GNU Linux-libre 5.19-rc6-gnu
[releases.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180                 return false;
181
182         return is_zone_device_page(pfn_to_page(pfn));
183 }
184
185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187         /*
188          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189          * perspective they are "normal" pages, albeit with slightly different
190          * usage rules.
191          */
192         if (pfn_valid(pfn))
193                 return PageReserved(pfn_to_page(pfn)) &&
194                        !is_zero_pfn(pfn) &&
195                        !kvm_is_zone_device_pfn(pfn);
196
197         return true;
198 }
199
200 /*
201  * Switches to specified vcpu, until a matching vcpu_put()
202  */
203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205         int cpu = get_cpu();
206
207         __this_cpu_write(kvm_running_vcpu, vcpu);
208         preempt_notifier_register(&vcpu->preempt_notifier);
209         kvm_arch_vcpu_load(vcpu, cpu);
210         put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213
214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216         preempt_disable();
217         kvm_arch_vcpu_put(vcpu);
218         preempt_notifier_unregister(&vcpu->preempt_notifier);
219         __this_cpu_write(kvm_running_vcpu, NULL);
220         preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229         /*
230          * We need to wait for the VCPU to reenable interrupts and get out of
231          * READING_SHADOW_PAGE_TABLES mode.
232          */
233         if (req & KVM_REQUEST_WAIT)
234                 return mode != OUTSIDE_GUEST_MODE;
235
236         /*
237          * Need to kick a running VCPU, but otherwise there is nothing to do.
238          */
239         return mode == IN_GUEST_MODE;
240 }
241
242 static void ack_flush(void *_completed)
243 {
244 }
245
246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
247 {
248         if (cpumask_empty(cpus))
249                 return false;
250
251         smp_call_function_many(cpus, ack_flush, NULL, wait);
252         return true;
253 }
254
255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
256                                   struct cpumask *tmp, int current_cpu)
257 {
258         int cpu;
259
260         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
261                 __kvm_make_request(req, vcpu);
262
263         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
264                 return;
265
266         /*
267          * Note, the vCPU could get migrated to a different pCPU at any point
268          * after kvm_request_needs_ipi(), which could result in sending an IPI
269          * to the previous pCPU.  But, that's OK because the purpose of the IPI
270          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
271          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
272          * after this point is also OK, as the requirement is only that KVM wait
273          * for vCPUs that were reading SPTEs _before_ any changes were
274          * finalized. See kvm_vcpu_kick() for more details on handling requests.
275          */
276         if (kvm_request_needs_ipi(vcpu, req)) {
277                 cpu = READ_ONCE(vcpu->cpu);
278                 if (cpu != -1 && cpu != current_cpu)
279                         __cpumask_set_cpu(cpu, tmp);
280         }
281 }
282
283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
284                                  unsigned long *vcpu_bitmap)
285 {
286         struct kvm_vcpu *vcpu;
287         struct cpumask *cpus;
288         int i, me;
289         bool called;
290
291         me = get_cpu();
292
293         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
294         cpumask_clear(cpus);
295
296         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
297                 vcpu = kvm_get_vcpu(kvm, i);
298                 if (!vcpu)
299                         continue;
300                 kvm_make_vcpu_request(vcpu, req, cpus, me);
301         }
302
303         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
304         put_cpu();
305
306         return called;
307 }
308
309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
310                                       struct kvm_vcpu *except)
311 {
312         struct kvm_vcpu *vcpu;
313         struct cpumask *cpus;
314         unsigned long i;
315         bool called;
316         int me;
317
318         me = get_cpu();
319
320         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
321         cpumask_clear(cpus);
322
323         kvm_for_each_vcpu(i, vcpu, kvm) {
324                 if (vcpu == except)
325                         continue;
326                 kvm_make_vcpu_request(vcpu, req, cpus, me);
327         }
328
329         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
330         put_cpu();
331
332         return called;
333 }
334
335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
336 {
337         return kvm_make_all_cpus_request_except(kvm, req, NULL);
338 }
339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
340
341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
342 void kvm_flush_remote_tlbs(struct kvm *kvm)
343 {
344         ++kvm->stat.generic.remote_tlb_flush_requests;
345
346         /*
347          * We want to publish modifications to the page tables before reading
348          * mode. Pairs with a memory barrier in arch-specific code.
349          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
350          * and smp_mb in walk_shadow_page_lockless_begin/end.
351          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
352          *
353          * There is already an smp_mb__after_atomic() before
354          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
355          * barrier here.
356          */
357         if (!kvm_arch_flush_remote_tlb(kvm)
358             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
359                 ++kvm->stat.generic.remote_tlb_flush;
360 }
361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
362 #endif
363
364 static void kvm_flush_shadow_all(struct kvm *kvm)
365 {
366         kvm_arch_flush_shadow_all(kvm);
367         kvm_arch_guest_memory_reclaimed(kvm);
368 }
369
370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
372                                                gfp_t gfp_flags)
373 {
374         gfp_flags |= mc->gfp_zero;
375
376         if (mc->kmem_cache)
377                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
378         else
379                 return (void *)__get_free_page(gfp_flags);
380 }
381
382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
383 {
384         void *obj;
385
386         if (mc->nobjs >= min)
387                 return 0;
388         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
389                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
390                 if (!obj)
391                         return mc->nobjs >= min ? 0 : -ENOMEM;
392                 mc->objects[mc->nobjs++] = obj;
393         }
394         return 0;
395 }
396
397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
398 {
399         return mc->nobjs;
400 }
401
402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
403 {
404         while (mc->nobjs) {
405                 if (mc->kmem_cache)
406                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
407                 else
408                         free_page((unsigned long)mc->objects[--mc->nobjs]);
409         }
410 }
411
412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
413 {
414         void *p;
415
416         if (WARN_ON(!mc->nobjs))
417                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
418         else
419                 p = mc->objects[--mc->nobjs];
420         BUG_ON(!p);
421         return p;
422 }
423 #endif
424
425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
426 {
427         mutex_init(&vcpu->mutex);
428         vcpu->cpu = -1;
429         vcpu->kvm = kvm;
430         vcpu->vcpu_id = id;
431         vcpu->pid = NULL;
432 #ifndef __KVM_HAVE_ARCH_WQP
433         rcuwait_init(&vcpu->wait);
434 #endif
435         kvm_async_pf_vcpu_init(vcpu);
436
437         kvm_vcpu_set_in_spin_loop(vcpu, false);
438         kvm_vcpu_set_dy_eligible(vcpu, false);
439         vcpu->preempted = false;
440         vcpu->ready = false;
441         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
442         vcpu->last_used_slot = NULL;
443 }
444
445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
446 {
447         kvm_arch_vcpu_destroy(vcpu);
448         kvm_dirty_ring_free(&vcpu->dirty_ring);
449
450         /*
451          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
452          * the vcpu->pid pointer, and at destruction time all file descriptors
453          * are already gone.
454          */
455         put_pid(rcu_dereference_protected(vcpu->pid, 1));
456
457         free_page((unsigned long)vcpu->run);
458         kmem_cache_free(kvm_vcpu_cache, vcpu);
459 }
460
461 void kvm_destroy_vcpus(struct kvm *kvm)
462 {
463         unsigned long i;
464         struct kvm_vcpu *vcpu;
465
466         kvm_for_each_vcpu(i, vcpu, kvm) {
467                 kvm_vcpu_destroy(vcpu);
468                 xa_erase(&kvm->vcpu_array, i);
469         }
470
471         atomic_set(&kvm->online_vcpus, 0);
472 }
473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
474
475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
477 {
478         return container_of(mn, struct kvm, mmu_notifier);
479 }
480
481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
482                                               struct mm_struct *mm,
483                                               unsigned long start, unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
490         srcu_read_unlock(&kvm->srcu, idx);
491 }
492
493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
494
495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
496                              unsigned long end);
497
498 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
499
500 struct kvm_hva_range {
501         unsigned long start;
502         unsigned long end;
503         pte_t pte;
504         hva_handler_t handler;
505         on_lock_fn_t on_lock;
506         on_unlock_fn_t on_unlock;
507         bool flush_on_ret;
508         bool may_block;
509 };
510
511 /*
512  * Use a dedicated stub instead of NULL to indicate that there is no callback
513  * function/handler.  The compiler technically can't guarantee that a real
514  * function will have a non-zero address, and so it will generate code to
515  * check for !NULL, whereas comparing against a stub will be elided at compile
516  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
517  */
518 static void kvm_null_fn(void)
519 {
520
521 }
522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
523
524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
526         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
527              node;                                                           \
528              node = interval_tree_iter_next(node, start, last))      \
529
530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
531                                                   const struct kvm_hva_range *range)
532 {
533         bool ret = false, locked = false;
534         struct kvm_gfn_range gfn_range;
535         struct kvm_memory_slot *slot;
536         struct kvm_memslots *slots;
537         int i, idx;
538
539         if (WARN_ON_ONCE(range->end <= range->start))
540                 return 0;
541
542         /* A null handler is allowed if and only if on_lock() is provided. */
543         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
544                          IS_KVM_NULL_FN(range->handler)))
545                 return 0;
546
547         idx = srcu_read_lock(&kvm->srcu);
548
549         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
550                 struct interval_tree_node *node;
551
552                 slots = __kvm_memslots(kvm, i);
553                 kvm_for_each_memslot_in_hva_range(node, slots,
554                                                   range->start, range->end - 1) {
555                         unsigned long hva_start, hva_end;
556
557                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
558                         hva_start = max(range->start, slot->userspace_addr);
559                         hva_end = min(range->end, slot->userspace_addr +
560                                                   (slot->npages << PAGE_SHIFT));
561
562                         /*
563                          * To optimize for the likely case where the address
564                          * range is covered by zero or one memslots, don't
565                          * bother making these conditional (to avoid writes on
566                          * the second or later invocation of the handler).
567                          */
568                         gfn_range.pte = range->pte;
569                         gfn_range.may_block = range->may_block;
570
571                         /*
572                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
573                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
574                          */
575                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
576                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
577                         gfn_range.slot = slot;
578
579                         if (!locked) {
580                                 locked = true;
581                                 KVM_MMU_LOCK(kvm);
582                                 if (!IS_KVM_NULL_FN(range->on_lock))
583                                         range->on_lock(kvm, range->start, range->end);
584                                 if (IS_KVM_NULL_FN(range->handler))
585                                         break;
586                         }
587                         ret |= range->handler(kvm, &gfn_range);
588                 }
589         }
590
591         if (range->flush_on_ret && ret)
592                 kvm_flush_remote_tlbs(kvm);
593
594         if (locked) {
595                 KVM_MMU_UNLOCK(kvm);
596                 if (!IS_KVM_NULL_FN(range->on_unlock))
597                         range->on_unlock(kvm);
598         }
599
600         srcu_read_unlock(&kvm->srcu, idx);
601
602         /* The notifiers are averse to booleans. :-( */
603         return (int)ret;
604 }
605
606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
607                                                 unsigned long start,
608                                                 unsigned long end,
609                                                 pte_t pte,
610                                                 hva_handler_t handler)
611 {
612         struct kvm *kvm = mmu_notifier_to_kvm(mn);
613         const struct kvm_hva_range range = {
614                 .start          = start,
615                 .end            = end,
616                 .pte            = pte,
617                 .handler        = handler,
618                 .on_lock        = (void *)kvm_null_fn,
619                 .on_unlock      = (void *)kvm_null_fn,
620                 .flush_on_ret   = true,
621                 .may_block      = false,
622         };
623
624         return __kvm_handle_hva_range(kvm, &range);
625 }
626
627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
628                                                          unsigned long start,
629                                                          unsigned long end,
630                                                          hva_handler_t handler)
631 {
632         struct kvm *kvm = mmu_notifier_to_kvm(mn);
633         const struct kvm_hva_range range = {
634                 .start          = start,
635                 .end            = end,
636                 .pte            = __pte(0),
637                 .handler        = handler,
638                 .on_lock        = (void *)kvm_null_fn,
639                 .on_unlock      = (void *)kvm_null_fn,
640                 .flush_on_ret   = false,
641                 .may_block      = false,
642         };
643
644         return __kvm_handle_hva_range(kvm, &range);
645 }
646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
647                                         struct mm_struct *mm,
648                                         unsigned long address,
649                                         pte_t pte)
650 {
651         struct kvm *kvm = mmu_notifier_to_kvm(mn);
652
653         trace_kvm_set_spte_hva(address);
654
655         /*
656          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
657          * If mmu_notifier_count is zero, then no in-progress invalidations,
658          * including this one, found a relevant memslot at start(); rechecking
659          * memslots here is unnecessary.  Note, a false positive (count elevated
660          * by a different invalidation) is sub-optimal but functionally ok.
661          */
662         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
663         if (!READ_ONCE(kvm->mmu_notifier_count))
664                 return;
665
666         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
667 }
668
669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
670                                    unsigned long end)
671 {
672         /*
673          * The count increase must become visible at unlock time as no
674          * spte can be established without taking the mmu_lock and
675          * count is also read inside the mmu_lock critical section.
676          */
677         kvm->mmu_notifier_count++;
678         if (likely(kvm->mmu_notifier_count == 1)) {
679                 kvm->mmu_notifier_range_start = start;
680                 kvm->mmu_notifier_range_end = end;
681         } else {
682                 /*
683                  * Fully tracking multiple concurrent ranges has diminishing
684                  * returns. Keep things simple and just find the minimal range
685                  * which includes the current and new ranges. As there won't be
686                  * enough information to subtract a range after its invalidate
687                  * completes, any ranges invalidated concurrently will
688                  * accumulate and persist until all outstanding invalidates
689                  * complete.
690                  */
691                 kvm->mmu_notifier_range_start =
692                         min(kvm->mmu_notifier_range_start, start);
693                 kvm->mmu_notifier_range_end =
694                         max(kvm->mmu_notifier_range_end, end);
695         }
696 }
697
698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
699                                         const struct mmu_notifier_range *range)
700 {
701         struct kvm *kvm = mmu_notifier_to_kvm(mn);
702         const struct kvm_hva_range hva_range = {
703                 .start          = range->start,
704                 .end            = range->end,
705                 .pte            = __pte(0),
706                 .handler        = kvm_unmap_gfn_range,
707                 .on_lock        = kvm_inc_notifier_count,
708                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
709                 .flush_on_ret   = true,
710                 .may_block      = mmu_notifier_range_blockable(range),
711         };
712
713         trace_kvm_unmap_hva_range(range->start, range->end);
714
715         /*
716          * Prevent memslot modification between range_start() and range_end()
717          * so that conditionally locking provides the same result in both
718          * functions.  Without that guarantee, the mmu_notifier_count
719          * adjustments will be imbalanced.
720          *
721          * Pairs with the decrement in range_end().
722          */
723         spin_lock(&kvm->mn_invalidate_lock);
724         kvm->mn_active_invalidate_count++;
725         spin_unlock(&kvm->mn_invalidate_lock);
726
727         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
728                                           hva_range.may_block);
729
730         __kvm_handle_hva_range(kvm, &hva_range);
731
732         return 0;
733 }
734
735 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
736                                    unsigned long end)
737 {
738         /*
739          * This sequence increase will notify the kvm page fault that
740          * the page that is going to be mapped in the spte could have
741          * been freed.
742          */
743         kvm->mmu_notifier_seq++;
744         smp_wmb();
745         /*
746          * The above sequence increase must be visible before the
747          * below count decrease, which is ensured by the smp_wmb above
748          * in conjunction with the smp_rmb in mmu_notifier_retry().
749          */
750         kvm->mmu_notifier_count--;
751 }
752
753 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
754                                         const struct mmu_notifier_range *range)
755 {
756         struct kvm *kvm = mmu_notifier_to_kvm(mn);
757         const struct kvm_hva_range hva_range = {
758                 .start          = range->start,
759                 .end            = range->end,
760                 .pte            = __pte(0),
761                 .handler        = (void *)kvm_null_fn,
762                 .on_lock        = kvm_dec_notifier_count,
763                 .on_unlock      = (void *)kvm_null_fn,
764                 .flush_on_ret   = false,
765                 .may_block      = mmu_notifier_range_blockable(range),
766         };
767         bool wake;
768
769         __kvm_handle_hva_range(kvm, &hva_range);
770
771         /* Pairs with the increment in range_start(). */
772         spin_lock(&kvm->mn_invalidate_lock);
773         wake = (--kvm->mn_active_invalidate_count == 0);
774         spin_unlock(&kvm->mn_invalidate_lock);
775
776         /*
777          * There can only be one waiter, since the wait happens under
778          * slots_lock.
779          */
780         if (wake)
781                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
782
783         BUG_ON(kvm->mmu_notifier_count < 0);
784 }
785
786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
787                                               struct mm_struct *mm,
788                                               unsigned long start,
789                                               unsigned long end)
790 {
791         trace_kvm_age_hva(start, end);
792
793         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
794 }
795
796 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
797                                         struct mm_struct *mm,
798                                         unsigned long start,
799                                         unsigned long end)
800 {
801         trace_kvm_age_hva(start, end);
802
803         /*
804          * Even though we do not flush TLB, this will still adversely
805          * affect performance on pre-Haswell Intel EPT, where there is
806          * no EPT Access Bit to clear so that we have to tear down EPT
807          * tables instead. If we find this unacceptable, we can always
808          * add a parameter to kvm_age_hva so that it effectively doesn't
809          * do anything on clear_young.
810          *
811          * Also note that currently we never issue secondary TLB flushes
812          * from clear_young, leaving this job up to the regular system
813          * cadence. If we find this inaccurate, we might come up with a
814          * more sophisticated heuristic later.
815          */
816         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
817 }
818
819 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
820                                        struct mm_struct *mm,
821                                        unsigned long address)
822 {
823         trace_kvm_test_age_hva(address);
824
825         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
826                                              kvm_test_age_gfn);
827 }
828
829 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
830                                      struct mm_struct *mm)
831 {
832         struct kvm *kvm = mmu_notifier_to_kvm(mn);
833         int idx;
834
835         idx = srcu_read_lock(&kvm->srcu);
836         kvm_flush_shadow_all(kvm);
837         srcu_read_unlock(&kvm->srcu, idx);
838 }
839
840 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
841         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
842         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
843         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
844         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
845         .clear_young            = kvm_mmu_notifier_clear_young,
846         .test_young             = kvm_mmu_notifier_test_young,
847         .change_pte             = kvm_mmu_notifier_change_pte,
848         .release                = kvm_mmu_notifier_release,
849 };
850
851 static int kvm_init_mmu_notifier(struct kvm *kvm)
852 {
853         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
854         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
855 }
856
857 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
858
859 static int kvm_init_mmu_notifier(struct kvm *kvm)
860 {
861         return 0;
862 }
863
864 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
865
866 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
867 static int kvm_pm_notifier_call(struct notifier_block *bl,
868                                 unsigned long state,
869                                 void *unused)
870 {
871         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
872
873         return kvm_arch_pm_notifier(kvm, state);
874 }
875
876 static void kvm_init_pm_notifier(struct kvm *kvm)
877 {
878         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
879         /* Suspend KVM before we suspend ftrace, RCU, etc. */
880         kvm->pm_notifier.priority = INT_MAX;
881         register_pm_notifier(&kvm->pm_notifier);
882 }
883
884 static void kvm_destroy_pm_notifier(struct kvm *kvm)
885 {
886         unregister_pm_notifier(&kvm->pm_notifier);
887 }
888 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
889 static void kvm_init_pm_notifier(struct kvm *kvm)
890 {
891 }
892
893 static void kvm_destroy_pm_notifier(struct kvm *kvm)
894 {
895 }
896 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
897
898 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
899 {
900         if (!memslot->dirty_bitmap)
901                 return;
902
903         kvfree(memslot->dirty_bitmap);
904         memslot->dirty_bitmap = NULL;
905 }
906
907 /* This does not remove the slot from struct kvm_memslots data structures */
908 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
909 {
910         kvm_destroy_dirty_bitmap(slot);
911
912         kvm_arch_free_memslot(kvm, slot);
913
914         kfree(slot);
915 }
916
917 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
918 {
919         struct hlist_node *idnode;
920         struct kvm_memory_slot *memslot;
921         int bkt;
922
923         /*
924          * The same memslot objects live in both active and inactive sets,
925          * arbitrarily free using index '1' so the second invocation of this
926          * function isn't operating over a structure with dangling pointers
927          * (even though this function isn't actually touching them).
928          */
929         if (!slots->node_idx)
930                 return;
931
932         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
933                 kvm_free_memslot(kvm, memslot);
934 }
935
936 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
937 {
938         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
939         case KVM_STATS_TYPE_INSTANT:
940                 return 0444;
941         case KVM_STATS_TYPE_CUMULATIVE:
942         case KVM_STATS_TYPE_PEAK:
943         default:
944                 return 0644;
945         }
946 }
947
948
949 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
950 {
951         int i;
952         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
953                                       kvm_vcpu_stats_header.num_desc;
954
955         if (IS_ERR(kvm->debugfs_dentry))
956                 return;
957
958         debugfs_remove_recursive(kvm->debugfs_dentry);
959
960         if (kvm->debugfs_stat_data) {
961                 for (i = 0; i < kvm_debugfs_num_entries; i++)
962                         kfree(kvm->debugfs_stat_data[i]);
963                 kfree(kvm->debugfs_stat_data);
964         }
965 }
966
967 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
968 {
969         static DEFINE_MUTEX(kvm_debugfs_lock);
970         struct dentry *dent;
971         char dir_name[ITOA_MAX_LEN * 2];
972         struct kvm_stat_data *stat_data;
973         const struct _kvm_stats_desc *pdesc;
974         int i, ret;
975         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
976                                       kvm_vcpu_stats_header.num_desc;
977
978         if (!debugfs_initialized())
979                 return 0;
980
981         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
982         mutex_lock(&kvm_debugfs_lock);
983         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
984         if (dent) {
985                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
986                 dput(dent);
987                 mutex_unlock(&kvm_debugfs_lock);
988                 return 0;
989         }
990         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
991         mutex_unlock(&kvm_debugfs_lock);
992         if (IS_ERR(dent))
993                 return 0;
994
995         kvm->debugfs_dentry = dent;
996         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
997                                          sizeof(*kvm->debugfs_stat_data),
998                                          GFP_KERNEL_ACCOUNT);
999         if (!kvm->debugfs_stat_data)
1000                 return -ENOMEM;
1001
1002         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1003                 pdesc = &kvm_vm_stats_desc[i];
1004                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1005                 if (!stat_data)
1006                         return -ENOMEM;
1007
1008                 stat_data->kvm = kvm;
1009                 stat_data->desc = pdesc;
1010                 stat_data->kind = KVM_STAT_VM;
1011                 kvm->debugfs_stat_data[i] = stat_data;
1012                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1013                                     kvm->debugfs_dentry, stat_data,
1014                                     &stat_fops_per_vm);
1015         }
1016
1017         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1018                 pdesc = &kvm_vcpu_stats_desc[i];
1019                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1020                 if (!stat_data)
1021                         return -ENOMEM;
1022
1023                 stat_data->kvm = kvm;
1024                 stat_data->desc = pdesc;
1025                 stat_data->kind = KVM_STAT_VCPU;
1026                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1027                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1028                                     kvm->debugfs_dentry, stat_data,
1029                                     &stat_fops_per_vm);
1030         }
1031
1032         ret = kvm_arch_create_vm_debugfs(kvm);
1033         if (ret) {
1034                 kvm_destroy_vm_debugfs(kvm);
1035                 return i;
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Called after the VM is otherwise initialized, but just before adding it to
1043  * the vm_list.
1044  */
1045 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1046 {
1047         return 0;
1048 }
1049
1050 /*
1051  * Called just after removing the VM from the vm_list, but before doing any
1052  * other destruction.
1053  */
1054 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1055 {
1056 }
1057
1058 /*
1059  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1060  * be setup already, so we can create arch-specific debugfs entries under it.
1061  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1062  * a per-arch destroy interface is not needed.
1063  */
1064 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1065 {
1066         return 0;
1067 }
1068
1069 static struct kvm *kvm_create_vm(unsigned long type)
1070 {
1071         struct kvm *kvm = kvm_arch_alloc_vm();
1072         struct kvm_memslots *slots;
1073         int r = -ENOMEM;
1074         int i, j;
1075
1076         if (!kvm)
1077                 return ERR_PTR(-ENOMEM);
1078
1079         KVM_MMU_LOCK_INIT(kvm);
1080         mmgrab(current->mm);
1081         kvm->mm = current->mm;
1082         kvm_eventfd_init(kvm);
1083         mutex_init(&kvm->lock);
1084         mutex_init(&kvm->irq_lock);
1085         mutex_init(&kvm->slots_lock);
1086         mutex_init(&kvm->slots_arch_lock);
1087         spin_lock_init(&kvm->mn_invalidate_lock);
1088         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1089         xa_init(&kvm->vcpu_array);
1090
1091         INIT_LIST_HEAD(&kvm->gpc_list);
1092         spin_lock_init(&kvm->gpc_lock);
1093
1094         INIT_LIST_HEAD(&kvm->devices);
1095         kvm->max_vcpus = KVM_MAX_VCPUS;
1096
1097         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1098
1099         /*
1100          * Force subsequent debugfs file creations to fail if the VM directory
1101          * is not created (by kvm_create_vm_debugfs()).
1102          */
1103         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1104
1105         if (init_srcu_struct(&kvm->srcu))
1106                 goto out_err_no_srcu;
1107         if (init_srcu_struct(&kvm->irq_srcu))
1108                 goto out_err_no_irq_srcu;
1109
1110         refcount_set(&kvm->users_count, 1);
1111         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1112                 for (j = 0; j < 2; j++) {
1113                         slots = &kvm->__memslots[i][j];
1114
1115                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1116                         slots->hva_tree = RB_ROOT_CACHED;
1117                         slots->gfn_tree = RB_ROOT;
1118                         hash_init(slots->id_hash);
1119                         slots->node_idx = j;
1120
1121                         /* Generations must be different for each address space. */
1122                         slots->generation = i;
1123                 }
1124
1125                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1126         }
1127
1128         for (i = 0; i < KVM_NR_BUSES; i++) {
1129                 rcu_assign_pointer(kvm->buses[i],
1130                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1131                 if (!kvm->buses[i])
1132                         goto out_err_no_arch_destroy_vm;
1133         }
1134
1135         kvm->max_halt_poll_ns = halt_poll_ns;
1136
1137         r = kvm_arch_init_vm(kvm, type);
1138         if (r)
1139                 goto out_err_no_arch_destroy_vm;
1140
1141         r = hardware_enable_all();
1142         if (r)
1143                 goto out_err_no_disable;
1144
1145 #ifdef CONFIG_HAVE_KVM_IRQFD
1146         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1147 #endif
1148
1149         r = kvm_init_mmu_notifier(kvm);
1150         if (r)
1151                 goto out_err_no_mmu_notifier;
1152
1153         r = kvm_arch_post_init_vm(kvm);
1154         if (r)
1155                 goto out_err;
1156
1157         mutex_lock(&kvm_lock);
1158         list_add(&kvm->vm_list, &vm_list);
1159         mutex_unlock(&kvm_lock);
1160
1161         preempt_notifier_inc();
1162         kvm_init_pm_notifier(kvm);
1163
1164         /*
1165          * When the fd passed to this ioctl() is opened it pins the module,
1166          * but try_module_get() also prevents getting a reference if the module
1167          * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1168          */
1169         if (!try_module_get(kvm_chardev_ops.owner)) {
1170                 r = -ENODEV;
1171                 goto out_err;
1172         }
1173
1174         return kvm;
1175
1176 out_err:
1177 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1178         if (kvm->mmu_notifier.ops)
1179                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1180 #endif
1181 out_err_no_mmu_notifier:
1182         hardware_disable_all();
1183 out_err_no_disable:
1184         kvm_arch_destroy_vm(kvm);
1185 out_err_no_arch_destroy_vm:
1186         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1187         for (i = 0; i < KVM_NR_BUSES; i++)
1188                 kfree(kvm_get_bus(kvm, i));
1189         cleanup_srcu_struct(&kvm->irq_srcu);
1190 out_err_no_irq_srcu:
1191         cleanup_srcu_struct(&kvm->srcu);
1192 out_err_no_srcu:
1193         kvm_arch_free_vm(kvm);
1194         mmdrop(current->mm);
1195         return ERR_PTR(r);
1196 }
1197
1198 static void kvm_destroy_devices(struct kvm *kvm)
1199 {
1200         struct kvm_device *dev, *tmp;
1201
1202         /*
1203          * We do not need to take the kvm->lock here, because nobody else
1204          * has a reference to the struct kvm at this point and therefore
1205          * cannot access the devices list anyhow.
1206          */
1207         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1208                 list_del(&dev->vm_node);
1209                 dev->ops->destroy(dev);
1210         }
1211 }
1212
1213 static void kvm_destroy_vm(struct kvm *kvm)
1214 {
1215         int i;
1216         struct mm_struct *mm = kvm->mm;
1217
1218         kvm_destroy_pm_notifier(kvm);
1219         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1220         kvm_destroy_vm_debugfs(kvm);
1221         kvm_arch_sync_events(kvm);
1222         mutex_lock(&kvm_lock);
1223         list_del(&kvm->vm_list);
1224         mutex_unlock(&kvm_lock);
1225         kvm_arch_pre_destroy_vm(kvm);
1226
1227         kvm_free_irq_routing(kvm);
1228         for (i = 0; i < KVM_NR_BUSES; i++) {
1229                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1230
1231                 if (bus)
1232                         kvm_io_bus_destroy(bus);
1233                 kvm->buses[i] = NULL;
1234         }
1235         kvm_coalesced_mmio_free(kvm);
1236 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1237         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1238         /*
1239          * At this point, pending calls to invalidate_range_start()
1240          * have completed but no more MMU notifiers will run, so
1241          * mn_active_invalidate_count may remain unbalanced.
1242          * No threads can be waiting in install_new_memslots as the
1243          * last reference on KVM has been dropped, but freeing
1244          * memslots would deadlock without this manual intervention.
1245          */
1246         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1247         kvm->mn_active_invalidate_count = 0;
1248 #else
1249         kvm_flush_shadow_all(kvm);
1250 #endif
1251         kvm_arch_destroy_vm(kvm);
1252         kvm_destroy_devices(kvm);
1253         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1254                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1255                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1256         }
1257         cleanup_srcu_struct(&kvm->irq_srcu);
1258         cleanup_srcu_struct(&kvm->srcu);
1259         kvm_arch_free_vm(kvm);
1260         preempt_notifier_dec();
1261         hardware_disable_all();
1262         mmdrop(mm);
1263         module_put(kvm_chardev_ops.owner);
1264 }
1265
1266 void kvm_get_kvm(struct kvm *kvm)
1267 {
1268         refcount_inc(&kvm->users_count);
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1271
1272 /*
1273  * Make sure the vm is not during destruction, which is a safe version of
1274  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1275  */
1276 bool kvm_get_kvm_safe(struct kvm *kvm)
1277 {
1278         return refcount_inc_not_zero(&kvm->users_count);
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1281
1282 void kvm_put_kvm(struct kvm *kvm)
1283 {
1284         if (refcount_dec_and_test(&kvm->users_count))
1285                 kvm_destroy_vm(kvm);
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1288
1289 /*
1290  * Used to put a reference that was taken on behalf of an object associated
1291  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1292  * of the new file descriptor fails and the reference cannot be transferred to
1293  * its final owner.  In such cases, the caller is still actively using @kvm and
1294  * will fail miserably if the refcount unexpectedly hits zero.
1295  */
1296 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1297 {
1298         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1301
1302 static int kvm_vm_release(struct inode *inode, struct file *filp)
1303 {
1304         struct kvm *kvm = filp->private_data;
1305
1306         kvm_irqfd_release(kvm);
1307
1308         kvm_put_kvm(kvm);
1309         return 0;
1310 }
1311
1312 /*
1313  * Allocation size is twice as large as the actual dirty bitmap size.
1314  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1315  */
1316 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1317 {
1318         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1319
1320         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1321         if (!memslot->dirty_bitmap)
1322                 return -ENOMEM;
1323
1324         return 0;
1325 }
1326
1327 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1328 {
1329         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1330         int node_idx_inactive = active->node_idx ^ 1;
1331
1332         return &kvm->__memslots[as_id][node_idx_inactive];
1333 }
1334
1335 /*
1336  * Helper to get the address space ID when one of memslot pointers may be NULL.
1337  * This also serves as a sanity that at least one of the pointers is non-NULL,
1338  * and that their address space IDs don't diverge.
1339  */
1340 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1341                                   struct kvm_memory_slot *b)
1342 {
1343         if (WARN_ON_ONCE(!a && !b))
1344                 return 0;
1345
1346         if (!a)
1347                 return b->as_id;
1348         if (!b)
1349                 return a->as_id;
1350
1351         WARN_ON_ONCE(a->as_id != b->as_id);
1352         return a->as_id;
1353 }
1354
1355 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1356                                 struct kvm_memory_slot *slot)
1357 {
1358         struct rb_root *gfn_tree = &slots->gfn_tree;
1359         struct rb_node **node, *parent;
1360         int idx = slots->node_idx;
1361
1362         parent = NULL;
1363         for (node = &gfn_tree->rb_node; *node; ) {
1364                 struct kvm_memory_slot *tmp;
1365
1366                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1367                 parent = *node;
1368                 if (slot->base_gfn < tmp->base_gfn)
1369                         node = &(*node)->rb_left;
1370                 else if (slot->base_gfn > tmp->base_gfn)
1371                         node = &(*node)->rb_right;
1372                 else
1373                         BUG();
1374         }
1375
1376         rb_link_node(&slot->gfn_node[idx], parent, node);
1377         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1378 }
1379
1380 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1381                                struct kvm_memory_slot *slot)
1382 {
1383         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1384 }
1385
1386 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1387                                  struct kvm_memory_slot *old,
1388                                  struct kvm_memory_slot *new)
1389 {
1390         int idx = slots->node_idx;
1391
1392         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1393
1394         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1395                         &slots->gfn_tree);
1396 }
1397
1398 /*
1399  * Replace @old with @new in the inactive memslots.
1400  *
1401  * With NULL @old this simply adds @new.
1402  * With NULL @new this simply removes @old.
1403  *
1404  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1405  * appropriately.
1406  */
1407 static void kvm_replace_memslot(struct kvm *kvm,
1408                                 struct kvm_memory_slot *old,
1409                                 struct kvm_memory_slot *new)
1410 {
1411         int as_id = kvm_memslots_get_as_id(old, new);
1412         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1413         int idx = slots->node_idx;
1414
1415         if (old) {
1416                 hash_del(&old->id_node[idx]);
1417                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1418
1419                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1420                         atomic_long_set(&slots->last_used_slot, (long)new);
1421
1422                 if (!new) {
1423                         kvm_erase_gfn_node(slots, old);
1424                         return;
1425                 }
1426         }
1427
1428         /*
1429          * Initialize @new's hva range.  Do this even when replacing an @old
1430          * slot, kvm_copy_memslot() deliberately does not touch node data.
1431          */
1432         new->hva_node[idx].start = new->userspace_addr;
1433         new->hva_node[idx].last = new->userspace_addr +
1434                                   (new->npages << PAGE_SHIFT) - 1;
1435
1436         /*
1437          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1438          * hva_node needs to be swapped with remove+insert even though hva can't
1439          * change when replacing an existing slot.
1440          */
1441         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1442         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1443
1444         /*
1445          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1446          * switch the node in the gfn tree instead of removing the old and
1447          * inserting the new as two separate operations. Replacement is a
1448          * single O(1) operation versus two O(log(n)) operations for
1449          * remove+insert.
1450          */
1451         if (old && old->base_gfn == new->base_gfn) {
1452                 kvm_replace_gfn_node(slots, old, new);
1453         } else {
1454                 if (old)
1455                         kvm_erase_gfn_node(slots, old);
1456                 kvm_insert_gfn_node(slots, new);
1457         }
1458 }
1459
1460 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1461 {
1462         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1463
1464 #ifdef __KVM_HAVE_READONLY_MEM
1465         valid_flags |= KVM_MEM_READONLY;
1466 #endif
1467
1468         if (mem->flags & ~valid_flags)
1469                 return -EINVAL;
1470
1471         return 0;
1472 }
1473
1474 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1475 {
1476         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1477
1478         /* Grab the generation from the activate memslots. */
1479         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1480
1481         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1482         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1483
1484         /*
1485          * Do not store the new memslots while there are invalidations in
1486          * progress, otherwise the locking in invalidate_range_start and
1487          * invalidate_range_end will be unbalanced.
1488          */
1489         spin_lock(&kvm->mn_invalidate_lock);
1490         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1491         while (kvm->mn_active_invalidate_count) {
1492                 set_current_state(TASK_UNINTERRUPTIBLE);
1493                 spin_unlock(&kvm->mn_invalidate_lock);
1494                 schedule();
1495                 spin_lock(&kvm->mn_invalidate_lock);
1496         }
1497         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1498         rcu_assign_pointer(kvm->memslots[as_id], slots);
1499         spin_unlock(&kvm->mn_invalidate_lock);
1500
1501         /*
1502          * Acquired in kvm_set_memslot. Must be released before synchronize
1503          * SRCU below in order to avoid deadlock with another thread
1504          * acquiring the slots_arch_lock in an srcu critical section.
1505          */
1506         mutex_unlock(&kvm->slots_arch_lock);
1507
1508         synchronize_srcu_expedited(&kvm->srcu);
1509
1510         /*
1511          * Increment the new memslot generation a second time, dropping the
1512          * update in-progress flag and incrementing the generation based on
1513          * the number of address spaces.  This provides a unique and easily
1514          * identifiable generation number while the memslots are in flux.
1515          */
1516         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1517
1518         /*
1519          * Generations must be unique even across address spaces.  We do not need
1520          * a global counter for that, instead the generation space is evenly split
1521          * across address spaces.  For example, with two address spaces, address
1522          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1523          * use generations 1, 3, 5, ...
1524          */
1525         gen += KVM_ADDRESS_SPACE_NUM;
1526
1527         kvm_arch_memslots_updated(kvm, gen);
1528
1529         slots->generation = gen;
1530 }
1531
1532 static int kvm_prepare_memory_region(struct kvm *kvm,
1533                                      const struct kvm_memory_slot *old,
1534                                      struct kvm_memory_slot *new,
1535                                      enum kvm_mr_change change)
1536 {
1537         int r;
1538
1539         /*
1540          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1541          * will be freed on "commit".  If logging is enabled in both old and
1542          * new, reuse the existing bitmap.  If logging is enabled only in the
1543          * new and KVM isn't using a ring buffer, allocate and initialize a
1544          * new bitmap.
1545          */
1546         if (change != KVM_MR_DELETE) {
1547                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1548                         new->dirty_bitmap = NULL;
1549                 else if (old && old->dirty_bitmap)
1550                         new->dirty_bitmap = old->dirty_bitmap;
1551                 else if (!kvm->dirty_ring_size) {
1552                         r = kvm_alloc_dirty_bitmap(new);
1553                         if (r)
1554                                 return r;
1555
1556                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1557                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1558                 }
1559         }
1560
1561         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1562
1563         /* Free the bitmap on failure if it was allocated above. */
1564         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1565                 kvm_destroy_dirty_bitmap(new);
1566
1567         return r;
1568 }
1569
1570 static void kvm_commit_memory_region(struct kvm *kvm,
1571                                      struct kvm_memory_slot *old,
1572                                      const struct kvm_memory_slot *new,
1573                                      enum kvm_mr_change change)
1574 {
1575         /*
1576          * Update the total number of memslot pages before calling the arch
1577          * hook so that architectures can consume the result directly.
1578          */
1579         if (change == KVM_MR_DELETE)
1580                 kvm->nr_memslot_pages -= old->npages;
1581         else if (change == KVM_MR_CREATE)
1582                 kvm->nr_memslot_pages += new->npages;
1583
1584         kvm_arch_commit_memory_region(kvm, old, new, change);
1585
1586         switch (change) {
1587         case KVM_MR_CREATE:
1588                 /* Nothing more to do. */
1589                 break;
1590         case KVM_MR_DELETE:
1591                 /* Free the old memslot and all its metadata. */
1592                 kvm_free_memslot(kvm, old);
1593                 break;
1594         case KVM_MR_MOVE:
1595         case KVM_MR_FLAGS_ONLY:
1596                 /*
1597                  * Free the dirty bitmap as needed; the below check encompasses
1598                  * both the flags and whether a ring buffer is being used)
1599                  */
1600                 if (old->dirty_bitmap && !new->dirty_bitmap)
1601                         kvm_destroy_dirty_bitmap(old);
1602
1603                 /*
1604                  * The final quirk.  Free the detached, old slot, but only its
1605                  * memory, not any metadata.  Metadata, including arch specific
1606                  * data, may be reused by @new.
1607                  */
1608                 kfree(old);
1609                 break;
1610         default:
1611                 BUG();
1612         }
1613 }
1614
1615 /*
1616  * Activate @new, which must be installed in the inactive slots by the caller,
1617  * by swapping the active slots and then propagating @new to @old once @old is
1618  * unreachable and can be safely modified.
1619  *
1620  * With NULL @old this simply adds @new to @active (while swapping the sets).
1621  * With NULL @new this simply removes @old from @active and frees it
1622  * (while also swapping the sets).
1623  */
1624 static void kvm_activate_memslot(struct kvm *kvm,
1625                                  struct kvm_memory_slot *old,
1626                                  struct kvm_memory_slot *new)
1627 {
1628         int as_id = kvm_memslots_get_as_id(old, new);
1629
1630         kvm_swap_active_memslots(kvm, as_id);
1631
1632         /* Propagate the new memslot to the now inactive memslots. */
1633         kvm_replace_memslot(kvm, old, new);
1634 }
1635
1636 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1637                              const struct kvm_memory_slot *src)
1638 {
1639         dest->base_gfn = src->base_gfn;
1640         dest->npages = src->npages;
1641         dest->dirty_bitmap = src->dirty_bitmap;
1642         dest->arch = src->arch;
1643         dest->userspace_addr = src->userspace_addr;
1644         dest->flags = src->flags;
1645         dest->id = src->id;
1646         dest->as_id = src->as_id;
1647 }
1648
1649 static void kvm_invalidate_memslot(struct kvm *kvm,
1650                                    struct kvm_memory_slot *old,
1651                                    struct kvm_memory_slot *invalid_slot)
1652 {
1653         /*
1654          * Mark the current slot INVALID.  As with all memslot modifications,
1655          * this must be done on an unreachable slot to avoid modifying the
1656          * current slot in the active tree.
1657          */
1658         kvm_copy_memslot(invalid_slot, old);
1659         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1660         kvm_replace_memslot(kvm, old, invalid_slot);
1661
1662         /*
1663          * Activate the slot that is now marked INVALID, but don't propagate
1664          * the slot to the now inactive slots. The slot is either going to be
1665          * deleted or recreated as a new slot.
1666          */
1667         kvm_swap_active_memslots(kvm, old->as_id);
1668
1669         /*
1670          * From this point no new shadow pages pointing to a deleted, or moved,
1671          * memslot will be created.  Validation of sp->gfn happens in:
1672          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1673          *      - kvm_is_visible_gfn (mmu_check_root)
1674          */
1675         kvm_arch_flush_shadow_memslot(kvm, old);
1676         kvm_arch_guest_memory_reclaimed(kvm);
1677
1678         /* Was released by kvm_swap_active_memslots, reacquire. */
1679         mutex_lock(&kvm->slots_arch_lock);
1680
1681         /*
1682          * Copy the arch-specific field of the newly-installed slot back to the
1683          * old slot as the arch data could have changed between releasing
1684          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1685          * above.  Writers are required to retrieve memslots *after* acquiring
1686          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1687          */
1688         old->arch = invalid_slot->arch;
1689 }
1690
1691 static void kvm_create_memslot(struct kvm *kvm,
1692                                struct kvm_memory_slot *new)
1693 {
1694         /* Add the new memslot to the inactive set and activate. */
1695         kvm_replace_memslot(kvm, NULL, new);
1696         kvm_activate_memslot(kvm, NULL, new);
1697 }
1698
1699 static void kvm_delete_memslot(struct kvm *kvm,
1700                                struct kvm_memory_slot *old,
1701                                struct kvm_memory_slot *invalid_slot)
1702 {
1703         /*
1704          * Remove the old memslot (in the inactive memslots) by passing NULL as
1705          * the "new" slot, and for the invalid version in the active slots.
1706          */
1707         kvm_replace_memslot(kvm, old, NULL);
1708         kvm_activate_memslot(kvm, invalid_slot, NULL);
1709 }
1710
1711 static void kvm_move_memslot(struct kvm *kvm,
1712                              struct kvm_memory_slot *old,
1713                              struct kvm_memory_slot *new,
1714                              struct kvm_memory_slot *invalid_slot)
1715 {
1716         /*
1717          * Replace the old memslot in the inactive slots, and then swap slots
1718          * and replace the current INVALID with the new as well.
1719          */
1720         kvm_replace_memslot(kvm, old, new);
1721         kvm_activate_memslot(kvm, invalid_slot, new);
1722 }
1723
1724 static void kvm_update_flags_memslot(struct kvm *kvm,
1725                                      struct kvm_memory_slot *old,
1726                                      struct kvm_memory_slot *new)
1727 {
1728         /*
1729          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1730          * an intermediate step. Instead, the old memslot is simply replaced
1731          * with a new, updated copy in both memslot sets.
1732          */
1733         kvm_replace_memslot(kvm, old, new);
1734         kvm_activate_memslot(kvm, old, new);
1735 }
1736
1737 static int kvm_set_memslot(struct kvm *kvm,
1738                            struct kvm_memory_slot *old,
1739                            struct kvm_memory_slot *new,
1740                            enum kvm_mr_change change)
1741 {
1742         struct kvm_memory_slot *invalid_slot;
1743         int r;
1744
1745         /*
1746          * Released in kvm_swap_active_memslots.
1747          *
1748          * Must be held from before the current memslots are copied until
1749          * after the new memslots are installed with rcu_assign_pointer,
1750          * then released before the synchronize srcu in kvm_swap_active_memslots.
1751          *
1752          * When modifying memslots outside of the slots_lock, must be held
1753          * before reading the pointer to the current memslots until after all
1754          * changes to those memslots are complete.
1755          *
1756          * These rules ensure that installing new memslots does not lose
1757          * changes made to the previous memslots.
1758          */
1759         mutex_lock(&kvm->slots_arch_lock);
1760
1761         /*
1762          * Invalidate the old slot if it's being deleted or moved.  This is
1763          * done prior to actually deleting/moving the memslot to allow vCPUs to
1764          * continue running by ensuring there are no mappings or shadow pages
1765          * for the memslot when it is deleted/moved.  Without pre-invalidation
1766          * (and without a lock), a window would exist between effecting the
1767          * delete/move and committing the changes in arch code where KVM or a
1768          * guest could access a non-existent memslot.
1769          *
1770          * Modifications are done on a temporary, unreachable slot.  The old
1771          * slot needs to be preserved in case a later step fails and the
1772          * invalidation needs to be reverted.
1773          */
1774         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1775                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1776                 if (!invalid_slot) {
1777                         mutex_unlock(&kvm->slots_arch_lock);
1778                         return -ENOMEM;
1779                 }
1780                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1781         }
1782
1783         r = kvm_prepare_memory_region(kvm, old, new, change);
1784         if (r) {
1785                 /*
1786                  * For DELETE/MOVE, revert the above INVALID change.  No
1787                  * modifications required since the original slot was preserved
1788                  * in the inactive slots.  Changing the active memslots also
1789                  * release slots_arch_lock.
1790                  */
1791                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1792                         kvm_activate_memslot(kvm, invalid_slot, old);
1793                         kfree(invalid_slot);
1794                 } else {
1795                         mutex_unlock(&kvm->slots_arch_lock);
1796                 }
1797                 return r;
1798         }
1799
1800         /*
1801          * For DELETE and MOVE, the working slot is now active as the INVALID
1802          * version of the old slot.  MOVE is particularly special as it reuses
1803          * the old slot and returns a copy of the old slot (in working_slot).
1804          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1805          * old slot is detached but otherwise preserved.
1806          */
1807         if (change == KVM_MR_CREATE)
1808                 kvm_create_memslot(kvm, new);
1809         else if (change == KVM_MR_DELETE)
1810                 kvm_delete_memslot(kvm, old, invalid_slot);
1811         else if (change == KVM_MR_MOVE)
1812                 kvm_move_memslot(kvm, old, new, invalid_slot);
1813         else if (change == KVM_MR_FLAGS_ONLY)
1814                 kvm_update_flags_memslot(kvm, old, new);
1815         else
1816                 BUG();
1817
1818         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1819         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1820                 kfree(invalid_slot);
1821
1822         /*
1823          * No need to refresh new->arch, changes after dropping slots_arch_lock
1824          * will directly hit the final, active memslot.  Architectures are
1825          * responsible for knowing that new->arch may be stale.
1826          */
1827         kvm_commit_memory_region(kvm, old, new, change);
1828
1829         return 0;
1830 }
1831
1832 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1833                                       gfn_t start, gfn_t end)
1834 {
1835         struct kvm_memslot_iter iter;
1836
1837         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1838                 if (iter.slot->id != id)
1839                         return true;
1840         }
1841
1842         return false;
1843 }
1844
1845 /*
1846  * Allocate some memory and give it an address in the guest physical address
1847  * space.
1848  *
1849  * Discontiguous memory is allowed, mostly for framebuffers.
1850  *
1851  * Must be called holding kvm->slots_lock for write.
1852  */
1853 int __kvm_set_memory_region(struct kvm *kvm,
1854                             const struct kvm_userspace_memory_region *mem)
1855 {
1856         struct kvm_memory_slot *old, *new;
1857         struct kvm_memslots *slots;
1858         enum kvm_mr_change change;
1859         unsigned long npages;
1860         gfn_t base_gfn;
1861         int as_id, id;
1862         int r;
1863
1864         r = check_memory_region_flags(mem);
1865         if (r)
1866                 return r;
1867
1868         as_id = mem->slot >> 16;
1869         id = (u16)mem->slot;
1870
1871         /* General sanity checks */
1872         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1873             (mem->memory_size != (unsigned long)mem->memory_size))
1874                 return -EINVAL;
1875         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1876                 return -EINVAL;
1877         /* We can read the guest memory with __xxx_user() later on. */
1878         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1879             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1880              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1881                         mem->memory_size))
1882                 return -EINVAL;
1883         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1884                 return -EINVAL;
1885         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1886                 return -EINVAL;
1887         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1888                 return -EINVAL;
1889
1890         slots = __kvm_memslots(kvm, as_id);
1891
1892         /*
1893          * Note, the old memslot (and the pointer itself!) may be invalidated
1894          * and/or destroyed by kvm_set_memslot().
1895          */
1896         old = id_to_memslot(slots, id);
1897
1898         if (!mem->memory_size) {
1899                 if (!old || !old->npages)
1900                         return -EINVAL;
1901
1902                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1903                         return -EIO;
1904
1905                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1906         }
1907
1908         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1909         npages = (mem->memory_size >> PAGE_SHIFT);
1910
1911         if (!old || !old->npages) {
1912                 change = KVM_MR_CREATE;
1913
1914                 /*
1915                  * To simplify KVM internals, the total number of pages across
1916                  * all memslots must fit in an unsigned long.
1917                  */
1918                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1919                         return -EINVAL;
1920         } else { /* Modify an existing slot. */
1921                 if ((mem->userspace_addr != old->userspace_addr) ||
1922                     (npages != old->npages) ||
1923                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1924                         return -EINVAL;
1925
1926                 if (base_gfn != old->base_gfn)
1927                         change = KVM_MR_MOVE;
1928                 else if (mem->flags != old->flags)
1929                         change = KVM_MR_FLAGS_ONLY;
1930                 else /* Nothing to change. */
1931                         return 0;
1932         }
1933
1934         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1935             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1936                 return -EEXIST;
1937
1938         /* Allocate a slot that will persist in the memslot. */
1939         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1940         if (!new)
1941                 return -ENOMEM;
1942
1943         new->as_id = as_id;
1944         new->id = id;
1945         new->base_gfn = base_gfn;
1946         new->npages = npages;
1947         new->flags = mem->flags;
1948         new->userspace_addr = mem->userspace_addr;
1949
1950         r = kvm_set_memslot(kvm, old, new, change);
1951         if (r)
1952                 kfree(new);
1953         return r;
1954 }
1955 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1956
1957 int kvm_set_memory_region(struct kvm *kvm,
1958                           const struct kvm_userspace_memory_region *mem)
1959 {
1960         int r;
1961
1962         mutex_lock(&kvm->slots_lock);
1963         r = __kvm_set_memory_region(kvm, mem);
1964         mutex_unlock(&kvm->slots_lock);
1965         return r;
1966 }
1967 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1968
1969 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1970                                           struct kvm_userspace_memory_region *mem)
1971 {
1972         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1973                 return -EINVAL;
1974
1975         return kvm_set_memory_region(kvm, mem);
1976 }
1977
1978 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1979 /**
1980  * kvm_get_dirty_log - get a snapshot of dirty pages
1981  * @kvm:        pointer to kvm instance
1982  * @log:        slot id and address to which we copy the log
1983  * @is_dirty:   set to '1' if any dirty pages were found
1984  * @memslot:    set to the associated memslot, always valid on success
1985  */
1986 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1987                       int *is_dirty, struct kvm_memory_slot **memslot)
1988 {
1989         struct kvm_memslots *slots;
1990         int i, as_id, id;
1991         unsigned long n;
1992         unsigned long any = 0;
1993
1994         /* Dirty ring tracking is exclusive to dirty log tracking */
1995         if (kvm->dirty_ring_size)
1996                 return -ENXIO;
1997
1998         *memslot = NULL;
1999         *is_dirty = 0;
2000
2001         as_id = log->slot >> 16;
2002         id = (u16)log->slot;
2003         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2004                 return -EINVAL;
2005
2006         slots = __kvm_memslots(kvm, as_id);
2007         *memslot = id_to_memslot(slots, id);
2008         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2009                 return -ENOENT;
2010
2011         kvm_arch_sync_dirty_log(kvm, *memslot);
2012
2013         n = kvm_dirty_bitmap_bytes(*memslot);
2014
2015         for (i = 0; !any && i < n/sizeof(long); ++i)
2016                 any = (*memslot)->dirty_bitmap[i];
2017
2018         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2019                 return -EFAULT;
2020
2021         if (any)
2022                 *is_dirty = 1;
2023         return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2026
2027 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2028 /**
2029  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2030  *      and reenable dirty page tracking for the corresponding pages.
2031  * @kvm:        pointer to kvm instance
2032  * @log:        slot id and address to which we copy the log
2033  *
2034  * We need to keep it in mind that VCPU threads can write to the bitmap
2035  * concurrently. So, to avoid losing track of dirty pages we keep the
2036  * following order:
2037  *
2038  *    1. Take a snapshot of the bit and clear it if needed.
2039  *    2. Write protect the corresponding page.
2040  *    3. Copy the snapshot to the userspace.
2041  *    4. Upon return caller flushes TLB's if needed.
2042  *
2043  * Between 2 and 4, the guest may write to the page using the remaining TLB
2044  * entry.  This is not a problem because the page is reported dirty using
2045  * the snapshot taken before and step 4 ensures that writes done after
2046  * exiting to userspace will be logged for the next call.
2047  *
2048  */
2049 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2050 {
2051         struct kvm_memslots *slots;
2052         struct kvm_memory_slot *memslot;
2053         int i, as_id, id;
2054         unsigned long n;
2055         unsigned long *dirty_bitmap;
2056         unsigned long *dirty_bitmap_buffer;
2057         bool flush;
2058
2059         /* Dirty ring tracking is exclusive to dirty log tracking */
2060         if (kvm->dirty_ring_size)
2061                 return -ENXIO;
2062
2063         as_id = log->slot >> 16;
2064         id = (u16)log->slot;
2065         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2066                 return -EINVAL;
2067
2068         slots = __kvm_memslots(kvm, as_id);
2069         memslot = id_to_memslot(slots, id);
2070         if (!memslot || !memslot->dirty_bitmap)
2071                 return -ENOENT;
2072
2073         dirty_bitmap = memslot->dirty_bitmap;
2074
2075         kvm_arch_sync_dirty_log(kvm, memslot);
2076
2077         n = kvm_dirty_bitmap_bytes(memslot);
2078         flush = false;
2079         if (kvm->manual_dirty_log_protect) {
2080                 /*
2081                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2082                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2083                  * is some code duplication between this function and
2084                  * kvm_get_dirty_log, but hopefully all architecture
2085                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2086                  * can be eliminated.
2087                  */
2088                 dirty_bitmap_buffer = dirty_bitmap;
2089         } else {
2090                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2091                 memset(dirty_bitmap_buffer, 0, n);
2092
2093                 KVM_MMU_LOCK(kvm);
2094                 for (i = 0; i < n / sizeof(long); i++) {
2095                         unsigned long mask;
2096                         gfn_t offset;
2097
2098                         if (!dirty_bitmap[i])
2099                                 continue;
2100
2101                         flush = true;
2102                         mask = xchg(&dirty_bitmap[i], 0);
2103                         dirty_bitmap_buffer[i] = mask;
2104
2105                         offset = i * BITS_PER_LONG;
2106                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2107                                                                 offset, mask);
2108                 }
2109                 KVM_MMU_UNLOCK(kvm);
2110         }
2111
2112         if (flush)
2113                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2114
2115         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2116                 return -EFAULT;
2117         return 0;
2118 }
2119
2120
2121 /**
2122  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2123  * @kvm: kvm instance
2124  * @log: slot id and address to which we copy the log
2125  *
2126  * Steps 1-4 below provide general overview of dirty page logging. See
2127  * kvm_get_dirty_log_protect() function description for additional details.
2128  *
2129  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2130  * always flush the TLB (step 4) even if previous step failed  and the dirty
2131  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2132  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2133  * writes will be marked dirty for next log read.
2134  *
2135  *   1. Take a snapshot of the bit and clear it if needed.
2136  *   2. Write protect the corresponding page.
2137  *   3. Copy the snapshot to the userspace.
2138  *   4. Flush TLB's if needed.
2139  */
2140 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2141                                       struct kvm_dirty_log *log)
2142 {
2143         int r;
2144
2145         mutex_lock(&kvm->slots_lock);
2146
2147         r = kvm_get_dirty_log_protect(kvm, log);
2148
2149         mutex_unlock(&kvm->slots_lock);
2150         return r;
2151 }
2152
2153 /**
2154  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2155  *      and reenable dirty page tracking for the corresponding pages.
2156  * @kvm:        pointer to kvm instance
2157  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2158  */
2159 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2160                                        struct kvm_clear_dirty_log *log)
2161 {
2162         struct kvm_memslots *slots;
2163         struct kvm_memory_slot *memslot;
2164         int as_id, id;
2165         gfn_t offset;
2166         unsigned long i, n;
2167         unsigned long *dirty_bitmap;
2168         unsigned long *dirty_bitmap_buffer;
2169         bool flush;
2170
2171         /* Dirty ring tracking is exclusive to dirty log tracking */
2172         if (kvm->dirty_ring_size)
2173                 return -ENXIO;
2174
2175         as_id = log->slot >> 16;
2176         id = (u16)log->slot;
2177         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2178                 return -EINVAL;
2179
2180         if (log->first_page & 63)
2181                 return -EINVAL;
2182
2183         slots = __kvm_memslots(kvm, as_id);
2184         memslot = id_to_memslot(slots, id);
2185         if (!memslot || !memslot->dirty_bitmap)
2186                 return -ENOENT;
2187
2188         dirty_bitmap = memslot->dirty_bitmap;
2189
2190         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2191
2192         if (log->first_page > memslot->npages ||
2193             log->num_pages > memslot->npages - log->first_page ||
2194             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2195             return -EINVAL;
2196
2197         kvm_arch_sync_dirty_log(kvm, memslot);
2198
2199         flush = false;
2200         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2201         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2202                 return -EFAULT;
2203
2204         KVM_MMU_LOCK(kvm);
2205         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2206                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2207              i++, offset += BITS_PER_LONG) {
2208                 unsigned long mask = *dirty_bitmap_buffer++;
2209                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2210                 if (!mask)
2211                         continue;
2212
2213                 mask &= atomic_long_fetch_andnot(mask, p);
2214
2215                 /*
2216                  * mask contains the bits that really have been cleared.  This
2217                  * never includes any bits beyond the length of the memslot (if
2218                  * the length is not aligned to 64 pages), therefore it is not
2219                  * a problem if userspace sets them in log->dirty_bitmap.
2220                 */
2221                 if (mask) {
2222                         flush = true;
2223                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2224                                                                 offset, mask);
2225                 }
2226         }
2227         KVM_MMU_UNLOCK(kvm);
2228
2229         if (flush)
2230                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2231
2232         return 0;
2233 }
2234
2235 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2236                                         struct kvm_clear_dirty_log *log)
2237 {
2238         int r;
2239
2240         mutex_lock(&kvm->slots_lock);
2241
2242         r = kvm_clear_dirty_log_protect(kvm, log);
2243
2244         mutex_unlock(&kvm->slots_lock);
2245         return r;
2246 }
2247 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2248
2249 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2250 {
2251         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2252 }
2253 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2254
2255 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2256 {
2257         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2258         u64 gen = slots->generation;
2259         struct kvm_memory_slot *slot;
2260
2261         /*
2262          * This also protects against using a memslot from a different address space,
2263          * since different address spaces have different generation numbers.
2264          */
2265         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2266                 vcpu->last_used_slot = NULL;
2267                 vcpu->last_used_slot_gen = gen;
2268         }
2269
2270         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2271         if (slot)
2272                 return slot;
2273
2274         /*
2275          * Fall back to searching all memslots. We purposely use
2276          * search_memslots() instead of __gfn_to_memslot() to avoid
2277          * thrashing the VM-wide last_used_slot in kvm_memslots.
2278          */
2279         slot = search_memslots(slots, gfn, false);
2280         if (slot) {
2281                 vcpu->last_used_slot = slot;
2282                 return slot;
2283         }
2284
2285         return NULL;
2286 }
2287
2288 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2289 {
2290         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2291
2292         return kvm_is_visible_memslot(memslot);
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2295
2296 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2297 {
2298         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2299
2300         return kvm_is_visible_memslot(memslot);
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2303
2304 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2305 {
2306         struct vm_area_struct *vma;
2307         unsigned long addr, size;
2308
2309         size = PAGE_SIZE;
2310
2311         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2312         if (kvm_is_error_hva(addr))
2313                 return PAGE_SIZE;
2314
2315         mmap_read_lock(current->mm);
2316         vma = find_vma(current->mm, addr);
2317         if (!vma)
2318                 goto out;
2319
2320         size = vma_kernel_pagesize(vma);
2321
2322 out:
2323         mmap_read_unlock(current->mm);
2324
2325         return size;
2326 }
2327
2328 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2329 {
2330         return slot->flags & KVM_MEM_READONLY;
2331 }
2332
2333 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2334                                        gfn_t *nr_pages, bool write)
2335 {
2336         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2337                 return KVM_HVA_ERR_BAD;
2338
2339         if (memslot_is_readonly(slot) && write)
2340                 return KVM_HVA_ERR_RO_BAD;
2341
2342         if (nr_pages)
2343                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2344
2345         return __gfn_to_hva_memslot(slot, gfn);
2346 }
2347
2348 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2349                                      gfn_t *nr_pages)
2350 {
2351         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2352 }
2353
2354 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2355                                         gfn_t gfn)
2356 {
2357         return gfn_to_hva_many(slot, gfn, NULL);
2358 }
2359 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2360
2361 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2362 {
2363         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(gfn_to_hva);
2366
2367 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2368 {
2369         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2372
2373 /*
2374  * Return the hva of a @gfn and the R/W attribute if possible.
2375  *
2376  * @slot: the kvm_memory_slot which contains @gfn
2377  * @gfn: the gfn to be translated
2378  * @writable: used to return the read/write attribute of the @slot if the hva
2379  * is valid and @writable is not NULL
2380  */
2381 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2382                                       gfn_t gfn, bool *writable)
2383 {
2384         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2385
2386         if (!kvm_is_error_hva(hva) && writable)
2387                 *writable = !memslot_is_readonly(slot);
2388
2389         return hva;
2390 }
2391
2392 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2393 {
2394         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2395
2396         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2397 }
2398
2399 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2400 {
2401         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2402
2403         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2404 }
2405
2406 static inline int check_user_page_hwpoison(unsigned long addr)
2407 {
2408         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2409
2410         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2411         return rc == -EHWPOISON;
2412 }
2413
2414 /*
2415  * The fast path to get the writable pfn which will be stored in @pfn,
2416  * true indicates success, otherwise false is returned.  It's also the
2417  * only part that runs if we can in atomic context.
2418  */
2419 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2420                             bool *writable, kvm_pfn_t *pfn)
2421 {
2422         struct page *page[1];
2423
2424         /*
2425          * Fast pin a writable pfn only if it is a write fault request
2426          * or the caller allows to map a writable pfn for a read fault
2427          * request.
2428          */
2429         if (!(write_fault || writable))
2430                 return false;
2431
2432         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2433                 *pfn = page_to_pfn(page[0]);
2434
2435                 if (writable)
2436                         *writable = true;
2437                 return true;
2438         }
2439
2440         return false;
2441 }
2442
2443 /*
2444  * The slow path to get the pfn of the specified host virtual address,
2445  * 1 indicates success, -errno is returned if error is detected.
2446  */
2447 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2448                            bool *writable, kvm_pfn_t *pfn)
2449 {
2450         unsigned int flags = FOLL_HWPOISON;
2451         struct page *page;
2452         int npages = 0;
2453
2454         might_sleep();
2455
2456         if (writable)
2457                 *writable = write_fault;
2458
2459         if (write_fault)
2460                 flags |= FOLL_WRITE;
2461         if (async)
2462                 flags |= FOLL_NOWAIT;
2463
2464         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2465         if (npages != 1)
2466                 return npages;
2467
2468         /* map read fault as writable if possible */
2469         if (unlikely(!write_fault) && writable) {
2470                 struct page *wpage;
2471
2472                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2473                         *writable = true;
2474                         put_page(page);
2475                         page = wpage;
2476                 }
2477         }
2478         *pfn = page_to_pfn(page);
2479         return npages;
2480 }
2481
2482 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2483 {
2484         if (unlikely(!(vma->vm_flags & VM_READ)))
2485                 return false;
2486
2487         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2488                 return false;
2489
2490         return true;
2491 }
2492
2493 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2494 {
2495         if (kvm_is_reserved_pfn(pfn))
2496                 return 1;
2497         return get_page_unless_zero(pfn_to_page(pfn));
2498 }
2499
2500 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2501                                unsigned long addr, bool write_fault,
2502                                bool *writable, kvm_pfn_t *p_pfn)
2503 {
2504         kvm_pfn_t pfn;
2505         pte_t *ptep;
2506         spinlock_t *ptl;
2507         int r;
2508
2509         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2510         if (r) {
2511                 /*
2512                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2513                  * not call the fault handler, so do it here.
2514                  */
2515                 bool unlocked = false;
2516                 r = fixup_user_fault(current->mm, addr,
2517                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2518                                      &unlocked);
2519                 if (unlocked)
2520                         return -EAGAIN;
2521                 if (r)
2522                         return r;
2523
2524                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2525                 if (r)
2526                         return r;
2527         }
2528
2529         if (write_fault && !pte_write(*ptep)) {
2530                 pfn = KVM_PFN_ERR_RO_FAULT;
2531                 goto out;
2532         }
2533
2534         if (writable)
2535                 *writable = pte_write(*ptep);
2536         pfn = pte_pfn(*ptep);
2537
2538         /*
2539          * Get a reference here because callers of *hva_to_pfn* and
2540          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2541          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2542          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2543          * simply do nothing for reserved pfns.
2544          *
2545          * Whoever called remap_pfn_range is also going to call e.g.
2546          * unmap_mapping_range before the underlying pages are freed,
2547          * causing a call to our MMU notifier.
2548          *
2549          * Certain IO or PFNMAP mappings can be backed with valid
2550          * struct pages, but be allocated without refcounting e.g.,
2551          * tail pages of non-compound higher order allocations, which
2552          * would then underflow the refcount when the caller does the
2553          * required put_page. Don't allow those pages here.
2554          */ 
2555         if (!kvm_try_get_pfn(pfn))
2556                 r = -EFAULT;
2557
2558 out:
2559         pte_unmap_unlock(ptep, ptl);
2560         *p_pfn = pfn;
2561
2562         return r;
2563 }
2564
2565 /*
2566  * Pin guest page in memory and return its pfn.
2567  * @addr: host virtual address which maps memory to the guest
2568  * @atomic: whether this function can sleep
2569  * @async: whether this function need to wait IO complete if the
2570  *         host page is not in the memory
2571  * @write_fault: whether we should get a writable host page
2572  * @writable: whether it allows to map a writable host page for !@write_fault
2573  *
2574  * The function will map a writable host page for these two cases:
2575  * 1): @write_fault = true
2576  * 2): @write_fault = false && @writable, @writable will tell the caller
2577  *     whether the mapping is writable.
2578  */
2579 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2580                      bool write_fault, bool *writable)
2581 {
2582         struct vm_area_struct *vma;
2583         kvm_pfn_t pfn = 0;
2584         int npages, r;
2585
2586         /* we can do it either atomically or asynchronously, not both */
2587         BUG_ON(atomic && async);
2588
2589         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2590                 return pfn;
2591
2592         if (atomic)
2593                 return KVM_PFN_ERR_FAULT;
2594
2595         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2596         if (npages == 1)
2597                 return pfn;
2598
2599         mmap_read_lock(current->mm);
2600         if (npages == -EHWPOISON ||
2601               (!async && check_user_page_hwpoison(addr))) {
2602                 pfn = KVM_PFN_ERR_HWPOISON;
2603                 goto exit;
2604         }
2605
2606 retry:
2607         vma = vma_lookup(current->mm, addr);
2608
2609         if (vma == NULL)
2610                 pfn = KVM_PFN_ERR_FAULT;
2611         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2612                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2613                 if (r == -EAGAIN)
2614                         goto retry;
2615                 if (r < 0)
2616                         pfn = KVM_PFN_ERR_FAULT;
2617         } else {
2618                 if (async && vma_is_valid(vma, write_fault))
2619                         *async = true;
2620                 pfn = KVM_PFN_ERR_FAULT;
2621         }
2622 exit:
2623         mmap_read_unlock(current->mm);
2624         return pfn;
2625 }
2626
2627 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2628                                bool atomic, bool *async, bool write_fault,
2629                                bool *writable, hva_t *hva)
2630 {
2631         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2632
2633         if (hva)
2634                 *hva = addr;
2635
2636         if (addr == KVM_HVA_ERR_RO_BAD) {
2637                 if (writable)
2638                         *writable = false;
2639                 return KVM_PFN_ERR_RO_FAULT;
2640         }
2641
2642         if (kvm_is_error_hva(addr)) {
2643                 if (writable)
2644                         *writable = false;
2645                 return KVM_PFN_NOSLOT;
2646         }
2647
2648         /* Do not map writable pfn in the readonly memslot. */
2649         if (writable && memslot_is_readonly(slot)) {
2650                 *writable = false;
2651                 writable = NULL;
2652         }
2653
2654         return hva_to_pfn(addr, atomic, async, write_fault,
2655                           writable);
2656 }
2657 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2658
2659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2660                       bool *writable)
2661 {
2662         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2663                                     write_fault, writable, NULL);
2664 }
2665 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2666
2667 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2668 {
2669         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2670 }
2671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2672
2673 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2674 {
2675         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2676 }
2677 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2678
2679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2680 {
2681         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2684
2685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2686 {
2687         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2688 }
2689 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2690
2691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2692 {
2693         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2694 }
2695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2696
2697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2698                             struct page **pages, int nr_pages)
2699 {
2700         unsigned long addr;
2701         gfn_t entry = 0;
2702
2703         addr = gfn_to_hva_many(slot, gfn, &entry);
2704         if (kvm_is_error_hva(addr))
2705                 return -1;
2706
2707         if (entry < nr_pages)
2708                 return 0;
2709
2710         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2711 }
2712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2713
2714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2715 {
2716         if (is_error_noslot_pfn(pfn))
2717                 return KVM_ERR_PTR_BAD_PAGE;
2718
2719         if (kvm_is_reserved_pfn(pfn)) {
2720                 WARN_ON(1);
2721                 return KVM_ERR_PTR_BAD_PAGE;
2722         }
2723
2724         return pfn_to_page(pfn);
2725 }
2726
2727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2728 {
2729         kvm_pfn_t pfn;
2730
2731         pfn = gfn_to_pfn(kvm, gfn);
2732
2733         return kvm_pfn_to_page(pfn);
2734 }
2735 EXPORT_SYMBOL_GPL(gfn_to_page);
2736
2737 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2738 {
2739         if (pfn == 0)
2740                 return;
2741
2742         if (dirty)
2743                 kvm_release_pfn_dirty(pfn);
2744         else
2745                 kvm_release_pfn_clean(pfn);
2746 }
2747
2748 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2749 {
2750         kvm_pfn_t pfn;
2751         void *hva = NULL;
2752         struct page *page = KVM_UNMAPPED_PAGE;
2753
2754         if (!map)
2755                 return -EINVAL;
2756
2757         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2758         if (is_error_noslot_pfn(pfn))
2759                 return -EINVAL;
2760
2761         if (pfn_valid(pfn)) {
2762                 page = pfn_to_page(pfn);
2763                 hva = kmap(page);
2764 #ifdef CONFIG_HAS_IOMEM
2765         } else {
2766                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2767 #endif
2768         }
2769
2770         if (!hva)
2771                 return -EFAULT;
2772
2773         map->page = page;
2774         map->hva = hva;
2775         map->pfn = pfn;
2776         map->gfn = gfn;
2777
2778         return 0;
2779 }
2780 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2781
2782 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2783 {
2784         if (!map)
2785                 return;
2786
2787         if (!map->hva)
2788                 return;
2789
2790         if (map->page != KVM_UNMAPPED_PAGE)
2791                 kunmap(map->page);
2792 #ifdef CONFIG_HAS_IOMEM
2793         else
2794                 memunmap(map->hva);
2795 #endif
2796
2797         if (dirty)
2798                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2799
2800         kvm_release_pfn(map->pfn, dirty);
2801
2802         map->hva = NULL;
2803         map->page = NULL;
2804 }
2805 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2806
2807 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2808 {
2809         kvm_pfn_t pfn;
2810
2811         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2812
2813         return kvm_pfn_to_page(pfn);
2814 }
2815 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2816
2817 void kvm_release_page_clean(struct page *page)
2818 {
2819         WARN_ON(is_error_page(page));
2820
2821         kvm_release_pfn_clean(page_to_pfn(page));
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2824
2825 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2826 {
2827         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2828                 put_page(pfn_to_page(pfn));
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2831
2832 void kvm_release_page_dirty(struct page *page)
2833 {
2834         WARN_ON(is_error_page(page));
2835
2836         kvm_release_pfn_dirty(page_to_pfn(page));
2837 }
2838 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2839
2840 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2841 {
2842         kvm_set_pfn_dirty(pfn);
2843         kvm_release_pfn_clean(pfn);
2844 }
2845 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2846
2847 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2848 {
2849         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2850                 SetPageDirty(pfn_to_page(pfn));
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2853
2854 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2855 {
2856         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2857                 mark_page_accessed(pfn_to_page(pfn));
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2860
2861 static int next_segment(unsigned long len, int offset)
2862 {
2863         if (len > PAGE_SIZE - offset)
2864                 return PAGE_SIZE - offset;
2865         else
2866                 return len;
2867 }
2868
2869 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2870                                  void *data, int offset, int len)
2871 {
2872         int r;
2873         unsigned long addr;
2874
2875         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2876         if (kvm_is_error_hva(addr))
2877                 return -EFAULT;
2878         r = __copy_from_user(data, (void __user *)addr + offset, len);
2879         if (r)
2880                 return -EFAULT;
2881         return 0;
2882 }
2883
2884 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2885                         int len)
2886 {
2887         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2888
2889         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2890 }
2891 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2892
2893 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2894                              int offset, int len)
2895 {
2896         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2897
2898         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2899 }
2900 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2901
2902 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2903 {
2904         gfn_t gfn = gpa >> PAGE_SHIFT;
2905         int seg;
2906         int offset = offset_in_page(gpa);
2907         int ret;
2908
2909         while ((seg = next_segment(len, offset)) != 0) {
2910                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2911                 if (ret < 0)
2912                         return ret;
2913                 offset = 0;
2914                 len -= seg;
2915                 data += seg;
2916                 ++gfn;
2917         }
2918         return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_read_guest);
2921
2922 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2923 {
2924         gfn_t gfn = gpa >> PAGE_SHIFT;
2925         int seg;
2926         int offset = offset_in_page(gpa);
2927         int ret;
2928
2929         while ((seg = next_segment(len, offset)) != 0) {
2930                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2931                 if (ret < 0)
2932                         return ret;
2933                 offset = 0;
2934                 len -= seg;
2935                 data += seg;
2936                 ++gfn;
2937         }
2938         return 0;
2939 }
2940 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2941
2942 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2943                                    void *data, int offset, unsigned long len)
2944 {
2945         int r;
2946         unsigned long addr;
2947
2948         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2949         if (kvm_is_error_hva(addr))
2950                 return -EFAULT;
2951         pagefault_disable();
2952         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2953         pagefault_enable();
2954         if (r)
2955                 return -EFAULT;
2956         return 0;
2957 }
2958
2959 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2960                                void *data, unsigned long len)
2961 {
2962         gfn_t gfn = gpa >> PAGE_SHIFT;
2963         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2964         int offset = offset_in_page(gpa);
2965
2966         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2967 }
2968 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2969
2970 static int __kvm_write_guest_page(struct kvm *kvm,
2971                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2972                                   const void *data, int offset, int len)
2973 {
2974         int r;
2975         unsigned long addr;
2976
2977         addr = gfn_to_hva_memslot(memslot, gfn);
2978         if (kvm_is_error_hva(addr))
2979                 return -EFAULT;
2980         r = __copy_to_user((void __user *)addr + offset, data, len);
2981         if (r)
2982                 return -EFAULT;
2983         mark_page_dirty_in_slot(kvm, memslot, gfn);
2984         return 0;
2985 }
2986
2987 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2988                          const void *data, int offset, int len)
2989 {
2990         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2991
2992         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2993 }
2994 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2995
2996 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2997                               const void *data, int offset, int len)
2998 {
2999         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3000
3001         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3002 }
3003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3004
3005 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3006                     unsigned long len)
3007 {
3008         gfn_t gfn = gpa >> PAGE_SHIFT;
3009         int seg;
3010         int offset = offset_in_page(gpa);
3011         int ret;
3012
3013         while ((seg = next_segment(len, offset)) != 0) {
3014                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3015                 if (ret < 0)
3016                         return ret;
3017                 offset = 0;
3018                 len -= seg;
3019                 data += seg;
3020                 ++gfn;
3021         }
3022         return 0;
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_write_guest);
3025
3026 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3027                          unsigned long len)
3028 {
3029         gfn_t gfn = gpa >> PAGE_SHIFT;
3030         int seg;
3031         int offset = offset_in_page(gpa);
3032         int ret;
3033
3034         while ((seg = next_segment(len, offset)) != 0) {
3035                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3036                 if (ret < 0)
3037                         return ret;
3038                 offset = 0;
3039                 len -= seg;
3040                 data += seg;
3041                 ++gfn;
3042         }
3043         return 0;
3044 }
3045 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3046
3047 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3048                                        struct gfn_to_hva_cache *ghc,
3049                                        gpa_t gpa, unsigned long len)
3050 {
3051         int offset = offset_in_page(gpa);
3052         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3053         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3054         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3055         gfn_t nr_pages_avail;
3056
3057         /* Update ghc->generation before performing any error checks. */
3058         ghc->generation = slots->generation;
3059
3060         if (start_gfn > end_gfn) {
3061                 ghc->hva = KVM_HVA_ERR_BAD;
3062                 return -EINVAL;
3063         }
3064
3065         /*
3066          * If the requested region crosses two memslots, we still
3067          * verify that the entire region is valid here.
3068          */
3069         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3070                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3071                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3072                                            &nr_pages_avail);
3073                 if (kvm_is_error_hva(ghc->hva))
3074                         return -EFAULT;
3075         }
3076
3077         /* Use the slow path for cross page reads and writes. */
3078         if (nr_pages_needed == 1)
3079                 ghc->hva += offset;
3080         else
3081                 ghc->memslot = NULL;
3082
3083         ghc->gpa = gpa;
3084         ghc->len = len;
3085         return 0;
3086 }
3087
3088 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3089                               gpa_t gpa, unsigned long len)
3090 {
3091         struct kvm_memslots *slots = kvm_memslots(kvm);
3092         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3093 }
3094 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3095
3096 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3097                                   void *data, unsigned int offset,
3098                                   unsigned long len)
3099 {
3100         struct kvm_memslots *slots = kvm_memslots(kvm);
3101         int r;
3102         gpa_t gpa = ghc->gpa + offset;
3103
3104         if (WARN_ON_ONCE(len + offset > ghc->len))
3105                 return -EINVAL;
3106
3107         if (slots->generation != ghc->generation) {
3108                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3109                         return -EFAULT;
3110         }
3111
3112         if (kvm_is_error_hva(ghc->hva))
3113                 return -EFAULT;
3114
3115         if (unlikely(!ghc->memslot))
3116                 return kvm_write_guest(kvm, gpa, data, len);
3117
3118         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3119         if (r)
3120                 return -EFAULT;
3121         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3122
3123         return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3126
3127 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3128                            void *data, unsigned long len)
3129 {
3130         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3133
3134 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3135                                  void *data, unsigned int offset,
3136                                  unsigned long len)
3137 {
3138         struct kvm_memslots *slots = kvm_memslots(kvm);
3139         int r;
3140         gpa_t gpa = ghc->gpa + offset;
3141
3142         if (WARN_ON_ONCE(len + offset > ghc->len))
3143                 return -EINVAL;
3144
3145         if (slots->generation != ghc->generation) {
3146                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3147                         return -EFAULT;
3148         }
3149
3150         if (kvm_is_error_hva(ghc->hva))
3151                 return -EFAULT;
3152
3153         if (unlikely(!ghc->memslot))
3154                 return kvm_read_guest(kvm, gpa, data, len);
3155
3156         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3157         if (r)
3158                 return -EFAULT;
3159
3160         return 0;
3161 }
3162 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3163
3164 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3165                           void *data, unsigned long len)
3166 {
3167         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3168 }
3169 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3170
3171 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3172 {
3173         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3174         gfn_t gfn = gpa >> PAGE_SHIFT;
3175         int seg;
3176         int offset = offset_in_page(gpa);
3177         int ret;
3178
3179         while ((seg = next_segment(len, offset)) != 0) {
3180                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3181                 if (ret < 0)
3182                         return ret;
3183                 offset = 0;
3184                 len -= seg;
3185                 ++gfn;
3186         }
3187         return 0;
3188 }
3189 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3190
3191 void mark_page_dirty_in_slot(struct kvm *kvm,
3192                              const struct kvm_memory_slot *memslot,
3193                              gfn_t gfn)
3194 {
3195         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3196
3197 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3198         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3199                 return;
3200 #endif
3201
3202         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3203                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3204                 u32 slot = (memslot->as_id << 16) | memslot->id;
3205
3206                 if (kvm->dirty_ring_size)
3207                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3208                                             slot, rel_gfn);
3209                 else
3210                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3211         }
3212 }
3213 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3214
3215 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3216 {
3217         struct kvm_memory_slot *memslot;
3218
3219         memslot = gfn_to_memslot(kvm, gfn);
3220         mark_page_dirty_in_slot(kvm, memslot, gfn);
3221 }
3222 EXPORT_SYMBOL_GPL(mark_page_dirty);
3223
3224 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3225 {
3226         struct kvm_memory_slot *memslot;
3227
3228         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3229         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3230 }
3231 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3232
3233 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3234 {
3235         if (!vcpu->sigset_active)
3236                 return;
3237
3238         /*
3239          * This does a lockless modification of ->real_blocked, which is fine
3240          * because, only current can change ->real_blocked and all readers of
3241          * ->real_blocked don't care as long ->real_blocked is always a subset
3242          * of ->blocked.
3243          */
3244         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3245 }
3246
3247 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3248 {
3249         if (!vcpu->sigset_active)
3250                 return;
3251
3252         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3253         sigemptyset(&current->real_blocked);
3254 }
3255
3256 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3257 {
3258         unsigned int old, val, grow, grow_start;
3259
3260         old = val = vcpu->halt_poll_ns;
3261         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3262         grow = READ_ONCE(halt_poll_ns_grow);
3263         if (!grow)
3264                 goto out;
3265
3266         val *= grow;
3267         if (val < grow_start)
3268                 val = grow_start;
3269
3270         if (val > vcpu->kvm->max_halt_poll_ns)
3271                 val = vcpu->kvm->max_halt_poll_ns;
3272
3273         vcpu->halt_poll_ns = val;
3274 out:
3275         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3276 }
3277
3278 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3279 {
3280         unsigned int old, val, shrink, grow_start;
3281
3282         old = val = vcpu->halt_poll_ns;
3283         shrink = READ_ONCE(halt_poll_ns_shrink);
3284         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3285         if (shrink == 0)
3286                 val = 0;
3287         else
3288                 val /= shrink;
3289
3290         if (val < grow_start)
3291                 val = 0;
3292
3293         vcpu->halt_poll_ns = val;
3294         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3295 }
3296
3297 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3298 {
3299         int ret = -EINTR;
3300         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3301
3302         if (kvm_arch_vcpu_runnable(vcpu)) {
3303                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3304                 goto out;
3305         }
3306         if (kvm_cpu_has_pending_timer(vcpu))
3307                 goto out;
3308         if (signal_pending(current))
3309                 goto out;
3310         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3311                 goto out;
3312
3313         ret = 0;
3314 out:
3315         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3316         return ret;
3317 }
3318
3319 /*
3320  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3321  * pending.  This is mostly used when halting a vCPU, but may also be used
3322  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3323  */
3324 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3325 {
3326         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3327         bool waited = false;
3328
3329         vcpu->stat.generic.blocking = 1;
3330
3331         preempt_disable();
3332         kvm_arch_vcpu_blocking(vcpu);
3333         prepare_to_rcuwait(wait);
3334         preempt_enable();
3335
3336         for (;;) {
3337                 set_current_state(TASK_INTERRUPTIBLE);
3338
3339                 if (kvm_vcpu_check_block(vcpu) < 0)
3340                         break;
3341
3342                 waited = true;
3343                 schedule();
3344         }
3345
3346         preempt_disable();
3347         finish_rcuwait(wait);
3348         kvm_arch_vcpu_unblocking(vcpu);
3349         preempt_enable();
3350
3351         vcpu->stat.generic.blocking = 0;
3352
3353         return waited;
3354 }
3355
3356 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3357                                           ktime_t end, bool success)
3358 {
3359         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3360         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3361
3362         ++vcpu->stat.generic.halt_attempted_poll;
3363
3364         if (success) {
3365                 ++vcpu->stat.generic.halt_successful_poll;
3366
3367                 if (!vcpu_valid_wakeup(vcpu))
3368                         ++vcpu->stat.generic.halt_poll_invalid;
3369
3370                 stats->halt_poll_success_ns += poll_ns;
3371                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3372         } else {
3373                 stats->halt_poll_fail_ns += poll_ns;
3374                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3375         }
3376 }
3377
3378 /*
3379  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3380  * polling is enabled, busy wait for a short time before blocking to avoid the
3381  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3382  * is halted.
3383  */
3384 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3385 {
3386         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3387         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3388         ktime_t start, cur, poll_end;
3389         bool waited = false;
3390         u64 halt_ns;
3391
3392         start = cur = poll_end = ktime_get();
3393         if (do_halt_poll) {
3394                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3395
3396                 do {
3397                         /*
3398                          * This sets KVM_REQ_UNHALT if an interrupt
3399                          * arrives.
3400                          */
3401                         if (kvm_vcpu_check_block(vcpu) < 0)
3402                                 goto out;
3403                         cpu_relax();
3404                         poll_end = cur = ktime_get();
3405                 } while (kvm_vcpu_can_poll(cur, stop));
3406         }
3407
3408         waited = kvm_vcpu_block(vcpu);
3409
3410         cur = ktime_get();
3411         if (waited) {
3412                 vcpu->stat.generic.halt_wait_ns +=
3413                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3414                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3415                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3416         }
3417 out:
3418         /* The total time the vCPU was "halted", including polling time. */
3419         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3420
3421         /*
3422          * Note, halt-polling is considered successful so long as the vCPU was
3423          * never actually scheduled out, i.e. even if the wake event arrived
3424          * after of the halt-polling loop itself, but before the full wait.
3425          */
3426         if (do_halt_poll)
3427                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3428
3429         if (halt_poll_allowed) {
3430                 if (!vcpu_valid_wakeup(vcpu)) {
3431                         shrink_halt_poll_ns(vcpu);
3432                 } else if (vcpu->kvm->max_halt_poll_ns) {
3433                         if (halt_ns <= vcpu->halt_poll_ns)
3434                                 ;
3435                         /* we had a long block, shrink polling */
3436                         else if (vcpu->halt_poll_ns &&
3437                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3438                                 shrink_halt_poll_ns(vcpu);
3439                         /* we had a short halt and our poll time is too small */
3440                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3441                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3442                                 grow_halt_poll_ns(vcpu);
3443                 } else {
3444                         vcpu->halt_poll_ns = 0;
3445                 }
3446         }
3447
3448         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3449 }
3450 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3451
3452 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3453 {
3454         if (__kvm_vcpu_wake_up(vcpu)) {
3455                 WRITE_ONCE(vcpu->ready, true);
3456                 ++vcpu->stat.generic.halt_wakeup;
3457                 return true;
3458         }
3459
3460         return false;
3461 }
3462 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3463
3464 #ifndef CONFIG_S390
3465 /*
3466  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3467  */
3468 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3469 {
3470         int me, cpu;
3471
3472         if (kvm_vcpu_wake_up(vcpu))
3473                 return;
3474
3475         me = get_cpu();
3476         /*
3477          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3478          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3479          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3480          * within the vCPU thread itself.
3481          */
3482         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3483                 if (vcpu->mode == IN_GUEST_MODE)
3484                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3485                 goto out;
3486         }
3487
3488         /*
3489          * Note, the vCPU could get migrated to a different pCPU at any point
3490          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3491          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3492          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3493          * vCPU also requires it to leave IN_GUEST_MODE.
3494          */
3495         if (kvm_arch_vcpu_should_kick(vcpu)) {
3496                 cpu = READ_ONCE(vcpu->cpu);
3497                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3498                         smp_send_reschedule(cpu);
3499         }
3500 out:
3501         put_cpu();
3502 }
3503 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3504 #endif /* !CONFIG_S390 */
3505
3506 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3507 {
3508         struct pid *pid;
3509         struct task_struct *task = NULL;
3510         int ret = 0;
3511
3512         rcu_read_lock();
3513         pid = rcu_dereference(target->pid);
3514         if (pid)
3515                 task = get_pid_task(pid, PIDTYPE_PID);
3516         rcu_read_unlock();
3517         if (!task)
3518                 return ret;
3519         ret = yield_to(task, 1);
3520         put_task_struct(task);
3521
3522         return ret;
3523 }
3524 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3525
3526 /*
3527  * Helper that checks whether a VCPU is eligible for directed yield.
3528  * Most eligible candidate to yield is decided by following heuristics:
3529  *
3530  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3531  *  (preempted lock holder), indicated by @in_spin_loop.
3532  *  Set at the beginning and cleared at the end of interception/PLE handler.
3533  *
3534  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3535  *  chance last time (mostly it has become eligible now since we have probably
3536  *  yielded to lockholder in last iteration. This is done by toggling
3537  *  @dy_eligible each time a VCPU checked for eligibility.)
3538  *
3539  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3540  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3541  *  burning. Giving priority for a potential lock-holder increases lock
3542  *  progress.
3543  *
3544  *  Since algorithm is based on heuristics, accessing another VCPU data without
3545  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3546  *  and continue with next VCPU and so on.
3547  */
3548 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3549 {
3550 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3551         bool eligible;
3552
3553         eligible = !vcpu->spin_loop.in_spin_loop ||
3554                     vcpu->spin_loop.dy_eligible;
3555
3556         if (vcpu->spin_loop.in_spin_loop)
3557                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3558
3559         return eligible;
3560 #else
3561         return true;
3562 #endif
3563 }
3564
3565 /*
3566  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3567  * a vcpu_load/vcpu_put pair.  However, for most architectures
3568  * kvm_arch_vcpu_runnable does not require vcpu_load.
3569  */
3570 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3571 {
3572         return kvm_arch_vcpu_runnable(vcpu);
3573 }
3574
3575 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3576 {
3577         if (kvm_arch_dy_runnable(vcpu))
3578                 return true;
3579
3580 #ifdef CONFIG_KVM_ASYNC_PF
3581         if (!list_empty_careful(&vcpu->async_pf.done))
3582                 return true;
3583 #endif
3584
3585         return false;
3586 }
3587
3588 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3589 {
3590         return false;
3591 }
3592
3593 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3594 {
3595         struct kvm *kvm = me->kvm;
3596         struct kvm_vcpu *vcpu;
3597         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3598         unsigned long i;
3599         int yielded = 0;
3600         int try = 3;
3601         int pass;
3602
3603         kvm_vcpu_set_in_spin_loop(me, true);
3604         /*
3605          * We boost the priority of a VCPU that is runnable but not
3606          * currently running, because it got preempted by something
3607          * else and called schedule in __vcpu_run.  Hopefully that
3608          * VCPU is holding the lock that we need and will release it.
3609          * We approximate round-robin by starting at the last boosted VCPU.
3610          */
3611         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3612                 kvm_for_each_vcpu(i, vcpu, kvm) {
3613                         if (!pass && i <= last_boosted_vcpu) {
3614                                 i = last_boosted_vcpu;
3615                                 continue;
3616                         } else if (pass && i > last_boosted_vcpu)
3617                                 break;
3618                         if (!READ_ONCE(vcpu->ready))
3619                                 continue;
3620                         if (vcpu == me)
3621                                 continue;
3622                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3623                                 continue;
3624                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3625                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3626                             !kvm_arch_vcpu_in_kernel(vcpu))
3627                                 continue;
3628                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3629                                 continue;
3630
3631                         yielded = kvm_vcpu_yield_to(vcpu);
3632                         if (yielded > 0) {
3633                                 kvm->last_boosted_vcpu = i;
3634                                 break;
3635                         } else if (yielded < 0) {
3636                                 try--;
3637                                 if (!try)
3638                                         break;
3639                         }
3640                 }
3641         }
3642         kvm_vcpu_set_in_spin_loop(me, false);
3643
3644         /* Ensure vcpu is not eligible during next spinloop */
3645         kvm_vcpu_set_dy_eligible(me, false);
3646 }
3647 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3648
3649 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3650 {
3651 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3652         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3653             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3654              kvm->dirty_ring_size / PAGE_SIZE);
3655 #else
3656         return false;
3657 #endif
3658 }
3659
3660 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3661 {
3662         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3663         struct page *page;
3664
3665         if (vmf->pgoff == 0)
3666                 page = virt_to_page(vcpu->run);
3667 #ifdef CONFIG_X86
3668         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3669                 page = virt_to_page(vcpu->arch.pio_data);
3670 #endif
3671 #ifdef CONFIG_KVM_MMIO
3672         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3673                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3674 #endif
3675         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3676                 page = kvm_dirty_ring_get_page(
3677                     &vcpu->dirty_ring,
3678                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3679         else
3680                 return kvm_arch_vcpu_fault(vcpu, vmf);
3681         get_page(page);
3682         vmf->page = page;
3683         return 0;
3684 }
3685
3686 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3687         .fault = kvm_vcpu_fault,
3688 };
3689
3690 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3691 {
3692         struct kvm_vcpu *vcpu = file->private_data;
3693         unsigned long pages = vma_pages(vma);
3694
3695         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3696              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3697             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3698                 return -EINVAL;
3699
3700         vma->vm_ops = &kvm_vcpu_vm_ops;
3701         return 0;
3702 }
3703
3704 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3705 {
3706         struct kvm_vcpu *vcpu = filp->private_data;
3707
3708         kvm_put_kvm(vcpu->kvm);
3709         return 0;
3710 }
3711
3712 static const struct file_operations kvm_vcpu_fops = {
3713         .release        = kvm_vcpu_release,
3714         .unlocked_ioctl = kvm_vcpu_ioctl,
3715         .mmap           = kvm_vcpu_mmap,
3716         .llseek         = noop_llseek,
3717         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3718 };
3719
3720 /*
3721  * Allocates an inode for the vcpu.
3722  */
3723 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3724 {
3725         char name[8 + 1 + ITOA_MAX_LEN + 1];
3726
3727         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3728         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3729 }
3730
3731 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3732 {
3733 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3734         struct dentry *debugfs_dentry;
3735         char dir_name[ITOA_MAX_LEN * 2];
3736
3737         if (!debugfs_initialized())
3738                 return;
3739
3740         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3741         debugfs_dentry = debugfs_create_dir(dir_name,
3742                                             vcpu->kvm->debugfs_dentry);
3743
3744         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3745 #endif
3746 }
3747
3748 /*
3749  * Creates some virtual cpus.  Good luck creating more than one.
3750  */
3751 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3752 {
3753         int r;
3754         struct kvm_vcpu *vcpu;
3755         struct page *page;
3756
3757         if (id >= KVM_MAX_VCPU_IDS)
3758                 return -EINVAL;
3759
3760         mutex_lock(&kvm->lock);
3761         if (kvm->created_vcpus >= kvm->max_vcpus) {
3762                 mutex_unlock(&kvm->lock);
3763                 return -EINVAL;
3764         }
3765
3766         kvm->created_vcpus++;
3767         mutex_unlock(&kvm->lock);
3768
3769         r = kvm_arch_vcpu_precreate(kvm, id);
3770         if (r)
3771                 goto vcpu_decrement;
3772
3773         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3774         if (!vcpu) {
3775                 r = -ENOMEM;
3776                 goto vcpu_decrement;
3777         }
3778
3779         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3780         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3781         if (!page) {
3782                 r = -ENOMEM;
3783                 goto vcpu_free;
3784         }
3785         vcpu->run = page_address(page);
3786
3787         kvm_vcpu_init(vcpu, kvm, id);
3788
3789         r = kvm_arch_vcpu_create(vcpu);
3790         if (r)
3791                 goto vcpu_free_run_page;
3792
3793         if (kvm->dirty_ring_size) {
3794                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3795                                          id, kvm->dirty_ring_size);
3796                 if (r)
3797                         goto arch_vcpu_destroy;
3798         }
3799
3800         mutex_lock(&kvm->lock);
3801         if (kvm_get_vcpu_by_id(kvm, id)) {
3802                 r = -EEXIST;
3803                 goto unlock_vcpu_destroy;
3804         }
3805
3806         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3807         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3808         BUG_ON(r == -EBUSY);
3809         if (r)
3810                 goto unlock_vcpu_destroy;
3811
3812         /* Fill the stats id string for the vcpu */
3813         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3814                  task_pid_nr(current), id);
3815
3816         /* Now it's all set up, let userspace reach it */
3817         kvm_get_kvm(kvm);
3818         r = create_vcpu_fd(vcpu);
3819         if (r < 0) {
3820                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3821                 kvm_put_kvm_no_destroy(kvm);
3822                 goto unlock_vcpu_destroy;
3823         }
3824
3825         /*
3826          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3827          * pointer before kvm->online_vcpu's incremented value.
3828          */
3829         smp_wmb();
3830         atomic_inc(&kvm->online_vcpus);
3831
3832         mutex_unlock(&kvm->lock);
3833         kvm_arch_vcpu_postcreate(vcpu);
3834         kvm_create_vcpu_debugfs(vcpu);
3835         return r;
3836
3837 unlock_vcpu_destroy:
3838         mutex_unlock(&kvm->lock);
3839         kvm_dirty_ring_free(&vcpu->dirty_ring);
3840 arch_vcpu_destroy:
3841         kvm_arch_vcpu_destroy(vcpu);
3842 vcpu_free_run_page:
3843         free_page((unsigned long)vcpu->run);
3844 vcpu_free:
3845         kmem_cache_free(kvm_vcpu_cache, vcpu);
3846 vcpu_decrement:
3847         mutex_lock(&kvm->lock);
3848         kvm->created_vcpus--;
3849         mutex_unlock(&kvm->lock);
3850         return r;
3851 }
3852
3853 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3854 {
3855         if (sigset) {
3856                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3857                 vcpu->sigset_active = 1;
3858                 vcpu->sigset = *sigset;
3859         } else
3860                 vcpu->sigset_active = 0;
3861         return 0;
3862 }
3863
3864 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3865                               size_t size, loff_t *offset)
3866 {
3867         struct kvm_vcpu *vcpu = file->private_data;
3868
3869         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3870                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3871                         sizeof(vcpu->stat), user_buffer, size, offset);
3872 }
3873
3874 static const struct file_operations kvm_vcpu_stats_fops = {
3875         .read = kvm_vcpu_stats_read,
3876         .llseek = noop_llseek,
3877 };
3878
3879 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3880 {
3881         int fd;
3882         struct file *file;
3883         char name[15 + ITOA_MAX_LEN + 1];
3884
3885         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3886
3887         fd = get_unused_fd_flags(O_CLOEXEC);
3888         if (fd < 0)
3889                 return fd;
3890
3891         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3892         if (IS_ERR(file)) {
3893                 put_unused_fd(fd);
3894                 return PTR_ERR(file);
3895         }
3896         file->f_mode |= FMODE_PREAD;
3897         fd_install(fd, file);
3898
3899         return fd;
3900 }
3901
3902 static long kvm_vcpu_ioctl(struct file *filp,
3903                            unsigned int ioctl, unsigned long arg)
3904 {
3905         struct kvm_vcpu *vcpu = filp->private_data;
3906         void __user *argp = (void __user *)arg;
3907         int r;
3908         struct kvm_fpu *fpu = NULL;
3909         struct kvm_sregs *kvm_sregs = NULL;
3910
3911         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3912                 return -EIO;
3913
3914         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3915                 return -EINVAL;
3916
3917         /*
3918          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3919          * execution; mutex_lock() would break them.
3920          */
3921         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3922         if (r != -ENOIOCTLCMD)
3923                 return r;
3924
3925         if (mutex_lock_killable(&vcpu->mutex))
3926                 return -EINTR;
3927         switch (ioctl) {
3928         case KVM_RUN: {
3929                 struct pid *oldpid;
3930                 r = -EINVAL;
3931                 if (arg)
3932                         goto out;
3933                 oldpid = rcu_access_pointer(vcpu->pid);
3934                 if (unlikely(oldpid != task_pid(current))) {
3935                         /* The thread running this VCPU changed. */
3936                         struct pid *newpid;
3937
3938                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3939                         if (r)
3940                                 break;
3941
3942                         newpid = get_task_pid(current, PIDTYPE_PID);
3943                         rcu_assign_pointer(vcpu->pid, newpid);
3944                         if (oldpid)
3945                                 synchronize_rcu();
3946                         put_pid(oldpid);
3947                 }
3948                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3949                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3950                 break;
3951         }
3952         case KVM_GET_REGS: {
3953                 struct kvm_regs *kvm_regs;
3954
3955                 r = -ENOMEM;
3956                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3957                 if (!kvm_regs)
3958                         goto out;
3959                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3960                 if (r)
3961                         goto out_free1;
3962                 r = -EFAULT;
3963                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3964                         goto out_free1;
3965                 r = 0;
3966 out_free1:
3967                 kfree(kvm_regs);
3968                 break;
3969         }
3970         case KVM_SET_REGS: {
3971                 struct kvm_regs *kvm_regs;
3972
3973                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3974                 if (IS_ERR(kvm_regs)) {
3975                         r = PTR_ERR(kvm_regs);
3976                         goto out;
3977                 }
3978                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3979                 kfree(kvm_regs);
3980                 break;
3981         }
3982         case KVM_GET_SREGS: {
3983                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3984                                     GFP_KERNEL_ACCOUNT);
3985                 r = -ENOMEM;
3986                 if (!kvm_sregs)
3987                         goto out;
3988                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3989                 if (r)
3990                         goto out;
3991                 r = -EFAULT;
3992                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3993                         goto out;
3994                 r = 0;
3995                 break;
3996         }
3997         case KVM_SET_SREGS: {
3998                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3999                 if (IS_ERR(kvm_sregs)) {
4000                         r = PTR_ERR(kvm_sregs);
4001                         kvm_sregs = NULL;
4002                         goto out;
4003                 }
4004                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4005                 break;
4006         }
4007         case KVM_GET_MP_STATE: {
4008                 struct kvm_mp_state mp_state;
4009
4010                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4011                 if (r)
4012                         goto out;
4013                 r = -EFAULT;
4014                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4015                         goto out;
4016                 r = 0;
4017                 break;
4018         }
4019         case KVM_SET_MP_STATE: {
4020                 struct kvm_mp_state mp_state;
4021
4022                 r = -EFAULT;
4023                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4024                         goto out;
4025                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4026                 break;
4027         }
4028         case KVM_TRANSLATE: {
4029                 struct kvm_translation tr;
4030
4031                 r = -EFAULT;
4032                 if (copy_from_user(&tr, argp, sizeof(tr)))
4033                         goto out;
4034                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4035                 if (r)
4036                         goto out;
4037                 r = -EFAULT;
4038                 if (copy_to_user(argp, &tr, sizeof(tr)))
4039                         goto out;
4040                 r = 0;
4041                 break;
4042         }
4043         case KVM_SET_GUEST_DEBUG: {
4044                 struct kvm_guest_debug dbg;
4045
4046                 r = -EFAULT;
4047                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4048                         goto out;
4049                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4050                 break;
4051         }
4052         case KVM_SET_SIGNAL_MASK: {
4053                 struct kvm_signal_mask __user *sigmask_arg = argp;
4054                 struct kvm_signal_mask kvm_sigmask;
4055                 sigset_t sigset, *p;
4056
4057                 p = NULL;
4058                 if (argp) {
4059                         r = -EFAULT;
4060                         if (copy_from_user(&kvm_sigmask, argp,
4061                                            sizeof(kvm_sigmask)))
4062                                 goto out;
4063                         r = -EINVAL;
4064                         if (kvm_sigmask.len != sizeof(sigset))
4065                                 goto out;
4066                         r = -EFAULT;
4067                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4068                                            sizeof(sigset)))
4069                                 goto out;
4070                         p = &sigset;
4071                 }
4072                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4073                 break;
4074         }
4075         case KVM_GET_FPU: {
4076                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4077                 r = -ENOMEM;
4078                 if (!fpu)
4079                         goto out;
4080                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4081                 if (r)
4082                         goto out;
4083                 r = -EFAULT;
4084                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4085                         goto out;
4086                 r = 0;
4087                 break;
4088         }
4089         case KVM_SET_FPU: {
4090                 fpu = memdup_user(argp, sizeof(*fpu));
4091                 if (IS_ERR(fpu)) {
4092                         r = PTR_ERR(fpu);
4093                         fpu = NULL;
4094                         goto out;
4095                 }
4096                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4097                 break;
4098         }
4099         case KVM_GET_STATS_FD: {
4100                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4101                 break;
4102         }
4103         default:
4104                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4105         }
4106 out:
4107         mutex_unlock(&vcpu->mutex);
4108         kfree(fpu);
4109         kfree(kvm_sregs);
4110         return r;
4111 }
4112
4113 #ifdef CONFIG_KVM_COMPAT
4114 static long kvm_vcpu_compat_ioctl(struct file *filp,
4115                                   unsigned int ioctl, unsigned long arg)
4116 {
4117         struct kvm_vcpu *vcpu = filp->private_data;
4118         void __user *argp = compat_ptr(arg);
4119         int r;
4120
4121         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4122                 return -EIO;
4123
4124         switch (ioctl) {
4125         case KVM_SET_SIGNAL_MASK: {
4126                 struct kvm_signal_mask __user *sigmask_arg = argp;
4127                 struct kvm_signal_mask kvm_sigmask;
4128                 sigset_t sigset;
4129
4130                 if (argp) {
4131                         r = -EFAULT;
4132                         if (copy_from_user(&kvm_sigmask, argp,
4133                                            sizeof(kvm_sigmask)))
4134                                 goto out;
4135                         r = -EINVAL;
4136                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4137                                 goto out;
4138                         r = -EFAULT;
4139                         if (get_compat_sigset(&sigset,
4140                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4141                                 goto out;
4142                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4143                 } else
4144                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4145                 break;
4146         }
4147         default:
4148                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4149         }
4150
4151 out:
4152         return r;
4153 }
4154 #endif
4155
4156 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4157 {
4158         struct kvm_device *dev = filp->private_data;
4159
4160         if (dev->ops->mmap)
4161                 return dev->ops->mmap(dev, vma);
4162
4163         return -ENODEV;
4164 }
4165
4166 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4167                                  int (*accessor)(struct kvm_device *dev,
4168                                                  struct kvm_device_attr *attr),
4169                                  unsigned long arg)
4170 {
4171         struct kvm_device_attr attr;
4172
4173         if (!accessor)
4174                 return -EPERM;
4175
4176         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4177                 return -EFAULT;
4178
4179         return accessor(dev, &attr);
4180 }
4181
4182 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4183                              unsigned long arg)
4184 {
4185         struct kvm_device *dev = filp->private_data;
4186
4187         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4188                 return -EIO;
4189
4190         switch (ioctl) {
4191         case KVM_SET_DEVICE_ATTR:
4192                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4193         case KVM_GET_DEVICE_ATTR:
4194                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4195         case KVM_HAS_DEVICE_ATTR:
4196                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4197         default:
4198                 if (dev->ops->ioctl)
4199                         return dev->ops->ioctl(dev, ioctl, arg);
4200
4201                 return -ENOTTY;
4202         }
4203 }
4204
4205 static int kvm_device_release(struct inode *inode, struct file *filp)
4206 {
4207         struct kvm_device *dev = filp->private_data;
4208         struct kvm *kvm = dev->kvm;
4209
4210         if (dev->ops->release) {
4211                 mutex_lock(&kvm->lock);
4212                 list_del(&dev->vm_node);
4213                 dev->ops->release(dev);
4214                 mutex_unlock(&kvm->lock);
4215         }
4216
4217         kvm_put_kvm(kvm);
4218         return 0;
4219 }
4220
4221 static const struct file_operations kvm_device_fops = {
4222         .unlocked_ioctl = kvm_device_ioctl,
4223         .release = kvm_device_release,
4224         KVM_COMPAT(kvm_device_ioctl),
4225         .mmap = kvm_device_mmap,
4226 };
4227
4228 struct kvm_device *kvm_device_from_filp(struct file *filp)
4229 {
4230         if (filp->f_op != &kvm_device_fops)
4231                 return NULL;
4232
4233         return filp->private_data;
4234 }
4235
4236 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4237 #ifdef CONFIG_KVM_MPIC
4238         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4239         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4240 #endif
4241 };
4242
4243 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4244 {
4245         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4246                 return -ENOSPC;
4247
4248         if (kvm_device_ops_table[type] != NULL)
4249                 return -EEXIST;
4250
4251         kvm_device_ops_table[type] = ops;
4252         return 0;
4253 }
4254
4255 void kvm_unregister_device_ops(u32 type)
4256 {
4257         if (kvm_device_ops_table[type] != NULL)
4258                 kvm_device_ops_table[type] = NULL;
4259 }
4260
4261 static int kvm_ioctl_create_device(struct kvm *kvm,
4262                                    struct kvm_create_device *cd)
4263 {
4264         const struct kvm_device_ops *ops = NULL;
4265         struct kvm_device *dev;
4266         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4267         int type;
4268         int ret;
4269
4270         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4271                 return -ENODEV;
4272
4273         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4274         ops = kvm_device_ops_table[type];
4275         if (ops == NULL)
4276                 return -ENODEV;
4277
4278         if (test)
4279                 return 0;
4280
4281         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4282         if (!dev)
4283                 return -ENOMEM;
4284
4285         dev->ops = ops;
4286         dev->kvm = kvm;
4287
4288         mutex_lock(&kvm->lock);
4289         ret = ops->create(dev, type);
4290         if (ret < 0) {
4291                 mutex_unlock(&kvm->lock);
4292                 kfree(dev);
4293                 return ret;
4294         }
4295         list_add(&dev->vm_node, &kvm->devices);
4296         mutex_unlock(&kvm->lock);
4297
4298         if (ops->init)
4299                 ops->init(dev);
4300
4301         kvm_get_kvm(kvm);
4302         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4303         if (ret < 0) {
4304                 kvm_put_kvm_no_destroy(kvm);
4305                 mutex_lock(&kvm->lock);
4306                 list_del(&dev->vm_node);
4307                 if (ops->release)
4308                         ops->release(dev);
4309                 mutex_unlock(&kvm->lock);
4310                 if (ops->destroy)
4311                         ops->destroy(dev);
4312                 return ret;
4313         }
4314
4315         cd->fd = ret;
4316         return 0;
4317 }
4318
4319 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4320 {
4321         switch (arg) {
4322         case KVM_CAP_USER_MEMORY:
4323         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4324         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4325         case KVM_CAP_INTERNAL_ERROR_DATA:
4326 #ifdef CONFIG_HAVE_KVM_MSI
4327         case KVM_CAP_SIGNAL_MSI:
4328 #endif
4329 #ifdef CONFIG_HAVE_KVM_IRQFD
4330         case KVM_CAP_IRQFD:
4331         case KVM_CAP_IRQFD_RESAMPLE:
4332 #endif
4333         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4334         case KVM_CAP_CHECK_EXTENSION_VM:
4335         case KVM_CAP_ENABLE_CAP_VM:
4336         case KVM_CAP_HALT_POLL:
4337                 return 1;
4338 #ifdef CONFIG_KVM_MMIO
4339         case KVM_CAP_COALESCED_MMIO:
4340                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4341         case KVM_CAP_COALESCED_PIO:
4342                 return 1;
4343 #endif
4344 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4345         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4346                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4347 #endif
4348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4349         case KVM_CAP_IRQ_ROUTING:
4350                 return KVM_MAX_IRQ_ROUTES;
4351 #endif
4352 #if KVM_ADDRESS_SPACE_NUM > 1
4353         case KVM_CAP_MULTI_ADDRESS_SPACE:
4354                 return KVM_ADDRESS_SPACE_NUM;
4355 #endif
4356         case KVM_CAP_NR_MEMSLOTS:
4357                 return KVM_USER_MEM_SLOTS;
4358         case KVM_CAP_DIRTY_LOG_RING:
4359 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4360                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4361 #else
4362                 return 0;
4363 #endif
4364         case KVM_CAP_BINARY_STATS_FD:
4365         case KVM_CAP_SYSTEM_EVENT_DATA:
4366                 return 1;
4367         default:
4368                 break;
4369         }
4370         return kvm_vm_ioctl_check_extension(kvm, arg);
4371 }
4372
4373 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4374 {
4375         int r;
4376
4377         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4378                 return -EINVAL;
4379
4380         /* the size should be power of 2 */
4381         if (!size || (size & (size - 1)))
4382                 return -EINVAL;
4383
4384         /* Should be bigger to keep the reserved entries, or a page */
4385         if (size < kvm_dirty_ring_get_rsvd_entries() *
4386             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4387                 return -EINVAL;
4388
4389         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4390             sizeof(struct kvm_dirty_gfn))
4391                 return -E2BIG;
4392
4393         /* We only allow it to set once */
4394         if (kvm->dirty_ring_size)
4395                 return -EINVAL;
4396
4397         mutex_lock(&kvm->lock);
4398
4399         if (kvm->created_vcpus) {
4400                 /* We don't allow to change this value after vcpu created */
4401                 r = -EINVAL;
4402         } else {
4403                 kvm->dirty_ring_size = size;
4404                 r = 0;
4405         }
4406
4407         mutex_unlock(&kvm->lock);
4408         return r;
4409 }
4410
4411 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4412 {
4413         unsigned long i;
4414         struct kvm_vcpu *vcpu;
4415         int cleared = 0;
4416
4417         if (!kvm->dirty_ring_size)
4418                 return -EINVAL;
4419
4420         mutex_lock(&kvm->slots_lock);
4421
4422         kvm_for_each_vcpu(i, vcpu, kvm)
4423                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4424
4425         mutex_unlock(&kvm->slots_lock);
4426
4427         if (cleared)
4428                 kvm_flush_remote_tlbs(kvm);
4429
4430         return cleared;
4431 }
4432
4433 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4434                                                   struct kvm_enable_cap *cap)
4435 {
4436         return -EINVAL;
4437 }
4438
4439 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4440                                            struct kvm_enable_cap *cap)
4441 {
4442         switch (cap->cap) {
4443 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4444         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4445                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4446
4447                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4448                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4449
4450                 if (cap->flags || (cap->args[0] & ~allowed_options))
4451                         return -EINVAL;
4452                 kvm->manual_dirty_log_protect = cap->args[0];
4453                 return 0;
4454         }
4455 #endif
4456         case KVM_CAP_HALT_POLL: {
4457                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4458                         return -EINVAL;
4459
4460                 kvm->max_halt_poll_ns = cap->args[0];
4461                 return 0;
4462         }
4463         case KVM_CAP_DIRTY_LOG_RING:
4464                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4465         default:
4466                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4467         }
4468 }
4469
4470 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4471                               size_t size, loff_t *offset)
4472 {
4473         struct kvm *kvm = file->private_data;
4474
4475         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4476                                 &kvm_vm_stats_desc[0], &kvm->stat,
4477                                 sizeof(kvm->stat), user_buffer, size, offset);
4478 }
4479
4480 static const struct file_operations kvm_vm_stats_fops = {
4481         .read = kvm_vm_stats_read,
4482         .llseek = noop_llseek,
4483 };
4484
4485 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4486 {
4487         int fd;
4488         struct file *file;
4489
4490         fd = get_unused_fd_flags(O_CLOEXEC);
4491         if (fd < 0)
4492                 return fd;
4493
4494         file = anon_inode_getfile("kvm-vm-stats",
4495                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4496         if (IS_ERR(file)) {
4497                 put_unused_fd(fd);
4498                 return PTR_ERR(file);
4499         }
4500         file->f_mode |= FMODE_PREAD;
4501         fd_install(fd, file);
4502
4503         return fd;
4504 }
4505
4506 static long kvm_vm_ioctl(struct file *filp,
4507                            unsigned int ioctl, unsigned long arg)
4508 {
4509         struct kvm *kvm = filp->private_data;
4510         void __user *argp = (void __user *)arg;
4511         int r;
4512
4513         if (kvm->mm != current->mm || kvm->vm_dead)
4514                 return -EIO;
4515         switch (ioctl) {
4516         case KVM_CREATE_VCPU:
4517                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4518                 break;
4519         case KVM_ENABLE_CAP: {
4520                 struct kvm_enable_cap cap;
4521
4522                 r = -EFAULT;
4523                 if (copy_from_user(&cap, argp, sizeof(cap)))
4524                         goto out;
4525                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4526                 break;
4527         }
4528         case KVM_SET_USER_MEMORY_REGION: {
4529                 struct kvm_userspace_memory_region kvm_userspace_mem;
4530
4531                 r = -EFAULT;
4532                 if (copy_from_user(&kvm_userspace_mem, argp,
4533                                                 sizeof(kvm_userspace_mem)))
4534                         goto out;
4535
4536                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4537                 break;
4538         }
4539         case KVM_GET_DIRTY_LOG: {
4540                 struct kvm_dirty_log log;
4541
4542                 r = -EFAULT;
4543                 if (copy_from_user(&log, argp, sizeof(log)))
4544                         goto out;
4545                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4546                 break;
4547         }
4548 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4549         case KVM_CLEAR_DIRTY_LOG: {
4550                 struct kvm_clear_dirty_log log;
4551
4552                 r = -EFAULT;
4553                 if (copy_from_user(&log, argp, sizeof(log)))
4554                         goto out;
4555                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4556                 break;
4557         }
4558 #endif
4559 #ifdef CONFIG_KVM_MMIO
4560         case KVM_REGISTER_COALESCED_MMIO: {
4561                 struct kvm_coalesced_mmio_zone zone;
4562
4563                 r = -EFAULT;
4564                 if (copy_from_user(&zone, argp, sizeof(zone)))
4565                         goto out;
4566                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4567                 break;
4568         }
4569         case KVM_UNREGISTER_COALESCED_MMIO: {
4570                 struct kvm_coalesced_mmio_zone zone;
4571
4572                 r = -EFAULT;
4573                 if (copy_from_user(&zone, argp, sizeof(zone)))
4574                         goto out;
4575                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4576                 break;
4577         }
4578 #endif
4579         case KVM_IRQFD: {
4580                 struct kvm_irqfd data;
4581
4582                 r = -EFAULT;
4583                 if (copy_from_user(&data, argp, sizeof(data)))
4584                         goto out;
4585                 r = kvm_irqfd(kvm, &data);
4586                 break;
4587         }
4588         case KVM_IOEVENTFD: {
4589                 struct kvm_ioeventfd data;
4590
4591                 r = -EFAULT;
4592                 if (copy_from_user(&data, argp, sizeof(data)))
4593                         goto out;
4594                 r = kvm_ioeventfd(kvm, &data);
4595                 break;
4596         }
4597 #ifdef CONFIG_HAVE_KVM_MSI
4598         case KVM_SIGNAL_MSI: {
4599                 struct kvm_msi msi;
4600
4601                 r = -EFAULT;
4602                 if (copy_from_user(&msi, argp, sizeof(msi)))
4603                         goto out;
4604                 r = kvm_send_userspace_msi(kvm, &msi);
4605                 break;
4606         }
4607 #endif
4608 #ifdef __KVM_HAVE_IRQ_LINE
4609         case KVM_IRQ_LINE_STATUS:
4610         case KVM_IRQ_LINE: {
4611                 struct kvm_irq_level irq_event;
4612
4613                 r = -EFAULT;
4614                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4615                         goto out;
4616
4617                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4618                                         ioctl == KVM_IRQ_LINE_STATUS);
4619                 if (r)
4620                         goto out;
4621
4622                 r = -EFAULT;
4623                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4624                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4625                                 goto out;
4626                 }
4627
4628                 r = 0;
4629                 break;
4630         }
4631 #endif
4632 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4633         case KVM_SET_GSI_ROUTING: {
4634                 struct kvm_irq_routing routing;
4635                 struct kvm_irq_routing __user *urouting;
4636                 struct kvm_irq_routing_entry *entries = NULL;
4637
4638                 r = -EFAULT;
4639                 if (copy_from_user(&routing, argp, sizeof(routing)))
4640                         goto out;
4641                 r = -EINVAL;
4642                 if (!kvm_arch_can_set_irq_routing(kvm))
4643                         goto out;
4644                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4645                         goto out;
4646                 if (routing.flags)
4647                         goto out;
4648                 if (routing.nr) {
4649                         urouting = argp;
4650                         entries = vmemdup_user(urouting->entries,
4651                                                array_size(sizeof(*entries),
4652                                                           routing.nr));
4653                         if (IS_ERR(entries)) {
4654                                 r = PTR_ERR(entries);
4655                                 goto out;
4656                         }
4657                 }
4658                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4659                                         routing.flags);
4660                 kvfree(entries);
4661                 break;
4662         }
4663 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4664         case KVM_CREATE_DEVICE: {
4665                 struct kvm_create_device cd;
4666
4667                 r = -EFAULT;
4668                 if (copy_from_user(&cd, argp, sizeof(cd)))
4669                         goto out;
4670
4671                 r = kvm_ioctl_create_device(kvm, &cd);
4672                 if (r)
4673                         goto out;
4674
4675                 r = -EFAULT;
4676                 if (copy_to_user(argp, &cd, sizeof(cd)))
4677                         goto out;
4678
4679                 r = 0;
4680                 break;
4681         }
4682         case KVM_CHECK_EXTENSION:
4683                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4684                 break;
4685         case KVM_RESET_DIRTY_RINGS:
4686                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4687                 break;
4688         case KVM_GET_STATS_FD:
4689                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4690                 break;
4691         default:
4692                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4693         }
4694 out:
4695         return r;
4696 }
4697
4698 #ifdef CONFIG_KVM_COMPAT
4699 struct compat_kvm_dirty_log {
4700         __u32 slot;
4701         __u32 padding1;
4702         union {
4703                 compat_uptr_t dirty_bitmap; /* one bit per page */
4704                 __u64 padding2;
4705         };
4706 };
4707
4708 struct compat_kvm_clear_dirty_log {
4709         __u32 slot;
4710         __u32 num_pages;
4711         __u64 first_page;
4712         union {
4713                 compat_uptr_t dirty_bitmap; /* one bit per page */
4714                 __u64 padding2;
4715         };
4716 };
4717
4718 static long kvm_vm_compat_ioctl(struct file *filp,
4719                            unsigned int ioctl, unsigned long arg)
4720 {
4721         struct kvm *kvm = filp->private_data;
4722         int r;
4723
4724         if (kvm->mm != current->mm || kvm->vm_dead)
4725                 return -EIO;
4726         switch (ioctl) {
4727 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4728         case KVM_CLEAR_DIRTY_LOG: {
4729                 struct compat_kvm_clear_dirty_log compat_log;
4730                 struct kvm_clear_dirty_log log;
4731
4732                 if (copy_from_user(&compat_log, (void __user *)arg,
4733                                    sizeof(compat_log)))
4734                         return -EFAULT;
4735                 log.slot         = compat_log.slot;
4736                 log.num_pages    = compat_log.num_pages;
4737                 log.first_page   = compat_log.first_page;
4738                 log.padding2     = compat_log.padding2;
4739                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4740
4741                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4742                 break;
4743         }
4744 #endif
4745         case KVM_GET_DIRTY_LOG: {
4746                 struct compat_kvm_dirty_log compat_log;
4747                 struct kvm_dirty_log log;
4748
4749                 if (copy_from_user(&compat_log, (void __user *)arg,
4750                                    sizeof(compat_log)))
4751                         return -EFAULT;
4752                 log.slot         = compat_log.slot;
4753                 log.padding1     = compat_log.padding1;
4754                 log.padding2     = compat_log.padding2;
4755                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4756
4757                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4758                 break;
4759         }
4760         default:
4761                 r = kvm_vm_ioctl(filp, ioctl, arg);
4762         }
4763         return r;
4764 }
4765 #endif
4766
4767 static const struct file_operations kvm_vm_fops = {
4768         .release        = kvm_vm_release,
4769         .unlocked_ioctl = kvm_vm_ioctl,
4770         .llseek         = noop_llseek,
4771         KVM_COMPAT(kvm_vm_compat_ioctl),
4772 };
4773
4774 bool file_is_kvm(struct file *file)
4775 {
4776         return file && file->f_op == &kvm_vm_fops;
4777 }
4778 EXPORT_SYMBOL_GPL(file_is_kvm);
4779
4780 static int kvm_dev_ioctl_create_vm(unsigned long type)
4781 {
4782         int r;
4783         struct kvm *kvm;
4784         struct file *file;
4785
4786         kvm = kvm_create_vm(type);
4787         if (IS_ERR(kvm))
4788                 return PTR_ERR(kvm);
4789 #ifdef CONFIG_KVM_MMIO
4790         r = kvm_coalesced_mmio_init(kvm);
4791         if (r < 0)
4792                 goto put_kvm;
4793 #endif
4794         r = get_unused_fd_flags(O_CLOEXEC);
4795         if (r < 0)
4796                 goto put_kvm;
4797
4798         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4799                         "kvm-%d", task_pid_nr(current));
4800
4801         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4802         if (IS_ERR(file)) {
4803                 put_unused_fd(r);
4804                 r = PTR_ERR(file);
4805                 goto put_kvm;
4806         }
4807
4808         /*
4809          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4810          * already set, with ->release() being kvm_vm_release().  In error
4811          * cases it will be called by the final fput(file) and will take
4812          * care of doing kvm_put_kvm(kvm).
4813          */
4814         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4815                 put_unused_fd(r);
4816                 fput(file);
4817                 return -ENOMEM;
4818         }
4819         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4820
4821         fd_install(r, file);
4822         return r;
4823
4824 put_kvm:
4825         kvm_put_kvm(kvm);
4826         return r;
4827 }
4828
4829 static long kvm_dev_ioctl(struct file *filp,
4830                           unsigned int ioctl, unsigned long arg)
4831 {
4832         long r = -EINVAL;
4833
4834         switch (ioctl) {
4835         case KVM_GET_API_VERSION:
4836                 if (arg)
4837                         goto out;
4838                 r = KVM_API_VERSION;
4839                 break;
4840         case KVM_CREATE_VM:
4841                 r = kvm_dev_ioctl_create_vm(arg);
4842                 break;
4843         case KVM_CHECK_EXTENSION:
4844                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4845                 break;
4846         case KVM_GET_VCPU_MMAP_SIZE:
4847                 if (arg)
4848                         goto out;
4849                 r = PAGE_SIZE;     /* struct kvm_run */
4850 #ifdef CONFIG_X86
4851                 r += PAGE_SIZE;    /* pio data page */
4852 #endif
4853 #ifdef CONFIG_KVM_MMIO
4854                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4855 #endif
4856                 break;
4857         case KVM_TRACE_ENABLE:
4858         case KVM_TRACE_PAUSE:
4859         case KVM_TRACE_DISABLE:
4860                 r = -EOPNOTSUPP;
4861                 break;
4862         default:
4863                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4864         }
4865 out:
4866         return r;
4867 }
4868
4869 static struct file_operations kvm_chardev_ops = {
4870         .unlocked_ioctl = kvm_dev_ioctl,
4871         .llseek         = noop_llseek,
4872         KVM_COMPAT(kvm_dev_ioctl),
4873 };
4874
4875 static struct miscdevice kvm_dev = {
4876         KVM_MINOR,
4877         "kvm",
4878         &kvm_chardev_ops,
4879 };
4880
4881 static void hardware_enable_nolock(void *junk)
4882 {
4883         int cpu = raw_smp_processor_id();
4884         int r;
4885
4886         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4887                 return;
4888
4889         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4890
4891         r = kvm_arch_hardware_enable();
4892
4893         if (r) {
4894                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4895                 atomic_inc(&hardware_enable_failed);
4896                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4897         }
4898 }
4899
4900 static int kvm_starting_cpu(unsigned int cpu)
4901 {
4902         raw_spin_lock(&kvm_count_lock);
4903         if (kvm_usage_count)
4904                 hardware_enable_nolock(NULL);
4905         raw_spin_unlock(&kvm_count_lock);
4906         return 0;
4907 }
4908
4909 static void hardware_disable_nolock(void *junk)
4910 {
4911         int cpu = raw_smp_processor_id();
4912
4913         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4914                 return;
4915         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4916         kvm_arch_hardware_disable();
4917 }
4918
4919 static int kvm_dying_cpu(unsigned int cpu)
4920 {
4921         raw_spin_lock(&kvm_count_lock);
4922         if (kvm_usage_count)
4923                 hardware_disable_nolock(NULL);
4924         raw_spin_unlock(&kvm_count_lock);
4925         return 0;
4926 }
4927
4928 static void hardware_disable_all_nolock(void)
4929 {
4930         BUG_ON(!kvm_usage_count);
4931
4932         kvm_usage_count--;
4933         if (!kvm_usage_count)
4934                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4935 }
4936
4937 static void hardware_disable_all(void)
4938 {
4939         raw_spin_lock(&kvm_count_lock);
4940         hardware_disable_all_nolock();
4941         raw_spin_unlock(&kvm_count_lock);
4942 }
4943
4944 static int hardware_enable_all(void)
4945 {
4946         int r = 0;
4947
4948         raw_spin_lock(&kvm_count_lock);
4949
4950         kvm_usage_count++;
4951         if (kvm_usage_count == 1) {
4952                 atomic_set(&hardware_enable_failed, 0);
4953                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4954
4955                 if (atomic_read(&hardware_enable_failed)) {
4956                         hardware_disable_all_nolock();
4957                         r = -EBUSY;
4958                 }
4959         }
4960
4961         raw_spin_unlock(&kvm_count_lock);
4962
4963         return r;
4964 }
4965
4966 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4967                       void *v)
4968 {
4969         /*
4970          * Some (well, at least mine) BIOSes hang on reboot if
4971          * in vmx root mode.
4972          *
4973          * And Intel TXT required VMX off for all cpu when system shutdown.
4974          */
4975         pr_info("kvm: exiting hardware virtualization\n");
4976         kvm_rebooting = true;
4977         on_each_cpu(hardware_disable_nolock, NULL, 1);
4978         return NOTIFY_OK;
4979 }
4980
4981 static struct notifier_block kvm_reboot_notifier = {
4982         .notifier_call = kvm_reboot,
4983         .priority = 0,
4984 };
4985
4986 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4987 {
4988         int i;
4989
4990         for (i = 0; i < bus->dev_count; i++) {
4991                 struct kvm_io_device *pos = bus->range[i].dev;
4992
4993                 kvm_iodevice_destructor(pos);
4994         }
4995         kfree(bus);
4996 }
4997
4998 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4999                                  const struct kvm_io_range *r2)
5000 {
5001         gpa_t addr1 = r1->addr;
5002         gpa_t addr2 = r2->addr;
5003
5004         if (addr1 < addr2)
5005                 return -1;
5006
5007         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5008          * accept any overlapping write.  Any order is acceptable for
5009          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5010          * we process all of them.
5011          */
5012         if (r2->len) {
5013                 addr1 += r1->len;
5014                 addr2 += r2->len;
5015         }
5016
5017         if (addr1 > addr2)
5018                 return 1;
5019
5020         return 0;
5021 }
5022
5023 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5024 {
5025         return kvm_io_bus_cmp(p1, p2);
5026 }
5027
5028 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5029                              gpa_t addr, int len)
5030 {
5031         struct kvm_io_range *range, key;
5032         int off;
5033
5034         key = (struct kvm_io_range) {
5035                 .addr = addr,
5036                 .len = len,
5037         };
5038
5039         range = bsearch(&key, bus->range, bus->dev_count,
5040                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5041         if (range == NULL)
5042                 return -ENOENT;
5043
5044         off = range - bus->range;
5045
5046         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5047                 off--;
5048
5049         return off;
5050 }
5051
5052 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5053                               struct kvm_io_range *range, const void *val)
5054 {
5055         int idx;
5056
5057         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5058         if (idx < 0)
5059                 return -EOPNOTSUPP;
5060
5061         while (idx < bus->dev_count &&
5062                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5063                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5064                                         range->len, val))
5065                         return idx;
5066                 idx++;
5067         }
5068
5069         return -EOPNOTSUPP;
5070 }
5071
5072 /* kvm_io_bus_write - called under kvm->slots_lock */
5073 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5074                      int len, const void *val)
5075 {
5076         struct kvm_io_bus *bus;
5077         struct kvm_io_range range;
5078         int r;
5079
5080         range = (struct kvm_io_range) {
5081                 .addr = addr,
5082                 .len = len,
5083         };
5084
5085         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5086         if (!bus)
5087                 return -ENOMEM;
5088         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5089         return r < 0 ? r : 0;
5090 }
5091 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5092
5093 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5094 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5095                             gpa_t addr, int len, const void *val, long cookie)
5096 {
5097         struct kvm_io_bus *bus;
5098         struct kvm_io_range range;
5099
5100         range = (struct kvm_io_range) {
5101                 .addr = addr,
5102                 .len = len,
5103         };
5104
5105         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5106         if (!bus)
5107                 return -ENOMEM;
5108
5109         /* First try the device referenced by cookie. */
5110         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5111             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5112                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5113                                         val))
5114                         return cookie;
5115
5116         /*
5117          * cookie contained garbage; fall back to search and return the
5118          * correct cookie value.
5119          */
5120         return __kvm_io_bus_write(vcpu, bus, &range, val);
5121 }
5122
5123 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5124                              struct kvm_io_range *range, void *val)
5125 {
5126         int idx;
5127
5128         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5129         if (idx < 0)
5130                 return -EOPNOTSUPP;
5131
5132         while (idx < bus->dev_count &&
5133                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5134                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5135                                        range->len, val))
5136                         return idx;
5137                 idx++;
5138         }
5139
5140         return -EOPNOTSUPP;
5141 }
5142
5143 /* kvm_io_bus_read - called under kvm->slots_lock */
5144 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5145                     int len, void *val)
5146 {
5147         struct kvm_io_bus *bus;
5148         struct kvm_io_range range;
5149         int r;
5150
5151         range = (struct kvm_io_range) {
5152                 .addr = addr,
5153                 .len = len,
5154         };
5155
5156         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5157         if (!bus)
5158                 return -ENOMEM;
5159         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5160         return r < 0 ? r : 0;
5161 }
5162
5163 /* Caller must hold slots_lock. */
5164 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5165                             int len, struct kvm_io_device *dev)
5166 {
5167         int i;
5168         struct kvm_io_bus *new_bus, *bus;
5169         struct kvm_io_range range;
5170
5171         bus = kvm_get_bus(kvm, bus_idx);
5172         if (!bus)
5173                 return -ENOMEM;
5174
5175         /* exclude ioeventfd which is limited by maximum fd */
5176         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5177                 return -ENOSPC;
5178
5179         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5180                           GFP_KERNEL_ACCOUNT);
5181         if (!new_bus)
5182                 return -ENOMEM;
5183
5184         range = (struct kvm_io_range) {
5185                 .addr = addr,
5186                 .len = len,
5187                 .dev = dev,
5188         };
5189
5190         for (i = 0; i < bus->dev_count; i++)
5191                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5192                         break;
5193
5194         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5195         new_bus->dev_count++;
5196         new_bus->range[i] = range;
5197         memcpy(new_bus->range + i + 1, bus->range + i,
5198                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5199         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5200         synchronize_srcu_expedited(&kvm->srcu);
5201         kfree(bus);
5202
5203         return 0;
5204 }
5205
5206 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5207                               struct kvm_io_device *dev)
5208 {
5209         int i, j;
5210         struct kvm_io_bus *new_bus, *bus;
5211
5212         lockdep_assert_held(&kvm->slots_lock);
5213
5214         bus = kvm_get_bus(kvm, bus_idx);
5215         if (!bus)
5216                 return 0;
5217
5218         for (i = 0; i < bus->dev_count; i++) {
5219                 if (bus->range[i].dev == dev) {
5220                         break;
5221                 }
5222         }
5223
5224         if (i == bus->dev_count)
5225                 return 0;
5226
5227         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5228                           GFP_KERNEL_ACCOUNT);
5229         if (new_bus) {
5230                 memcpy(new_bus, bus, struct_size(bus, range, i));
5231                 new_bus->dev_count--;
5232                 memcpy(new_bus->range + i, bus->range + i + 1,
5233                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5234         }
5235
5236         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5237         synchronize_srcu_expedited(&kvm->srcu);
5238
5239         /* Destroy the old bus _after_ installing the (null) bus. */
5240         if (!new_bus) {
5241                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5242                 for (j = 0; j < bus->dev_count; j++) {
5243                         if (j == i)
5244                                 continue;
5245                         kvm_iodevice_destructor(bus->range[j].dev);
5246                 }
5247         }
5248
5249         kfree(bus);
5250         return new_bus ? 0 : -ENOMEM;
5251 }
5252
5253 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5254                                          gpa_t addr)
5255 {
5256         struct kvm_io_bus *bus;
5257         int dev_idx, srcu_idx;
5258         struct kvm_io_device *iodev = NULL;
5259
5260         srcu_idx = srcu_read_lock(&kvm->srcu);
5261
5262         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5263         if (!bus)
5264                 goto out_unlock;
5265
5266         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5267         if (dev_idx < 0)
5268                 goto out_unlock;
5269
5270         iodev = bus->range[dev_idx].dev;
5271
5272 out_unlock:
5273         srcu_read_unlock(&kvm->srcu, srcu_idx);
5274
5275         return iodev;
5276 }
5277 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5278
5279 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5280                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5281                            const char *fmt)
5282 {
5283         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5284                                           inode->i_private;
5285
5286         /*
5287          * The debugfs files are a reference to the kvm struct which
5288         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5289         * avoids the race between open and the removal of the debugfs directory.
5290          */
5291         if (!kvm_get_kvm_safe(stat_data->kvm))
5292                 return -ENOENT;
5293
5294         if (simple_attr_open(inode, file, get,
5295                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5296                     ? set : NULL,
5297                     fmt)) {
5298                 kvm_put_kvm(stat_data->kvm);
5299                 return -ENOMEM;
5300         }
5301
5302         return 0;
5303 }
5304
5305 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5306 {
5307         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5308                                           inode->i_private;
5309
5310         simple_attr_release(inode, file);
5311         kvm_put_kvm(stat_data->kvm);
5312
5313         return 0;
5314 }
5315
5316 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5317 {
5318         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5319
5320         return 0;
5321 }
5322
5323 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5324 {
5325         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5326
5327         return 0;
5328 }
5329
5330 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5331 {
5332         unsigned long i;
5333         struct kvm_vcpu *vcpu;
5334
5335         *val = 0;
5336
5337         kvm_for_each_vcpu(i, vcpu, kvm)
5338                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5339
5340         return 0;
5341 }
5342
5343 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5344 {
5345         unsigned long i;
5346         struct kvm_vcpu *vcpu;
5347
5348         kvm_for_each_vcpu(i, vcpu, kvm)
5349                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5350
5351         return 0;
5352 }
5353
5354 static int kvm_stat_data_get(void *data, u64 *val)
5355 {
5356         int r = -EFAULT;
5357         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5358
5359         switch (stat_data->kind) {
5360         case KVM_STAT_VM:
5361                 r = kvm_get_stat_per_vm(stat_data->kvm,
5362                                         stat_data->desc->desc.offset, val);
5363                 break;
5364         case KVM_STAT_VCPU:
5365                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5366                                           stat_data->desc->desc.offset, val);
5367                 break;
5368         }
5369
5370         return r;
5371 }
5372
5373 static int kvm_stat_data_clear(void *data, u64 val)
5374 {
5375         int r = -EFAULT;
5376         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5377
5378         if (val)
5379                 return -EINVAL;
5380
5381         switch (stat_data->kind) {
5382         case KVM_STAT_VM:
5383                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5384                                           stat_data->desc->desc.offset);
5385                 break;
5386         case KVM_STAT_VCPU:
5387                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5388                                             stat_data->desc->desc.offset);
5389                 break;
5390         }
5391
5392         return r;
5393 }
5394
5395 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5396 {
5397         __simple_attr_check_format("%llu\n", 0ull);
5398         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5399                                 kvm_stat_data_clear, "%llu\n");
5400 }
5401
5402 static const struct file_operations stat_fops_per_vm = {
5403         .owner = THIS_MODULE,
5404         .open = kvm_stat_data_open,
5405         .release = kvm_debugfs_release,
5406         .read = simple_attr_read,
5407         .write = simple_attr_write,
5408         .llseek = no_llseek,
5409 };
5410
5411 static int vm_stat_get(void *_offset, u64 *val)
5412 {
5413         unsigned offset = (long)_offset;
5414         struct kvm *kvm;
5415         u64 tmp_val;
5416
5417         *val = 0;
5418         mutex_lock(&kvm_lock);
5419         list_for_each_entry(kvm, &vm_list, vm_list) {
5420                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5421                 *val += tmp_val;
5422         }
5423         mutex_unlock(&kvm_lock);
5424         return 0;
5425 }
5426
5427 static int vm_stat_clear(void *_offset, u64 val)
5428 {
5429         unsigned offset = (long)_offset;
5430         struct kvm *kvm;
5431
5432         if (val)
5433                 return -EINVAL;
5434
5435         mutex_lock(&kvm_lock);
5436         list_for_each_entry(kvm, &vm_list, vm_list) {
5437                 kvm_clear_stat_per_vm(kvm, offset);
5438         }
5439         mutex_unlock(&kvm_lock);
5440
5441         return 0;
5442 }
5443
5444 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5445 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5446
5447 static int vcpu_stat_get(void *_offset, u64 *val)
5448 {
5449         unsigned offset = (long)_offset;
5450         struct kvm *kvm;
5451         u64 tmp_val;
5452
5453         *val = 0;
5454         mutex_lock(&kvm_lock);
5455         list_for_each_entry(kvm, &vm_list, vm_list) {
5456                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5457                 *val += tmp_val;
5458         }
5459         mutex_unlock(&kvm_lock);
5460         return 0;
5461 }
5462
5463 static int vcpu_stat_clear(void *_offset, u64 val)
5464 {
5465         unsigned offset = (long)_offset;
5466         struct kvm *kvm;
5467
5468         if (val)
5469                 return -EINVAL;
5470
5471         mutex_lock(&kvm_lock);
5472         list_for_each_entry(kvm, &vm_list, vm_list) {
5473                 kvm_clear_stat_per_vcpu(kvm, offset);
5474         }
5475         mutex_unlock(&kvm_lock);
5476
5477         return 0;
5478 }
5479
5480 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5481                         "%llu\n");
5482 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5483
5484 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5485 {
5486         struct kobj_uevent_env *env;
5487         unsigned long long created, active;
5488
5489         if (!kvm_dev.this_device || !kvm)
5490                 return;
5491
5492         mutex_lock(&kvm_lock);
5493         if (type == KVM_EVENT_CREATE_VM) {
5494                 kvm_createvm_count++;
5495                 kvm_active_vms++;
5496         } else if (type == KVM_EVENT_DESTROY_VM) {
5497                 kvm_active_vms--;
5498         }
5499         created = kvm_createvm_count;
5500         active = kvm_active_vms;
5501         mutex_unlock(&kvm_lock);
5502
5503         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5504         if (!env)
5505                 return;
5506
5507         add_uevent_var(env, "CREATED=%llu", created);
5508         add_uevent_var(env, "COUNT=%llu", active);
5509
5510         if (type == KVM_EVENT_CREATE_VM) {
5511                 add_uevent_var(env, "EVENT=create");
5512                 kvm->userspace_pid = task_pid_nr(current);
5513         } else if (type == KVM_EVENT_DESTROY_VM) {
5514                 add_uevent_var(env, "EVENT=destroy");
5515         }
5516         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5517
5518         if (!IS_ERR(kvm->debugfs_dentry)) {
5519                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5520
5521                 if (p) {
5522                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5523                         if (!IS_ERR(tmp))
5524                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5525                         kfree(p);
5526                 }
5527         }
5528         /* no need for checks, since we are adding at most only 5 keys */
5529         env->envp[env->envp_idx++] = NULL;
5530         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5531         kfree(env);
5532 }
5533
5534 static void kvm_init_debug(void)
5535 {
5536         const struct file_operations *fops;
5537         const struct _kvm_stats_desc *pdesc;
5538         int i;
5539
5540         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5541
5542         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5543                 pdesc = &kvm_vm_stats_desc[i];
5544                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5545                         fops = &vm_stat_fops;
5546                 else
5547                         fops = &vm_stat_readonly_fops;
5548                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5549                                 kvm_debugfs_dir,
5550                                 (void *)(long)pdesc->desc.offset, fops);
5551         }
5552
5553         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5554                 pdesc = &kvm_vcpu_stats_desc[i];
5555                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5556                         fops = &vcpu_stat_fops;
5557                 else
5558                         fops = &vcpu_stat_readonly_fops;
5559                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5560                                 kvm_debugfs_dir,
5561                                 (void *)(long)pdesc->desc.offset, fops);
5562         }
5563 }
5564
5565 static int kvm_suspend(void)
5566 {
5567         if (kvm_usage_count)
5568                 hardware_disable_nolock(NULL);
5569         return 0;
5570 }
5571
5572 static void kvm_resume(void)
5573 {
5574         if (kvm_usage_count) {
5575                 lockdep_assert_not_held(&kvm_count_lock);
5576                 hardware_enable_nolock(NULL);
5577         }
5578 }
5579
5580 static struct syscore_ops kvm_syscore_ops = {
5581         .suspend = kvm_suspend,
5582         .resume = kvm_resume,
5583 };
5584
5585 static inline
5586 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5587 {
5588         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5589 }
5590
5591 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5592 {
5593         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5594
5595         WRITE_ONCE(vcpu->preempted, false);
5596         WRITE_ONCE(vcpu->ready, false);
5597
5598         __this_cpu_write(kvm_running_vcpu, vcpu);
5599         kvm_arch_sched_in(vcpu, cpu);
5600         kvm_arch_vcpu_load(vcpu, cpu);
5601 }
5602
5603 static void kvm_sched_out(struct preempt_notifier *pn,
5604                           struct task_struct *next)
5605 {
5606         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5607
5608         if (current->on_rq) {
5609                 WRITE_ONCE(vcpu->preempted, true);
5610                 WRITE_ONCE(vcpu->ready, true);
5611         }
5612         kvm_arch_vcpu_put(vcpu);
5613         __this_cpu_write(kvm_running_vcpu, NULL);
5614 }
5615
5616 /**
5617  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5618  *
5619  * We can disable preemption locally around accessing the per-CPU variable,
5620  * and use the resolved vcpu pointer after enabling preemption again,
5621  * because even if the current thread is migrated to another CPU, reading
5622  * the per-CPU value later will give us the same value as we update the
5623  * per-CPU variable in the preempt notifier handlers.
5624  */
5625 struct kvm_vcpu *kvm_get_running_vcpu(void)
5626 {
5627         struct kvm_vcpu *vcpu;
5628
5629         preempt_disable();
5630         vcpu = __this_cpu_read(kvm_running_vcpu);
5631         preempt_enable();
5632
5633         return vcpu;
5634 }
5635 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5636
5637 /**
5638  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5639  */
5640 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5641 {
5642         return &kvm_running_vcpu;
5643 }
5644
5645 #ifdef CONFIG_GUEST_PERF_EVENTS
5646 static unsigned int kvm_guest_state(void)
5647 {
5648         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5649         unsigned int state;
5650
5651         if (!kvm_arch_pmi_in_guest(vcpu))
5652                 return 0;
5653
5654         state = PERF_GUEST_ACTIVE;
5655         if (!kvm_arch_vcpu_in_kernel(vcpu))
5656                 state |= PERF_GUEST_USER;
5657
5658         return state;
5659 }
5660
5661 static unsigned long kvm_guest_get_ip(void)
5662 {
5663         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5664
5665         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5666         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5667                 return 0;
5668
5669         return kvm_arch_vcpu_get_ip(vcpu);
5670 }
5671
5672 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5673         .state                  = kvm_guest_state,
5674         .get_ip                 = kvm_guest_get_ip,
5675         .handle_intel_pt_intr   = NULL,
5676 };
5677
5678 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5679 {
5680         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5681         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5682 }
5683 void kvm_unregister_perf_callbacks(void)
5684 {
5685         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5686 }
5687 #endif
5688
5689 struct kvm_cpu_compat_check {
5690         void *opaque;
5691         int *ret;
5692 };
5693
5694 static void check_processor_compat(void *data)
5695 {
5696         struct kvm_cpu_compat_check *c = data;
5697
5698         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5699 }
5700
5701 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5702                   struct module *module)
5703 {
5704         struct kvm_cpu_compat_check c;
5705         int r;
5706         int cpu;
5707
5708         r = kvm_arch_init(opaque);
5709         if (r)
5710                 goto out_fail;
5711
5712         /*
5713          * kvm_arch_init makes sure there's at most one caller
5714          * for architectures that support multiple implementations,
5715          * like intel and amd on x86.
5716          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5717          * conflicts in case kvm is already setup for another implementation.
5718          */
5719         r = kvm_irqfd_init();
5720         if (r)
5721                 goto out_irqfd;
5722
5723         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5724                 r = -ENOMEM;
5725                 goto out_free_0;
5726         }
5727
5728         r = kvm_arch_hardware_setup(opaque);
5729         if (r < 0)
5730                 goto out_free_1;
5731
5732         c.ret = &r;
5733         c.opaque = opaque;
5734         for_each_online_cpu(cpu) {
5735                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5736                 if (r < 0)
5737                         goto out_free_2;
5738         }
5739
5740         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5741                                       kvm_starting_cpu, kvm_dying_cpu);
5742         if (r)
5743                 goto out_free_2;
5744         register_reboot_notifier(&kvm_reboot_notifier);
5745
5746         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5747         if (!vcpu_align)
5748                 vcpu_align = __alignof__(struct kvm_vcpu);
5749         kvm_vcpu_cache =
5750                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5751                                            SLAB_ACCOUNT,
5752                                            offsetof(struct kvm_vcpu, arch),
5753                                            offsetofend(struct kvm_vcpu, stats_id)
5754                                            - offsetof(struct kvm_vcpu, arch),
5755                                            NULL);
5756         if (!kvm_vcpu_cache) {
5757                 r = -ENOMEM;
5758                 goto out_free_3;
5759         }
5760
5761         for_each_possible_cpu(cpu) {
5762                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5763                                             GFP_KERNEL, cpu_to_node(cpu))) {
5764                         r = -ENOMEM;
5765                         goto out_free_4;
5766                 }
5767         }
5768
5769         r = kvm_async_pf_init();
5770         if (r)
5771                 goto out_free_5;
5772
5773         kvm_chardev_ops.owner = module;
5774
5775         r = misc_register(&kvm_dev);
5776         if (r) {
5777                 pr_err("kvm: misc device register failed\n");
5778                 goto out_unreg;
5779         }
5780
5781         register_syscore_ops(&kvm_syscore_ops);
5782
5783         kvm_preempt_ops.sched_in = kvm_sched_in;
5784         kvm_preempt_ops.sched_out = kvm_sched_out;
5785
5786         kvm_init_debug();
5787
5788         r = kvm_vfio_ops_init();
5789         WARN_ON(r);
5790
5791         return 0;
5792
5793 out_unreg:
5794         kvm_async_pf_deinit();
5795 out_free_5:
5796         for_each_possible_cpu(cpu)
5797                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5798 out_free_4:
5799         kmem_cache_destroy(kvm_vcpu_cache);
5800 out_free_3:
5801         unregister_reboot_notifier(&kvm_reboot_notifier);
5802         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5803 out_free_2:
5804         kvm_arch_hardware_unsetup();
5805 out_free_1:
5806         free_cpumask_var(cpus_hardware_enabled);
5807 out_free_0:
5808         kvm_irqfd_exit();
5809 out_irqfd:
5810         kvm_arch_exit();
5811 out_fail:
5812         return r;
5813 }
5814 EXPORT_SYMBOL_GPL(kvm_init);
5815
5816 void kvm_exit(void)
5817 {
5818         int cpu;
5819
5820         debugfs_remove_recursive(kvm_debugfs_dir);
5821         misc_deregister(&kvm_dev);
5822         for_each_possible_cpu(cpu)
5823                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5824         kmem_cache_destroy(kvm_vcpu_cache);
5825         kvm_async_pf_deinit();
5826         unregister_syscore_ops(&kvm_syscore_ops);
5827         unregister_reboot_notifier(&kvm_reboot_notifier);
5828         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5829         on_each_cpu(hardware_disable_nolock, NULL, 1);
5830         kvm_arch_hardware_unsetup();
5831         kvm_arch_exit();
5832         kvm_irqfd_exit();
5833         free_cpumask_var(cpus_hardware_enabled);
5834         kvm_vfio_ops_exit();
5835 }
5836 EXPORT_SYMBOL_GPL(kvm_exit);
5837
5838 struct kvm_vm_worker_thread_context {
5839         struct kvm *kvm;
5840         struct task_struct *parent;
5841         struct completion init_done;
5842         kvm_vm_thread_fn_t thread_fn;
5843         uintptr_t data;
5844         int err;
5845 };
5846
5847 static int kvm_vm_worker_thread(void *context)
5848 {
5849         /*
5850          * The init_context is allocated on the stack of the parent thread, so
5851          * we have to locally copy anything that is needed beyond initialization
5852          */
5853         struct kvm_vm_worker_thread_context *init_context = context;
5854         struct task_struct *parent;
5855         struct kvm *kvm = init_context->kvm;
5856         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5857         uintptr_t data = init_context->data;
5858         int err;
5859
5860         err = kthread_park(current);
5861         /* kthread_park(current) is never supposed to return an error */
5862         WARN_ON(err != 0);
5863         if (err)
5864                 goto init_complete;
5865
5866         err = cgroup_attach_task_all(init_context->parent, current);
5867         if (err) {
5868                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5869                         __func__, err);
5870                 goto init_complete;
5871         }
5872
5873         set_user_nice(current, task_nice(init_context->parent));
5874
5875 init_complete:
5876         init_context->err = err;
5877         complete(&init_context->init_done);
5878         init_context = NULL;
5879
5880         if (err)
5881                 goto out;
5882
5883         /* Wait to be woken up by the spawner before proceeding. */
5884         kthread_parkme();
5885
5886         if (!kthread_should_stop())
5887                 err = thread_fn(kvm, data);
5888
5889 out:
5890         /*
5891          * Move kthread back to its original cgroup to prevent it lingering in
5892          * the cgroup of the VM process, after the latter finishes its
5893          * execution.
5894          *
5895          * kthread_stop() waits on the 'exited' completion condition which is
5896          * set in exit_mm(), via mm_release(), in do_exit(). However, the
5897          * kthread is removed from the cgroup in the cgroup_exit() which is
5898          * called after the exit_mm(). This causes the kthread_stop() to return
5899          * before the kthread actually quits the cgroup.
5900          */
5901         rcu_read_lock();
5902         parent = rcu_dereference(current->real_parent);
5903         get_task_struct(parent);
5904         rcu_read_unlock();
5905         cgroup_attach_task_all(parent, current);
5906         put_task_struct(parent);
5907
5908         return err;
5909 }
5910
5911 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5912                                 uintptr_t data, const char *name,
5913                                 struct task_struct **thread_ptr)
5914 {
5915         struct kvm_vm_worker_thread_context init_context = {};
5916         struct task_struct *thread;
5917
5918         *thread_ptr = NULL;
5919         init_context.kvm = kvm;
5920         init_context.parent = current;
5921         init_context.thread_fn = thread_fn;
5922         init_context.data = data;
5923         init_completion(&init_context.init_done);
5924
5925         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5926                              "%s-%d", name, task_pid_nr(current));
5927         if (IS_ERR(thread))
5928                 return PTR_ERR(thread);
5929
5930         /* kthread_run is never supposed to return NULL */
5931         WARN_ON(thread == NULL);
5932
5933         wait_for_completion(&init_context.init_done);
5934
5935         if (!init_context.err)
5936                 *thread_ptr = thread;
5937
5938         return init_context.err;
5939 }