arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161         /*
162          * The metadata used by is_zone_device_page() to determine whether or
163          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164          * the device has been pinned, e.g. by get_user_pages().  WARN if the
165          * page_count() is zero to help detect bad usage of this helper.
166          */
167         if (WARN_ON_ONCE(!page_count(page)))
168                 return false;
169
170         return is_zone_device_page(page);
171 }
172
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181         struct page *page;
182
183         if (!pfn_valid(pfn))
184                 return NULL;
185
186         page = pfn_to_page(pfn);
187         if (!PageReserved(page))
188                 return page;
189
190         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191         if (is_zero_pfn(pfn))
192                 return page;
193
194         /*
195          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196          * perspective they are "normal" pages, albeit with slightly different
197          * usage rules.
198          */
199         if (kvm_is_zone_device_page(page))
200                 return page;
201
202         return NULL;
203 }
204
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210         int cpu = get_cpu();
211
212         __this_cpu_write(kvm_running_vcpu, vcpu);
213         preempt_notifier_register(&vcpu->preempt_notifier);
214         kvm_arch_vcpu_load(vcpu, cpu);
215         put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221         preempt_disable();
222         kvm_arch_vcpu_put(vcpu);
223         preempt_notifier_unregister(&vcpu->preempt_notifier);
224         __this_cpu_write(kvm_running_vcpu, NULL);
225         preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234         /*
235          * We need to wait for the VCPU to reenable interrupts and get out of
236          * READING_SHADOW_PAGE_TABLES mode.
237          */
238         if (req & KVM_REQUEST_WAIT)
239                 return mode != OUTSIDE_GUEST_MODE;
240
241         /*
242          * Need to kick a running VCPU, but otherwise there is nothing to do.
243          */
244         return mode == IN_GUEST_MODE;
245 }
246
247 static void ack_kick(void *_completed)
248 {
249 }
250
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_kick, NULL, wait);
257         return true;
258 }
259
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261                                   struct cpumask *tmp, int current_cpu)
262 {
263         int cpu;
264
265         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266                 __kvm_make_request(req, vcpu);
267
268         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269                 return;
270
271         /*
272          * Note, the vCPU could get migrated to a different pCPU at any point
273          * after kvm_request_needs_ipi(), which could result in sending an IPI
274          * to the previous pCPU.  But, that's OK because the purpose of the IPI
275          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277          * after this point is also OK, as the requirement is only that KVM wait
278          * for vCPUs that were reading SPTEs _before_ any changes were
279          * finalized. See kvm_vcpu_kick() for more details on handling requests.
280          */
281         if (kvm_request_needs_ipi(vcpu, req)) {
282                 cpu = READ_ONCE(vcpu->cpu);
283                 if (cpu != -1 && cpu != current_cpu)
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286 }
287
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289                                  unsigned long *vcpu_bitmap)
290 {
291         struct kvm_vcpu *vcpu;
292         struct cpumask *cpus;
293         int i, me;
294         bool called;
295
296         me = get_cpu();
297
298         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299         cpumask_clear(cpus);
300
301         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302                 vcpu = kvm_get_vcpu(kvm, i);
303                 if (!vcpu)
304                         continue;
305                 kvm_make_vcpu_request(vcpu, req, cpus, me);
306         }
307
308         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309         put_cpu();
310
311         return called;
312 }
313
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315                                       struct kvm_vcpu *except)
316 {
317         struct kvm_vcpu *vcpu;
318         struct cpumask *cpus;
319         unsigned long i;
320         bool called;
321         int me;
322
323         me = get_cpu();
324
325         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326         cpumask_clear(cpus);
327
328         kvm_for_each_vcpu(i, vcpu, kvm) {
329                 if (vcpu == except)
330                         continue;
331                 kvm_make_vcpu_request(vcpu, req, cpus, me);
332         }
333
334         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335         put_cpu();
336
337         return called;
338 }
339
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342         return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348         ++kvm->stat.generic.remote_tlb_flush_requests;
349
350         /*
351          * We want to publish modifications to the page tables before reading
352          * mode. Pairs with a memory barrier in arch-specific code.
353          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354          * and smp_mb in walk_shadow_page_lockless_begin/end.
355          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356          *
357          * There is already an smp_mb__after_atomic() before
358          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359          * barrier here.
360          */
361         if (!kvm_arch_flush_remote_tlbs(kvm)
362             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363                 ++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370                 return;
371
372         /*
373          * Fall back to a flushing entire TLBs if the architecture range-based
374          * TLB invalidation is unsupported or can't be performed for whatever
375          * reason.
376          */
377         kvm_flush_remote_tlbs(kvm);
378 }
379
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381                                    const struct kvm_memory_slot *memslot)
382 {
383         /*
384          * All current use cases for flushing the TLBs for a specific memslot
385          * are related to dirty logging, and many do the TLB flush out of
386          * mmu_lock. The interaction between the various operations on memslot
387          * must be serialized by slots_locks to ensure the TLB flush from one
388          * operation is observed by any other operation on the same memslot.
389          */
390         lockdep_assert_held(&kvm->slots_lock);
391         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396         kvm_arch_flush_shadow_all(kvm);
397         kvm_arch_guest_memory_reclaimed(kvm);
398 }
399
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402                                                gfp_t gfp_flags)
403 {
404         gfp_flags |= mc->gfp_zero;
405
406         if (mc->kmem_cache)
407                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408         else
409                 return (void *)__get_free_page(gfp_flags);
410 }
411
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415         void *obj;
416
417         if (mc->nobjs >= min)
418                 return 0;
419
420         if (unlikely(!mc->objects)) {
421                 if (WARN_ON_ONCE(!capacity))
422                         return -EIO;
423
424                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425                 if (!mc->objects)
426                         return -ENOMEM;
427
428                 mc->capacity = capacity;
429         }
430
431         /* It is illegal to request a different capacity across topups. */
432         if (WARN_ON_ONCE(mc->capacity != capacity))
433                 return -EIO;
434
435         while (mc->nobjs < mc->capacity) {
436                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437                 if (!obj)
438                         return mc->nobjs >= min ? 0 : -ENOMEM;
439                 mc->objects[mc->nobjs++] = obj;
440         }
441         return 0;
442 }
443
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451         return mc->nobjs;
452 }
453
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456         while (mc->nobjs) {
457                 if (mc->kmem_cache)
458                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459                 else
460                         free_page((unsigned long)mc->objects[--mc->nobjs]);
461         }
462
463         kvfree(mc->objects);
464
465         mc->objects = NULL;
466         mc->capacity = 0;
467 }
468
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471         void *p;
472
473         if (WARN_ON(!mc->nobjs))
474                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475         else
476                 p = mc->objects[--mc->nobjs];
477         BUG_ON(!p);
478         return p;
479 }
480 #endif
481
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484         mutex_init(&vcpu->mutex);
485         vcpu->cpu = -1;
486         vcpu->kvm = kvm;
487         vcpu->vcpu_id = id;
488         vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490         rcuwait_init(&vcpu->wait);
491 #endif
492         kvm_async_pf_vcpu_init(vcpu);
493
494         kvm_vcpu_set_in_spin_loop(vcpu, false);
495         kvm_vcpu_set_dy_eligible(vcpu, false);
496         vcpu->preempted = false;
497         vcpu->ready = false;
498         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499         vcpu->last_used_slot = NULL;
500
501         /* Fill the stats id string for the vcpu */
502         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503                  task_pid_nr(current), id);
504 }
505
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508         kvm_arch_vcpu_destroy(vcpu);
509         kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511         /*
512          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513          * the vcpu->pid pointer, and at destruction time all file descriptors
514          * are already gone.
515          */
516         put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518         free_page((unsigned long)vcpu->run);
519         kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524         unsigned long i;
525         struct kvm_vcpu *vcpu;
526
527         kvm_for_each_vcpu(i, vcpu, kvm) {
528                 kvm_vcpu_destroy(vcpu);
529                 xa_erase(&kvm->vcpu_array, i);
530         }
531
532         atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539         return container_of(mn, struct kvm, mmu_notifier);
540 }
541
542 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
545                              unsigned long end);
546
547 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
548
549 struct kvm_hva_range {
550         unsigned long start;
551         unsigned long end;
552         union kvm_mmu_notifier_arg arg;
553         hva_handler_t handler;
554         on_lock_fn_t on_lock;
555         on_unlock_fn_t on_unlock;
556         bool flush_on_ret;
557         bool may_block;
558 };
559
560 /*
561  * Use a dedicated stub instead of NULL to indicate that there is no callback
562  * function/handler.  The compiler technically can't guarantee that a real
563  * function will have a non-zero address, and so it will generate code to
564  * check for !NULL, whereas comparing against a stub will be elided at compile
565  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
566  */
567 static void kvm_null_fn(void)
568 {
569
570 }
571 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
572
573 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
574
575 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
576 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
577         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
578              node;                                                           \
579              node = interval_tree_iter_next(node, start, last))      \
580
581 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
582                                                   const struct kvm_hva_range *range)
583 {
584         bool ret = false, locked = false;
585         struct kvm_gfn_range gfn_range;
586         struct kvm_memory_slot *slot;
587         struct kvm_memslots *slots;
588         int i, idx;
589
590         if (WARN_ON_ONCE(range->end <= range->start))
591                 return 0;
592
593         /* A null handler is allowed if and only if on_lock() is provided. */
594         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
595                          IS_KVM_NULL_FN(range->handler)))
596                 return 0;
597
598         idx = srcu_read_lock(&kvm->srcu);
599
600         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
601                 struct interval_tree_node *node;
602
603                 slots = __kvm_memslots(kvm, i);
604                 kvm_for_each_memslot_in_hva_range(node, slots,
605                                                   range->start, range->end - 1) {
606                         unsigned long hva_start, hva_end;
607
608                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
609                         hva_start = max(range->start, slot->userspace_addr);
610                         hva_end = min(range->end, slot->userspace_addr +
611                                                   (slot->npages << PAGE_SHIFT));
612
613                         /*
614                          * To optimize for the likely case where the address
615                          * range is covered by zero or one memslots, don't
616                          * bother making these conditional (to avoid writes on
617                          * the second or later invocation of the handler).
618                          */
619                         gfn_range.arg = range->arg;
620                         gfn_range.may_block = range->may_block;
621
622                         /*
623                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
624                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
625                          */
626                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
627                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
628                         gfn_range.slot = slot;
629
630                         if (!locked) {
631                                 locked = true;
632                                 KVM_MMU_LOCK(kvm);
633                                 if (!IS_KVM_NULL_FN(range->on_lock))
634                                         range->on_lock(kvm, range->start, range->end);
635                                 if (IS_KVM_NULL_FN(range->handler))
636                                         break;
637                         }
638                         ret |= range->handler(kvm, &gfn_range);
639                 }
640         }
641
642         if (range->flush_on_ret && ret)
643                 kvm_flush_remote_tlbs(kvm);
644
645         if (locked) {
646                 KVM_MMU_UNLOCK(kvm);
647                 if (!IS_KVM_NULL_FN(range->on_unlock))
648                         range->on_unlock(kvm);
649         }
650
651         srcu_read_unlock(&kvm->srcu, idx);
652
653         /* The notifiers are averse to booleans. :-( */
654         return (int)ret;
655 }
656
657 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
658                                                 unsigned long start,
659                                                 unsigned long end,
660                                                 union kvm_mmu_notifier_arg arg,
661                                                 hva_handler_t handler)
662 {
663         struct kvm *kvm = mmu_notifier_to_kvm(mn);
664         const struct kvm_hva_range range = {
665                 .start          = start,
666                 .end            = end,
667                 .arg            = arg,
668                 .handler        = handler,
669                 .on_lock        = (void *)kvm_null_fn,
670                 .on_unlock      = (void *)kvm_null_fn,
671                 .flush_on_ret   = true,
672                 .may_block      = false,
673         };
674
675         return __kvm_handle_hva_range(kvm, &range);
676 }
677
678 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
679                                                          unsigned long start,
680                                                          unsigned long end,
681                                                          hva_handler_t handler)
682 {
683         struct kvm *kvm = mmu_notifier_to_kvm(mn);
684         const struct kvm_hva_range range = {
685                 .start          = start,
686                 .end            = end,
687                 .handler        = handler,
688                 .on_lock        = (void *)kvm_null_fn,
689                 .on_unlock      = (void *)kvm_null_fn,
690                 .flush_on_ret   = false,
691                 .may_block      = false,
692         };
693
694         return __kvm_handle_hva_range(kvm, &range);
695 }
696
697 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
698 {
699         /*
700          * Skipping invalid memslots is correct if and only change_pte() is
701          * surrounded by invalidate_range_{start,end}(), which is currently
702          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
703          * unmap the memslot instead of skipping the memslot to ensure that KVM
704          * doesn't hold references to the old PFN.
705          */
706         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707
708         if (range->slot->flags & KVM_MEMSLOT_INVALID)
709                 return false;
710
711         return kvm_set_spte_gfn(kvm, range);
712 }
713
714 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
715                                         struct mm_struct *mm,
716                                         unsigned long address,
717                                         pte_t pte)
718 {
719         struct kvm *kvm = mmu_notifier_to_kvm(mn);
720         const union kvm_mmu_notifier_arg arg = { .pte = pte };
721
722         trace_kvm_set_spte_hva(address);
723
724         /*
725          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
726          * If mmu_invalidate_in_progress is zero, then no in-progress
727          * invalidations, including this one, found a relevant memslot at
728          * start(); rechecking memslots here is unnecessary.  Note, a false
729          * positive (count elevated by a different invalidation) is sub-optimal
730          * but functionally ok.
731          */
732         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
733         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
734                 return;
735
736         kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
737 }
738
739 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
740                               unsigned long end)
741 {
742         /*
743          * The count increase must become visible at unlock time as no
744          * spte can be established without taking the mmu_lock and
745          * count is also read inside the mmu_lock critical section.
746          */
747         kvm->mmu_invalidate_in_progress++;
748         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
749                 kvm->mmu_invalidate_range_start = start;
750                 kvm->mmu_invalidate_range_end = end;
751         } else {
752                 /*
753                  * Fully tracking multiple concurrent ranges has diminishing
754                  * returns. Keep things simple and just find the minimal range
755                  * which includes the current and new ranges. As there won't be
756                  * enough information to subtract a range after its invalidate
757                  * completes, any ranges invalidated concurrently will
758                  * accumulate and persist until all outstanding invalidates
759                  * complete.
760                  */
761                 kvm->mmu_invalidate_range_start =
762                         min(kvm->mmu_invalidate_range_start, start);
763                 kvm->mmu_invalidate_range_end =
764                         max(kvm->mmu_invalidate_range_end, end);
765         }
766 }
767
768 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
769                                         const struct mmu_notifier_range *range)
770 {
771         struct kvm *kvm = mmu_notifier_to_kvm(mn);
772         const struct kvm_hva_range hva_range = {
773                 .start          = range->start,
774                 .end            = range->end,
775                 .handler        = kvm_unmap_gfn_range,
776                 .on_lock        = kvm_mmu_invalidate_begin,
777                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
778                 .flush_on_ret   = true,
779                 .may_block      = mmu_notifier_range_blockable(range),
780         };
781
782         trace_kvm_unmap_hva_range(range->start, range->end);
783
784         /*
785          * Prevent memslot modification between range_start() and range_end()
786          * so that conditionally locking provides the same result in both
787          * functions.  Without that guarantee, the mmu_invalidate_in_progress
788          * adjustments will be imbalanced.
789          *
790          * Pairs with the decrement in range_end().
791          */
792         spin_lock(&kvm->mn_invalidate_lock);
793         kvm->mn_active_invalidate_count++;
794         spin_unlock(&kvm->mn_invalidate_lock);
795
796         /*
797          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
798          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
799          * each cache's lock.  There are relatively few caches in existence at
800          * any given time, and the caches themselves can check for hva overlap,
801          * i.e. don't need to rely on memslot overlap checks for performance.
802          * Because this runs without holding mmu_lock, the pfn caches must use
803          * mn_active_invalidate_count (see above) instead of
804          * mmu_invalidate_in_progress.
805          */
806         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
807                                           hva_range.may_block);
808
809         __kvm_handle_hva_range(kvm, &hva_range);
810
811         return 0;
812 }
813
814 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
815                             unsigned long end)
816 {
817         /*
818          * This sequence increase will notify the kvm page fault that
819          * the page that is going to be mapped in the spte could have
820          * been freed.
821          */
822         kvm->mmu_invalidate_seq++;
823         smp_wmb();
824         /*
825          * The above sequence increase must be visible before the
826          * below count decrease, which is ensured by the smp_wmb above
827          * in conjunction with the smp_rmb in mmu_invalidate_retry().
828          */
829         kvm->mmu_invalidate_in_progress--;
830 }
831
832 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
833                                         const struct mmu_notifier_range *range)
834 {
835         struct kvm *kvm = mmu_notifier_to_kvm(mn);
836         const struct kvm_hva_range hva_range = {
837                 .start          = range->start,
838                 .end            = range->end,
839                 .handler        = (void *)kvm_null_fn,
840                 .on_lock        = kvm_mmu_invalidate_end,
841                 .on_unlock      = (void *)kvm_null_fn,
842                 .flush_on_ret   = false,
843                 .may_block      = mmu_notifier_range_blockable(range),
844         };
845         bool wake;
846
847         __kvm_handle_hva_range(kvm, &hva_range);
848
849         /* Pairs with the increment in range_start(). */
850         spin_lock(&kvm->mn_invalidate_lock);
851         wake = (--kvm->mn_active_invalidate_count == 0);
852         spin_unlock(&kvm->mn_invalidate_lock);
853
854         /*
855          * There can only be one waiter, since the wait happens under
856          * slots_lock.
857          */
858         if (wake)
859                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
860
861         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
862 }
863
864 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
865                                               struct mm_struct *mm,
866                                               unsigned long start,
867                                               unsigned long end)
868 {
869         trace_kvm_age_hva(start, end);
870
871         return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
872                                     kvm_age_gfn);
873 }
874
875 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
876                                         struct mm_struct *mm,
877                                         unsigned long start,
878                                         unsigned long end)
879 {
880         trace_kvm_age_hva(start, end);
881
882         /*
883          * Even though we do not flush TLB, this will still adversely
884          * affect performance on pre-Haswell Intel EPT, where there is
885          * no EPT Access Bit to clear so that we have to tear down EPT
886          * tables instead. If we find this unacceptable, we can always
887          * add a parameter to kvm_age_hva so that it effectively doesn't
888          * do anything on clear_young.
889          *
890          * Also note that currently we never issue secondary TLB flushes
891          * from clear_young, leaving this job up to the regular system
892          * cadence. If we find this inaccurate, we might come up with a
893          * more sophisticated heuristic later.
894          */
895         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
896 }
897
898 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
899                                        struct mm_struct *mm,
900                                        unsigned long address)
901 {
902         trace_kvm_test_age_hva(address);
903
904         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
905                                              kvm_test_age_gfn);
906 }
907
908 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
909                                      struct mm_struct *mm)
910 {
911         struct kvm *kvm = mmu_notifier_to_kvm(mn);
912         int idx;
913
914         idx = srcu_read_lock(&kvm->srcu);
915         kvm_flush_shadow_all(kvm);
916         srcu_read_unlock(&kvm->srcu, idx);
917 }
918
919 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
920         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
921         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
922         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
923         .clear_young            = kvm_mmu_notifier_clear_young,
924         .test_young             = kvm_mmu_notifier_test_young,
925         .change_pte             = kvm_mmu_notifier_change_pte,
926         .release                = kvm_mmu_notifier_release,
927 };
928
929 static int kvm_init_mmu_notifier(struct kvm *kvm)
930 {
931         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
932         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
933 }
934
935 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
936
937 static int kvm_init_mmu_notifier(struct kvm *kvm)
938 {
939         return 0;
940 }
941
942 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
943
944 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
945 static int kvm_pm_notifier_call(struct notifier_block *bl,
946                                 unsigned long state,
947                                 void *unused)
948 {
949         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
950
951         return kvm_arch_pm_notifier(kvm, state);
952 }
953
954 static void kvm_init_pm_notifier(struct kvm *kvm)
955 {
956         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
957         /* Suspend KVM before we suspend ftrace, RCU, etc. */
958         kvm->pm_notifier.priority = INT_MAX;
959         register_pm_notifier(&kvm->pm_notifier);
960 }
961
962 static void kvm_destroy_pm_notifier(struct kvm *kvm)
963 {
964         unregister_pm_notifier(&kvm->pm_notifier);
965 }
966 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
967 static void kvm_init_pm_notifier(struct kvm *kvm)
968 {
969 }
970
971 static void kvm_destroy_pm_notifier(struct kvm *kvm)
972 {
973 }
974 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
975
976 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
977 {
978         if (!memslot->dirty_bitmap)
979                 return;
980
981         kvfree(memslot->dirty_bitmap);
982         memslot->dirty_bitmap = NULL;
983 }
984
985 /* This does not remove the slot from struct kvm_memslots data structures */
986 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
987 {
988         kvm_destroy_dirty_bitmap(slot);
989
990         kvm_arch_free_memslot(kvm, slot);
991
992         kfree(slot);
993 }
994
995 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
996 {
997         struct hlist_node *idnode;
998         struct kvm_memory_slot *memslot;
999         int bkt;
1000
1001         /*
1002          * The same memslot objects live in both active and inactive sets,
1003          * arbitrarily free using index '1' so the second invocation of this
1004          * function isn't operating over a structure with dangling pointers
1005          * (even though this function isn't actually touching them).
1006          */
1007         if (!slots->node_idx)
1008                 return;
1009
1010         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1011                 kvm_free_memslot(kvm, memslot);
1012 }
1013
1014 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1015 {
1016         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1017         case KVM_STATS_TYPE_INSTANT:
1018                 return 0444;
1019         case KVM_STATS_TYPE_CUMULATIVE:
1020         case KVM_STATS_TYPE_PEAK:
1021         default:
1022                 return 0644;
1023         }
1024 }
1025
1026
1027 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1028 {
1029         int i;
1030         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1031                                       kvm_vcpu_stats_header.num_desc;
1032
1033         if (IS_ERR(kvm->debugfs_dentry))
1034                 return;
1035
1036         debugfs_remove_recursive(kvm->debugfs_dentry);
1037
1038         if (kvm->debugfs_stat_data) {
1039                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1040                         kfree(kvm->debugfs_stat_data[i]);
1041                 kfree(kvm->debugfs_stat_data);
1042         }
1043 }
1044
1045 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1046 {
1047         static DEFINE_MUTEX(kvm_debugfs_lock);
1048         struct dentry *dent;
1049         char dir_name[ITOA_MAX_LEN * 2];
1050         struct kvm_stat_data *stat_data;
1051         const struct _kvm_stats_desc *pdesc;
1052         int i, ret = -ENOMEM;
1053         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1054                                       kvm_vcpu_stats_header.num_desc;
1055
1056         if (!debugfs_initialized())
1057                 return 0;
1058
1059         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1060         mutex_lock(&kvm_debugfs_lock);
1061         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1062         if (dent) {
1063                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1064                 dput(dent);
1065                 mutex_unlock(&kvm_debugfs_lock);
1066                 return 0;
1067         }
1068         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1069         mutex_unlock(&kvm_debugfs_lock);
1070         if (IS_ERR(dent))
1071                 return 0;
1072
1073         kvm->debugfs_dentry = dent;
1074         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1075                                          sizeof(*kvm->debugfs_stat_data),
1076                                          GFP_KERNEL_ACCOUNT);
1077         if (!kvm->debugfs_stat_data)
1078                 goto out_err;
1079
1080         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1081                 pdesc = &kvm_vm_stats_desc[i];
1082                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1083                 if (!stat_data)
1084                         goto out_err;
1085
1086                 stat_data->kvm = kvm;
1087                 stat_data->desc = pdesc;
1088                 stat_data->kind = KVM_STAT_VM;
1089                 kvm->debugfs_stat_data[i] = stat_data;
1090                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1091                                     kvm->debugfs_dentry, stat_data,
1092                                     &stat_fops_per_vm);
1093         }
1094
1095         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1096                 pdesc = &kvm_vcpu_stats_desc[i];
1097                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1098                 if (!stat_data)
1099                         goto out_err;
1100
1101                 stat_data->kvm = kvm;
1102                 stat_data->desc = pdesc;
1103                 stat_data->kind = KVM_STAT_VCPU;
1104                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1105                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1106                                     kvm->debugfs_dentry, stat_data,
1107                                     &stat_fops_per_vm);
1108         }
1109
1110         ret = kvm_arch_create_vm_debugfs(kvm);
1111         if (ret)
1112                 goto out_err;
1113
1114         return 0;
1115 out_err:
1116         kvm_destroy_vm_debugfs(kvm);
1117         return ret;
1118 }
1119
1120 /*
1121  * Called after the VM is otherwise initialized, but just before adding it to
1122  * the vm_list.
1123  */
1124 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1125 {
1126         return 0;
1127 }
1128
1129 /*
1130  * Called just after removing the VM from the vm_list, but before doing any
1131  * other destruction.
1132  */
1133 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1134 {
1135 }
1136
1137 /*
1138  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1139  * be setup already, so we can create arch-specific debugfs entries under it.
1140  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1141  * a per-arch destroy interface is not needed.
1142  */
1143 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1144 {
1145         return 0;
1146 }
1147
1148 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1149 {
1150         struct kvm *kvm = kvm_arch_alloc_vm();
1151         struct kvm_memslots *slots;
1152         int r = -ENOMEM;
1153         int i, j;
1154
1155         if (!kvm)
1156                 return ERR_PTR(-ENOMEM);
1157
1158         KVM_MMU_LOCK_INIT(kvm);
1159         mmgrab(current->mm);
1160         kvm->mm = current->mm;
1161         kvm_eventfd_init(kvm);
1162         mutex_init(&kvm->lock);
1163         mutex_init(&kvm->irq_lock);
1164         mutex_init(&kvm->slots_lock);
1165         mutex_init(&kvm->slots_arch_lock);
1166         spin_lock_init(&kvm->mn_invalidate_lock);
1167         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1168         xa_init(&kvm->vcpu_array);
1169
1170         INIT_LIST_HEAD(&kvm->gpc_list);
1171         spin_lock_init(&kvm->gpc_lock);
1172
1173         INIT_LIST_HEAD(&kvm->devices);
1174         kvm->max_vcpus = KVM_MAX_VCPUS;
1175
1176         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1177
1178         /*
1179          * Force subsequent debugfs file creations to fail if the VM directory
1180          * is not created (by kvm_create_vm_debugfs()).
1181          */
1182         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1183
1184         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1185                  task_pid_nr(current));
1186
1187         if (init_srcu_struct(&kvm->srcu))
1188                 goto out_err_no_srcu;
1189         if (init_srcu_struct(&kvm->irq_srcu))
1190                 goto out_err_no_irq_srcu;
1191
1192         refcount_set(&kvm->users_count, 1);
1193         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1194                 for (j = 0; j < 2; j++) {
1195                         slots = &kvm->__memslots[i][j];
1196
1197                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1198                         slots->hva_tree = RB_ROOT_CACHED;
1199                         slots->gfn_tree = RB_ROOT;
1200                         hash_init(slots->id_hash);
1201                         slots->node_idx = j;
1202
1203                         /* Generations must be different for each address space. */
1204                         slots->generation = i;
1205                 }
1206
1207                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1208         }
1209
1210         for (i = 0; i < KVM_NR_BUSES; i++) {
1211                 rcu_assign_pointer(kvm->buses[i],
1212                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1213                 if (!kvm->buses[i])
1214                         goto out_err_no_arch_destroy_vm;
1215         }
1216
1217         r = kvm_arch_init_vm(kvm, type);
1218         if (r)
1219                 goto out_err_no_arch_destroy_vm;
1220
1221         r = hardware_enable_all();
1222         if (r)
1223                 goto out_err_no_disable;
1224
1225 #ifdef CONFIG_HAVE_KVM_IRQFD
1226         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1227 #endif
1228
1229         r = kvm_init_mmu_notifier(kvm);
1230         if (r)
1231                 goto out_err_no_mmu_notifier;
1232
1233         r = kvm_coalesced_mmio_init(kvm);
1234         if (r < 0)
1235                 goto out_no_coalesced_mmio;
1236
1237         r = kvm_create_vm_debugfs(kvm, fdname);
1238         if (r)
1239                 goto out_err_no_debugfs;
1240
1241         r = kvm_arch_post_init_vm(kvm);
1242         if (r)
1243                 goto out_err;
1244
1245         mutex_lock(&kvm_lock);
1246         list_add(&kvm->vm_list, &vm_list);
1247         mutex_unlock(&kvm_lock);
1248
1249         preempt_notifier_inc();
1250         kvm_init_pm_notifier(kvm);
1251
1252         return kvm;
1253
1254 out_err:
1255         kvm_destroy_vm_debugfs(kvm);
1256 out_err_no_debugfs:
1257         kvm_coalesced_mmio_free(kvm);
1258 out_no_coalesced_mmio:
1259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1260         if (kvm->mmu_notifier.ops)
1261                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1262 #endif
1263 out_err_no_mmu_notifier:
1264         hardware_disable_all();
1265 out_err_no_disable:
1266         kvm_arch_destroy_vm(kvm);
1267 out_err_no_arch_destroy_vm:
1268         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1269         for (i = 0; i < KVM_NR_BUSES; i++)
1270                 kfree(kvm_get_bus(kvm, i));
1271         cleanup_srcu_struct(&kvm->irq_srcu);
1272 out_err_no_irq_srcu:
1273         cleanup_srcu_struct(&kvm->srcu);
1274 out_err_no_srcu:
1275         kvm_arch_free_vm(kvm);
1276         mmdrop(current->mm);
1277         return ERR_PTR(r);
1278 }
1279
1280 static void kvm_destroy_devices(struct kvm *kvm)
1281 {
1282         struct kvm_device *dev, *tmp;
1283
1284         /*
1285          * We do not need to take the kvm->lock here, because nobody else
1286          * has a reference to the struct kvm at this point and therefore
1287          * cannot access the devices list anyhow.
1288          */
1289         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1290                 list_del(&dev->vm_node);
1291                 dev->ops->destroy(dev);
1292         }
1293 }
1294
1295 static void kvm_destroy_vm(struct kvm *kvm)
1296 {
1297         int i;
1298         struct mm_struct *mm = kvm->mm;
1299
1300         kvm_destroy_pm_notifier(kvm);
1301         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1302         kvm_destroy_vm_debugfs(kvm);
1303         kvm_arch_sync_events(kvm);
1304         mutex_lock(&kvm_lock);
1305         list_del(&kvm->vm_list);
1306         mutex_unlock(&kvm_lock);
1307         kvm_arch_pre_destroy_vm(kvm);
1308
1309         kvm_free_irq_routing(kvm);
1310         for (i = 0; i < KVM_NR_BUSES; i++) {
1311                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1312
1313                 if (bus)
1314                         kvm_io_bus_destroy(bus);
1315                 kvm->buses[i] = NULL;
1316         }
1317         kvm_coalesced_mmio_free(kvm);
1318 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1319         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1320         /*
1321          * At this point, pending calls to invalidate_range_start()
1322          * have completed but no more MMU notifiers will run, so
1323          * mn_active_invalidate_count may remain unbalanced.
1324          * No threads can be waiting in kvm_swap_active_memslots() as the
1325          * last reference on KVM has been dropped, but freeing
1326          * memslots would deadlock without this manual intervention.
1327          */
1328         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1329         kvm->mn_active_invalidate_count = 0;
1330 #else
1331         kvm_flush_shadow_all(kvm);
1332 #endif
1333         kvm_arch_destroy_vm(kvm);
1334         kvm_destroy_devices(kvm);
1335         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1336                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1337                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1338         }
1339         cleanup_srcu_struct(&kvm->irq_srcu);
1340         cleanup_srcu_struct(&kvm->srcu);
1341         kvm_arch_free_vm(kvm);
1342         preempt_notifier_dec();
1343         hardware_disable_all();
1344         mmdrop(mm);
1345 }
1346
1347 void kvm_get_kvm(struct kvm *kvm)
1348 {
1349         refcount_inc(&kvm->users_count);
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1352
1353 /*
1354  * Make sure the vm is not during destruction, which is a safe version of
1355  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1356  */
1357 bool kvm_get_kvm_safe(struct kvm *kvm)
1358 {
1359         return refcount_inc_not_zero(&kvm->users_count);
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1362
1363 void kvm_put_kvm(struct kvm *kvm)
1364 {
1365         if (refcount_dec_and_test(&kvm->users_count))
1366                 kvm_destroy_vm(kvm);
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1369
1370 /*
1371  * Used to put a reference that was taken on behalf of an object associated
1372  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1373  * of the new file descriptor fails and the reference cannot be transferred to
1374  * its final owner.  In such cases, the caller is still actively using @kvm and
1375  * will fail miserably if the refcount unexpectedly hits zero.
1376  */
1377 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1378 {
1379         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1382
1383 static int kvm_vm_release(struct inode *inode, struct file *filp)
1384 {
1385         struct kvm *kvm = filp->private_data;
1386
1387         kvm_irqfd_release(kvm);
1388
1389         kvm_put_kvm(kvm);
1390         return 0;
1391 }
1392
1393 /*
1394  * Allocation size is twice as large as the actual dirty bitmap size.
1395  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1396  */
1397 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1398 {
1399         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1400
1401         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1402         if (!memslot->dirty_bitmap)
1403                 return -ENOMEM;
1404
1405         return 0;
1406 }
1407
1408 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1409 {
1410         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1411         int node_idx_inactive = active->node_idx ^ 1;
1412
1413         return &kvm->__memslots[as_id][node_idx_inactive];
1414 }
1415
1416 /*
1417  * Helper to get the address space ID when one of memslot pointers may be NULL.
1418  * This also serves as a sanity that at least one of the pointers is non-NULL,
1419  * and that their address space IDs don't diverge.
1420  */
1421 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1422                                   struct kvm_memory_slot *b)
1423 {
1424         if (WARN_ON_ONCE(!a && !b))
1425                 return 0;
1426
1427         if (!a)
1428                 return b->as_id;
1429         if (!b)
1430                 return a->as_id;
1431
1432         WARN_ON_ONCE(a->as_id != b->as_id);
1433         return a->as_id;
1434 }
1435
1436 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1437                                 struct kvm_memory_slot *slot)
1438 {
1439         struct rb_root *gfn_tree = &slots->gfn_tree;
1440         struct rb_node **node, *parent;
1441         int idx = slots->node_idx;
1442
1443         parent = NULL;
1444         for (node = &gfn_tree->rb_node; *node; ) {
1445                 struct kvm_memory_slot *tmp;
1446
1447                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1448                 parent = *node;
1449                 if (slot->base_gfn < tmp->base_gfn)
1450                         node = &(*node)->rb_left;
1451                 else if (slot->base_gfn > tmp->base_gfn)
1452                         node = &(*node)->rb_right;
1453                 else
1454                         BUG();
1455         }
1456
1457         rb_link_node(&slot->gfn_node[idx], parent, node);
1458         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1459 }
1460
1461 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1462                                struct kvm_memory_slot *slot)
1463 {
1464         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1465 }
1466
1467 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1468                                  struct kvm_memory_slot *old,
1469                                  struct kvm_memory_slot *new)
1470 {
1471         int idx = slots->node_idx;
1472
1473         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1474
1475         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1476                         &slots->gfn_tree);
1477 }
1478
1479 /*
1480  * Replace @old with @new in the inactive memslots.
1481  *
1482  * With NULL @old this simply adds @new.
1483  * With NULL @new this simply removes @old.
1484  *
1485  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1486  * appropriately.
1487  */
1488 static void kvm_replace_memslot(struct kvm *kvm,
1489                                 struct kvm_memory_slot *old,
1490                                 struct kvm_memory_slot *new)
1491 {
1492         int as_id = kvm_memslots_get_as_id(old, new);
1493         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1494         int idx = slots->node_idx;
1495
1496         if (old) {
1497                 hash_del(&old->id_node[idx]);
1498                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1499
1500                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1501                         atomic_long_set(&slots->last_used_slot, (long)new);
1502
1503                 if (!new) {
1504                         kvm_erase_gfn_node(slots, old);
1505                         return;
1506                 }
1507         }
1508
1509         /*
1510          * Initialize @new's hva range.  Do this even when replacing an @old
1511          * slot, kvm_copy_memslot() deliberately does not touch node data.
1512          */
1513         new->hva_node[idx].start = new->userspace_addr;
1514         new->hva_node[idx].last = new->userspace_addr +
1515                                   (new->npages << PAGE_SHIFT) - 1;
1516
1517         /*
1518          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1519          * hva_node needs to be swapped with remove+insert even though hva can't
1520          * change when replacing an existing slot.
1521          */
1522         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1523         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1524
1525         /*
1526          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1527          * switch the node in the gfn tree instead of removing the old and
1528          * inserting the new as two separate operations. Replacement is a
1529          * single O(1) operation versus two O(log(n)) operations for
1530          * remove+insert.
1531          */
1532         if (old && old->base_gfn == new->base_gfn) {
1533                 kvm_replace_gfn_node(slots, old, new);
1534         } else {
1535                 if (old)
1536                         kvm_erase_gfn_node(slots, old);
1537                 kvm_insert_gfn_node(slots, new);
1538         }
1539 }
1540
1541 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1542 {
1543         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1544
1545 #ifdef __KVM_HAVE_READONLY_MEM
1546         valid_flags |= KVM_MEM_READONLY;
1547 #endif
1548
1549         if (mem->flags & ~valid_flags)
1550                 return -EINVAL;
1551
1552         return 0;
1553 }
1554
1555 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1556 {
1557         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1558
1559         /* Grab the generation from the activate memslots. */
1560         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1561
1562         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1563         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1564
1565         /*
1566          * Do not store the new memslots while there are invalidations in
1567          * progress, otherwise the locking in invalidate_range_start and
1568          * invalidate_range_end will be unbalanced.
1569          */
1570         spin_lock(&kvm->mn_invalidate_lock);
1571         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1572         while (kvm->mn_active_invalidate_count) {
1573                 set_current_state(TASK_UNINTERRUPTIBLE);
1574                 spin_unlock(&kvm->mn_invalidate_lock);
1575                 schedule();
1576                 spin_lock(&kvm->mn_invalidate_lock);
1577         }
1578         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1579         rcu_assign_pointer(kvm->memslots[as_id], slots);
1580         spin_unlock(&kvm->mn_invalidate_lock);
1581
1582         /*
1583          * Acquired in kvm_set_memslot. Must be released before synchronize
1584          * SRCU below in order to avoid deadlock with another thread
1585          * acquiring the slots_arch_lock in an srcu critical section.
1586          */
1587         mutex_unlock(&kvm->slots_arch_lock);
1588
1589         synchronize_srcu_expedited(&kvm->srcu);
1590
1591         /*
1592          * Increment the new memslot generation a second time, dropping the
1593          * update in-progress flag and incrementing the generation based on
1594          * the number of address spaces.  This provides a unique and easily
1595          * identifiable generation number while the memslots are in flux.
1596          */
1597         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1598
1599         /*
1600          * Generations must be unique even across address spaces.  We do not need
1601          * a global counter for that, instead the generation space is evenly split
1602          * across address spaces.  For example, with two address spaces, address
1603          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1604          * use generations 1, 3, 5, ...
1605          */
1606         gen += KVM_ADDRESS_SPACE_NUM;
1607
1608         kvm_arch_memslots_updated(kvm, gen);
1609
1610         slots->generation = gen;
1611 }
1612
1613 static int kvm_prepare_memory_region(struct kvm *kvm,
1614                                      const struct kvm_memory_slot *old,
1615                                      struct kvm_memory_slot *new,
1616                                      enum kvm_mr_change change)
1617 {
1618         int r;
1619
1620         /*
1621          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1622          * will be freed on "commit".  If logging is enabled in both old and
1623          * new, reuse the existing bitmap.  If logging is enabled only in the
1624          * new and KVM isn't using a ring buffer, allocate and initialize a
1625          * new bitmap.
1626          */
1627         if (change != KVM_MR_DELETE) {
1628                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1629                         new->dirty_bitmap = NULL;
1630                 else if (old && old->dirty_bitmap)
1631                         new->dirty_bitmap = old->dirty_bitmap;
1632                 else if (kvm_use_dirty_bitmap(kvm)) {
1633                         r = kvm_alloc_dirty_bitmap(new);
1634                         if (r)
1635                                 return r;
1636
1637                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1638                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1639                 }
1640         }
1641
1642         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1643
1644         /* Free the bitmap on failure if it was allocated above. */
1645         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1646                 kvm_destroy_dirty_bitmap(new);
1647
1648         return r;
1649 }
1650
1651 static void kvm_commit_memory_region(struct kvm *kvm,
1652                                      struct kvm_memory_slot *old,
1653                                      const struct kvm_memory_slot *new,
1654                                      enum kvm_mr_change change)
1655 {
1656         int old_flags = old ? old->flags : 0;
1657         int new_flags = new ? new->flags : 0;
1658         /*
1659          * Update the total number of memslot pages before calling the arch
1660          * hook so that architectures can consume the result directly.
1661          */
1662         if (change == KVM_MR_DELETE)
1663                 kvm->nr_memslot_pages -= old->npages;
1664         else if (change == KVM_MR_CREATE)
1665                 kvm->nr_memslot_pages += new->npages;
1666
1667         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1668                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1669                 atomic_set(&kvm->nr_memslots_dirty_logging,
1670                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1671         }
1672
1673         kvm_arch_commit_memory_region(kvm, old, new, change);
1674
1675         switch (change) {
1676         case KVM_MR_CREATE:
1677                 /* Nothing more to do. */
1678                 break;
1679         case KVM_MR_DELETE:
1680                 /* Free the old memslot and all its metadata. */
1681                 kvm_free_memslot(kvm, old);
1682                 break;
1683         case KVM_MR_MOVE:
1684         case KVM_MR_FLAGS_ONLY:
1685                 /*
1686                  * Free the dirty bitmap as needed; the below check encompasses
1687                  * both the flags and whether a ring buffer is being used)
1688                  */
1689                 if (old->dirty_bitmap && !new->dirty_bitmap)
1690                         kvm_destroy_dirty_bitmap(old);
1691
1692                 /*
1693                  * The final quirk.  Free the detached, old slot, but only its
1694                  * memory, not any metadata.  Metadata, including arch specific
1695                  * data, may be reused by @new.
1696                  */
1697                 kfree(old);
1698                 break;
1699         default:
1700                 BUG();
1701         }
1702 }
1703
1704 /*
1705  * Activate @new, which must be installed in the inactive slots by the caller,
1706  * by swapping the active slots and then propagating @new to @old once @old is
1707  * unreachable and can be safely modified.
1708  *
1709  * With NULL @old this simply adds @new to @active (while swapping the sets).
1710  * With NULL @new this simply removes @old from @active and frees it
1711  * (while also swapping the sets).
1712  */
1713 static void kvm_activate_memslot(struct kvm *kvm,
1714                                  struct kvm_memory_slot *old,
1715                                  struct kvm_memory_slot *new)
1716 {
1717         int as_id = kvm_memslots_get_as_id(old, new);
1718
1719         kvm_swap_active_memslots(kvm, as_id);
1720
1721         /* Propagate the new memslot to the now inactive memslots. */
1722         kvm_replace_memslot(kvm, old, new);
1723 }
1724
1725 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1726                              const struct kvm_memory_slot *src)
1727 {
1728         dest->base_gfn = src->base_gfn;
1729         dest->npages = src->npages;
1730         dest->dirty_bitmap = src->dirty_bitmap;
1731         dest->arch = src->arch;
1732         dest->userspace_addr = src->userspace_addr;
1733         dest->flags = src->flags;
1734         dest->id = src->id;
1735         dest->as_id = src->as_id;
1736 }
1737
1738 static void kvm_invalidate_memslot(struct kvm *kvm,
1739                                    struct kvm_memory_slot *old,
1740                                    struct kvm_memory_slot *invalid_slot)
1741 {
1742         /*
1743          * Mark the current slot INVALID.  As with all memslot modifications,
1744          * this must be done on an unreachable slot to avoid modifying the
1745          * current slot in the active tree.
1746          */
1747         kvm_copy_memslot(invalid_slot, old);
1748         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1749         kvm_replace_memslot(kvm, old, invalid_slot);
1750
1751         /*
1752          * Activate the slot that is now marked INVALID, but don't propagate
1753          * the slot to the now inactive slots. The slot is either going to be
1754          * deleted or recreated as a new slot.
1755          */
1756         kvm_swap_active_memslots(kvm, old->as_id);
1757
1758         /*
1759          * From this point no new shadow pages pointing to a deleted, or moved,
1760          * memslot will be created.  Validation of sp->gfn happens in:
1761          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1762          *      - kvm_is_visible_gfn (mmu_check_root)
1763          */
1764         kvm_arch_flush_shadow_memslot(kvm, old);
1765         kvm_arch_guest_memory_reclaimed(kvm);
1766
1767         /* Was released by kvm_swap_active_memslots(), reacquire. */
1768         mutex_lock(&kvm->slots_arch_lock);
1769
1770         /*
1771          * Copy the arch-specific field of the newly-installed slot back to the
1772          * old slot as the arch data could have changed between releasing
1773          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1774          * above.  Writers are required to retrieve memslots *after* acquiring
1775          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1776          */
1777         old->arch = invalid_slot->arch;
1778 }
1779
1780 static void kvm_create_memslot(struct kvm *kvm,
1781                                struct kvm_memory_slot *new)
1782 {
1783         /* Add the new memslot to the inactive set and activate. */
1784         kvm_replace_memslot(kvm, NULL, new);
1785         kvm_activate_memslot(kvm, NULL, new);
1786 }
1787
1788 static void kvm_delete_memslot(struct kvm *kvm,
1789                                struct kvm_memory_slot *old,
1790                                struct kvm_memory_slot *invalid_slot)
1791 {
1792         /*
1793          * Remove the old memslot (in the inactive memslots) by passing NULL as
1794          * the "new" slot, and for the invalid version in the active slots.
1795          */
1796         kvm_replace_memslot(kvm, old, NULL);
1797         kvm_activate_memslot(kvm, invalid_slot, NULL);
1798 }
1799
1800 static void kvm_move_memslot(struct kvm *kvm,
1801                              struct kvm_memory_slot *old,
1802                              struct kvm_memory_slot *new,
1803                              struct kvm_memory_slot *invalid_slot)
1804 {
1805         /*
1806          * Replace the old memslot in the inactive slots, and then swap slots
1807          * and replace the current INVALID with the new as well.
1808          */
1809         kvm_replace_memslot(kvm, old, new);
1810         kvm_activate_memslot(kvm, invalid_slot, new);
1811 }
1812
1813 static void kvm_update_flags_memslot(struct kvm *kvm,
1814                                      struct kvm_memory_slot *old,
1815                                      struct kvm_memory_slot *new)
1816 {
1817         /*
1818          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1819          * an intermediate step. Instead, the old memslot is simply replaced
1820          * with a new, updated copy in both memslot sets.
1821          */
1822         kvm_replace_memslot(kvm, old, new);
1823         kvm_activate_memslot(kvm, old, new);
1824 }
1825
1826 static int kvm_set_memslot(struct kvm *kvm,
1827                            struct kvm_memory_slot *old,
1828                            struct kvm_memory_slot *new,
1829                            enum kvm_mr_change change)
1830 {
1831         struct kvm_memory_slot *invalid_slot;
1832         int r;
1833
1834         /*
1835          * Released in kvm_swap_active_memslots().
1836          *
1837          * Must be held from before the current memslots are copied until after
1838          * the new memslots are installed with rcu_assign_pointer, then
1839          * released before the synchronize srcu in kvm_swap_active_memslots().
1840          *
1841          * When modifying memslots outside of the slots_lock, must be held
1842          * before reading the pointer to the current memslots until after all
1843          * changes to those memslots are complete.
1844          *
1845          * These rules ensure that installing new memslots does not lose
1846          * changes made to the previous memslots.
1847          */
1848         mutex_lock(&kvm->slots_arch_lock);
1849
1850         /*
1851          * Invalidate the old slot if it's being deleted or moved.  This is
1852          * done prior to actually deleting/moving the memslot to allow vCPUs to
1853          * continue running by ensuring there are no mappings or shadow pages
1854          * for the memslot when it is deleted/moved.  Without pre-invalidation
1855          * (and without a lock), a window would exist between effecting the
1856          * delete/move and committing the changes in arch code where KVM or a
1857          * guest could access a non-existent memslot.
1858          *
1859          * Modifications are done on a temporary, unreachable slot.  The old
1860          * slot needs to be preserved in case a later step fails and the
1861          * invalidation needs to be reverted.
1862          */
1863         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1864                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1865                 if (!invalid_slot) {
1866                         mutex_unlock(&kvm->slots_arch_lock);
1867                         return -ENOMEM;
1868                 }
1869                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1870         }
1871
1872         r = kvm_prepare_memory_region(kvm, old, new, change);
1873         if (r) {
1874                 /*
1875                  * For DELETE/MOVE, revert the above INVALID change.  No
1876                  * modifications required since the original slot was preserved
1877                  * in the inactive slots.  Changing the active memslots also
1878                  * release slots_arch_lock.
1879                  */
1880                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1881                         kvm_activate_memslot(kvm, invalid_slot, old);
1882                         kfree(invalid_slot);
1883                 } else {
1884                         mutex_unlock(&kvm->slots_arch_lock);
1885                 }
1886                 return r;
1887         }
1888
1889         /*
1890          * For DELETE and MOVE, the working slot is now active as the INVALID
1891          * version of the old slot.  MOVE is particularly special as it reuses
1892          * the old slot and returns a copy of the old slot (in working_slot).
1893          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1894          * old slot is detached but otherwise preserved.
1895          */
1896         if (change == KVM_MR_CREATE)
1897                 kvm_create_memslot(kvm, new);
1898         else if (change == KVM_MR_DELETE)
1899                 kvm_delete_memslot(kvm, old, invalid_slot);
1900         else if (change == KVM_MR_MOVE)
1901                 kvm_move_memslot(kvm, old, new, invalid_slot);
1902         else if (change == KVM_MR_FLAGS_ONLY)
1903                 kvm_update_flags_memslot(kvm, old, new);
1904         else
1905                 BUG();
1906
1907         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1908         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1909                 kfree(invalid_slot);
1910
1911         /*
1912          * No need to refresh new->arch, changes after dropping slots_arch_lock
1913          * will directly hit the final, active memslot.  Architectures are
1914          * responsible for knowing that new->arch may be stale.
1915          */
1916         kvm_commit_memory_region(kvm, old, new, change);
1917
1918         return 0;
1919 }
1920
1921 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1922                                       gfn_t start, gfn_t end)
1923 {
1924         struct kvm_memslot_iter iter;
1925
1926         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1927                 if (iter.slot->id != id)
1928                         return true;
1929         }
1930
1931         return false;
1932 }
1933
1934 /*
1935  * Allocate some memory and give it an address in the guest physical address
1936  * space.
1937  *
1938  * Discontiguous memory is allowed, mostly for framebuffers.
1939  *
1940  * Must be called holding kvm->slots_lock for write.
1941  */
1942 int __kvm_set_memory_region(struct kvm *kvm,
1943                             const struct kvm_userspace_memory_region *mem)
1944 {
1945         struct kvm_memory_slot *old, *new;
1946         struct kvm_memslots *slots;
1947         enum kvm_mr_change change;
1948         unsigned long npages;
1949         gfn_t base_gfn;
1950         int as_id, id;
1951         int r;
1952
1953         r = check_memory_region_flags(mem);
1954         if (r)
1955                 return r;
1956
1957         as_id = mem->slot >> 16;
1958         id = (u16)mem->slot;
1959
1960         /* General sanity checks */
1961         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1962             (mem->memory_size != (unsigned long)mem->memory_size))
1963                 return -EINVAL;
1964         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1965                 return -EINVAL;
1966         /* We can read the guest memory with __xxx_user() later on. */
1967         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1968             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1969              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1970                         mem->memory_size))
1971                 return -EINVAL;
1972         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1973                 return -EINVAL;
1974         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1975                 return -EINVAL;
1976         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1977                 return -EINVAL;
1978
1979         slots = __kvm_memslots(kvm, as_id);
1980
1981         /*
1982          * Note, the old memslot (and the pointer itself!) may be invalidated
1983          * and/or destroyed by kvm_set_memslot().
1984          */
1985         old = id_to_memslot(slots, id);
1986
1987         if (!mem->memory_size) {
1988                 if (!old || !old->npages)
1989                         return -EINVAL;
1990
1991                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1992                         return -EIO;
1993
1994                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1995         }
1996
1997         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1998         npages = (mem->memory_size >> PAGE_SHIFT);
1999
2000         if (!old || !old->npages) {
2001                 change = KVM_MR_CREATE;
2002
2003                 /*
2004                  * To simplify KVM internals, the total number of pages across
2005                  * all memslots must fit in an unsigned long.
2006                  */
2007                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2008                         return -EINVAL;
2009         } else { /* Modify an existing slot. */
2010                 if ((mem->userspace_addr != old->userspace_addr) ||
2011                     (npages != old->npages) ||
2012                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2013                         return -EINVAL;
2014
2015                 if (base_gfn != old->base_gfn)
2016                         change = KVM_MR_MOVE;
2017                 else if (mem->flags != old->flags)
2018                         change = KVM_MR_FLAGS_ONLY;
2019                 else /* Nothing to change. */
2020                         return 0;
2021         }
2022
2023         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2024             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2025                 return -EEXIST;
2026
2027         /* Allocate a slot that will persist in the memslot. */
2028         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2029         if (!new)
2030                 return -ENOMEM;
2031
2032         new->as_id = as_id;
2033         new->id = id;
2034         new->base_gfn = base_gfn;
2035         new->npages = npages;
2036         new->flags = mem->flags;
2037         new->userspace_addr = mem->userspace_addr;
2038
2039         r = kvm_set_memslot(kvm, old, new, change);
2040         if (r)
2041                 kfree(new);
2042         return r;
2043 }
2044 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2045
2046 int kvm_set_memory_region(struct kvm *kvm,
2047                           const struct kvm_userspace_memory_region *mem)
2048 {
2049         int r;
2050
2051         mutex_lock(&kvm->slots_lock);
2052         r = __kvm_set_memory_region(kvm, mem);
2053         mutex_unlock(&kvm->slots_lock);
2054         return r;
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2057
2058 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2059                                           struct kvm_userspace_memory_region *mem)
2060 {
2061         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2062                 return -EINVAL;
2063
2064         return kvm_set_memory_region(kvm, mem);
2065 }
2066
2067 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2068 /**
2069  * kvm_get_dirty_log - get a snapshot of dirty pages
2070  * @kvm:        pointer to kvm instance
2071  * @log:        slot id and address to which we copy the log
2072  * @is_dirty:   set to '1' if any dirty pages were found
2073  * @memslot:    set to the associated memslot, always valid on success
2074  */
2075 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2076                       int *is_dirty, struct kvm_memory_slot **memslot)
2077 {
2078         struct kvm_memslots *slots;
2079         int i, as_id, id;
2080         unsigned long n;
2081         unsigned long any = 0;
2082
2083         /* Dirty ring tracking may be exclusive to dirty log tracking */
2084         if (!kvm_use_dirty_bitmap(kvm))
2085                 return -ENXIO;
2086
2087         *memslot = NULL;
2088         *is_dirty = 0;
2089
2090         as_id = log->slot >> 16;
2091         id = (u16)log->slot;
2092         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2093                 return -EINVAL;
2094
2095         slots = __kvm_memslots(kvm, as_id);
2096         *memslot = id_to_memslot(slots, id);
2097         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2098                 return -ENOENT;
2099
2100         kvm_arch_sync_dirty_log(kvm, *memslot);
2101
2102         n = kvm_dirty_bitmap_bytes(*memslot);
2103
2104         for (i = 0; !any && i < n/sizeof(long); ++i)
2105                 any = (*memslot)->dirty_bitmap[i];
2106
2107         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2108                 return -EFAULT;
2109
2110         if (any)
2111                 *is_dirty = 1;
2112         return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2115
2116 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2117 /**
2118  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2119  *      and reenable dirty page tracking for the corresponding pages.
2120  * @kvm:        pointer to kvm instance
2121  * @log:        slot id and address to which we copy the log
2122  *
2123  * We need to keep it in mind that VCPU threads can write to the bitmap
2124  * concurrently. So, to avoid losing track of dirty pages we keep the
2125  * following order:
2126  *
2127  *    1. Take a snapshot of the bit and clear it if needed.
2128  *    2. Write protect the corresponding page.
2129  *    3. Copy the snapshot to the userspace.
2130  *    4. Upon return caller flushes TLB's if needed.
2131  *
2132  * Between 2 and 4, the guest may write to the page using the remaining TLB
2133  * entry.  This is not a problem because the page is reported dirty using
2134  * the snapshot taken before and step 4 ensures that writes done after
2135  * exiting to userspace will be logged for the next call.
2136  *
2137  */
2138 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2139 {
2140         struct kvm_memslots *slots;
2141         struct kvm_memory_slot *memslot;
2142         int i, as_id, id;
2143         unsigned long n;
2144         unsigned long *dirty_bitmap;
2145         unsigned long *dirty_bitmap_buffer;
2146         bool flush;
2147
2148         /* Dirty ring tracking may be exclusive to dirty log tracking */
2149         if (!kvm_use_dirty_bitmap(kvm))
2150                 return -ENXIO;
2151
2152         as_id = log->slot >> 16;
2153         id = (u16)log->slot;
2154         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2155                 return -EINVAL;
2156
2157         slots = __kvm_memslots(kvm, as_id);
2158         memslot = id_to_memslot(slots, id);
2159         if (!memslot || !memslot->dirty_bitmap)
2160                 return -ENOENT;
2161
2162         dirty_bitmap = memslot->dirty_bitmap;
2163
2164         kvm_arch_sync_dirty_log(kvm, memslot);
2165
2166         n = kvm_dirty_bitmap_bytes(memslot);
2167         flush = false;
2168         if (kvm->manual_dirty_log_protect) {
2169                 /*
2170                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2171                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2172                  * is some code duplication between this function and
2173                  * kvm_get_dirty_log, but hopefully all architecture
2174                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2175                  * can be eliminated.
2176                  */
2177                 dirty_bitmap_buffer = dirty_bitmap;
2178         } else {
2179                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2180                 memset(dirty_bitmap_buffer, 0, n);
2181
2182                 KVM_MMU_LOCK(kvm);
2183                 for (i = 0; i < n / sizeof(long); i++) {
2184                         unsigned long mask;
2185                         gfn_t offset;
2186
2187                         if (!dirty_bitmap[i])
2188                                 continue;
2189
2190                         flush = true;
2191                         mask = xchg(&dirty_bitmap[i], 0);
2192                         dirty_bitmap_buffer[i] = mask;
2193
2194                         offset = i * BITS_PER_LONG;
2195                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2196                                                                 offset, mask);
2197                 }
2198                 KVM_MMU_UNLOCK(kvm);
2199         }
2200
2201         if (flush)
2202                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2203
2204         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2205                 return -EFAULT;
2206         return 0;
2207 }
2208
2209
2210 /**
2211  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2212  * @kvm: kvm instance
2213  * @log: slot id and address to which we copy the log
2214  *
2215  * Steps 1-4 below provide general overview of dirty page logging. See
2216  * kvm_get_dirty_log_protect() function description for additional details.
2217  *
2218  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2219  * always flush the TLB (step 4) even if previous step failed  and the dirty
2220  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2221  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2222  * writes will be marked dirty for next log read.
2223  *
2224  *   1. Take a snapshot of the bit and clear it if needed.
2225  *   2. Write protect the corresponding page.
2226  *   3. Copy the snapshot to the userspace.
2227  *   4. Flush TLB's if needed.
2228  */
2229 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2230                                       struct kvm_dirty_log *log)
2231 {
2232         int r;
2233
2234         mutex_lock(&kvm->slots_lock);
2235
2236         r = kvm_get_dirty_log_protect(kvm, log);
2237
2238         mutex_unlock(&kvm->slots_lock);
2239         return r;
2240 }
2241
2242 /**
2243  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2244  *      and reenable dirty page tracking for the corresponding pages.
2245  * @kvm:        pointer to kvm instance
2246  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2247  */
2248 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2249                                        struct kvm_clear_dirty_log *log)
2250 {
2251         struct kvm_memslots *slots;
2252         struct kvm_memory_slot *memslot;
2253         int as_id, id;
2254         gfn_t offset;
2255         unsigned long i, n;
2256         unsigned long *dirty_bitmap;
2257         unsigned long *dirty_bitmap_buffer;
2258         bool flush;
2259
2260         /* Dirty ring tracking may be exclusive to dirty log tracking */
2261         if (!kvm_use_dirty_bitmap(kvm))
2262                 return -ENXIO;
2263
2264         as_id = log->slot >> 16;
2265         id = (u16)log->slot;
2266         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2267                 return -EINVAL;
2268
2269         if (log->first_page & 63)
2270                 return -EINVAL;
2271
2272         slots = __kvm_memslots(kvm, as_id);
2273         memslot = id_to_memslot(slots, id);
2274         if (!memslot || !memslot->dirty_bitmap)
2275                 return -ENOENT;
2276
2277         dirty_bitmap = memslot->dirty_bitmap;
2278
2279         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2280
2281         if (log->first_page > memslot->npages ||
2282             log->num_pages > memslot->npages - log->first_page ||
2283             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2284             return -EINVAL;
2285
2286         kvm_arch_sync_dirty_log(kvm, memslot);
2287
2288         flush = false;
2289         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2290         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2291                 return -EFAULT;
2292
2293         KVM_MMU_LOCK(kvm);
2294         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2295                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2296              i++, offset += BITS_PER_LONG) {
2297                 unsigned long mask = *dirty_bitmap_buffer++;
2298                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2299                 if (!mask)
2300                         continue;
2301
2302                 mask &= atomic_long_fetch_andnot(mask, p);
2303
2304                 /*
2305                  * mask contains the bits that really have been cleared.  This
2306                  * never includes any bits beyond the length of the memslot (if
2307                  * the length is not aligned to 64 pages), therefore it is not
2308                  * a problem if userspace sets them in log->dirty_bitmap.
2309                 */
2310                 if (mask) {
2311                         flush = true;
2312                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2313                                                                 offset, mask);
2314                 }
2315         }
2316         KVM_MMU_UNLOCK(kvm);
2317
2318         if (flush)
2319                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2320
2321         return 0;
2322 }
2323
2324 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2325                                         struct kvm_clear_dirty_log *log)
2326 {
2327         int r;
2328
2329         mutex_lock(&kvm->slots_lock);
2330
2331         r = kvm_clear_dirty_log_protect(kvm, log);
2332
2333         mutex_unlock(&kvm->slots_lock);
2334         return r;
2335 }
2336 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2337
2338 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2339 {
2340         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2341 }
2342 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2343
2344 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2345 {
2346         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2347         u64 gen = slots->generation;
2348         struct kvm_memory_slot *slot;
2349
2350         /*
2351          * This also protects against using a memslot from a different address space,
2352          * since different address spaces have different generation numbers.
2353          */
2354         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2355                 vcpu->last_used_slot = NULL;
2356                 vcpu->last_used_slot_gen = gen;
2357         }
2358
2359         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2360         if (slot)
2361                 return slot;
2362
2363         /*
2364          * Fall back to searching all memslots. We purposely use
2365          * search_memslots() instead of __gfn_to_memslot() to avoid
2366          * thrashing the VM-wide last_used_slot in kvm_memslots.
2367          */
2368         slot = search_memslots(slots, gfn, false);
2369         if (slot) {
2370                 vcpu->last_used_slot = slot;
2371                 return slot;
2372         }
2373
2374         return NULL;
2375 }
2376
2377 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2378 {
2379         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2380
2381         return kvm_is_visible_memslot(memslot);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2384
2385 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2386 {
2387         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2388
2389         return kvm_is_visible_memslot(memslot);
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2392
2393 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2394 {
2395         struct vm_area_struct *vma;
2396         unsigned long addr, size;
2397
2398         size = PAGE_SIZE;
2399
2400         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2401         if (kvm_is_error_hva(addr))
2402                 return PAGE_SIZE;
2403
2404         mmap_read_lock(current->mm);
2405         vma = find_vma(current->mm, addr);
2406         if (!vma)
2407                 goto out;
2408
2409         size = vma_kernel_pagesize(vma);
2410
2411 out:
2412         mmap_read_unlock(current->mm);
2413
2414         return size;
2415 }
2416
2417 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2418 {
2419         return slot->flags & KVM_MEM_READONLY;
2420 }
2421
2422 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2423                                        gfn_t *nr_pages, bool write)
2424 {
2425         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2426                 return KVM_HVA_ERR_BAD;
2427
2428         if (memslot_is_readonly(slot) && write)
2429                 return KVM_HVA_ERR_RO_BAD;
2430
2431         if (nr_pages)
2432                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2433
2434         return __gfn_to_hva_memslot(slot, gfn);
2435 }
2436
2437 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2438                                      gfn_t *nr_pages)
2439 {
2440         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2441 }
2442
2443 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2444                                         gfn_t gfn)
2445 {
2446         return gfn_to_hva_many(slot, gfn, NULL);
2447 }
2448 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2449
2450 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2451 {
2452         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2453 }
2454 EXPORT_SYMBOL_GPL(gfn_to_hva);
2455
2456 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2457 {
2458         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2461
2462 /*
2463  * Return the hva of a @gfn and the R/W attribute if possible.
2464  *
2465  * @slot: the kvm_memory_slot which contains @gfn
2466  * @gfn: the gfn to be translated
2467  * @writable: used to return the read/write attribute of the @slot if the hva
2468  * is valid and @writable is not NULL
2469  */
2470 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2471                                       gfn_t gfn, bool *writable)
2472 {
2473         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2474
2475         if (!kvm_is_error_hva(hva) && writable)
2476                 *writable = !memslot_is_readonly(slot);
2477
2478         return hva;
2479 }
2480
2481 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2482 {
2483         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2484
2485         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2486 }
2487
2488 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2489 {
2490         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2491
2492         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2493 }
2494
2495 static inline int check_user_page_hwpoison(unsigned long addr)
2496 {
2497         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2498
2499         rc = get_user_pages(addr, 1, flags, NULL);
2500         return rc == -EHWPOISON;
2501 }
2502
2503 /*
2504  * The fast path to get the writable pfn which will be stored in @pfn,
2505  * true indicates success, otherwise false is returned.  It's also the
2506  * only part that runs if we can in atomic context.
2507  */
2508 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2509                             bool *writable, kvm_pfn_t *pfn)
2510 {
2511         struct page *page[1];
2512
2513         /*
2514          * Fast pin a writable pfn only if it is a write fault request
2515          * or the caller allows to map a writable pfn for a read fault
2516          * request.
2517          */
2518         if (!(write_fault || writable))
2519                 return false;
2520
2521         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2522                 *pfn = page_to_pfn(page[0]);
2523
2524                 if (writable)
2525                         *writable = true;
2526                 return true;
2527         }
2528
2529         return false;
2530 }
2531
2532 /*
2533  * The slow path to get the pfn of the specified host virtual address,
2534  * 1 indicates success, -errno is returned if error is detected.
2535  */
2536 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2537                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2538 {
2539         /*
2540          * When a VCPU accesses a page that is not mapped into the secondary
2541          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2542          * make progress. We always want to honor NUMA hinting faults in that
2543          * case, because GUP usage corresponds to memory accesses from the VCPU.
2544          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2545          * mapped into the secondary MMU and gets accessed by a VCPU.
2546          *
2547          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2548          * implicitly honor NUMA hinting faults and don't need this flag.
2549          */
2550         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2551         struct page *page;
2552         int npages;
2553
2554         might_sleep();
2555
2556         if (writable)
2557                 *writable = write_fault;
2558
2559         if (write_fault)
2560                 flags |= FOLL_WRITE;
2561         if (async)
2562                 flags |= FOLL_NOWAIT;
2563         if (interruptible)
2564                 flags |= FOLL_INTERRUPTIBLE;
2565
2566         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2567         if (npages != 1)
2568                 return npages;
2569
2570         /* map read fault as writable if possible */
2571         if (unlikely(!write_fault) && writable) {
2572                 struct page *wpage;
2573
2574                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2575                         *writable = true;
2576                         put_page(page);
2577                         page = wpage;
2578                 }
2579         }
2580         *pfn = page_to_pfn(page);
2581         return npages;
2582 }
2583
2584 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2585 {
2586         if (unlikely(!(vma->vm_flags & VM_READ)))
2587                 return false;
2588
2589         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2590                 return false;
2591
2592         return true;
2593 }
2594
2595 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2596 {
2597         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2598
2599         if (!page)
2600                 return 1;
2601
2602         return get_page_unless_zero(page);
2603 }
2604
2605 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2606                                unsigned long addr, bool write_fault,
2607                                bool *writable, kvm_pfn_t *p_pfn)
2608 {
2609         kvm_pfn_t pfn;
2610         pte_t *ptep;
2611         pte_t pte;
2612         spinlock_t *ptl;
2613         int r;
2614
2615         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2616         if (r) {
2617                 /*
2618                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2619                  * not call the fault handler, so do it here.
2620                  */
2621                 bool unlocked = false;
2622                 r = fixup_user_fault(current->mm, addr,
2623                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2624                                      &unlocked);
2625                 if (unlocked)
2626                         return -EAGAIN;
2627                 if (r)
2628                         return r;
2629
2630                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2631                 if (r)
2632                         return r;
2633         }
2634
2635         pte = ptep_get(ptep);
2636
2637         if (write_fault && !pte_write(pte)) {
2638                 pfn = KVM_PFN_ERR_RO_FAULT;
2639                 goto out;
2640         }
2641
2642         if (writable)
2643                 *writable = pte_write(pte);
2644         pfn = pte_pfn(pte);
2645
2646         /*
2647          * Get a reference here because callers of *hva_to_pfn* and
2648          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2649          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2650          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2651          * simply do nothing for reserved pfns.
2652          *
2653          * Whoever called remap_pfn_range is also going to call e.g.
2654          * unmap_mapping_range before the underlying pages are freed,
2655          * causing a call to our MMU notifier.
2656          *
2657          * Certain IO or PFNMAP mappings can be backed with valid
2658          * struct pages, but be allocated without refcounting e.g.,
2659          * tail pages of non-compound higher order allocations, which
2660          * would then underflow the refcount when the caller does the
2661          * required put_page. Don't allow those pages here.
2662          */
2663         if (!kvm_try_get_pfn(pfn))
2664                 r = -EFAULT;
2665
2666 out:
2667         pte_unmap_unlock(ptep, ptl);
2668         *p_pfn = pfn;
2669
2670         return r;
2671 }
2672
2673 /*
2674  * Pin guest page in memory and return its pfn.
2675  * @addr: host virtual address which maps memory to the guest
2676  * @atomic: whether this function can sleep
2677  * @interruptible: whether the process can be interrupted by non-fatal signals
2678  * @async: whether this function need to wait IO complete if the
2679  *         host page is not in the memory
2680  * @write_fault: whether we should get a writable host page
2681  * @writable: whether it allows to map a writable host page for !@write_fault
2682  *
2683  * The function will map a writable host page for these two cases:
2684  * 1): @write_fault = true
2685  * 2): @write_fault = false && @writable, @writable will tell the caller
2686  *     whether the mapping is writable.
2687  */
2688 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2689                      bool *async, bool write_fault, bool *writable)
2690 {
2691         struct vm_area_struct *vma;
2692         kvm_pfn_t pfn;
2693         int npages, r;
2694
2695         /* we can do it either atomically or asynchronously, not both */
2696         BUG_ON(atomic && async);
2697
2698         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2699                 return pfn;
2700
2701         if (atomic)
2702                 return KVM_PFN_ERR_FAULT;
2703
2704         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2705                                  writable, &pfn);
2706         if (npages == 1)
2707                 return pfn;
2708         if (npages == -EINTR)
2709                 return KVM_PFN_ERR_SIGPENDING;
2710
2711         mmap_read_lock(current->mm);
2712         if (npages == -EHWPOISON ||
2713               (!async && check_user_page_hwpoison(addr))) {
2714                 pfn = KVM_PFN_ERR_HWPOISON;
2715                 goto exit;
2716         }
2717
2718 retry:
2719         vma = vma_lookup(current->mm, addr);
2720
2721         if (vma == NULL)
2722                 pfn = KVM_PFN_ERR_FAULT;
2723         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2724                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2725                 if (r == -EAGAIN)
2726                         goto retry;
2727                 if (r < 0)
2728                         pfn = KVM_PFN_ERR_FAULT;
2729         } else {
2730                 if (async && vma_is_valid(vma, write_fault))
2731                         *async = true;
2732                 pfn = KVM_PFN_ERR_FAULT;
2733         }
2734 exit:
2735         mmap_read_unlock(current->mm);
2736         return pfn;
2737 }
2738
2739 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2740                                bool atomic, bool interruptible, bool *async,
2741                                bool write_fault, bool *writable, hva_t *hva)
2742 {
2743         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2744
2745         if (hva)
2746                 *hva = addr;
2747
2748         if (addr == KVM_HVA_ERR_RO_BAD) {
2749                 if (writable)
2750                         *writable = false;
2751                 return KVM_PFN_ERR_RO_FAULT;
2752         }
2753
2754         if (kvm_is_error_hva(addr)) {
2755                 if (writable)
2756                         *writable = false;
2757                 return KVM_PFN_NOSLOT;
2758         }
2759
2760         /* Do not map writable pfn in the readonly memslot. */
2761         if (writable && memslot_is_readonly(slot)) {
2762                 *writable = false;
2763                 writable = NULL;
2764         }
2765
2766         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2767                           writable);
2768 }
2769 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2770
2771 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2772                       bool *writable)
2773 {
2774         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2775                                     NULL, write_fault, writable, NULL);
2776 }
2777 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2778
2779 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2780 {
2781         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2782                                     NULL, NULL);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2785
2786 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2787 {
2788         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2789                                     NULL, NULL);
2790 }
2791 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2792
2793 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2794 {
2795         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2798
2799 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2800 {
2801         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2802 }
2803 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2804
2805 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2806 {
2807         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2810
2811 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2812                             struct page **pages, int nr_pages)
2813 {
2814         unsigned long addr;
2815         gfn_t entry = 0;
2816
2817         addr = gfn_to_hva_many(slot, gfn, &entry);
2818         if (kvm_is_error_hva(addr))
2819                 return -1;
2820
2821         if (entry < nr_pages)
2822                 return 0;
2823
2824         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2825 }
2826 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2827
2828 /*
2829  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2830  * backed by 'struct page'.  A valid example is if the backing memslot is
2831  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2832  * been elevated by gfn_to_pfn().
2833  */
2834 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2835 {
2836         struct page *page;
2837         kvm_pfn_t pfn;
2838
2839         pfn = gfn_to_pfn(kvm, gfn);
2840
2841         if (is_error_noslot_pfn(pfn))
2842                 return KVM_ERR_PTR_BAD_PAGE;
2843
2844         page = kvm_pfn_to_refcounted_page(pfn);
2845         if (!page)
2846                 return KVM_ERR_PTR_BAD_PAGE;
2847
2848         return page;
2849 }
2850 EXPORT_SYMBOL_GPL(gfn_to_page);
2851
2852 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2853 {
2854         if (dirty)
2855                 kvm_release_pfn_dirty(pfn);
2856         else
2857                 kvm_release_pfn_clean(pfn);
2858 }
2859
2860 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2861 {
2862         kvm_pfn_t pfn;
2863         void *hva = NULL;
2864         struct page *page = KVM_UNMAPPED_PAGE;
2865
2866         if (!map)
2867                 return -EINVAL;
2868
2869         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2870         if (is_error_noslot_pfn(pfn))
2871                 return -EINVAL;
2872
2873         if (pfn_valid(pfn)) {
2874                 page = pfn_to_page(pfn);
2875                 hva = kmap(page);
2876 #ifdef CONFIG_HAS_IOMEM
2877         } else {
2878                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2879 #endif
2880         }
2881
2882         if (!hva)
2883                 return -EFAULT;
2884
2885         map->page = page;
2886         map->hva = hva;
2887         map->pfn = pfn;
2888         map->gfn = gfn;
2889
2890         return 0;
2891 }
2892 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2893
2894 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2895 {
2896         if (!map)
2897                 return;
2898
2899         if (!map->hva)
2900                 return;
2901
2902         if (map->page != KVM_UNMAPPED_PAGE)
2903                 kunmap(map->page);
2904 #ifdef CONFIG_HAS_IOMEM
2905         else
2906                 memunmap(map->hva);
2907 #endif
2908
2909         if (dirty)
2910                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2911
2912         kvm_release_pfn(map->pfn, dirty);
2913
2914         map->hva = NULL;
2915         map->page = NULL;
2916 }
2917 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2918
2919 static bool kvm_is_ad_tracked_page(struct page *page)
2920 {
2921         /*
2922          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2923          * touched (e.g. set dirty) except by its owner".
2924          */
2925         return !PageReserved(page);
2926 }
2927
2928 static void kvm_set_page_dirty(struct page *page)
2929 {
2930         if (kvm_is_ad_tracked_page(page))
2931                 SetPageDirty(page);
2932 }
2933
2934 static void kvm_set_page_accessed(struct page *page)
2935 {
2936         if (kvm_is_ad_tracked_page(page))
2937                 mark_page_accessed(page);
2938 }
2939
2940 void kvm_release_page_clean(struct page *page)
2941 {
2942         WARN_ON(is_error_page(page));
2943
2944         kvm_set_page_accessed(page);
2945         put_page(page);
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2948
2949 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2950 {
2951         struct page *page;
2952
2953         if (is_error_noslot_pfn(pfn))
2954                 return;
2955
2956         page = kvm_pfn_to_refcounted_page(pfn);
2957         if (!page)
2958                 return;
2959
2960         kvm_release_page_clean(page);
2961 }
2962 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2963
2964 void kvm_release_page_dirty(struct page *page)
2965 {
2966         WARN_ON(is_error_page(page));
2967
2968         kvm_set_page_dirty(page);
2969         kvm_release_page_clean(page);
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2972
2973 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2974 {
2975         struct page *page;
2976
2977         if (is_error_noslot_pfn(pfn))
2978                 return;
2979
2980         page = kvm_pfn_to_refcounted_page(pfn);
2981         if (!page)
2982                 return;
2983
2984         kvm_release_page_dirty(page);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2987
2988 /*
2989  * Note, checking for an error/noslot pfn is the caller's responsibility when
2990  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2991  * "set" helpers are not to be used when the pfn might point at garbage.
2992  */
2993 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2994 {
2995         if (WARN_ON(is_error_noslot_pfn(pfn)))
2996                 return;
2997
2998         if (pfn_valid(pfn))
2999                 kvm_set_page_dirty(pfn_to_page(pfn));
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3002
3003 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3004 {
3005         if (WARN_ON(is_error_noslot_pfn(pfn)))
3006                 return;
3007
3008         if (pfn_valid(pfn))
3009                 kvm_set_page_accessed(pfn_to_page(pfn));
3010 }
3011 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3012
3013 static int next_segment(unsigned long len, int offset)
3014 {
3015         if (len > PAGE_SIZE - offset)
3016                 return PAGE_SIZE - offset;
3017         else
3018                 return len;
3019 }
3020
3021 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3022                                  void *data, int offset, int len)
3023 {
3024         int r;
3025         unsigned long addr;
3026
3027         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3028         if (kvm_is_error_hva(addr))
3029                 return -EFAULT;
3030         r = __copy_from_user(data, (void __user *)addr + offset, len);
3031         if (r)
3032                 return -EFAULT;
3033         return 0;
3034 }
3035
3036 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3037                         int len)
3038 {
3039         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3040
3041         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3042 }
3043 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3044
3045 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3046                              int offset, int len)
3047 {
3048         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3049
3050         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3053
3054 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3055 {
3056         gfn_t gfn = gpa >> PAGE_SHIFT;
3057         int seg;
3058         int offset = offset_in_page(gpa);
3059         int ret;
3060
3061         while ((seg = next_segment(len, offset)) != 0) {
3062                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3063                 if (ret < 0)
3064                         return ret;
3065                 offset = 0;
3066                 len -= seg;
3067                 data += seg;
3068                 ++gfn;
3069         }
3070         return 0;
3071 }
3072 EXPORT_SYMBOL_GPL(kvm_read_guest);
3073
3074 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3075 {
3076         gfn_t gfn = gpa >> PAGE_SHIFT;
3077         int seg;
3078         int offset = offset_in_page(gpa);
3079         int ret;
3080
3081         while ((seg = next_segment(len, offset)) != 0) {
3082                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3083                 if (ret < 0)
3084                         return ret;
3085                 offset = 0;
3086                 len -= seg;
3087                 data += seg;
3088                 ++gfn;
3089         }
3090         return 0;
3091 }
3092 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3093
3094 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3095                                    void *data, int offset, unsigned long len)
3096 {
3097         int r;
3098         unsigned long addr;
3099
3100         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3101         if (kvm_is_error_hva(addr))
3102                 return -EFAULT;
3103         pagefault_disable();
3104         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3105         pagefault_enable();
3106         if (r)
3107                 return -EFAULT;
3108         return 0;
3109 }
3110
3111 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3112                                void *data, unsigned long len)
3113 {
3114         gfn_t gfn = gpa >> PAGE_SHIFT;
3115         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3116         int offset = offset_in_page(gpa);
3117
3118         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3119 }
3120 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3121
3122 static int __kvm_write_guest_page(struct kvm *kvm,
3123                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3124                                   const void *data, int offset, int len)
3125 {
3126         int r;
3127         unsigned long addr;
3128
3129         addr = gfn_to_hva_memslot(memslot, gfn);
3130         if (kvm_is_error_hva(addr))
3131                 return -EFAULT;
3132         r = __copy_to_user((void __user *)addr + offset, data, len);
3133         if (r)
3134                 return -EFAULT;
3135         mark_page_dirty_in_slot(kvm, memslot, gfn);
3136         return 0;
3137 }
3138
3139 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3140                          const void *data, int offset, int len)
3141 {
3142         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3143
3144         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3147
3148 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3149                               const void *data, int offset, int len)
3150 {
3151         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3152
3153         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3156
3157 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3158                     unsigned long len)
3159 {
3160         gfn_t gfn = gpa >> PAGE_SHIFT;
3161         int seg;
3162         int offset = offset_in_page(gpa);
3163         int ret;
3164
3165         while ((seg = next_segment(len, offset)) != 0) {
3166                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3167                 if (ret < 0)
3168                         return ret;
3169                 offset = 0;
3170                 len -= seg;
3171                 data += seg;
3172                 ++gfn;
3173         }
3174         return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(kvm_write_guest);
3177
3178 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3179                          unsigned long len)
3180 {
3181         gfn_t gfn = gpa >> PAGE_SHIFT;
3182         int seg;
3183         int offset = offset_in_page(gpa);
3184         int ret;
3185
3186         while ((seg = next_segment(len, offset)) != 0) {
3187                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3188                 if (ret < 0)
3189                         return ret;
3190                 offset = 0;
3191                 len -= seg;
3192                 data += seg;
3193                 ++gfn;
3194         }
3195         return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3198
3199 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3200                                        struct gfn_to_hva_cache *ghc,
3201                                        gpa_t gpa, unsigned long len)
3202 {
3203         int offset = offset_in_page(gpa);
3204         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3205         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3206         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3207         gfn_t nr_pages_avail;
3208
3209         /* Update ghc->generation before performing any error checks. */
3210         ghc->generation = slots->generation;
3211
3212         if (start_gfn > end_gfn) {
3213                 ghc->hva = KVM_HVA_ERR_BAD;
3214                 return -EINVAL;
3215         }
3216
3217         /*
3218          * If the requested region crosses two memslots, we still
3219          * verify that the entire region is valid here.
3220          */
3221         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3222                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3223                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3224                                            &nr_pages_avail);
3225                 if (kvm_is_error_hva(ghc->hva))
3226                         return -EFAULT;
3227         }
3228
3229         /* Use the slow path for cross page reads and writes. */
3230         if (nr_pages_needed == 1)
3231                 ghc->hva += offset;
3232         else
3233                 ghc->memslot = NULL;
3234
3235         ghc->gpa = gpa;
3236         ghc->len = len;
3237         return 0;
3238 }
3239
3240 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3241                               gpa_t gpa, unsigned long len)
3242 {
3243         struct kvm_memslots *slots = kvm_memslots(kvm);
3244         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3247
3248 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3249                                   void *data, unsigned int offset,
3250                                   unsigned long len)
3251 {
3252         struct kvm_memslots *slots = kvm_memslots(kvm);
3253         int r;
3254         gpa_t gpa = ghc->gpa + offset;
3255
3256         if (WARN_ON_ONCE(len + offset > ghc->len))
3257                 return -EINVAL;
3258
3259         if (slots->generation != ghc->generation) {
3260                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3261                         return -EFAULT;
3262         }
3263
3264         if (kvm_is_error_hva(ghc->hva))
3265                 return -EFAULT;
3266
3267         if (unlikely(!ghc->memslot))
3268                 return kvm_write_guest(kvm, gpa, data, len);
3269
3270         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3271         if (r)
3272                 return -EFAULT;
3273         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3274
3275         return 0;
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3278
3279 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3280                            void *data, unsigned long len)
3281 {
3282         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3285
3286 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287                                  void *data, unsigned int offset,
3288                                  unsigned long len)
3289 {
3290         struct kvm_memslots *slots = kvm_memslots(kvm);
3291         int r;
3292         gpa_t gpa = ghc->gpa + offset;
3293
3294         if (WARN_ON_ONCE(len + offset > ghc->len))
3295                 return -EINVAL;
3296
3297         if (slots->generation != ghc->generation) {
3298                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3299                         return -EFAULT;
3300         }
3301
3302         if (kvm_is_error_hva(ghc->hva))
3303                 return -EFAULT;
3304
3305         if (unlikely(!ghc->memslot))
3306                 return kvm_read_guest(kvm, gpa, data, len);
3307
3308         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3309         if (r)
3310                 return -EFAULT;
3311
3312         return 0;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3315
3316 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3317                           void *data, unsigned long len)
3318 {
3319         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3322
3323 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3324 {
3325         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3326         gfn_t gfn = gpa >> PAGE_SHIFT;
3327         int seg;
3328         int offset = offset_in_page(gpa);
3329         int ret;
3330
3331         while ((seg = next_segment(len, offset)) != 0) {
3332                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3333                 if (ret < 0)
3334                         return ret;
3335                 offset = 0;
3336                 len -= seg;
3337                 ++gfn;
3338         }
3339         return 0;
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3342
3343 void mark_page_dirty_in_slot(struct kvm *kvm,
3344                              const struct kvm_memory_slot *memslot,
3345                              gfn_t gfn)
3346 {
3347         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3348
3349 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3350         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3351                 return;
3352
3353         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3354 #endif
3355
3356         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3357                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3358                 u32 slot = (memslot->as_id << 16) | memslot->id;
3359
3360                 if (kvm->dirty_ring_size && vcpu)
3361                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3362                 else if (memslot->dirty_bitmap)
3363                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3364         }
3365 }
3366 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3367
3368 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3369 {
3370         struct kvm_memory_slot *memslot;
3371
3372         memslot = gfn_to_memslot(kvm, gfn);
3373         mark_page_dirty_in_slot(kvm, memslot, gfn);
3374 }
3375 EXPORT_SYMBOL_GPL(mark_page_dirty);
3376
3377 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3378 {
3379         struct kvm_memory_slot *memslot;
3380
3381         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3382         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3385
3386 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3387 {
3388         if (!vcpu->sigset_active)
3389                 return;
3390
3391         /*
3392          * This does a lockless modification of ->real_blocked, which is fine
3393          * because, only current can change ->real_blocked and all readers of
3394          * ->real_blocked don't care as long ->real_blocked is always a subset
3395          * of ->blocked.
3396          */
3397         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3398 }
3399
3400 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3401 {
3402         if (!vcpu->sigset_active)
3403                 return;
3404
3405         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3406         sigemptyset(&current->real_blocked);
3407 }
3408
3409 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3410 {
3411         unsigned int old, val, grow, grow_start;
3412
3413         old = val = vcpu->halt_poll_ns;
3414         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3415         grow = READ_ONCE(halt_poll_ns_grow);
3416         if (!grow)
3417                 goto out;
3418
3419         val *= grow;
3420         if (val < grow_start)
3421                 val = grow_start;
3422
3423         vcpu->halt_poll_ns = val;
3424 out:
3425         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3426 }
3427
3428 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3429 {
3430         unsigned int old, val, shrink, grow_start;
3431
3432         old = val = vcpu->halt_poll_ns;
3433         shrink = READ_ONCE(halt_poll_ns_shrink);
3434         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3435         if (shrink == 0)
3436                 val = 0;
3437         else
3438                 val /= shrink;
3439
3440         if (val < grow_start)
3441                 val = 0;
3442
3443         vcpu->halt_poll_ns = val;
3444         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3445 }
3446
3447 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3448 {
3449         int ret = -EINTR;
3450         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3451
3452         if (kvm_arch_vcpu_runnable(vcpu))
3453                 goto out;
3454         if (kvm_cpu_has_pending_timer(vcpu))
3455                 goto out;
3456         if (signal_pending(current))
3457                 goto out;
3458         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3459                 goto out;
3460
3461         ret = 0;
3462 out:
3463         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3464         return ret;
3465 }
3466
3467 /*
3468  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3469  * pending.  This is mostly used when halting a vCPU, but may also be used
3470  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3471  */
3472 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3473 {
3474         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3475         bool waited = false;
3476
3477         vcpu->stat.generic.blocking = 1;
3478
3479         preempt_disable();
3480         kvm_arch_vcpu_blocking(vcpu);
3481         prepare_to_rcuwait(wait);
3482         preempt_enable();
3483
3484         for (;;) {
3485                 set_current_state(TASK_INTERRUPTIBLE);
3486
3487                 if (kvm_vcpu_check_block(vcpu) < 0)
3488                         break;
3489
3490                 waited = true;
3491                 schedule();
3492         }
3493
3494         preempt_disable();
3495         finish_rcuwait(wait);
3496         kvm_arch_vcpu_unblocking(vcpu);
3497         preempt_enable();
3498
3499         vcpu->stat.generic.blocking = 0;
3500
3501         return waited;
3502 }
3503
3504 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3505                                           ktime_t end, bool success)
3506 {
3507         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3508         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3509
3510         ++vcpu->stat.generic.halt_attempted_poll;
3511
3512         if (success) {
3513                 ++vcpu->stat.generic.halt_successful_poll;
3514
3515                 if (!vcpu_valid_wakeup(vcpu))
3516                         ++vcpu->stat.generic.halt_poll_invalid;
3517
3518                 stats->halt_poll_success_ns += poll_ns;
3519                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3520         } else {
3521                 stats->halt_poll_fail_ns += poll_ns;
3522                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3523         }
3524 }
3525
3526 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3527 {
3528         struct kvm *kvm = vcpu->kvm;
3529
3530         if (kvm->override_halt_poll_ns) {
3531                 /*
3532                  * Ensure kvm->max_halt_poll_ns is not read before
3533                  * kvm->override_halt_poll_ns.
3534                  *
3535                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3536                  */
3537                 smp_rmb();
3538                 return READ_ONCE(kvm->max_halt_poll_ns);
3539         }
3540
3541         return READ_ONCE(halt_poll_ns);
3542 }
3543
3544 /*
3545  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3546  * polling is enabled, busy wait for a short time before blocking to avoid the
3547  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3548  * is halted.
3549  */
3550 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3551 {
3552         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3553         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3554         ktime_t start, cur, poll_end;
3555         bool waited = false;
3556         bool do_halt_poll;
3557         u64 halt_ns;
3558
3559         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3560                 vcpu->halt_poll_ns = max_halt_poll_ns;
3561
3562         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3563
3564         start = cur = poll_end = ktime_get();
3565         if (do_halt_poll) {
3566                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3567
3568                 do {
3569                         if (kvm_vcpu_check_block(vcpu) < 0)
3570                                 goto out;
3571                         cpu_relax();
3572                         poll_end = cur = ktime_get();
3573                 } while (kvm_vcpu_can_poll(cur, stop));
3574         }
3575
3576         waited = kvm_vcpu_block(vcpu);
3577
3578         cur = ktime_get();
3579         if (waited) {
3580                 vcpu->stat.generic.halt_wait_ns +=
3581                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3582                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3583                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3584         }
3585 out:
3586         /* The total time the vCPU was "halted", including polling time. */
3587         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3588
3589         /*
3590          * Note, halt-polling is considered successful so long as the vCPU was
3591          * never actually scheduled out, i.e. even if the wake event arrived
3592          * after of the halt-polling loop itself, but before the full wait.
3593          */
3594         if (do_halt_poll)
3595                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3596
3597         if (halt_poll_allowed) {
3598                 /* Recompute the max halt poll time in case it changed. */
3599                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3600
3601                 if (!vcpu_valid_wakeup(vcpu)) {
3602                         shrink_halt_poll_ns(vcpu);
3603                 } else if (max_halt_poll_ns) {
3604                         if (halt_ns <= vcpu->halt_poll_ns)
3605                                 ;
3606                         /* we had a long block, shrink polling */
3607                         else if (vcpu->halt_poll_ns &&
3608                                  halt_ns > max_halt_poll_ns)
3609                                 shrink_halt_poll_ns(vcpu);
3610                         /* we had a short halt and our poll time is too small */
3611                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3612                                  halt_ns < max_halt_poll_ns)
3613                                 grow_halt_poll_ns(vcpu);
3614                 } else {
3615                         vcpu->halt_poll_ns = 0;
3616                 }
3617         }
3618
3619         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3622
3623 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3624 {
3625         if (__kvm_vcpu_wake_up(vcpu)) {
3626                 WRITE_ONCE(vcpu->ready, true);
3627                 ++vcpu->stat.generic.halt_wakeup;
3628                 return true;
3629         }
3630
3631         return false;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3634
3635 #ifndef CONFIG_S390
3636 /*
3637  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3638  */
3639 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3640 {
3641         int me, cpu;
3642
3643         if (kvm_vcpu_wake_up(vcpu))
3644                 return;
3645
3646         me = get_cpu();
3647         /*
3648          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3649          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3650          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3651          * within the vCPU thread itself.
3652          */
3653         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3654                 if (vcpu->mode == IN_GUEST_MODE)
3655                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3656                 goto out;
3657         }
3658
3659         /*
3660          * Note, the vCPU could get migrated to a different pCPU at any point
3661          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3662          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3663          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3664          * vCPU also requires it to leave IN_GUEST_MODE.
3665          */
3666         if (kvm_arch_vcpu_should_kick(vcpu)) {
3667                 cpu = READ_ONCE(vcpu->cpu);
3668                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3669                         smp_send_reschedule(cpu);
3670         }
3671 out:
3672         put_cpu();
3673 }
3674 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3675 #endif /* !CONFIG_S390 */
3676
3677 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3678 {
3679         struct pid *pid;
3680         struct task_struct *task = NULL;
3681         int ret = 0;
3682
3683         rcu_read_lock();
3684         pid = rcu_dereference(target->pid);
3685         if (pid)
3686                 task = get_pid_task(pid, PIDTYPE_PID);
3687         rcu_read_unlock();
3688         if (!task)
3689                 return ret;
3690         ret = yield_to(task, 1);
3691         put_task_struct(task);
3692
3693         return ret;
3694 }
3695 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3696
3697 /*
3698  * Helper that checks whether a VCPU is eligible for directed yield.
3699  * Most eligible candidate to yield is decided by following heuristics:
3700  *
3701  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3702  *  (preempted lock holder), indicated by @in_spin_loop.
3703  *  Set at the beginning and cleared at the end of interception/PLE handler.
3704  *
3705  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3706  *  chance last time (mostly it has become eligible now since we have probably
3707  *  yielded to lockholder in last iteration. This is done by toggling
3708  *  @dy_eligible each time a VCPU checked for eligibility.)
3709  *
3710  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3711  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3712  *  burning. Giving priority for a potential lock-holder increases lock
3713  *  progress.
3714  *
3715  *  Since algorithm is based on heuristics, accessing another VCPU data without
3716  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3717  *  and continue with next VCPU and so on.
3718  */
3719 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3720 {
3721 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3722         bool eligible;
3723
3724         eligible = !vcpu->spin_loop.in_spin_loop ||
3725                     vcpu->spin_loop.dy_eligible;
3726
3727         if (vcpu->spin_loop.in_spin_loop)
3728                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3729
3730         return eligible;
3731 #else
3732         return true;
3733 #endif
3734 }
3735
3736 /*
3737  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3738  * a vcpu_load/vcpu_put pair.  However, for most architectures
3739  * kvm_arch_vcpu_runnable does not require vcpu_load.
3740  */
3741 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3742 {
3743         return kvm_arch_vcpu_runnable(vcpu);
3744 }
3745
3746 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3747 {
3748         if (kvm_arch_dy_runnable(vcpu))
3749                 return true;
3750
3751 #ifdef CONFIG_KVM_ASYNC_PF
3752         if (!list_empty_careful(&vcpu->async_pf.done))
3753                 return true;
3754 #endif
3755
3756         return false;
3757 }
3758
3759 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3760 {
3761         return false;
3762 }
3763
3764 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3765 {
3766         struct kvm *kvm = me->kvm;
3767         struct kvm_vcpu *vcpu;
3768         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3769         unsigned long i;
3770         int yielded = 0;
3771         int try = 3;
3772         int pass;
3773
3774         kvm_vcpu_set_in_spin_loop(me, true);
3775         /*
3776          * We boost the priority of a VCPU that is runnable but not
3777          * currently running, because it got preempted by something
3778          * else and called schedule in __vcpu_run.  Hopefully that
3779          * VCPU is holding the lock that we need and will release it.
3780          * We approximate round-robin by starting at the last boosted VCPU.
3781          */
3782         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3783                 kvm_for_each_vcpu(i, vcpu, kvm) {
3784                         if (!pass && i <= last_boosted_vcpu) {
3785                                 i = last_boosted_vcpu;
3786                                 continue;
3787                         } else if (pass && i > last_boosted_vcpu)
3788                                 break;
3789                         if (!READ_ONCE(vcpu->ready))
3790                                 continue;
3791                         if (vcpu == me)
3792                                 continue;
3793                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3794                                 continue;
3795                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3796                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3797                             !kvm_arch_vcpu_in_kernel(vcpu))
3798                                 continue;
3799                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3800                                 continue;
3801
3802                         yielded = kvm_vcpu_yield_to(vcpu);
3803                         if (yielded > 0) {
3804                                 kvm->last_boosted_vcpu = i;
3805                                 break;
3806                         } else if (yielded < 0) {
3807                                 try--;
3808                                 if (!try)
3809                                         break;
3810                         }
3811                 }
3812         }
3813         kvm_vcpu_set_in_spin_loop(me, false);
3814
3815         /* Ensure vcpu is not eligible during next spinloop */
3816         kvm_vcpu_set_dy_eligible(me, false);
3817 }
3818 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3819
3820 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3821 {
3822 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3823         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3824             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3825              kvm->dirty_ring_size / PAGE_SIZE);
3826 #else
3827         return false;
3828 #endif
3829 }
3830
3831 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3832 {
3833         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3834         struct page *page;
3835
3836         if (vmf->pgoff == 0)
3837                 page = virt_to_page(vcpu->run);
3838 #ifdef CONFIG_X86
3839         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3840                 page = virt_to_page(vcpu->arch.pio_data);
3841 #endif
3842 #ifdef CONFIG_KVM_MMIO
3843         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3844                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3845 #endif
3846         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3847                 page = kvm_dirty_ring_get_page(
3848                     &vcpu->dirty_ring,
3849                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3850         else
3851                 return kvm_arch_vcpu_fault(vcpu, vmf);
3852         get_page(page);
3853         vmf->page = page;
3854         return 0;
3855 }
3856
3857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3858         .fault = kvm_vcpu_fault,
3859 };
3860
3861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3862 {
3863         struct kvm_vcpu *vcpu = file->private_data;
3864         unsigned long pages = vma_pages(vma);
3865
3866         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3867              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3868             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3869                 return -EINVAL;
3870
3871         vma->vm_ops = &kvm_vcpu_vm_ops;
3872         return 0;
3873 }
3874
3875 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3876 {
3877         struct kvm_vcpu *vcpu = filp->private_data;
3878
3879         kvm_put_kvm(vcpu->kvm);
3880         return 0;
3881 }
3882
3883 static struct file_operations kvm_vcpu_fops = {
3884         .release        = kvm_vcpu_release,
3885         .unlocked_ioctl = kvm_vcpu_ioctl,
3886         .mmap           = kvm_vcpu_mmap,
3887         .llseek         = noop_llseek,
3888         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3889 };
3890
3891 /*
3892  * Allocates an inode for the vcpu.
3893  */
3894 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3895 {
3896         char name[8 + 1 + ITOA_MAX_LEN + 1];
3897
3898         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3899         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3900 }
3901
3902 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3903 static int vcpu_get_pid(void *data, u64 *val)
3904 {
3905         struct kvm_vcpu *vcpu = data;
3906
3907         rcu_read_lock();
3908         *val = pid_nr(rcu_dereference(vcpu->pid));
3909         rcu_read_unlock();
3910         return 0;
3911 }
3912
3913 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3914
3915 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3916 {
3917         struct dentry *debugfs_dentry;
3918         char dir_name[ITOA_MAX_LEN * 2];
3919
3920         if (!debugfs_initialized())
3921                 return;
3922
3923         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3924         debugfs_dentry = debugfs_create_dir(dir_name,
3925                                             vcpu->kvm->debugfs_dentry);
3926         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3927                             &vcpu_get_pid_fops);
3928
3929         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3930 }
3931 #endif
3932
3933 /*
3934  * Creates some virtual cpus.  Good luck creating more than one.
3935  */
3936 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3937 {
3938         int r;
3939         struct kvm_vcpu *vcpu;
3940         struct page *page;
3941
3942         if (id >= KVM_MAX_VCPU_IDS)
3943                 return -EINVAL;
3944
3945         mutex_lock(&kvm->lock);
3946         if (kvm->created_vcpus >= kvm->max_vcpus) {
3947                 mutex_unlock(&kvm->lock);
3948                 return -EINVAL;
3949         }
3950
3951         r = kvm_arch_vcpu_precreate(kvm, id);
3952         if (r) {
3953                 mutex_unlock(&kvm->lock);
3954                 return r;
3955         }
3956
3957         kvm->created_vcpus++;
3958         mutex_unlock(&kvm->lock);
3959
3960         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3961         if (!vcpu) {
3962                 r = -ENOMEM;
3963                 goto vcpu_decrement;
3964         }
3965
3966         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3967         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3968         if (!page) {
3969                 r = -ENOMEM;
3970                 goto vcpu_free;
3971         }
3972         vcpu->run = page_address(page);
3973
3974         kvm_vcpu_init(vcpu, kvm, id);
3975
3976         r = kvm_arch_vcpu_create(vcpu);
3977         if (r)
3978                 goto vcpu_free_run_page;
3979
3980         if (kvm->dirty_ring_size) {
3981                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3982                                          id, kvm->dirty_ring_size);
3983                 if (r)
3984                         goto arch_vcpu_destroy;
3985         }
3986
3987         mutex_lock(&kvm->lock);
3988
3989 #ifdef CONFIG_LOCKDEP
3990         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3991         mutex_lock(&vcpu->mutex);
3992         mutex_unlock(&vcpu->mutex);
3993 #endif
3994
3995         if (kvm_get_vcpu_by_id(kvm, id)) {
3996                 r = -EEXIST;
3997                 goto unlock_vcpu_destroy;
3998         }
3999
4000         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4001         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4002         if (r)
4003                 goto unlock_vcpu_destroy;
4004
4005         /* Now it's all set up, let userspace reach it */
4006         kvm_get_kvm(kvm);
4007         r = create_vcpu_fd(vcpu);
4008         if (r < 0)
4009                 goto kvm_put_xa_release;
4010
4011         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4012                 r = -EINVAL;
4013                 goto kvm_put_xa_release;
4014         }
4015
4016         /*
4017          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4018          * pointer before kvm->online_vcpu's incremented value.
4019          */
4020         smp_wmb();
4021         atomic_inc(&kvm->online_vcpus);
4022
4023         mutex_unlock(&kvm->lock);
4024         kvm_arch_vcpu_postcreate(vcpu);
4025         kvm_create_vcpu_debugfs(vcpu);
4026         return r;
4027
4028 kvm_put_xa_release:
4029         kvm_put_kvm_no_destroy(kvm);
4030         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4031 unlock_vcpu_destroy:
4032         mutex_unlock(&kvm->lock);
4033         kvm_dirty_ring_free(&vcpu->dirty_ring);
4034 arch_vcpu_destroy:
4035         kvm_arch_vcpu_destroy(vcpu);
4036 vcpu_free_run_page:
4037         free_page((unsigned long)vcpu->run);
4038 vcpu_free:
4039         kmem_cache_free(kvm_vcpu_cache, vcpu);
4040 vcpu_decrement:
4041         mutex_lock(&kvm->lock);
4042         kvm->created_vcpus--;
4043         mutex_unlock(&kvm->lock);
4044         return r;
4045 }
4046
4047 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4048 {
4049         if (sigset) {
4050                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4051                 vcpu->sigset_active = 1;
4052                 vcpu->sigset = *sigset;
4053         } else
4054                 vcpu->sigset_active = 0;
4055         return 0;
4056 }
4057
4058 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4059                               size_t size, loff_t *offset)
4060 {
4061         struct kvm_vcpu *vcpu = file->private_data;
4062
4063         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4064                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4065                         sizeof(vcpu->stat), user_buffer, size, offset);
4066 }
4067
4068 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4069 {
4070         struct kvm_vcpu *vcpu = file->private_data;
4071
4072         kvm_put_kvm(vcpu->kvm);
4073         return 0;
4074 }
4075
4076 static const struct file_operations kvm_vcpu_stats_fops = {
4077         .owner = THIS_MODULE,
4078         .read = kvm_vcpu_stats_read,
4079         .release = kvm_vcpu_stats_release,
4080         .llseek = noop_llseek,
4081 };
4082
4083 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4084 {
4085         int fd;
4086         struct file *file;
4087         char name[15 + ITOA_MAX_LEN + 1];
4088
4089         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4090
4091         fd = get_unused_fd_flags(O_CLOEXEC);
4092         if (fd < 0)
4093                 return fd;
4094
4095         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4096         if (IS_ERR(file)) {
4097                 put_unused_fd(fd);
4098                 return PTR_ERR(file);
4099         }
4100
4101         kvm_get_kvm(vcpu->kvm);
4102
4103         file->f_mode |= FMODE_PREAD;
4104         fd_install(fd, file);
4105
4106         return fd;
4107 }
4108
4109 static long kvm_vcpu_ioctl(struct file *filp,
4110                            unsigned int ioctl, unsigned long arg)
4111 {
4112         struct kvm_vcpu *vcpu = filp->private_data;
4113         void __user *argp = (void __user *)arg;
4114         int r;
4115         struct kvm_fpu *fpu = NULL;
4116         struct kvm_sregs *kvm_sregs = NULL;
4117
4118         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4119                 return -EIO;
4120
4121         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4122                 return -EINVAL;
4123
4124         /*
4125          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4126          * execution; mutex_lock() would break them.
4127          */
4128         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4129         if (r != -ENOIOCTLCMD)
4130                 return r;
4131
4132         if (mutex_lock_killable(&vcpu->mutex))
4133                 return -EINTR;
4134         switch (ioctl) {
4135         case KVM_RUN: {
4136                 struct pid *oldpid;
4137                 r = -EINVAL;
4138                 if (arg)
4139                         goto out;
4140                 oldpid = rcu_access_pointer(vcpu->pid);
4141                 if (unlikely(oldpid != task_pid(current))) {
4142                         /* The thread running this VCPU changed. */
4143                         struct pid *newpid;
4144
4145                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4146                         if (r)
4147                                 break;
4148
4149                         newpid = get_task_pid(current, PIDTYPE_PID);
4150                         rcu_assign_pointer(vcpu->pid, newpid);
4151                         if (oldpid)
4152                                 synchronize_rcu();
4153                         put_pid(oldpid);
4154                 }
4155                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4156                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4157                 break;
4158         }
4159         case KVM_GET_REGS: {
4160                 struct kvm_regs *kvm_regs;
4161
4162                 r = -ENOMEM;
4163                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4164                 if (!kvm_regs)
4165                         goto out;
4166                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4167                 if (r)
4168                         goto out_free1;
4169                 r = -EFAULT;
4170                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4171                         goto out_free1;
4172                 r = 0;
4173 out_free1:
4174                 kfree(kvm_regs);
4175                 break;
4176         }
4177         case KVM_SET_REGS: {
4178                 struct kvm_regs *kvm_regs;
4179
4180                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4181                 if (IS_ERR(kvm_regs)) {
4182                         r = PTR_ERR(kvm_regs);
4183                         goto out;
4184                 }
4185                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4186                 kfree(kvm_regs);
4187                 break;
4188         }
4189         case KVM_GET_SREGS: {
4190                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4191                                     GFP_KERNEL_ACCOUNT);
4192                 r = -ENOMEM;
4193                 if (!kvm_sregs)
4194                         goto out;
4195                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4196                 if (r)
4197                         goto out;
4198                 r = -EFAULT;
4199                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4200                         goto out;
4201                 r = 0;
4202                 break;
4203         }
4204         case KVM_SET_SREGS: {
4205                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4206                 if (IS_ERR(kvm_sregs)) {
4207                         r = PTR_ERR(kvm_sregs);
4208                         kvm_sregs = NULL;
4209                         goto out;
4210                 }
4211                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4212                 break;
4213         }
4214         case KVM_GET_MP_STATE: {
4215                 struct kvm_mp_state mp_state;
4216
4217                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4218                 if (r)
4219                         goto out;
4220                 r = -EFAULT;
4221                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4222                         goto out;
4223                 r = 0;
4224                 break;
4225         }
4226         case KVM_SET_MP_STATE: {
4227                 struct kvm_mp_state mp_state;
4228
4229                 r = -EFAULT;
4230                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4231                         goto out;
4232                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4233                 break;
4234         }
4235         case KVM_TRANSLATE: {
4236                 struct kvm_translation tr;
4237
4238                 r = -EFAULT;
4239                 if (copy_from_user(&tr, argp, sizeof(tr)))
4240                         goto out;
4241                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4242                 if (r)
4243                         goto out;
4244                 r = -EFAULT;
4245                 if (copy_to_user(argp, &tr, sizeof(tr)))
4246                         goto out;
4247                 r = 0;
4248                 break;
4249         }
4250         case KVM_SET_GUEST_DEBUG: {
4251                 struct kvm_guest_debug dbg;
4252
4253                 r = -EFAULT;
4254                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4255                         goto out;
4256                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4257                 break;
4258         }
4259         case KVM_SET_SIGNAL_MASK: {
4260                 struct kvm_signal_mask __user *sigmask_arg = argp;
4261                 struct kvm_signal_mask kvm_sigmask;
4262                 sigset_t sigset, *p;
4263
4264                 p = NULL;
4265                 if (argp) {
4266                         r = -EFAULT;
4267                         if (copy_from_user(&kvm_sigmask, argp,
4268                                            sizeof(kvm_sigmask)))
4269                                 goto out;
4270                         r = -EINVAL;
4271                         if (kvm_sigmask.len != sizeof(sigset))
4272                                 goto out;
4273                         r = -EFAULT;
4274                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4275                                            sizeof(sigset)))
4276                                 goto out;
4277                         p = &sigset;
4278                 }
4279                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4280                 break;
4281         }
4282         case KVM_GET_FPU: {
4283                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4284                 r = -ENOMEM;
4285                 if (!fpu)
4286                         goto out;
4287                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4288                 if (r)
4289                         goto out;
4290                 r = -EFAULT;
4291                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4292                         goto out;
4293                 r = 0;
4294                 break;
4295         }
4296         case KVM_SET_FPU: {
4297                 fpu = memdup_user(argp, sizeof(*fpu));
4298                 if (IS_ERR(fpu)) {
4299                         r = PTR_ERR(fpu);
4300                         fpu = NULL;
4301                         goto out;
4302                 }
4303                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4304                 break;
4305         }
4306         case KVM_GET_STATS_FD: {
4307                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4308                 break;
4309         }
4310         default:
4311                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4312         }
4313 out:
4314         mutex_unlock(&vcpu->mutex);
4315         kfree(fpu);
4316         kfree(kvm_sregs);
4317         return r;
4318 }
4319
4320 #ifdef CONFIG_KVM_COMPAT
4321 static long kvm_vcpu_compat_ioctl(struct file *filp,
4322                                   unsigned int ioctl, unsigned long arg)
4323 {
4324         struct kvm_vcpu *vcpu = filp->private_data;
4325         void __user *argp = compat_ptr(arg);
4326         int r;
4327
4328         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4329                 return -EIO;
4330
4331         switch (ioctl) {
4332         case KVM_SET_SIGNAL_MASK: {
4333                 struct kvm_signal_mask __user *sigmask_arg = argp;
4334                 struct kvm_signal_mask kvm_sigmask;
4335                 sigset_t sigset;
4336
4337                 if (argp) {
4338                         r = -EFAULT;
4339                         if (copy_from_user(&kvm_sigmask, argp,
4340                                            sizeof(kvm_sigmask)))
4341                                 goto out;
4342                         r = -EINVAL;
4343                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4344                                 goto out;
4345                         r = -EFAULT;
4346                         if (get_compat_sigset(&sigset,
4347                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4348                                 goto out;
4349                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4350                 } else
4351                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4352                 break;
4353         }
4354         default:
4355                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4356         }
4357
4358 out:
4359         return r;
4360 }
4361 #endif
4362
4363 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4364 {
4365         struct kvm_device *dev = filp->private_data;
4366
4367         if (dev->ops->mmap)
4368                 return dev->ops->mmap(dev, vma);
4369
4370         return -ENODEV;
4371 }
4372
4373 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4374                                  int (*accessor)(struct kvm_device *dev,
4375                                                  struct kvm_device_attr *attr),
4376                                  unsigned long arg)
4377 {
4378         struct kvm_device_attr attr;
4379
4380         if (!accessor)
4381                 return -EPERM;
4382
4383         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4384                 return -EFAULT;
4385
4386         return accessor(dev, &attr);
4387 }
4388
4389 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4390                              unsigned long arg)
4391 {
4392         struct kvm_device *dev = filp->private_data;
4393
4394         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4395                 return -EIO;
4396
4397         switch (ioctl) {
4398         case KVM_SET_DEVICE_ATTR:
4399                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4400         case KVM_GET_DEVICE_ATTR:
4401                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4402         case KVM_HAS_DEVICE_ATTR:
4403                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4404         default:
4405                 if (dev->ops->ioctl)
4406                         return dev->ops->ioctl(dev, ioctl, arg);
4407
4408                 return -ENOTTY;
4409         }
4410 }
4411
4412 static int kvm_device_release(struct inode *inode, struct file *filp)
4413 {
4414         struct kvm_device *dev = filp->private_data;
4415         struct kvm *kvm = dev->kvm;
4416
4417         if (dev->ops->release) {
4418                 mutex_lock(&kvm->lock);
4419                 list_del(&dev->vm_node);
4420                 dev->ops->release(dev);
4421                 mutex_unlock(&kvm->lock);
4422         }
4423
4424         kvm_put_kvm(kvm);
4425         return 0;
4426 }
4427
4428 static struct file_operations kvm_device_fops = {
4429         .unlocked_ioctl = kvm_device_ioctl,
4430         .release = kvm_device_release,
4431         KVM_COMPAT(kvm_device_ioctl),
4432         .mmap = kvm_device_mmap,
4433 };
4434
4435 struct kvm_device *kvm_device_from_filp(struct file *filp)
4436 {
4437         if (filp->f_op != &kvm_device_fops)
4438                 return NULL;
4439
4440         return filp->private_data;
4441 }
4442
4443 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4444 #ifdef CONFIG_KVM_MPIC
4445         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4446         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4447 #endif
4448 };
4449
4450 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4451 {
4452         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4453                 return -ENOSPC;
4454
4455         if (kvm_device_ops_table[type] != NULL)
4456                 return -EEXIST;
4457
4458         kvm_device_ops_table[type] = ops;
4459         return 0;
4460 }
4461
4462 void kvm_unregister_device_ops(u32 type)
4463 {
4464         if (kvm_device_ops_table[type] != NULL)
4465                 kvm_device_ops_table[type] = NULL;
4466 }
4467
4468 static int kvm_ioctl_create_device(struct kvm *kvm,
4469                                    struct kvm_create_device *cd)
4470 {
4471         const struct kvm_device_ops *ops;
4472         struct kvm_device *dev;
4473         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4474         int type;
4475         int ret;
4476
4477         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4478                 return -ENODEV;
4479
4480         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4481         ops = kvm_device_ops_table[type];
4482         if (ops == NULL)
4483                 return -ENODEV;
4484
4485         if (test)
4486                 return 0;
4487
4488         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4489         if (!dev)
4490                 return -ENOMEM;
4491
4492         dev->ops = ops;
4493         dev->kvm = kvm;
4494
4495         mutex_lock(&kvm->lock);
4496         ret = ops->create(dev, type);
4497         if (ret < 0) {
4498                 mutex_unlock(&kvm->lock);
4499                 kfree(dev);
4500                 return ret;
4501         }
4502         list_add(&dev->vm_node, &kvm->devices);
4503         mutex_unlock(&kvm->lock);
4504
4505         if (ops->init)
4506                 ops->init(dev);
4507
4508         kvm_get_kvm(kvm);
4509         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4510         if (ret < 0) {
4511                 kvm_put_kvm_no_destroy(kvm);
4512                 mutex_lock(&kvm->lock);
4513                 list_del(&dev->vm_node);
4514                 if (ops->release)
4515                         ops->release(dev);
4516                 mutex_unlock(&kvm->lock);
4517                 if (ops->destroy)
4518                         ops->destroy(dev);
4519                 return ret;
4520         }
4521
4522         cd->fd = ret;
4523         return 0;
4524 }
4525
4526 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4527 {
4528         switch (arg) {
4529         case KVM_CAP_USER_MEMORY:
4530         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4531         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4532         case KVM_CAP_INTERNAL_ERROR_DATA:
4533 #ifdef CONFIG_HAVE_KVM_MSI
4534         case KVM_CAP_SIGNAL_MSI:
4535 #endif
4536 #ifdef CONFIG_HAVE_KVM_IRQFD
4537         case KVM_CAP_IRQFD:
4538 #endif
4539         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4540         case KVM_CAP_CHECK_EXTENSION_VM:
4541         case KVM_CAP_ENABLE_CAP_VM:
4542         case KVM_CAP_HALT_POLL:
4543                 return 1;
4544 #ifdef CONFIG_KVM_MMIO
4545         case KVM_CAP_COALESCED_MMIO:
4546                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4547         case KVM_CAP_COALESCED_PIO:
4548                 return 1;
4549 #endif
4550 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4551         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4552                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4553 #endif
4554 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4555         case KVM_CAP_IRQ_ROUTING:
4556                 return KVM_MAX_IRQ_ROUTES;
4557 #endif
4558 #if KVM_ADDRESS_SPACE_NUM > 1
4559         case KVM_CAP_MULTI_ADDRESS_SPACE:
4560                 return KVM_ADDRESS_SPACE_NUM;
4561 #endif
4562         case KVM_CAP_NR_MEMSLOTS:
4563                 return KVM_USER_MEM_SLOTS;
4564         case KVM_CAP_DIRTY_LOG_RING:
4565 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4566                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4567 #else
4568                 return 0;
4569 #endif
4570         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4571 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4572                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4573 #else
4574                 return 0;
4575 #endif
4576 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4577         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4578 #endif
4579         case KVM_CAP_BINARY_STATS_FD:
4580         case KVM_CAP_SYSTEM_EVENT_DATA:
4581                 return 1;
4582         default:
4583                 break;
4584         }
4585         return kvm_vm_ioctl_check_extension(kvm, arg);
4586 }
4587
4588 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4589 {
4590         int r;
4591
4592         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4593                 return -EINVAL;
4594
4595         /* the size should be power of 2 */
4596         if (!size || (size & (size - 1)))
4597                 return -EINVAL;
4598
4599         /* Should be bigger to keep the reserved entries, or a page */
4600         if (size < kvm_dirty_ring_get_rsvd_entries() *
4601             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4602                 return -EINVAL;
4603
4604         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4605             sizeof(struct kvm_dirty_gfn))
4606                 return -E2BIG;
4607
4608         /* We only allow it to set once */
4609         if (kvm->dirty_ring_size)
4610                 return -EINVAL;
4611
4612         mutex_lock(&kvm->lock);
4613
4614         if (kvm->created_vcpus) {
4615                 /* We don't allow to change this value after vcpu created */
4616                 r = -EINVAL;
4617         } else {
4618                 kvm->dirty_ring_size = size;
4619                 r = 0;
4620         }
4621
4622         mutex_unlock(&kvm->lock);
4623         return r;
4624 }
4625
4626 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4627 {
4628         unsigned long i;
4629         struct kvm_vcpu *vcpu;
4630         int cleared = 0;
4631
4632         if (!kvm->dirty_ring_size)
4633                 return -EINVAL;
4634
4635         mutex_lock(&kvm->slots_lock);
4636
4637         kvm_for_each_vcpu(i, vcpu, kvm)
4638                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4639
4640         mutex_unlock(&kvm->slots_lock);
4641
4642         if (cleared)
4643                 kvm_flush_remote_tlbs(kvm);
4644
4645         return cleared;
4646 }
4647
4648 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4649                                                   struct kvm_enable_cap *cap)
4650 {
4651         return -EINVAL;
4652 }
4653
4654 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4655 {
4656         int i;
4657
4658         lockdep_assert_held(&kvm->slots_lock);
4659
4660         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4661                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4662                         return false;
4663         }
4664
4665         return true;
4666 }
4667 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4668
4669 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4670                                            struct kvm_enable_cap *cap)
4671 {
4672         switch (cap->cap) {
4673 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4674         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4675                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4676
4677                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4678                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4679
4680                 if (cap->flags || (cap->args[0] & ~allowed_options))
4681                         return -EINVAL;
4682                 kvm->manual_dirty_log_protect = cap->args[0];
4683                 return 0;
4684         }
4685 #endif
4686         case KVM_CAP_HALT_POLL: {
4687                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4688                         return -EINVAL;
4689
4690                 kvm->max_halt_poll_ns = cap->args[0];
4691
4692                 /*
4693                  * Ensure kvm->override_halt_poll_ns does not become visible
4694                  * before kvm->max_halt_poll_ns.
4695                  *
4696                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4697                  */
4698                 smp_wmb();
4699                 kvm->override_halt_poll_ns = true;
4700
4701                 return 0;
4702         }
4703         case KVM_CAP_DIRTY_LOG_RING:
4704         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4705                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4706                         return -EINVAL;
4707
4708                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4709         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4710                 int r = -EINVAL;
4711
4712                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4713                     !kvm->dirty_ring_size || cap->flags)
4714                         return r;
4715
4716                 mutex_lock(&kvm->slots_lock);
4717
4718                 /*
4719                  * For simplicity, allow enabling ring+bitmap if and only if
4720                  * there are no memslots, e.g. to ensure all memslots allocate
4721                  * a bitmap after the capability is enabled.
4722                  */
4723                 if (kvm_are_all_memslots_empty(kvm)) {
4724                         kvm->dirty_ring_with_bitmap = true;
4725                         r = 0;
4726                 }
4727
4728                 mutex_unlock(&kvm->slots_lock);
4729
4730                 return r;
4731         }
4732         default:
4733                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4734         }
4735 }
4736
4737 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4738                               size_t size, loff_t *offset)
4739 {
4740         struct kvm *kvm = file->private_data;
4741
4742         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4743                                 &kvm_vm_stats_desc[0], &kvm->stat,
4744                                 sizeof(kvm->stat), user_buffer, size, offset);
4745 }
4746
4747 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4748 {
4749         struct kvm *kvm = file->private_data;
4750
4751         kvm_put_kvm(kvm);
4752         return 0;
4753 }
4754
4755 static const struct file_operations kvm_vm_stats_fops = {
4756         .owner = THIS_MODULE,
4757         .read = kvm_vm_stats_read,
4758         .release = kvm_vm_stats_release,
4759         .llseek = noop_llseek,
4760 };
4761
4762 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4763 {
4764         int fd;
4765         struct file *file;
4766
4767         fd = get_unused_fd_flags(O_CLOEXEC);
4768         if (fd < 0)
4769                 return fd;
4770
4771         file = anon_inode_getfile("kvm-vm-stats",
4772                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4773         if (IS_ERR(file)) {
4774                 put_unused_fd(fd);
4775                 return PTR_ERR(file);
4776         }
4777
4778         kvm_get_kvm(kvm);
4779
4780         file->f_mode |= FMODE_PREAD;
4781         fd_install(fd, file);
4782
4783         return fd;
4784 }
4785
4786 static long kvm_vm_ioctl(struct file *filp,
4787                            unsigned int ioctl, unsigned long arg)
4788 {
4789         struct kvm *kvm = filp->private_data;
4790         void __user *argp = (void __user *)arg;
4791         int r;
4792
4793         if (kvm->mm != current->mm || kvm->vm_dead)
4794                 return -EIO;
4795         switch (ioctl) {
4796         case KVM_CREATE_VCPU:
4797                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4798                 break;
4799         case KVM_ENABLE_CAP: {
4800                 struct kvm_enable_cap cap;
4801
4802                 r = -EFAULT;
4803                 if (copy_from_user(&cap, argp, sizeof(cap)))
4804                         goto out;
4805                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4806                 break;
4807         }
4808         case KVM_SET_USER_MEMORY_REGION: {
4809                 struct kvm_userspace_memory_region kvm_userspace_mem;
4810
4811                 r = -EFAULT;
4812                 if (copy_from_user(&kvm_userspace_mem, argp,
4813                                                 sizeof(kvm_userspace_mem)))
4814                         goto out;
4815
4816                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4817                 break;
4818         }
4819         case KVM_GET_DIRTY_LOG: {
4820                 struct kvm_dirty_log log;
4821
4822                 r = -EFAULT;
4823                 if (copy_from_user(&log, argp, sizeof(log)))
4824                         goto out;
4825                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4826                 break;
4827         }
4828 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4829         case KVM_CLEAR_DIRTY_LOG: {
4830                 struct kvm_clear_dirty_log log;
4831
4832                 r = -EFAULT;
4833                 if (copy_from_user(&log, argp, sizeof(log)))
4834                         goto out;
4835                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4836                 break;
4837         }
4838 #endif
4839 #ifdef CONFIG_KVM_MMIO
4840         case KVM_REGISTER_COALESCED_MMIO: {
4841                 struct kvm_coalesced_mmio_zone zone;
4842
4843                 r = -EFAULT;
4844                 if (copy_from_user(&zone, argp, sizeof(zone)))
4845                         goto out;
4846                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4847                 break;
4848         }
4849         case KVM_UNREGISTER_COALESCED_MMIO: {
4850                 struct kvm_coalesced_mmio_zone zone;
4851
4852                 r = -EFAULT;
4853                 if (copy_from_user(&zone, argp, sizeof(zone)))
4854                         goto out;
4855                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4856                 break;
4857         }
4858 #endif
4859         case KVM_IRQFD: {
4860                 struct kvm_irqfd data;
4861
4862                 r = -EFAULT;
4863                 if (copy_from_user(&data, argp, sizeof(data)))
4864                         goto out;
4865                 r = kvm_irqfd(kvm, &data);
4866                 break;
4867         }
4868         case KVM_IOEVENTFD: {
4869                 struct kvm_ioeventfd data;
4870
4871                 r = -EFAULT;
4872                 if (copy_from_user(&data, argp, sizeof(data)))
4873                         goto out;
4874                 r = kvm_ioeventfd(kvm, &data);
4875                 break;
4876         }
4877 #ifdef CONFIG_HAVE_KVM_MSI
4878         case KVM_SIGNAL_MSI: {
4879                 struct kvm_msi msi;
4880
4881                 r = -EFAULT;
4882                 if (copy_from_user(&msi, argp, sizeof(msi)))
4883                         goto out;
4884                 r = kvm_send_userspace_msi(kvm, &msi);
4885                 break;
4886         }
4887 #endif
4888 #ifdef __KVM_HAVE_IRQ_LINE
4889         case KVM_IRQ_LINE_STATUS:
4890         case KVM_IRQ_LINE: {
4891                 struct kvm_irq_level irq_event;
4892
4893                 r = -EFAULT;
4894                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4895                         goto out;
4896
4897                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4898                                         ioctl == KVM_IRQ_LINE_STATUS);
4899                 if (r)
4900                         goto out;
4901
4902                 r = -EFAULT;
4903                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4904                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4905                                 goto out;
4906                 }
4907
4908                 r = 0;
4909                 break;
4910         }
4911 #endif
4912 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4913         case KVM_SET_GSI_ROUTING: {
4914                 struct kvm_irq_routing routing;
4915                 struct kvm_irq_routing __user *urouting;
4916                 struct kvm_irq_routing_entry *entries = NULL;
4917
4918                 r = -EFAULT;
4919                 if (copy_from_user(&routing, argp, sizeof(routing)))
4920                         goto out;
4921                 r = -EINVAL;
4922                 if (!kvm_arch_can_set_irq_routing(kvm))
4923                         goto out;
4924                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4925                         goto out;
4926                 if (routing.flags)
4927                         goto out;
4928                 if (routing.nr) {
4929                         urouting = argp;
4930                         entries = vmemdup_user(urouting->entries,
4931                                                array_size(sizeof(*entries),
4932                                                           routing.nr));
4933                         if (IS_ERR(entries)) {
4934                                 r = PTR_ERR(entries);
4935                                 goto out;
4936                         }
4937                 }
4938                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4939                                         routing.flags);
4940                 kvfree(entries);
4941                 break;
4942         }
4943 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4944         case KVM_CREATE_DEVICE: {
4945                 struct kvm_create_device cd;
4946
4947                 r = -EFAULT;
4948                 if (copy_from_user(&cd, argp, sizeof(cd)))
4949                         goto out;
4950
4951                 r = kvm_ioctl_create_device(kvm, &cd);
4952                 if (r)
4953                         goto out;
4954
4955                 r = -EFAULT;
4956                 if (copy_to_user(argp, &cd, sizeof(cd)))
4957                         goto out;
4958
4959                 r = 0;
4960                 break;
4961         }
4962         case KVM_CHECK_EXTENSION:
4963                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4964                 break;
4965         case KVM_RESET_DIRTY_RINGS:
4966                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4967                 break;
4968         case KVM_GET_STATS_FD:
4969                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4970                 break;
4971         default:
4972                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4973         }
4974 out:
4975         return r;
4976 }
4977
4978 #ifdef CONFIG_KVM_COMPAT
4979 struct compat_kvm_dirty_log {
4980         __u32 slot;
4981         __u32 padding1;
4982         union {
4983                 compat_uptr_t dirty_bitmap; /* one bit per page */
4984                 __u64 padding2;
4985         };
4986 };
4987
4988 struct compat_kvm_clear_dirty_log {
4989         __u32 slot;
4990         __u32 num_pages;
4991         __u64 first_page;
4992         union {
4993                 compat_uptr_t dirty_bitmap; /* one bit per page */
4994                 __u64 padding2;
4995         };
4996 };
4997
4998 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4999                                      unsigned long arg)
5000 {
5001         return -ENOTTY;
5002 }
5003
5004 static long kvm_vm_compat_ioctl(struct file *filp,
5005                            unsigned int ioctl, unsigned long arg)
5006 {
5007         struct kvm *kvm = filp->private_data;
5008         int r;
5009
5010         if (kvm->mm != current->mm || kvm->vm_dead)
5011                 return -EIO;
5012
5013         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5014         if (r != -ENOTTY)
5015                 return r;
5016
5017         switch (ioctl) {
5018 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5019         case KVM_CLEAR_DIRTY_LOG: {
5020                 struct compat_kvm_clear_dirty_log compat_log;
5021                 struct kvm_clear_dirty_log log;
5022
5023                 if (copy_from_user(&compat_log, (void __user *)arg,
5024                                    sizeof(compat_log)))
5025                         return -EFAULT;
5026                 log.slot         = compat_log.slot;
5027                 log.num_pages    = compat_log.num_pages;
5028                 log.first_page   = compat_log.first_page;
5029                 log.padding2     = compat_log.padding2;
5030                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5031
5032                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5033                 break;
5034         }
5035 #endif
5036         case KVM_GET_DIRTY_LOG: {
5037                 struct compat_kvm_dirty_log compat_log;
5038                 struct kvm_dirty_log log;
5039
5040                 if (copy_from_user(&compat_log, (void __user *)arg,
5041                                    sizeof(compat_log)))
5042                         return -EFAULT;
5043                 log.slot         = compat_log.slot;
5044                 log.padding1     = compat_log.padding1;
5045                 log.padding2     = compat_log.padding2;
5046                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5047
5048                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5049                 break;
5050         }
5051         default:
5052                 r = kvm_vm_ioctl(filp, ioctl, arg);
5053         }
5054         return r;
5055 }
5056 #endif
5057
5058 static struct file_operations kvm_vm_fops = {
5059         .release        = kvm_vm_release,
5060         .unlocked_ioctl = kvm_vm_ioctl,
5061         .llseek         = noop_llseek,
5062         KVM_COMPAT(kvm_vm_compat_ioctl),
5063 };
5064
5065 bool file_is_kvm(struct file *file)
5066 {
5067         return file && file->f_op == &kvm_vm_fops;
5068 }
5069 EXPORT_SYMBOL_GPL(file_is_kvm);
5070
5071 static int kvm_dev_ioctl_create_vm(unsigned long type)
5072 {
5073         char fdname[ITOA_MAX_LEN + 1];
5074         int r, fd;
5075         struct kvm *kvm;
5076         struct file *file;
5077
5078         fd = get_unused_fd_flags(O_CLOEXEC);
5079         if (fd < 0)
5080                 return fd;
5081
5082         snprintf(fdname, sizeof(fdname), "%d", fd);
5083
5084         kvm = kvm_create_vm(type, fdname);
5085         if (IS_ERR(kvm)) {
5086                 r = PTR_ERR(kvm);
5087                 goto put_fd;
5088         }
5089
5090         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5091         if (IS_ERR(file)) {
5092                 r = PTR_ERR(file);
5093                 goto put_kvm;
5094         }
5095
5096         /*
5097          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5098          * already set, with ->release() being kvm_vm_release().  In error
5099          * cases it will be called by the final fput(file) and will take
5100          * care of doing kvm_put_kvm(kvm).
5101          */
5102         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5103
5104         fd_install(fd, file);
5105         return fd;
5106
5107 put_kvm:
5108         kvm_put_kvm(kvm);
5109 put_fd:
5110         put_unused_fd(fd);
5111         return r;
5112 }
5113
5114 static long kvm_dev_ioctl(struct file *filp,
5115                           unsigned int ioctl, unsigned long arg)
5116 {
5117         int r = -EINVAL;
5118
5119         switch (ioctl) {
5120         case KVM_GET_API_VERSION:
5121                 if (arg)
5122                         goto out;
5123                 r = KVM_API_VERSION;
5124                 break;
5125         case KVM_CREATE_VM:
5126                 r = kvm_dev_ioctl_create_vm(arg);
5127                 break;
5128         case KVM_CHECK_EXTENSION:
5129                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5130                 break;
5131         case KVM_GET_VCPU_MMAP_SIZE:
5132                 if (arg)
5133                         goto out;
5134                 r = PAGE_SIZE;     /* struct kvm_run */
5135 #ifdef CONFIG_X86
5136                 r += PAGE_SIZE;    /* pio data page */
5137 #endif
5138 #ifdef CONFIG_KVM_MMIO
5139                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5140 #endif
5141                 break;
5142         case KVM_TRACE_ENABLE:
5143         case KVM_TRACE_PAUSE:
5144         case KVM_TRACE_DISABLE:
5145                 r = -EOPNOTSUPP;
5146                 break;
5147         default:
5148                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5149         }
5150 out:
5151         return r;
5152 }
5153
5154 static struct file_operations kvm_chardev_ops = {
5155         .unlocked_ioctl = kvm_dev_ioctl,
5156         .llseek         = noop_llseek,
5157         KVM_COMPAT(kvm_dev_ioctl),
5158 };
5159
5160 static struct miscdevice kvm_dev = {
5161         KVM_MINOR,
5162         "kvm",
5163         &kvm_chardev_ops,
5164 };
5165
5166 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5167 __visible bool kvm_rebooting;
5168 EXPORT_SYMBOL_GPL(kvm_rebooting);
5169
5170 static DEFINE_PER_CPU(bool, hardware_enabled);
5171 static int kvm_usage_count;
5172
5173 static int __hardware_enable_nolock(void)
5174 {
5175         if (__this_cpu_read(hardware_enabled))
5176                 return 0;
5177
5178         if (kvm_arch_hardware_enable()) {
5179                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5180                         raw_smp_processor_id());
5181                 return -EIO;
5182         }
5183
5184         __this_cpu_write(hardware_enabled, true);
5185         return 0;
5186 }
5187
5188 static void hardware_enable_nolock(void *failed)
5189 {
5190         if (__hardware_enable_nolock())
5191                 atomic_inc(failed);
5192 }
5193
5194 static int kvm_online_cpu(unsigned int cpu)
5195 {
5196         int ret = 0;
5197
5198         /*
5199          * Abort the CPU online process if hardware virtualization cannot
5200          * be enabled. Otherwise running VMs would encounter unrecoverable
5201          * errors when scheduled to this CPU.
5202          */
5203         mutex_lock(&kvm_lock);
5204         if (kvm_usage_count)
5205                 ret = __hardware_enable_nolock();
5206         mutex_unlock(&kvm_lock);
5207         return ret;
5208 }
5209
5210 static void hardware_disable_nolock(void *junk)
5211 {
5212         /*
5213          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5214          * hardware, not just CPUs that successfully enabled hardware!
5215          */
5216         if (!__this_cpu_read(hardware_enabled))
5217                 return;
5218
5219         kvm_arch_hardware_disable();
5220
5221         __this_cpu_write(hardware_enabled, false);
5222 }
5223
5224 static int kvm_offline_cpu(unsigned int cpu)
5225 {
5226         mutex_lock(&kvm_lock);
5227         if (kvm_usage_count)
5228                 hardware_disable_nolock(NULL);
5229         mutex_unlock(&kvm_lock);
5230         return 0;
5231 }
5232
5233 static void hardware_disable_all_nolock(void)
5234 {
5235         BUG_ON(!kvm_usage_count);
5236
5237         kvm_usage_count--;
5238         if (!kvm_usage_count)
5239                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5240 }
5241
5242 static void hardware_disable_all(void)
5243 {
5244         cpus_read_lock();
5245         mutex_lock(&kvm_lock);
5246         hardware_disable_all_nolock();
5247         mutex_unlock(&kvm_lock);
5248         cpus_read_unlock();
5249 }
5250
5251 static int hardware_enable_all(void)
5252 {
5253         atomic_t failed = ATOMIC_INIT(0);
5254         int r;
5255
5256         /*
5257          * Do not enable hardware virtualization if the system is going down.
5258          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5259          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5260          * after kvm_reboot() is called.  Note, this relies on system_state
5261          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5262          * hook instead of registering a dedicated reboot notifier (the latter
5263          * runs before system_state is updated).
5264          */
5265         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5266             system_state == SYSTEM_RESTART)
5267                 return -EBUSY;
5268
5269         /*
5270          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5271          * is called, and so on_each_cpu() between them includes the CPU that
5272          * is being onlined.  As a result, hardware_enable_nolock() may get
5273          * invoked before kvm_online_cpu(), which also enables hardware if the
5274          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5275          * enable hardware multiple times.
5276          */
5277         cpus_read_lock();
5278         mutex_lock(&kvm_lock);
5279
5280         r = 0;
5281
5282         kvm_usage_count++;
5283         if (kvm_usage_count == 1) {
5284                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5285
5286                 if (atomic_read(&failed)) {
5287                         hardware_disable_all_nolock();
5288                         r = -EBUSY;
5289                 }
5290         }
5291
5292         mutex_unlock(&kvm_lock);
5293         cpus_read_unlock();
5294
5295         return r;
5296 }
5297
5298 static void kvm_shutdown(void)
5299 {
5300         /*
5301          * Disable hardware virtualization and set kvm_rebooting to indicate
5302          * that KVM has asynchronously disabled hardware virtualization, i.e.
5303          * that relevant errors and exceptions aren't entirely unexpected.
5304          * Some flavors of hardware virtualization need to be disabled before
5305          * transferring control to firmware (to perform shutdown/reboot), e.g.
5306          * on x86, virtualization can block INIT interrupts, which are used by
5307          * firmware to pull APs back under firmware control.  Note, this path
5308          * is used for both shutdown and reboot scenarios, i.e. neither name is
5309          * 100% comprehensive.
5310          */
5311         pr_info("kvm: exiting hardware virtualization\n");
5312         kvm_rebooting = true;
5313         on_each_cpu(hardware_disable_nolock, NULL, 1);
5314 }
5315
5316 static int kvm_suspend(void)
5317 {
5318         /*
5319          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5320          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5321          * is stable.  Assert that kvm_lock is not held to ensure the system
5322          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5323          * can be preempted, but the task cannot be frozen until it has dropped
5324          * all locks (userspace tasks are frozen via a fake signal).
5325          */
5326         lockdep_assert_not_held(&kvm_lock);
5327         lockdep_assert_irqs_disabled();
5328
5329         if (kvm_usage_count)
5330                 hardware_disable_nolock(NULL);
5331         return 0;
5332 }
5333
5334 static void kvm_resume(void)
5335 {
5336         lockdep_assert_not_held(&kvm_lock);
5337         lockdep_assert_irqs_disabled();
5338
5339         if (kvm_usage_count)
5340                 WARN_ON_ONCE(__hardware_enable_nolock());
5341 }
5342
5343 static struct syscore_ops kvm_syscore_ops = {
5344         .suspend = kvm_suspend,
5345         .resume = kvm_resume,
5346         .shutdown = kvm_shutdown,
5347 };
5348 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5349 static int hardware_enable_all(void)
5350 {
5351         return 0;
5352 }
5353
5354 static void hardware_disable_all(void)
5355 {
5356
5357 }
5358 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5359
5360 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5361 {
5362         if (dev->ops->destructor)
5363                 dev->ops->destructor(dev);
5364 }
5365
5366 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5367 {
5368         int i;
5369
5370         for (i = 0; i < bus->dev_count; i++) {
5371                 struct kvm_io_device *pos = bus->range[i].dev;
5372
5373                 kvm_iodevice_destructor(pos);
5374         }
5375         kfree(bus);
5376 }
5377
5378 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5379                                  const struct kvm_io_range *r2)
5380 {
5381         gpa_t addr1 = r1->addr;
5382         gpa_t addr2 = r2->addr;
5383
5384         if (addr1 < addr2)
5385                 return -1;
5386
5387         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5388          * accept any overlapping write.  Any order is acceptable for
5389          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5390          * we process all of them.
5391          */
5392         if (r2->len) {
5393                 addr1 += r1->len;
5394                 addr2 += r2->len;
5395         }
5396
5397         if (addr1 > addr2)
5398                 return 1;
5399
5400         return 0;
5401 }
5402
5403 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5404 {
5405         return kvm_io_bus_cmp(p1, p2);
5406 }
5407
5408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5409                              gpa_t addr, int len)
5410 {
5411         struct kvm_io_range *range, key;
5412         int off;
5413
5414         key = (struct kvm_io_range) {
5415                 .addr = addr,
5416                 .len = len,
5417         };
5418
5419         range = bsearch(&key, bus->range, bus->dev_count,
5420                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5421         if (range == NULL)
5422                 return -ENOENT;
5423
5424         off = range - bus->range;
5425
5426         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5427                 off--;
5428
5429         return off;
5430 }
5431
5432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5433                               struct kvm_io_range *range, const void *val)
5434 {
5435         int idx;
5436
5437         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5438         if (idx < 0)
5439                 return -EOPNOTSUPP;
5440
5441         while (idx < bus->dev_count &&
5442                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5443                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5444                                         range->len, val))
5445                         return idx;
5446                 idx++;
5447         }
5448
5449         return -EOPNOTSUPP;
5450 }
5451
5452 /* kvm_io_bus_write - called under kvm->slots_lock */
5453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5454                      int len, const void *val)
5455 {
5456         struct kvm_io_bus *bus;
5457         struct kvm_io_range range;
5458         int r;
5459
5460         range = (struct kvm_io_range) {
5461                 .addr = addr,
5462                 .len = len,
5463         };
5464
5465         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5466         if (!bus)
5467                 return -ENOMEM;
5468         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5469         return r < 0 ? r : 0;
5470 }
5471 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5472
5473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5475                             gpa_t addr, int len, const void *val, long cookie)
5476 {
5477         struct kvm_io_bus *bus;
5478         struct kvm_io_range range;
5479
5480         range = (struct kvm_io_range) {
5481                 .addr = addr,
5482                 .len = len,
5483         };
5484
5485         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5486         if (!bus)
5487                 return -ENOMEM;
5488
5489         /* First try the device referenced by cookie. */
5490         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5491             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5492                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5493                                         val))
5494                         return cookie;
5495
5496         /*
5497          * cookie contained garbage; fall back to search and return the
5498          * correct cookie value.
5499          */
5500         return __kvm_io_bus_write(vcpu, bus, &range, val);
5501 }
5502
5503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5504                              struct kvm_io_range *range, void *val)
5505 {
5506         int idx;
5507
5508         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5509         if (idx < 0)
5510                 return -EOPNOTSUPP;
5511
5512         while (idx < bus->dev_count &&
5513                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5514                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5515                                        range->len, val))
5516                         return idx;
5517                 idx++;
5518         }
5519
5520         return -EOPNOTSUPP;
5521 }
5522
5523 /* kvm_io_bus_read - called under kvm->slots_lock */
5524 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5525                     int len, void *val)
5526 {
5527         struct kvm_io_bus *bus;
5528         struct kvm_io_range range;
5529         int r;
5530
5531         range = (struct kvm_io_range) {
5532                 .addr = addr,
5533                 .len = len,
5534         };
5535
5536         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5537         if (!bus)
5538                 return -ENOMEM;
5539         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5540         return r < 0 ? r : 0;
5541 }
5542
5543 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5544                             int len, struct kvm_io_device *dev)
5545 {
5546         int i;
5547         struct kvm_io_bus *new_bus, *bus;
5548         struct kvm_io_range range;
5549
5550         lockdep_assert_held(&kvm->slots_lock);
5551
5552         bus = kvm_get_bus(kvm, bus_idx);
5553         if (!bus)
5554                 return -ENOMEM;
5555
5556         /* exclude ioeventfd which is limited by maximum fd */
5557         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5558                 return -ENOSPC;
5559
5560         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5561                           GFP_KERNEL_ACCOUNT);
5562         if (!new_bus)
5563                 return -ENOMEM;
5564
5565         range = (struct kvm_io_range) {
5566                 .addr = addr,
5567                 .len = len,
5568                 .dev = dev,
5569         };
5570
5571         for (i = 0; i < bus->dev_count; i++)
5572                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5573                         break;
5574
5575         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5576         new_bus->dev_count++;
5577         new_bus->range[i] = range;
5578         memcpy(new_bus->range + i + 1, bus->range + i,
5579                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5580         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5581         synchronize_srcu_expedited(&kvm->srcu);
5582         kfree(bus);
5583
5584         return 0;
5585 }
5586
5587 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5588                               struct kvm_io_device *dev)
5589 {
5590         int i;
5591         struct kvm_io_bus *new_bus, *bus;
5592
5593         lockdep_assert_held(&kvm->slots_lock);
5594
5595         bus = kvm_get_bus(kvm, bus_idx);
5596         if (!bus)
5597                 return 0;
5598
5599         for (i = 0; i < bus->dev_count; i++) {
5600                 if (bus->range[i].dev == dev) {
5601                         break;
5602                 }
5603         }
5604
5605         if (i == bus->dev_count)
5606                 return 0;
5607
5608         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5609                           GFP_KERNEL_ACCOUNT);
5610         if (new_bus) {
5611                 memcpy(new_bus, bus, struct_size(bus, range, i));
5612                 new_bus->dev_count--;
5613                 memcpy(new_bus->range + i, bus->range + i + 1,
5614                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5615         }
5616
5617         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5618         synchronize_srcu_expedited(&kvm->srcu);
5619
5620         /*
5621          * If NULL bus is installed, destroy the old bus, including all the
5622          * attached devices. Otherwise, destroy the caller's device only.
5623          */
5624         if (!new_bus) {
5625                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5626                 kvm_io_bus_destroy(bus);
5627                 return -ENOMEM;
5628         }
5629
5630         kvm_iodevice_destructor(dev);
5631         kfree(bus);
5632         return 0;
5633 }
5634
5635 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5636                                          gpa_t addr)
5637 {
5638         struct kvm_io_bus *bus;
5639         int dev_idx, srcu_idx;
5640         struct kvm_io_device *iodev = NULL;
5641
5642         srcu_idx = srcu_read_lock(&kvm->srcu);
5643
5644         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5645         if (!bus)
5646                 goto out_unlock;
5647
5648         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5649         if (dev_idx < 0)
5650                 goto out_unlock;
5651
5652         iodev = bus->range[dev_idx].dev;
5653
5654 out_unlock:
5655         srcu_read_unlock(&kvm->srcu, srcu_idx);
5656
5657         return iodev;
5658 }
5659 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5660
5661 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5662                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5663                            const char *fmt)
5664 {
5665         int ret;
5666         struct kvm_stat_data *stat_data = inode->i_private;
5667
5668         /*
5669          * The debugfs files are a reference to the kvm struct which
5670         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5671         * avoids the race between open and the removal of the debugfs directory.
5672          */
5673         if (!kvm_get_kvm_safe(stat_data->kvm))
5674                 return -ENOENT;
5675
5676         ret = simple_attr_open(inode, file, get,
5677                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5678                                ? set : NULL, fmt);
5679         if (ret)
5680                 kvm_put_kvm(stat_data->kvm);
5681
5682         return ret;
5683 }
5684
5685 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5686 {
5687         struct kvm_stat_data *stat_data = inode->i_private;
5688
5689         simple_attr_release(inode, file);
5690         kvm_put_kvm(stat_data->kvm);
5691
5692         return 0;
5693 }
5694
5695 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5696 {
5697         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5698
5699         return 0;
5700 }
5701
5702 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5703 {
5704         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5705
5706         return 0;
5707 }
5708
5709 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5710 {
5711         unsigned long i;
5712         struct kvm_vcpu *vcpu;
5713
5714         *val = 0;
5715
5716         kvm_for_each_vcpu(i, vcpu, kvm)
5717                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5718
5719         return 0;
5720 }
5721
5722 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5723 {
5724         unsigned long i;
5725         struct kvm_vcpu *vcpu;
5726
5727         kvm_for_each_vcpu(i, vcpu, kvm)
5728                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5729
5730         return 0;
5731 }
5732
5733 static int kvm_stat_data_get(void *data, u64 *val)
5734 {
5735         int r = -EFAULT;
5736         struct kvm_stat_data *stat_data = data;
5737
5738         switch (stat_data->kind) {
5739         case KVM_STAT_VM:
5740                 r = kvm_get_stat_per_vm(stat_data->kvm,
5741                                         stat_data->desc->desc.offset, val);
5742                 break;
5743         case KVM_STAT_VCPU:
5744                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5745                                           stat_data->desc->desc.offset, val);
5746                 break;
5747         }
5748
5749         return r;
5750 }
5751
5752 static int kvm_stat_data_clear(void *data, u64 val)
5753 {
5754         int r = -EFAULT;
5755         struct kvm_stat_data *stat_data = data;
5756
5757         if (val)
5758                 return -EINVAL;
5759
5760         switch (stat_data->kind) {
5761         case KVM_STAT_VM:
5762                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5763                                           stat_data->desc->desc.offset);
5764                 break;
5765         case KVM_STAT_VCPU:
5766                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5767                                             stat_data->desc->desc.offset);
5768                 break;
5769         }
5770
5771         return r;
5772 }
5773
5774 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5775 {
5776         __simple_attr_check_format("%llu\n", 0ull);
5777         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5778                                 kvm_stat_data_clear, "%llu\n");
5779 }
5780
5781 static const struct file_operations stat_fops_per_vm = {
5782         .owner = THIS_MODULE,
5783         .open = kvm_stat_data_open,
5784         .release = kvm_debugfs_release,
5785         .read = simple_attr_read,
5786         .write = simple_attr_write,
5787         .llseek = no_llseek,
5788 };
5789
5790 static int vm_stat_get(void *_offset, u64 *val)
5791 {
5792         unsigned offset = (long)_offset;
5793         struct kvm *kvm;
5794         u64 tmp_val;
5795
5796         *val = 0;
5797         mutex_lock(&kvm_lock);
5798         list_for_each_entry(kvm, &vm_list, vm_list) {
5799                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5800                 *val += tmp_val;
5801         }
5802         mutex_unlock(&kvm_lock);
5803         return 0;
5804 }
5805
5806 static int vm_stat_clear(void *_offset, u64 val)
5807 {
5808         unsigned offset = (long)_offset;
5809         struct kvm *kvm;
5810
5811         if (val)
5812                 return -EINVAL;
5813
5814         mutex_lock(&kvm_lock);
5815         list_for_each_entry(kvm, &vm_list, vm_list) {
5816                 kvm_clear_stat_per_vm(kvm, offset);
5817         }
5818         mutex_unlock(&kvm_lock);
5819
5820         return 0;
5821 }
5822
5823 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5824 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5825
5826 static int vcpu_stat_get(void *_offset, u64 *val)
5827 {
5828         unsigned offset = (long)_offset;
5829         struct kvm *kvm;
5830         u64 tmp_val;
5831
5832         *val = 0;
5833         mutex_lock(&kvm_lock);
5834         list_for_each_entry(kvm, &vm_list, vm_list) {
5835                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5836                 *val += tmp_val;
5837         }
5838         mutex_unlock(&kvm_lock);
5839         return 0;
5840 }
5841
5842 static int vcpu_stat_clear(void *_offset, u64 val)
5843 {
5844         unsigned offset = (long)_offset;
5845         struct kvm *kvm;
5846
5847         if (val)
5848                 return -EINVAL;
5849
5850         mutex_lock(&kvm_lock);
5851         list_for_each_entry(kvm, &vm_list, vm_list) {
5852                 kvm_clear_stat_per_vcpu(kvm, offset);
5853         }
5854         mutex_unlock(&kvm_lock);
5855
5856         return 0;
5857 }
5858
5859 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5860                         "%llu\n");
5861 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5862
5863 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5864 {
5865         struct kobj_uevent_env *env;
5866         unsigned long long created, active;
5867
5868         if (!kvm_dev.this_device || !kvm)
5869                 return;
5870
5871         mutex_lock(&kvm_lock);
5872         if (type == KVM_EVENT_CREATE_VM) {
5873                 kvm_createvm_count++;
5874                 kvm_active_vms++;
5875         } else if (type == KVM_EVENT_DESTROY_VM) {
5876                 kvm_active_vms--;
5877         }
5878         created = kvm_createvm_count;
5879         active = kvm_active_vms;
5880         mutex_unlock(&kvm_lock);
5881
5882         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5883         if (!env)
5884                 return;
5885
5886         add_uevent_var(env, "CREATED=%llu", created);
5887         add_uevent_var(env, "COUNT=%llu", active);
5888
5889         if (type == KVM_EVENT_CREATE_VM) {
5890                 add_uevent_var(env, "EVENT=create");
5891                 kvm->userspace_pid = task_pid_nr(current);
5892         } else if (type == KVM_EVENT_DESTROY_VM) {
5893                 add_uevent_var(env, "EVENT=destroy");
5894         }
5895         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5896
5897         if (!IS_ERR(kvm->debugfs_dentry)) {
5898                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5899
5900                 if (p) {
5901                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5902                         if (!IS_ERR(tmp))
5903                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5904                         kfree(p);
5905                 }
5906         }
5907         /* no need for checks, since we are adding at most only 5 keys */
5908         env->envp[env->envp_idx++] = NULL;
5909         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5910         kfree(env);
5911 }
5912
5913 static void kvm_init_debug(void)
5914 {
5915         const struct file_operations *fops;
5916         const struct _kvm_stats_desc *pdesc;
5917         int i;
5918
5919         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5920
5921         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5922                 pdesc = &kvm_vm_stats_desc[i];
5923                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5924                         fops = &vm_stat_fops;
5925                 else
5926                         fops = &vm_stat_readonly_fops;
5927                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5928                                 kvm_debugfs_dir,
5929                                 (void *)(long)pdesc->desc.offset, fops);
5930         }
5931
5932         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5933                 pdesc = &kvm_vcpu_stats_desc[i];
5934                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5935                         fops = &vcpu_stat_fops;
5936                 else
5937                         fops = &vcpu_stat_readonly_fops;
5938                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5939                                 kvm_debugfs_dir,
5940                                 (void *)(long)pdesc->desc.offset, fops);
5941         }
5942 }
5943
5944 static inline
5945 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5946 {
5947         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5948 }
5949
5950 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5951 {
5952         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5953
5954         WRITE_ONCE(vcpu->preempted, false);
5955         WRITE_ONCE(vcpu->ready, false);
5956
5957         __this_cpu_write(kvm_running_vcpu, vcpu);
5958         kvm_arch_sched_in(vcpu, cpu);
5959         kvm_arch_vcpu_load(vcpu, cpu);
5960 }
5961
5962 static void kvm_sched_out(struct preempt_notifier *pn,
5963                           struct task_struct *next)
5964 {
5965         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5966
5967         if (current->on_rq) {
5968                 WRITE_ONCE(vcpu->preempted, true);
5969                 WRITE_ONCE(vcpu->ready, true);
5970         }
5971         kvm_arch_vcpu_put(vcpu);
5972         __this_cpu_write(kvm_running_vcpu, NULL);
5973 }
5974
5975 /**
5976  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5977  *
5978  * We can disable preemption locally around accessing the per-CPU variable,
5979  * and use the resolved vcpu pointer after enabling preemption again,
5980  * because even if the current thread is migrated to another CPU, reading
5981  * the per-CPU value later will give us the same value as we update the
5982  * per-CPU variable in the preempt notifier handlers.
5983  */
5984 struct kvm_vcpu *kvm_get_running_vcpu(void)
5985 {
5986         struct kvm_vcpu *vcpu;
5987
5988         preempt_disable();
5989         vcpu = __this_cpu_read(kvm_running_vcpu);
5990         preempt_enable();
5991
5992         return vcpu;
5993 }
5994 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5995
5996 /**
5997  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5998  */
5999 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6000 {
6001         return &kvm_running_vcpu;
6002 }
6003
6004 #ifdef CONFIG_GUEST_PERF_EVENTS
6005 static unsigned int kvm_guest_state(void)
6006 {
6007         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6008         unsigned int state;
6009
6010         if (!kvm_arch_pmi_in_guest(vcpu))
6011                 return 0;
6012
6013         state = PERF_GUEST_ACTIVE;
6014         if (!kvm_arch_vcpu_in_kernel(vcpu))
6015                 state |= PERF_GUEST_USER;
6016
6017         return state;
6018 }
6019
6020 static unsigned long kvm_guest_get_ip(void)
6021 {
6022         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6023
6024         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6025         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6026                 return 0;
6027
6028         return kvm_arch_vcpu_get_ip(vcpu);
6029 }
6030
6031 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6032         .state                  = kvm_guest_state,
6033         .get_ip                 = kvm_guest_get_ip,
6034         .handle_intel_pt_intr   = NULL,
6035 };
6036
6037 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6038 {
6039         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6040         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6041 }
6042 void kvm_unregister_perf_callbacks(void)
6043 {
6044         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6045 }
6046 #endif
6047
6048 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6049 {
6050         int r;
6051         int cpu;
6052
6053 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6054         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6055                                       kvm_online_cpu, kvm_offline_cpu);
6056         if (r)
6057                 return r;
6058
6059         register_syscore_ops(&kvm_syscore_ops);
6060 #endif
6061
6062         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6063         if (!vcpu_align)
6064                 vcpu_align = __alignof__(struct kvm_vcpu);
6065         kvm_vcpu_cache =
6066                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6067                                            SLAB_ACCOUNT,
6068                                            offsetof(struct kvm_vcpu, arch),
6069                                            offsetofend(struct kvm_vcpu, stats_id)
6070                                            - offsetof(struct kvm_vcpu, arch),
6071                                            NULL);
6072         if (!kvm_vcpu_cache) {
6073                 r = -ENOMEM;
6074                 goto err_vcpu_cache;
6075         }
6076
6077         for_each_possible_cpu(cpu) {
6078                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6079                                             GFP_KERNEL, cpu_to_node(cpu))) {
6080                         r = -ENOMEM;
6081                         goto err_cpu_kick_mask;
6082                 }
6083         }
6084
6085         r = kvm_irqfd_init();
6086         if (r)
6087                 goto err_irqfd;
6088
6089         r = kvm_async_pf_init();
6090         if (r)
6091                 goto err_async_pf;
6092
6093         kvm_chardev_ops.owner = module;
6094         kvm_vm_fops.owner = module;
6095         kvm_vcpu_fops.owner = module;
6096         kvm_device_fops.owner = module;
6097
6098         kvm_preempt_ops.sched_in = kvm_sched_in;
6099         kvm_preempt_ops.sched_out = kvm_sched_out;
6100
6101         kvm_init_debug();
6102
6103         r = kvm_vfio_ops_init();
6104         if (WARN_ON_ONCE(r))
6105                 goto err_vfio;
6106
6107         /*
6108          * Registration _must_ be the very last thing done, as this exposes
6109          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6110          */
6111         r = misc_register(&kvm_dev);
6112         if (r) {
6113                 pr_err("kvm: misc device register failed\n");
6114                 goto err_register;
6115         }
6116
6117         return 0;
6118
6119 err_register:
6120         kvm_vfio_ops_exit();
6121 err_vfio:
6122         kvm_async_pf_deinit();
6123 err_async_pf:
6124         kvm_irqfd_exit();
6125 err_irqfd:
6126 err_cpu_kick_mask:
6127         for_each_possible_cpu(cpu)
6128                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6129         kmem_cache_destroy(kvm_vcpu_cache);
6130 err_vcpu_cache:
6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6132         unregister_syscore_ops(&kvm_syscore_ops);
6133         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6134 #endif
6135         return r;
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_init);
6138
6139 void kvm_exit(void)
6140 {
6141         int cpu;
6142
6143         /*
6144          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6145          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6146          * to KVM while the module is being stopped.
6147          */
6148         misc_deregister(&kvm_dev);
6149
6150         debugfs_remove_recursive(kvm_debugfs_dir);
6151         for_each_possible_cpu(cpu)
6152                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6153         kmem_cache_destroy(kvm_vcpu_cache);
6154         kvm_vfio_ops_exit();
6155         kvm_async_pf_deinit();
6156 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6157         unregister_syscore_ops(&kvm_syscore_ops);
6158         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6159 #endif
6160         kvm_irqfd_exit();
6161 }
6162 EXPORT_SYMBOL_GPL(kvm_exit);
6163
6164 struct kvm_vm_worker_thread_context {
6165         struct kvm *kvm;
6166         struct task_struct *parent;
6167         struct completion init_done;
6168         kvm_vm_thread_fn_t thread_fn;
6169         uintptr_t data;
6170         int err;
6171 };
6172
6173 static int kvm_vm_worker_thread(void *context)
6174 {
6175         /*
6176          * The init_context is allocated on the stack of the parent thread, so
6177          * we have to locally copy anything that is needed beyond initialization
6178          */
6179         struct kvm_vm_worker_thread_context *init_context = context;
6180         struct task_struct *parent;
6181         struct kvm *kvm = init_context->kvm;
6182         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6183         uintptr_t data = init_context->data;
6184         int err;
6185
6186         err = kthread_park(current);
6187         /* kthread_park(current) is never supposed to return an error */
6188         WARN_ON(err != 0);
6189         if (err)
6190                 goto init_complete;
6191
6192         err = cgroup_attach_task_all(init_context->parent, current);
6193         if (err) {
6194                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6195                         __func__, err);
6196                 goto init_complete;
6197         }
6198
6199         set_user_nice(current, task_nice(init_context->parent));
6200
6201 init_complete:
6202         init_context->err = err;
6203         complete(&init_context->init_done);
6204         init_context = NULL;
6205
6206         if (err)
6207                 goto out;
6208
6209         /* Wait to be woken up by the spawner before proceeding. */
6210         kthread_parkme();
6211
6212         if (!kthread_should_stop())
6213                 err = thread_fn(kvm, data);
6214
6215 out:
6216         /*
6217          * Move kthread back to its original cgroup to prevent it lingering in
6218          * the cgroup of the VM process, after the latter finishes its
6219          * execution.
6220          *
6221          * kthread_stop() waits on the 'exited' completion condition which is
6222          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6223          * kthread is removed from the cgroup in the cgroup_exit() which is
6224          * called after the exit_mm(). This causes the kthread_stop() to return
6225          * before the kthread actually quits the cgroup.
6226          */
6227         rcu_read_lock();
6228         parent = rcu_dereference(current->real_parent);
6229         get_task_struct(parent);
6230         rcu_read_unlock();
6231         cgroup_attach_task_all(parent, current);
6232         put_task_struct(parent);
6233
6234         return err;
6235 }
6236
6237 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6238                                 uintptr_t data, const char *name,
6239                                 struct task_struct **thread_ptr)
6240 {
6241         struct kvm_vm_worker_thread_context init_context = {};
6242         struct task_struct *thread;
6243
6244         *thread_ptr = NULL;
6245         init_context.kvm = kvm;
6246         init_context.parent = current;
6247         init_context.thread_fn = thread_fn;
6248         init_context.data = data;
6249         init_completion(&init_context.init_done);
6250
6251         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6252                              "%s-%d", name, task_pid_nr(current));
6253         if (IS_ERR(thread))
6254                 return PTR_ERR(thread);
6255
6256         /* kthread_run is never supposed to return NULL */
6257         WARN_ON(thread == NULL);
6258
6259         wait_for_completion(&init_context.init_done);
6260
6261         if (!init_context.err)
6262                 *thread_ptr = thread;
6263
6264         return init_context.err;
6265 }