }
3779
3780 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3781                                                   struct kvm_enable_cap *cap)
3782 {
3783         return -EINVAL;
3784 }
3785
3786 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3787                                            struct kvm_enable_cap *cap)
3788 {
3789         switch (cap->cap) {
3790 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3791         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3792                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3793
3794                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3795                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3796
3797                 if (cap->flags || (cap->args[0] & ~allowed_options))
3798                         return -EINVAL;
3799                 kvm->manual_dirty_log_protect = cap->args[0];
3800                 return 0;
3801         }
3802 #endif
3803         case KVM_CAP_HALT_POLL: {
3804                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3805                         return -EINVAL;
3806
3807                 kvm->max_halt_poll_ns = cap->args[0];
3808                 return 0;
3809         }
3810         default:
3811                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3812         }
3813 }
3814
3815 static long kvm_vm_ioctl(struct file *filp,
3816                            unsigned int ioctl, unsigned long arg)
3817 {
3818         struct kvm *kvm = filp->private_data;
3819         void __user *argp = (void __user *)arg;
3820         int r;
3821
3822         if (kvm->mm != current->mm || kvm->vm_bugged)
3823                 return -EIO;
3824         switch (ioctl) {
3825         case KVM_CREATE_VCPU:
3826                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3827                 break;
3828         case KVM_ENABLE_CAP: {
3829                 struct kvm_enable_cap cap;
3830
3831                 r = -EFAULT;
3832                 if (copy_from_user(&cap, argp, sizeof(cap)))
3833                         goto out;
3834                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3835                 break;
3836         }
3837         case KVM_SET_USER_MEMORY_REGION: {
3838                 struct kvm_userspace_memory_region kvm_userspace_mem;
3839
3840                 r = -EFAULT;
3841                 if (copy_from_user(&kvm_userspace_mem, argp,
3842                                                 sizeof(kvm_userspace_mem)))
3843                         goto out;
3844
3845                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3846                 break;
3847         }
3848         case KVM_GET_DIRTY_LOG: {
3849                 struct kvm_dirty_log log;
3850
3851                 r = -EFAULT;
3852                 if (copy_from_user(&log, argp, sizeof(log)))
3853                         goto out;
3854                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3855                 break;
3856         }
3857 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3858         case KVM_CLEAR_DIRTY_LOG: {
3859                 struct kvm_clear_dirty_log log;
3860
3861                 r = -EFAULT;
3862                 if (copy_from_user(&log, argp, sizeof(log)))
3863                         goto out;
3864                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3865                 break;
3866         }
3867 #endif
3868 #ifdef CONFIG_KVM_MMIO
3869         case KVM_REGISTER_COALESCED_MMIO: {
3870                 struct kvm_coalesced_mmio_zone zone;
3871
3872                 r = -EFAULT;
3873                 if (copy_from_user(&zone, argp, sizeof(zone)))
3874                         goto out;
3875                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3876                 break;
3877         }
3878         case KVM_UNREGISTER_COALESCED_MMIO: {
3879                 struct kvm_coalesced_mmio_zone zone;
3880
3881                 r = -EFAULT;
3882                 if (copy_from_user(&zone, argp, sizeof(zone)))
3883                         goto out;
3884                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3885                 break;
3886         }
3887 #endif
3888         case KVM_IRQFD: {
3889                 struct kvm_irqfd data;
3890
3891                 r = -EFAULT;
3892                 if (copy_from_user(&data, argp, sizeof(data)))
3893                         goto out;
3894                 r = kvm_irqfd(kvm, &data);
3895                 break;
3896         }
3897         case KVM_IOEVENTFD: {
3898                 struct kvm_ioeventfd data;
3899
3900                 r = -EFAULT;
3901                 if (copy_from_user(&data, argp, sizeof(data)))
3902                         goto out;
3903                 r = kvm_ioeventfd(kvm, &data);
3904                 break;
3905         }
3906 #ifdef CONFIG_HAVE_KVM_MSI
3907         case KVM_SIGNAL_MSI: {
3908                 struct kvm_msi msi;
3909
3910                 r = -EFAULT;
3911                 if (copy_from_user(&msi, argp, sizeof(msi)))
3912                         goto out;
3913                 r = kvm_send_userspace_msi(kvm, &msi);
3914                 break;
3915         }
3916 #endif
3917 #ifdef __KVM_HAVE_IRQ_LINE
3918         case KVM_IRQ_LINE_STATUS:
3919         case KVM_IRQ_LINE: {
3920                 struct kvm_irq_level irq_event;
3921
3922                 r = -EFAULT;
3923                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3924                         goto out;
3925
3926                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3927                                         ioctl == KVM_IRQ_LINE_STATUS);
3928                 if (r)
3929                         goto out;
3930
3931                 r = -EFAULT;
3932                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3933                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3934                                 goto out;
3935                 }
3936
3937                 r = 0;
3938                 break;
3939         }
3940 #endif
3941 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3942         case KVM_SET_GSI_ROUTING: {
3943                 struct kvm_irq_routing routing;
3944                 struct kvm_irq_routing __user *urouting;
3945                 struct kvm_irq_routing_entry *entries = NULL;
3946
3947                 r = -EFAULT;
3948                 if (copy_from_user(&routing, argp, sizeof(routing)))
3949                         goto out;
3950                 r = -EINVAL;
3951                 if (!kvm_arch_can_set_irq_routing(kvm))
3952                         goto out;
3953                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3954                         goto out;
3955                 if (routing.flags)
3956                         goto out;
3957                 if (routing.nr) {
3958                         urouting = argp;
3959                         entries = vmemdup_user(urouting->entries,
3960                                                array_size(sizeof(*entries),
3961                                                           routing.nr));
3962                         if (IS_ERR(entries)) {
3963                                 r = PTR_ERR(entries);
3964                                 goto out;
3965                         }
3966                 }
3967                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3968                                         routing.flags);
3969                 kvfree(entries);
3970                 break;
3971         }
3972 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3973         case KVM_CREATE_DEVICE: {
3974                 struct kvm_create_device cd;
3975
3976                 r = -EFAULT;
3977                 if (copy_from_user(&cd, argp, sizeof(cd)))
3978                         goto out;
3979
3980                 r = kvm_ioctl_create_device(kvm, &cd);
3981                 if (r)
3982                         goto out;
3983
3984                 r = -EFAULT;
3985                 if (copy_to_user(argp, &cd, sizeof(cd)))
3986                         goto out;
3987
3988                 r = 0;
3989                 break;
3990         }
3991         case KVM_CHECK_EXTENSION:
3992                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3993                 break;
3994         default:
3995                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3996         }
3997 out:
3998         return r;
3999 }
4000
4001 #ifdef CONFIG_KVM_COMPAT
4002 struct compat_kvm_dirty_log {
4003         __u32 slot;
4004         __u32 padding1;
4005         union {
4006                 compat_uptr_t dirty_bitmap; /* one bit per page */
4007                 __u64 padding2;
4008         };
4009 };
4010
4011 struct compat_kvm_clear_dirty_log {
4012         __u32 slot;
4013         __u32 num_pages;
4014         __u64 first_page;
4015         union {
4016                 compat_uptr_t dirty_bitmap; /* one bit per page */
4017                 __u64 padding2;
4018         };
4019 };
4020
4021 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4022                                      unsigned long arg)
4023 {
4024         return -ENOTTY;
4025 }
4026
4027 static long kvm_vm_compat_ioctl(struct file *filp,
4028                            unsigned int ioctl, unsigned long arg)
4029 {
4030         struct kvm *kvm = filp->private_data;
4031         int r;
4032
4033         if (kvm->mm != current->mm || kvm->vm_bugged)
4034                 return -EIO;
4035
4036         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4037         if (r != -ENOTTY)
4038                 return r;
4039
4040         switch (ioctl) {
4041 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4042         case KVM_CLEAR_DIRTY_LOG: {
4043                 struct compat_kvm_clear_dirty_log compat_log;
4044                 struct kvm_clear_dirty_log log;
4045
4046                 if (copy_from_user(&compat_log, (void __user *)arg,
4047                                    sizeof(compat_log)))
4048                         return -EFAULT;
4049                 log.slot         = compat_log.slot;
4050                 log.num_pages    = compat_log.num_pages;
4051                 log.first_page   = compat_log.first_page;
4052                 log.padding2     = compat_log.padding2;
4053                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4054
4055                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4056                 break;
4057         }
4058 #endif
4059         case KVM_GET_DIRTY_LOG: {
4060                 struct compat_kvm_dirty_log compat_log;
4061                 struct kvm_dirty_log log;
4062
4063                 if (copy_from_user(&compat_log, (void __user *)arg,
4064                                    sizeof(compat_log)))
4065                         return -EFAULT;
4066                 log.slot         = compat_log.slot;
4067                 log.padding1     = compat_log.padding1;
4068                 log.padding2     = compat_log.padding2;
4069                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4070
4071                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4072                 break;
4073         }
4074         default:
4075                 r = kvm_vm_ioctl(filp, ioctl, arg);
4076         }
4077         return r;
4078 }
4079 #endif
4080
4081 static struct file_operations kvm_vm_fops = {
4082         .release        = kvm_vm_release,
4083         .unlocked_ioctl = kvm_vm_ioctl,
4084         .llseek         = noop_llseek,
4085         KVM_COMPAT(kvm_vm_compat_ioctl),
4086 };
4087
4088 static int kvm_dev_ioctl_create_vm(unsigned long type)
4089 {
4090         int r;
4091         struct kvm *kvm;
4092         struct file *file;
4093
4094         kvm = kvm_create_vm(type);
4095         if (IS_ERR(kvm))
4096                 return PTR_ERR(kvm);
4097 #ifdef CONFIG_KVM_MMIO
4098         r = kvm_coalesced_mmio_init(kvm);
4099         if (r < 0)
4100                 goto put_kvm;
4101 #endif
4102         r = get_unused_fd_flags(O_CLOEXEC);
4103         if (r < 0)
4104                 goto put_kvm;
4105
4106         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4107         if (IS_ERR(file)) {
4108                 put_unused_fd(r);
4109                 r = PTR_ERR(file);
4110                 goto put_kvm;
4111         }
4112
4113         /*
4114          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4115          * already set, with ->release() being kvm_vm_release().  In error
4116          * cases it will be called by the final fput(file) and will take
4117          * care of doing kvm_put_kvm(kvm).
4118          */
4119         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4120                 put_unused_fd(r);
4121                 fput(file);
4122                 return -ENOMEM;
4123         }
4124         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4125
4126         fd_install(r, file);
4127         return r;
4128
4129 put_kvm:
4130         kvm_put_kvm(kvm);
4131         return r;
4132 }
4133
4134 static long kvm_dev_ioctl(struct file *filp,
4135                           unsigned int ioctl, unsigned long arg)
4136 {
4137         long r = -EINVAL;
4138
4139         switch (ioctl) {
4140         case KVM_GET_API_VERSION:
4141                 if (arg)
4142                         goto out;
4143                 r = KVM_API_VERSION;
4144                 break;
4145         case KVM_CREATE_VM:
4146                 r = kvm_dev_ioctl_create_vm(arg);
4147                 break;
4148         case KVM_CHECK_EXTENSION:
4149                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4150                 break;
4151         case KVM_GET_VCPU_MMAP_SIZE:
4152                 if (arg)
4153                         goto out;
4154                 r = PAGE_SIZE;     /* struct kvm_run */
4155 #ifdef CONFIG_X86
4156                 r += PAGE_SIZE;    /* pio data page */
4157 #endif
4158 #ifdef CONFIG_KVM_MMIO
4159                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4160 #endif
4161                 break;
4162         case KVM_TRACE_ENABLE:
4163         case KVM_TRACE_PAUSE:
4164         case KVM_TRACE_DISABLE:
4165                 r = -EOPNOTSUPP;
4166                 break;
4167         default:
4168                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4169         }
4170 out:
4171         return r;
4172 }
4173
4174 static struct file_operations kvm_chardev_ops = {
4175         .unlocked_ioctl = kvm_dev_ioctl,
4176         .llseek         = noop_llseek,
4177         KVM_COMPAT(kvm_dev_ioctl),
4178 };
4179
4180 static struct miscdevice kvm_dev = {
4181         KVM_MINOR,
4182         "kvm",
4183         &kvm_chardev_ops,
4184 };
4185
4186 static void hardware_enable_nolock(void *junk)
4187 {
4188         int cpu = raw_smp_processor_id();
4189         int r;
4190
4191         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4192                 return;
4193
4194         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4195
4196         r = kvm_arch_hardware_enable();
4197
4198         if (r) {
4199                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4200                 atomic_inc(&hardware_enable_failed);
4201                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4202         }
4203 }
4204
4205 static int kvm_starting_cpu(unsigned int cpu)
4206 {
4207         raw_spin_lock(&kvm_count_lock);
4208         if (kvm_usage_count)
4209                 hardware_enable_nolock(NULL);
4210         raw_spin_unlock(&kvm_count_lock);
4211         return 0;
4212 }
4213
4214 static void hardware_disable_nolock(void *junk)
4215 {
4216         int cpu = raw_smp_processor_id();
4217
4218         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4219                 return;
4220         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4221         kvm_arch_hardware_disable();
4222 }
4223
4224 static int kvm_dying_cpu(unsigned int cpu)
4225 {
4226         raw_spin_lock(&kvm_count_lock);
4227         if (kvm_usage_count)
4228                 hardware_disable_nolock(NULL);
4229         raw_spin_unlock(&kvm_count_lock);
4230         return 0;
4231 }
4232
4233 static void hardware_disable_all_nolock(void)
4234 {
4235         BUG_ON(!kvm_usage_count);
4236
4237         kvm_usage_count--;
4238         if (!kvm_usage_count)
4239                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4240 }
4241
4242 static void hardware_disable_all(void)
4243 {
4244         raw_spin_lock(&kvm_count_lock);
4245         hardware_disable_all_nolock();
4246         raw_spin_unlock(&kvm_count_lock);
4247 }
4248
4249 static int hardware_enable_all(void)
4250 {
4251         int r = 0;
4252
4253         raw_spin_lock(&kvm_count_lock);
4254
4255         kvm_usage_count++;
4256         if (kvm_usage_count == 1) {
4257                 atomic_set(&hardware_enable_failed, 0);
4258                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4259
4260                 if (atomic_read(&hardware_enable_failed)) {
4261                         hardware_disable_all_nolock();
4262                         r = -EBUSY;
4263                 }
4264         }
4265
4266         raw_spin_unlock(&kvm_count_lock);
4267
4268         return r;
4269 }
4270
4271 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4272                       void *v)
4273 {
4274         /*
4275          * Some (well, at least mine) BIOSes hang on reboot if
4276          * in vmx root mode.
4277          *
4278          * And Intel TXT required VMX off for all cpu when system shutdown.
4279          */
4280         pr_info("kvm: exiting hardware virtualization\n");
4281         kvm_rebooting = true;
4282         on_each_cpu(hardware_disable_nolock, NULL, 1);
4283         return NOTIFY_OK;
4284 }
4285
4286 static struct notifier_block kvm_reboot_notifier = {
4287         .notifier_call = kvm_reboot,
4288         .priority = 0,
4289 };
4290
4291 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4292 {
4293         int i;
4294
4295         for (i = 0; i < bus->dev_count; i++) {
4296                 struct kvm_io_device *pos = bus->range[i].dev;
4297
4298                 kvm_iodevice_destructor(pos);
4299         }
4300         kfree(bus);
4301 }
4302
4303 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4304                                  const struct kvm_io_range *r2)
4305 {
4306         gpa_t addr1 = r1->addr;
4307         gpa_t addr2 = r2->addr;
4308
4309         if (addr1 < addr2)
4310                 return -1;
4311
4312         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4313          * accept any overlapping write.  Any order is acceptable for
4314          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4315          * we process all of them.
4316          */
4317         if (r2->len) {
4318                 addr1 += r1->len;
4319                 addr2 += r2->len;
4320         }
4321
4322         if (addr1 > addr2)
4323                 return 1;
4324
4325         return 0;
4326 }
4327
4328 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4329 {
4330         return kvm_io_bus_cmp(p1, p2);
4331 }
4332
4333 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4334                              gpa_t addr, int len)
4335 {
4336         struct kvm_io_range *range, key;
4337         int off;
4338
4339         key = (struct kvm_io_range) {
4340                 .addr = addr,
4341                 .len = len,
4342         };
4343
4344         range = bsearch(&key, bus->range, bus->dev_count,
4345                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4346         if (range == NULL)
4347                 return -ENOENT;
4348
4349         off = range - bus->range;
4350
4351         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4352                 off--;
4353
4354         return off;
4355 }
4356
4357 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4358                               struct kvm_io_range *range, const void *val)
4359 {
4360         int idx;
4361
4362         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4363         if (idx < 0)
4364                 return -EOPNOTSUPP;
4365
4366         while (idx < bus->dev_count &&
4367                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4368                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4369                                         range->len, val))
4370                         return idx;
4371                 idx++;
4372         }
4373
4374         return -EOPNOTSUPP;
4375 }
4376
4377 /* kvm_io_bus_write - called under kvm->slots_lock */
4378 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4379                      int len, const void *val)
4380 {
4381         struct kvm_io_bus *bus;
4382         struct kvm_io_range range;
4383         int r;
4384
4385         range = (struct kvm_io_range) {
4386                 .addr = addr,
4387                 .len = len,
4388         };
4389
4390         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4391         if (!bus)
4392                 return -ENOMEM;
4393         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4394         return r < 0 ? r : 0;
4395 }
4396 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4397
4398 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4399 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4400                             gpa_t addr, int len, const void *val, long cookie)
4401 {
4402         struct kvm_io_bus *bus;
4403         struct kvm_io_range range;
4404
4405         range = (struct kvm_io_range) {
4406                 .addr = addr,
4407                 .len = len,
4408         };
4409
4410         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4411         if (!bus)
4412                 return -ENOMEM;
4413
4414         /* First try the device referenced by cookie. */
4415         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4416             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4417                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4418                                         val))
4419                         return cookie;
4420
4421         /*
4422          * cookie contained garbage; fall back to search and return the
4423          * correct cookie value.
4424          */
4425         return __kvm_io_bus_write(vcpu, bus, &range, val);
4426 }
4427
4428 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4429                              struct kvm_io_range *range, void *val)
4430 {
4431         int idx;
4432
4433         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4434         if (idx < 0)
4435                 return -EOPNOTSUPP;
4436
4437         while (idx < bus->dev_count &&
4438                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4439                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4440                                        range->len, val))
4441                         return idx;
4442                 idx++;
4443         }
4444
4445         return -EOPNOTSUPP;
4446 }
4447
4448 /* kvm_io_bus_read - called under kvm->slots_lock */
4449 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4450                     int len, void *val)
4451 {
4452         struct kvm_io_bus *bus;
4453         struct kvm_io_range range;
4454         int r;
4455
4456         range = (struct kvm_io_range) {
4457                 .addr = addr,
4458                 .len = len,
4459         };
4460
4461         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4462         if (!bus)
4463                 return -ENOMEM;
4464         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4465         return r < 0 ? r : 0;
4466 }
4467
4468 /* Caller must hold slots_lock. */
4469 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4470                             int len, struct kvm_io_device *dev)
4471 {
4472         int i;
4473         struct kvm_io_bus *new_bus, *bus;
4474         struct kvm_io_range range;
4475
4476         bus = kvm_get_bus(kvm, bus_idx);
4477         if (!bus)
4478                 return -ENOMEM;
4479
4480         /* exclude ioeventfd which is limited by maximum fd */
4481         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4482                 return -ENOSPC;
4483
4484         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4485                           GFP_KERNEL_ACCOUNT);
4486         if (!new_bus)
4487                 return -ENOMEM;
4488
4489         range = (struct kvm_io_range) {
4490                 .addr = addr,
4491                 .len = len,
4492                 .dev = dev,
4493         };
4494
4495         for (i = 0; i < bus->dev_count; i++)
4496                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4497                         break;
4498
4499         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4500         new_bus->dev_count++;
4501         new_bus->range[i] = range;
4502         memcpy(new_bus->range + i + 1, bus->range + i,
4503                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4504         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4505         synchronize_srcu_expedited(&kvm->srcu);
4506         kfree(bus);
4507
4508         return 0;
4509 }
4510
4511 /* Caller must hold slots_lock. */
4512 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4513                               struct kvm_io_device *dev)
4514 {
4515         int i, j;
4516         struct kvm_io_bus *new_bus, *bus;
4517
4518         bus = kvm_get_bus(kvm, bus_idx);
4519         if (!bus)
4520                 return 0;
4521
4522         for (i = 0; i < bus->dev_count; i++)
4523                 if (bus->range[i].dev == dev) {
4524                         break;
4525                 }
4526
4527         if (i == bus->dev_count)
4528                 return 0;
4529
4530         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4531                           GFP_KERNEL_ACCOUNT);
4532         if (new_bus) {
4533                 memcpy(new_bus, bus, struct_size(bus, range, i));
4534                 new_bus->dev_count--;
4535                 memcpy(new_bus->range + i, bus->range + i + 1,
4536                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4537         }
4538
4539         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4540         synchronize_srcu_expedited(&kvm->srcu);
4541
4542         /* Destroy the old bus _after_ installing the (null) bus. */
4543         if (!new_bus) {
4544                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4545                 for (j = 0; j < bus->dev_count; j++) {
4546                         if (j == i)
4547                                 continue;
4548                         kvm_iodevice_destructor(bus->range[j].dev);
4549                 }
4550         }
4551
4552         kfree(bus);
4553         return new_bus ? 0 : -ENOMEM;
4554 }
4555
4556 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4557                                          gpa_t addr)
4558 {
4559         struct kvm_io_bus *bus;
4560         int dev_idx, srcu_idx;
4561         struct kvm_io_device *iodev = NULL;
4562
4563         srcu_idx = srcu_read_lock(&kvm->srcu);
4564
4565         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4566         if (!bus)
4567                 goto out_unlock;
4568
4569         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4570         if (dev_idx < 0)
4571                 goto out_unlock;
4572
4573         iodev = bus->range[dev_idx].dev;
4574
4575 out_unlock:
4576         srcu_read_unlock(&kvm->srcu, srcu_idx);
4577
4578         return iodev;
4579 }
4580 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4581
4582 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4583                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4584                            const char *fmt)
4585 {
4586         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4587                                           inode->i_private;
4588
4589         /* The debugfs files are a reference to the kvm struct which
4590          * is still valid when kvm_destroy_vm is called.
4591          * To avoid the race between open and the removal of the debugfs
4592          * directory we test against the users count.
4593          */
4594         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4595                 return -ENOENT;
4596
4597         if (simple_attr_open(inode, file, get,
4598                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4599                     ? set : NULL,
4600                     fmt)) {
4601                 kvm_put_kvm(stat_data->kvm);
4602                 return -ENOMEM;
4603         }
4604
4605         return 0;
4606 }
4607
4608 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4609 {
4610         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4611                                           inode->i_private;
4612
4613         simple_attr_release(inode, file);
4614         kvm_put_kvm(stat_data->kvm);
4615
4616         return 0;
4617 }
4618
4619 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4620 {
4621         *val = *(ulong *)((void *)kvm + offset);
4622
4623         return 0;
4624 }
4625
4626 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4627 {
4628         *(ulong *)((void *)kvm + offset) = 0;
4629
4630         return 0;
4631 }
4632
4633 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4634 {
4635         int i;
4636         struct kvm_vcpu *vcpu;
4637
4638         *val = 0;
4639
4640         kvm_for_each_vcpu(i, vcpu, kvm)
4641                 *val += *(u64 *)((void *)vcpu + offset);
4642
4643         return 0;
4644 }
4645
4646 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4647 {
4648         int i;
4649         struct kvm_vcpu *vcpu;
4650
4651         kvm_for_each_vcpu(i, vcpu, kvm)
4652                 *(u64 *)((void *)vcpu + offset) = 0;
4653
4654         return 0;
4655 }
4656
4657 static int kvm_stat_data_get(void *data, u64 *val)
4658 {
4659         int r = -EFAULT;
4660         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4661
4662         switch (stat_data->dbgfs_item->kind) {
4663         case KVM_STAT_VM:
4664                 r = kvm_get_stat_per_vm(stat_data->kvm,
4665                                         stat_data->dbgfs_item->offset, val);
4666                 break;
4667         case KVM_STAT_VCPU:
4668                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4669                                           stat_data->dbgfs_item->offset, val);
4670                 break;
4671         }
4672
4673         return r;
4674 }
4675
4676 static int kvm_stat_data_clear(void *data, u64 val)
4677 {
4678         int r = -EFAULT;
4679         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4680
4681         if (val)
4682                 return -EINVAL;
4683
4684         switch (stat_data->dbgfs_item->kind) {
4685         case KVM_STAT_VM:
4686                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4687                                           stat_data->dbgfs_item->offset);
4688                 break;
4689         case KVM_STAT_VCPU:
4690                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4691                                             stat_data->dbgfs_item->offset);
4692                 break;
4693         }
4694
4695         return r;
4696 }
4697
4698 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4699 {
4700         __simple_attr_check_format("%llu\n", 0ull);
4701         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4702                                 kvm_stat_data_clear, "%llu\n");
4703 }
4704
4705 static const struct file_operations stat_fops_per_vm = {
4706         .owner = THIS_MODULE,
4707         .open = kvm_stat_data_open,
4708         .release = kvm_debugfs_release,
4709         .read = simple_attr_read,
4710         .write = simple_attr_write,
4711         .llseek = no_llseek,
4712 };
4713
4714 static int vm_stat_get(void *_offset, u64 *val)
4715 {
4716         unsigned offset = (long)_offset;
4717         struct kvm *kvm;
4718         u64 tmp_val;
4719
4720         *val = 0;
4721         mutex_lock(&kvm_lock);
4722         list_for_each_entry(kvm, &vm_list, vm_list) {
4723                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4724                 *val += tmp_val;
4725         }
4726         mutex_unlock(&kvm_lock);
4727         return 0;
4728 }
4729
4730 static int vm_stat_clear(void *_offset, u64 val)
4731 {
4732         unsigned offset = (long)_offset;
4733         struct kvm *kvm;
4734
4735         if (val)
4736                 return -EINVAL;
4737
4738         mutex_lock(&kvm_lock);
4739         list_for_each_entry(kvm, &vm_list, vm_list) {
4740                 kvm_clear_stat_per_vm(kvm, offset);
4741         }
4742         mutex_unlock(&kvm_lock);
4743
4744         return 0;
4745 }
4746
4747 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4748
4749 static int vcpu_stat_get(void *_offset, u64 *val)
4750 {
4751         unsigned offset = (long)_offset;
4752         struct kvm *kvm;
4753         u64 tmp_val;
4754
4755         *val = 0;
4756         mutex_lock(&kvm_lock);
4757         list_for_each_entry(kvm, &vm_list, vm_list) {
4758                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4759                 *val += tmp_val;
4760         }
4761         mutex_unlock(&kvm_lock);
4762         return 0;
4763 }
4764
4765 static int vcpu_stat_clear(void *_offset, u64 val)
4766 {
4767         unsigned offset = (long)_offset;
4768         struct kvm *kvm;
4769
4770         if (val)
4771                 return -EINVAL;
4772
4773         mutex_lock(&kvm_lock);
4774         list_for_each_entry(kvm, &vm_list, vm_list) {
4775                 kvm_clear_stat_per_vcpu(kvm, offset);
4776         }
4777         mutex_unlock(&kvm_lock);
4778
4779         return 0;
4780 }
4781
4782 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4783                         "%llu\n");
4784
4785 static const struct file_operations *stat_fops[] = {
4786         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4787         [KVM_STAT_VM]   = &vm_stat_fops,
4788 };
4789
4790 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4791 {
4792         struct kobj_uevent_env *env;
4793         unsigned long long created, active;
4794
4795         if (!kvm_dev.this_device || !kvm)
4796                 return;
4797
4798         mutex_lock(&kvm_lock);
4799         if (type == KVM_EVENT_CREATE_VM) {
4800                 kvm_createvm_count++;
4801                 kvm_active_vms++;
4802         } else if (type == KVM_EVENT_DESTROY_VM) {
4803                 kvm_active_vms--;
4804         }
4805         created = kvm_createvm_count;
4806         active = kvm_active_vms;
4807         mutex_unlock(&kvm_lock);
4808
4809         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4810         if (!env)
4811                 return;
4812
4813         add_uevent_var(env, "CREATED=%llu", created);
4814         add_uevent_var(env, "COUNT=%llu", active);
4815
4816         if (type == KVM_EVENT_CREATE_VM) {
4817                 add_uevent_var(env, "EVENT=create");
4818                 kvm->userspace_pid = task_pid_nr(current);
4819         } else if (type == KVM_EVENT_DESTROY_VM) {
4820                 add_uevent_var(env, "EVENT=destroy");
4821         }
4822         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4823
4824         if (kvm->debugfs_dentry) {
4825                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4826
4827                 if (p) {
4828                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4829                         if (!IS_ERR(tmp))
4830                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4831                         kfree(p);
4832                 }
4833         }
4834         /* no need for checks, since we are adding at most only 5 keys */
4835         env->envp[env->envp_idx++] = NULL;
4836         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4837         kfree(env);
4838 }
4839
4840 static void kvm_init_debug(void)
4841 {
4842         struct kvm_stats_debugfs_item *p;
4843
4844         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4845
4846         kvm_debugfs_num_entries = 0;
4847         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4848                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4849                                     kvm_debugfs_dir, (void *)(long)p->offset,
4850                                     stat_fops[p->kind]);
4851         }
4852 }
4853
4854 static int kvm_suspend(void)
4855 {
4856         if (kvm_usage_count)
4857                 hardware_disable_nolock(NULL);
4858         return 0;
4859 }
4860
4861 static void kvm_resume(void)
4862 {
4863         if (kvm_usage_count) {
4864 #ifdef CONFIG_LOCKDEP
4865                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4866 #endif
4867                 hardware_enable_nolock(NULL);
4868         }
4869 }
4870
4871 static struct syscore_ops kvm_syscore_ops = {
4872         .suspend = kvm_suspend,
4873         .resume = kvm_resume,
4874 };
4875
4876 static inline
4877 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4878 {
4879         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4880 }
4881
4882 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4883 {
4884         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4885
4886         WRITE_ONCE(vcpu->preempted, false);
4887         WRITE_ONCE(vcpu->ready, false);
4888
4889         __this_cpu_write(kvm_running_vcpu, vcpu);
4890         kvm_arch_sched_in(vcpu, cpu);
4891         kvm_arch_vcpu_load(vcpu, cpu);
4892 }
4893
4894 static void kvm_sched_out(struct preempt_notifier *pn,
4895                           struct task_struct *next)
4896 {
4897         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4898
4899         if (current->state == TASK_RUNNING) {
4900                 WRITE_ONCE(vcpu->preempted, true);
4901                 WRITE_ONCE(vcpu->ready, true);
4902         }
4903         kvm_arch_vcpu_put(vcpu);
4904         __this_cpu_write(kvm_running_vcpu, NULL);
4905 }
4906
4907 /**
4908  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4909  *
4910  * We can disable preemption locally around accessing the per-CPU variable,
4911  * and use the resolved vcpu pointer after enabling preemption again,
4912  * because even if the current thread is migrated to another CPU, reading
4913  * the per-CPU value later will give us the same value as we update the
4914  * per-CPU variable in the preempt notifier handlers.
4915  */
4916 struct kvm_vcpu *kvm_get_running_vcpu(void)
4917 {
4918         struct kvm_vcpu *vcpu;
4919
4920         preempt_disable();
4921         vcpu = __this_cpu_read(kvm_running_vcpu);
4922         preempt_enable();
4923
4924         return vcpu;
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4927
4928 /**
4929  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4930  */
4931 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4932 {
4933         return &kvm_running_vcpu;
4934 }
4935
4936 struct kvm_cpu_compat_check {
4937         void *opaque;
4938         int *ret;
4939 };
4940
4941 static void check_processor_compat(void *data)
4942 {
4943         struct kvm_cpu_compat_check *c = data;
4944
4945         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4946 }
4947
4948 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4949                   struct module *module)
4950 {
4951         struct kvm_cpu_compat_check c;
4952         int r;
4953         int cpu;
4954
4955         r = kvm_arch_init(opaque);
4956         if (r)
4957                 goto out_fail;
4958
4959         /*
4960          * kvm_arch_init makes sure there's at most one caller
4961          * for architectures that support multiple implementations,
4962          * like intel and amd on x86.
4963          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4964          * conflicts in case kvm is already setup for another implementation.
4965          */
4966         r = kvm_irqfd_init();
4967         if (r)
4968                 goto out_irqfd;
4969
4970         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4971                 r = -ENOMEM;
4972                 goto out_free_0;
4973         }
4974
4975         r = kvm_arch_hardware_setup(opaque);
4976         if (r < 0)
4977                 goto out_free_1;
4978
4979         c.ret = &r;
4980         c.opaque = opaque;
4981         for_each_online_cpu(cpu) {
4982                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4983                 if (r < 0)
4984                         goto out_free_2;
4985         }
4986
4987         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4988                                       kvm_starting_cpu, kvm_dying_cpu);
4989         if (r)
4990                 goto out_free_2;
4991         register_reboot_notifier(&kvm_reboot_notifier);
4992
4993         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4994         if (!vcpu_align)
4995                 vcpu_align = __alignof__(struct kvm_vcpu);
4996         kvm_vcpu_cache =
4997                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4998                                            SLAB_ACCOUNT,
4999                                            offsetof(struct kvm_vcpu, arch),
5000                                            sizeof_field(struct kvm_vcpu, arch),
5001                                            NULL);
5002         if (!kvm_vcpu_cache) {
5003                 r = -ENOMEM;
5004                 goto out_free_3;
5005         }
5006
5007         for_each_possible_cpu(cpu) {
5008                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5009                                             GFP_KERNEL, cpu_to_node(cpu))) {
5010                         r = -ENOMEM;
5011                         goto out_free_4;
5012                 }
5013         }
5014
5015         r = kvm_async_pf_init();
5016         if (r)
5017                 goto out_free_4;
5018
5019         kvm_chardev_ops.owner = module;
5020         kvm_vm_fops.owner = module;
5021         kvm_vcpu_fops.owner = module;
5022
5023         register_syscore_ops(&kvm_syscore_ops);
5024
5025         kvm_preempt_ops.sched_in = kvm_sched_in;
5026         kvm_preempt_ops.sched_out = kvm_sched_out;
5027
5028         kvm_init_debug();
5029
5030         r = kvm_vfio_ops_init();
5031         if (WARN_ON_ONCE(r))
5032                 goto err_vfio;
5033
5034         /*
5035          * Registration _must_ be the very last thing done, as this exposes
5036          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5037          */
5038         r = misc_register(&kvm_dev);
5039         if (r) {
5040                 pr_err("kvm: misc device register failed\n");
5041                 goto err_register;
5042         }
5043
5044         return 0;
5045
5046 err_register:
5047         kvm_vfio_ops_exit();
5048 err_vfio:
5049         kvm_async_pf_deinit();
5050 out_free_4:
5051         for_each_possible_cpu(cpu)
5052                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5053         kmem_cache_destroy(kvm_vcpu_cache);
5054 out_free_3:
5055         unregister_reboot_notifier(&kvm_reboot_notifier);
5056         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5057 out_free_2:
5058         kvm_arch_hardware_unsetup();
5059 out_free_1:
5060         free_cpumask_var(cpus_hardware_enabled);
5061 out_free_0:
5062         kvm_irqfd_exit();
5063 out_irqfd:
5064         kvm_arch_exit();
5065 out_fail:
5066         return r;
5067 }
5068 EXPORT_SYMBOL_GPL(kvm_init);
5069
5070 void kvm_exit(void)
5071 {
5072         int cpu;
5073
5074         /*
5075          * Note, unregistering /dev/kvm doesn't strictly need to come first,
5076          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5077          * to KVM while the module is being stopped.
5078          */
5079         misc_deregister(&kvm_dev);
5080
5081         debugfs_remove_recursive(kvm_debugfs_dir);
5082         for_each_possible_cpu(cpu)
5083                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5084         kmem_cache_destroy(kvm_vcpu_cache);
5085         kvm_async_pf_deinit();
5086         unregister_syscore_ops(&kvm_syscore_ops);
5087         unregister_reboot_notifier(&kvm_reboot_notifier);
5088         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5089         on_each_cpu(hardware_disable_nolock, NULL, 1);
5090         kvm_arch_hardware_unsetup();
5091         kvm_arch_exit();
5092         kvm_irqfd_exit();
5093         free_cpumask_var(cpus_hardware_enabled);
5094         kvm_vfio_ops_exit();
5095 }
5096 EXPORT_SYMBOL_GPL(kvm_exit);
5097
5098 struct kvm_vm_worker_thread_context {
5099         struct kvm *kvm;
5100         struct task_struct *parent;
5101         struct completion init_done;
5102         kvm_vm_thread_fn_t thread_fn;
5103         uintptr_t data;
5104         int err;
5105 };
5106
5107 static int kvm_vm_worker_thread(void *context)
5108 {
5109         /*
5110          * The init_context is allocated on the stack of the parent thread, so
5111          * we have to locally copy anything that is needed beyond initialization
5112          */
5113         struct kvm_vm_worker_thread_context *init_context = context;
5114         struct kvm *kvm = init_context->kvm;
5115         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5116         uintptr_t data = init_context->data;
5117         int err;
5118
5119         err = kthread_park(current);
5120         /* kthread_park(current) is never supposed to return an error */
5121         WARN_ON(err != 0);
5122         if (err)
5123                 goto init_complete;
5124
5125         err = cgroup_attach_task_all(init_context->parent, current);
5126         if (err) {
5127                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5128                         __func__, err);
5129                 goto init_complete;
5130         }
5131
5132         set_user_nice(current, task_nice(init_context->parent));
5133
5134 init_complete:
5135         init_context->err = err;
5136         complete(&init_context->init_done);
5137         init_context = NULL;
5138
5139         if (err)
5140                 return err;
5141
5142         /* Wait to be woken up by the spawner before proceeding. */
5143         kthread_parkme();
5144
5145         if (!kthread_should_stop())
5146                 err = thread_fn(kvm, data);
5147
5148         return err;
5149 }
5150
5151 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5152                                 uintptr_t data, const char *name,
5153                                 struct task_struct **thread_ptr)
5154 {
5155         struct kvm_vm_worker_thread_context init_context = {};
5156         struct task_struct *thread;
5157
5158         *thread_ptr = NULL;
5159         init_context.kvm = kvm;
5160         init_context.parent = current;
5161         init_context.thread_fn = thread_fn;
5162         init_context.data = data;
5163         init_completion(&init_context.init_done);
5164
5165         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5166                              "%s-%d", name, task_pid_nr(current));
5167         if (IS_ERR(thread))
5168                 return PTR_ERR(thread);
5169
5170         /* kthread_run is never supposed to return NULL */
5171         WARN_ON(thread == NULL);
5172
5173         wait_for_completion(&init_context.init_done);
5174
5175         if (!init_context.err)
5176                 *thread_ptr = thread;
5177
5178         return init_context.err;
5179 }