GNU Linux-libre 6.8.9-gnu
[releases.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161         /*
162          * The metadata used by is_zone_device_page() to determine whether or
163          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164          * the device has been pinned, e.g. by get_user_pages().  WARN if the
165          * page_count() is zero to help detect bad usage of this helper.
166          */
167         if (WARN_ON_ONCE(!page_count(page)))
168                 return false;
169
170         return is_zone_device_page(page);
171 }
172
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181         struct page *page;
182
183         if (!pfn_valid(pfn))
184                 return NULL;
185
186         page = pfn_to_page(pfn);
187         if (!PageReserved(page))
188                 return page;
189
190         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191         if (is_zero_pfn(pfn))
192                 return page;
193
194         /*
195          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196          * perspective they are "normal" pages, albeit with slightly different
197          * usage rules.
198          */
199         if (kvm_is_zone_device_page(page))
200                 return page;
201
202         return NULL;
203 }
204
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210         int cpu = get_cpu();
211
212         __this_cpu_write(kvm_running_vcpu, vcpu);
213         preempt_notifier_register(&vcpu->preempt_notifier);
214         kvm_arch_vcpu_load(vcpu, cpu);
215         put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221         preempt_disable();
222         kvm_arch_vcpu_put(vcpu);
223         preempt_notifier_unregister(&vcpu->preempt_notifier);
224         __this_cpu_write(kvm_running_vcpu, NULL);
225         preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234         /*
235          * We need to wait for the VCPU to reenable interrupts and get out of
236          * READING_SHADOW_PAGE_TABLES mode.
237          */
238         if (req & KVM_REQUEST_WAIT)
239                 return mode != OUTSIDE_GUEST_MODE;
240
241         /*
242          * Need to kick a running VCPU, but otherwise there is nothing to do.
243          */
244         return mode == IN_GUEST_MODE;
245 }
246
247 static void ack_kick(void *_completed)
248 {
249 }
250
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_kick, NULL, wait);
257         return true;
258 }
259
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261                                   struct cpumask *tmp, int current_cpu)
262 {
263         int cpu;
264
265         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266                 __kvm_make_request(req, vcpu);
267
268         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269                 return;
270
271         /*
272          * Note, the vCPU could get migrated to a different pCPU at any point
273          * after kvm_request_needs_ipi(), which could result in sending an IPI
274          * to the previous pCPU.  But, that's OK because the purpose of the IPI
275          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277          * after this point is also OK, as the requirement is only that KVM wait
278          * for vCPUs that were reading SPTEs _before_ any changes were
279          * finalized. See kvm_vcpu_kick() for more details on handling requests.
280          */
281         if (kvm_request_needs_ipi(vcpu, req)) {
282                 cpu = READ_ONCE(vcpu->cpu);
283                 if (cpu != -1 && cpu != current_cpu)
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286 }
287
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289                                  unsigned long *vcpu_bitmap)
290 {
291         struct kvm_vcpu *vcpu;
292         struct cpumask *cpus;
293         int i, me;
294         bool called;
295
296         me = get_cpu();
297
298         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299         cpumask_clear(cpus);
300
301         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302                 vcpu = kvm_get_vcpu(kvm, i);
303                 if (!vcpu)
304                         continue;
305                 kvm_make_vcpu_request(vcpu, req, cpus, me);
306         }
307
308         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309         put_cpu();
310
311         return called;
312 }
313
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315                                       struct kvm_vcpu *except)
316 {
317         struct kvm_vcpu *vcpu;
318         struct cpumask *cpus;
319         unsigned long i;
320         bool called;
321         int me;
322
323         me = get_cpu();
324
325         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326         cpumask_clear(cpus);
327
328         kvm_for_each_vcpu(i, vcpu, kvm) {
329                 if (vcpu == except)
330                         continue;
331                 kvm_make_vcpu_request(vcpu, req, cpus, me);
332         }
333
334         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335         put_cpu();
336
337         return called;
338 }
339
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342         return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348         ++kvm->stat.generic.remote_tlb_flush_requests;
349
350         /*
351          * We want to publish modifications to the page tables before reading
352          * mode. Pairs with a memory barrier in arch-specific code.
353          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354          * and smp_mb in walk_shadow_page_lockless_begin/end.
355          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356          *
357          * There is already an smp_mb__after_atomic() before
358          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359          * barrier here.
360          */
361         if (!kvm_arch_flush_remote_tlbs(kvm)
362             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363                 ++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370                 return;
371
372         /*
373          * Fall back to a flushing entire TLBs if the architecture range-based
374          * TLB invalidation is unsupported or can't be performed for whatever
375          * reason.
376          */
377         kvm_flush_remote_tlbs(kvm);
378 }
379
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381                                    const struct kvm_memory_slot *memslot)
382 {
383         /*
384          * All current use cases for flushing the TLBs for a specific memslot
385          * are related to dirty logging, and many do the TLB flush out of
386          * mmu_lock. The interaction between the various operations on memslot
387          * must be serialized by slots_locks to ensure the TLB flush from one
388          * operation is observed by any other operation on the same memslot.
389          */
390         lockdep_assert_held(&kvm->slots_lock);
391         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396         kvm_arch_flush_shadow_all(kvm);
397         kvm_arch_guest_memory_reclaimed(kvm);
398 }
399
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402                                                gfp_t gfp_flags)
403 {
404         gfp_flags |= mc->gfp_zero;
405
406         if (mc->kmem_cache)
407                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408         else
409                 return (void *)__get_free_page(gfp_flags);
410 }
411
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415         void *obj;
416
417         if (mc->nobjs >= min)
418                 return 0;
419
420         if (unlikely(!mc->objects)) {
421                 if (WARN_ON_ONCE(!capacity))
422                         return -EIO;
423
424                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425                 if (!mc->objects)
426                         return -ENOMEM;
427
428                 mc->capacity = capacity;
429         }
430
431         /* It is illegal to request a different capacity across topups. */
432         if (WARN_ON_ONCE(mc->capacity != capacity))
433                 return -EIO;
434
435         while (mc->nobjs < mc->capacity) {
436                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437                 if (!obj)
438                         return mc->nobjs >= min ? 0 : -ENOMEM;
439                 mc->objects[mc->nobjs++] = obj;
440         }
441         return 0;
442 }
443
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451         return mc->nobjs;
452 }
453
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456         while (mc->nobjs) {
457                 if (mc->kmem_cache)
458                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459                 else
460                         free_page((unsigned long)mc->objects[--mc->nobjs]);
461         }
462
463         kvfree(mc->objects);
464
465         mc->objects = NULL;
466         mc->capacity = 0;
467 }
468
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471         void *p;
472
473         if (WARN_ON(!mc->nobjs))
474                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475         else
476                 p = mc->objects[--mc->nobjs];
477         BUG_ON(!p);
478         return p;
479 }
480 #endif
481
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484         mutex_init(&vcpu->mutex);
485         vcpu->cpu = -1;
486         vcpu->kvm = kvm;
487         vcpu->vcpu_id = id;
488         vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490         rcuwait_init(&vcpu->wait);
491 #endif
492         kvm_async_pf_vcpu_init(vcpu);
493
494         kvm_vcpu_set_in_spin_loop(vcpu, false);
495         kvm_vcpu_set_dy_eligible(vcpu, false);
496         vcpu->preempted = false;
497         vcpu->ready = false;
498         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499         vcpu->last_used_slot = NULL;
500
501         /* Fill the stats id string for the vcpu */
502         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503                  task_pid_nr(current), id);
504 }
505
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508         kvm_arch_vcpu_destroy(vcpu);
509         kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511         /*
512          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513          * the vcpu->pid pointer, and at destruction time all file descriptors
514          * are already gone.
515          */
516         put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518         free_page((unsigned long)vcpu->run);
519         kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524         unsigned long i;
525         struct kvm_vcpu *vcpu;
526
527         kvm_for_each_vcpu(i, vcpu, kvm) {
528                 kvm_vcpu_destroy(vcpu);
529                 xa_erase(&kvm->vcpu_array, i);
530         }
531
532         atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539         return container_of(mn, struct kvm, mmu_notifier);
540 }
541
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545
546 struct kvm_mmu_notifier_range {
547         /*
548          * 64-bit addresses, as KVM notifiers can operate on host virtual
549          * addresses (unsigned long) and guest physical addresses (64-bit).
550          */
551         u64 start;
552         u64 end;
553         union kvm_mmu_notifier_arg arg;
554         gfn_handler_t handler;
555         on_lock_fn_t on_lock;
556         bool flush_on_ret;
557         bool may_block;
558 };
559
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569         bool ret;
570         bool found_memslot;
571 } kvm_mn_ret_t;
572
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
590         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591              node;                                                           \
592              node = interval_tree_iter_next(node, start, last))      \
593
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595                                                            const struct kvm_mmu_notifier_range *range)
596 {
597         struct kvm_mmu_notifier_return r = {
598                 .ret = false,
599                 .found_memslot = false,
600         };
601         struct kvm_gfn_range gfn_range;
602         struct kvm_memory_slot *slot;
603         struct kvm_memslots *slots;
604         int i, idx;
605
606         if (WARN_ON_ONCE(range->end <= range->start))
607                 return r;
608
609         /* A null handler is allowed if and only if on_lock() is provided. */
610         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611                          IS_KVM_NULL_FN(range->handler)))
612                 return r;
613
614         idx = srcu_read_lock(&kvm->srcu);
615
616         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617                 struct interval_tree_node *node;
618
619                 slots = __kvm_memslots(kvm, i);
620                 kvm_for_each_memslot_in_hva_range(node, slots,
621                                                   range->start, range->end - 1) {
622                         unsigned long hva_start, hva_end;
623
624                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625                         hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626                         hva_end = min_t(unsigned long, range->end,
627                                         slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628
629                         /*
630                          * To optimize for the likely case where the address
631                          * range is covered by zero or one memslots, don't
632                          * bother making these conditional (to avoid writes on
633                          * the second or later invocation of the handler).
634                          */
635                         gfn_range.arg = range->arg;
636                         gfn_range.may_block = range->may_block;
637
638                         /*
639                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
640                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641                          */
642                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644                         gfn_range.slot = slot;
645
646                         if (!r.found_memslot) {
647                                 r.found_memslot = true;
648                                 KVM_MMU_LOCK(kvm);
649                                 if (!IS_KVM_NULL_FN(range->on_lock))
650                                         range->on_lock(kvm);
651
652                                 if (IS_KVM_NULL_FN(range->handler))
653                                         break;
654                         }
655                         r.ret |= range->handler(kvm, &gfn_range);
656                 }
657         }
658
659         if (range->flush_on_ret && r.ret)
660                 kvm_flush_remote_tlbs(kvm);
661
662         if (r.found_memslot)
663                 KVM_MMU_UNLOCK(kvm);
664
665         srcu_read_unlock(&kvm->srcu, idx);
666
667         return r;
668 }
669
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671                                                 unsigned long start,
672                                                 unsigned long end,
673                                                 union kvm_mmu_notifier_arg arg,
674                                                 gfn_handler_t handler)
675 {
676         struct kvm *kvm = mmu_notifier_to_kvm(mn);
677         const struct kvm_mmu_notifier_range range = {
678                 .start          = start,
679                 .end            = end,
680                 .arg            = arg,
681                 .handler        = handler,
682                 .on_lock        = (void *)kvm_null_fn,
683                 .flush_on_ret   = true,
684                 .may_block      = false,
685         };
686
687         return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691                                                          unsigned long start,
692                                                          unsigned long end,
693                                                          gfn_handler_t handler)
694 {
695         struct kvm *kvm = mmu_notifier_to_kvm(mn);
696         const struct kvm_mmu_notifier_range range = {
697                 .start          = start,
698                 .end            = end,
699                 .handler        = handler,
700                 .on_lock        = (void *)kvm_null_fn,
701                 .flush_on_ret   = false,
702                 .may_block      = false,
703         };
704
705         return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710         /*
711          * Skipping invalid memslots is correct if and only change_pte() is
712          * surrounded by invalidate_range_{start,end}(), which is currently
713          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714          * unmap the memslot instead of skipping the memslot to ensure that KVM
715          * doesn't hold references to the old PFN.
716          */
717         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718
719         if (range->slot->flags & KVM_MEMSLOT_INVALID)
720                 return false;
721
722         return kvm_set_spte_gfn(kvm, range);
723 }
724
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726                                         struct mm_struct *mm,
727                                         unsigned long address,
728                                         pte_t pte)
729 {
730         struct kvm *kvm = mmu_notifier_to_kvm(mn);
731         const union kvm_mmu_notifier_arg arg = { .pte = pte };
732
733         trace_kvm_set_spte_hva(address);
734
735         /*
736          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737          * If mmu_invalidate_in_progress is zero, then no in-progress
738          * invalidations, including this one, found a relevant memslot at
739          * start(); rechecking memslots here is unnecessary.  Note, a false
740          * positive (count elevated by a different invalidation) is sub-optimal
741          * but functionally ok.
742          */
743         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745                 return;
746
747         kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752         lockdep_assert_held_write(&kvm->mmu_lock);
753         /*
754          * The count increase must become visible at unlock time as no
755          * spte can be established without taking the mmu_lock and
756          * count is also read inside the mmu_lock critical section.
757          */
758         kvm->mmu_invalidate_in_progress++;
759
760         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761                 kvm->mmu_invalidate_range_start = INVALID_GPA;
762                 kvm->mmu_invalidate_range_end = INVALID_GPA;
763         }
764 }
765
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768         lockdep_assert_held_write(&kvm->mmu_lock);
769
770         WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771
772         if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773                 kvm->mmu_invalidate_range_start = start;
774                 kvm->mmu_invalidate_range_end = end;
775         } else {
776                 /*
777                  * Fully tracking multiple concurrent ranges has diminishing
778                  * returns. Keep things simple and just find the minimal range
779                  * which includes the current and new ranges. As there won't be
780                  * enough information to subtract a range after its invalidate
781                  * completes, any ranges invalidated concurrently will
782                  * accumulate and persist until all outstanding invalidates
783                  * complete.
784                  */
785                 kvm->mmu_invalidate_range_start =
786                         min(kvm->mmu_invalidate_range_start, start);
787                 kvm->mmu_invalidate_range_end =
788                         max(kvm->mmu_invalidate_range_end, end);
789         }
790 }
791
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795         return kvm_unmap_gfn_range(kvm, range);
796 }
797
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799                                         const struct mmu_notifier_range *range)
800 {
801         struct kvm *kvm = mmu_notifier_to_kvm(mn);
802         const struct kvm_mmu_notifier_range hva_range = {
803                 .start          = range->start,
804                 .end            = range->end,
805                 .handler        = kvm_mmu_unmap_gfn_range,
806                 .on_lock        = kvm_mmu_invalidate_begin,
807                 .flush_on_ret   = true,
808                 .may_block      = mmu_notifier_range_blockable(range),
809         };
810
811         trace_kvm_unmap_hva_range(range->start, range->end);
812
813         /*
814          * Prevent memslot modification between range_start() and range_end()
815          * so that conditionally locking provides the same result in both
816          * functions.  Without that guarantee, the mmu_invalidate_in_progress
817          * adjustments will be imbalanced.
818          *
819          * Pairs with the decrement in range_end().
820          */
821         spin_lock(&kvm->mn_invalidate_lock);
822         kvm->mn_active_invalidate_count++;
823         spin_unlock(&kvm->mn_invalidate_lock);
824
825         /*
826          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828          * each cache's lock.  There are relatively few caches in existence at
829          * any given time, and the caches themselves can check for hva overlap,
830          * i.e. don't need to rely on memslot overlap checks for performance.
831          * Because this runs without holding mmu_lock, the pfn caches must use
832          * mn_active_invalidate_count (see above) instead of
833          * mmu_invalidate_in_progress.
834          */
835         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836                                           hva_range.may_block);
837
838         /*
839          * If one or more memslots were found and thus zapped, notify arch code
840          * that guest memory has been reclaimed.  This needs to be done *after*
841          * dropping mmu_lock, as x86's reclaim path is slooooow.
842          */
843         if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844                 kvm_arch_guest_memory_reclaimed(kvm);
845
846         return 0;
847 }
848
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851         lockdep_assert_held_write(&kvm->mmu_lock);
852
853         /*
854          * This sequence increase will notify the kvm page fault that
855          * the page that is going to be mapped in the spte could have
856          * been freed.
857          */
858         kvm->mmu_invalidate_seq++;
859         smp_wmb();
860         /*
861          * The above sequence increase must be visible before the
862          * below count decrease, which is ensured by the smp_wmb above
863          * in conjunction with the smp_rmb in mmu_invalidate_retry().
864          */
865         kvm->mmu_invalidate_in_progress--;
866         KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867
868         /*
869          * Assert that at least one range was added between start() and end().
870          * Not adding a range isn't fatal, but it is a KVM bug.
871          */
872         WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876                                         const struct mmu_notifier_range *range)
877 {
878         struct kvm *kvm = mmu_notifier_to_kvm(mn);
879         const struct kvm_mmu_notifier_range hva_range = {
880                 .start          = range->start,
881                 .end            = range->end,
882                 .handler        = (void *)kvm_null_fn,
883                 .on_lock        = kvm_mmu_invalidate_end,
884                 .flush_on_ret   = false,
885                 .may_block      = mmu_notifier_range_blockable(range),
886         };
887         bool wake;
888
889         __kvm_handle_hva_range(kvm, &hva_range);
890
891         /* Pairs with the increment in range_start(). */
892         spin_lock(&kvm->mn_invalidate_lock);
893         wake = (--kvm->mn_active_invalidate_count == 0);
894         spin_unlock(&kvm->mn_invalidate_lock);
895
896         /*
897          * There can only be one waiter, since the wait happens under
898          * slots_lock.
899          */
900         if (wake)
901                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902 }
903
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905                                               struct mm_struct *mm,
906                                               unsigned long start,
907                                               unsigned long end)
908 {
909         trace_kvm_age_hva(start, end);
910
911         return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912                                     kvm_age_gfn);
913 }
914
915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916                                         struct mm_struct *mm,
917                                         unsigned long start,
918                                         unsigned long end)
919 {
920         trace_kvm_age_hva(start, end);
921
922         /*
923          * Even though we do not flush TLB, this will still adversely
924          * affect performance on pre-Haswell Intel EPT, where there is
925          * no EPT Access Bit to clear so that we have to tear down EPT
926          * tables instead. If we find this unacceptable, we can always
927          * add a parameter to kvm_age_hva so that it effectively doesn't
928          * do anything on clear_young.
929          *
930          * Also note that currently we never issue secondary TLB flushes
931          * from clear_young, leaving this job up to the regular system
932          * cadence. If we find this inaccurate, we might come up with a
933          * more sophisticated heuristic later.
934          */
935         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936 }
937
938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939                                        struct mm_struct *mm,
940                                        unsigned long address)
941 {
942         trace_kvm_test_age_hva(address);
943
944         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
945                                              kvm_test_age_gfn);
946 }
947
948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949                                      struct mm_struct *mm)
950 {
951         struct kvm *kvm = mmu_notifier_to_kvm(mn);
952         int idx;
953
954         idx = srcu_read_lock(&kvm->srcu);
955         kvm_flush_shadow_all(kvm);
956         srcu_read_unlock(&kvm->srcu, idx);
957 }
958
959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
961         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
962         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
963         .clear_young            = kvm_mmu_notifier_clear_young,
964         .test_young             = kvm_mmu_notifier_test_young,
965         .change_pte             = kvm_mmu_notifier_change_pte,
966         .release                = kvm_mmu_notifier_release,
967 };
968
969 static int kvm_init_mmu_notifier(struct kvm *kvm)
970 {
971         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973 }
974
975 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976
977 static int kvm_init_mmu_notifier(struct kvm *kvm)
978 {
979         return 0;
980 }
981
982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983
984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985 static int kvm_pm_notifier_call(struct notifier_block *bl,
986                                 unsigned long state,
987                                 void *unused)
988 {
989         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990
991         return kvm_arch_pm_notifier(kvm, state);
992 }
993
994 static void kvm_init_pm_notifier(struct kvm *kvm)
995 {
996         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997         /* Suspend KVM before we suspend ftrace, RCU, etc. */
998         kvm->pm_notifier.priority = INT_MAX;
999         register_pm_notifier(&kvm->pm_notifier);
1000 }
1001
1002 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003 {
1004         unregister_pm_notifier(&kvm->pm_notifier);
1005 }
1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007 static void kvm_init_pm_notifier(struct kvm *kvm)
1008 {
1009 }
1010
1011 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012 {
1013 }
1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015
1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017 {
1018         if (!memslot->dirty_bitmap)
1019                 return;
1020
1021         kvfree(memslot->dirty_bitmap);
1022         memslot->dirty_bitmap = NULL;
1023 }
1024
1025 /* This does not remove the slot from struct kvm_memslots data structures */
1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027 {
1028         if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029                 kvm_gmem_unbind(slot);
1030
1031         kvm_destroy_dirty_bitmap(slot);
1032
1033         kvm_arch_free_memslot(kvm, slot);
1034
1035         kfree(slot);
1036 }
1037
1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039 {
1040         struct hlist_node *idnode;
1041         struct kvm_memory_slot *memslot;
1042         int bkt;
1043
1044         /*
1045          * The same memslot objects live in both active and inactive sets,
1046          * arbitrarily free using index '1' so the second invocation of this
1047          * function isn't operating over a structure with dangling pointers
1048          * (even though this function isn't actually touching them).
1049          */
1050         if (!slots->node_idx)
1051                 return;
1052
1053         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054                 kvm_free_memslot(kvm, memslot);
1055 }
1056
1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058 {
1059         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060         case KVM_STATS_TYPE_INSTANT:
1061                 return 0444;
1062         case KVM_STATS_TYPE_CUMULATIVE:
1063         case KVM_STATS_TYPE_PEAK:
1064         default:
1065                 return 0644;
1066         }
1067 }
1068
1069
1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071 {
1072         int i;
1073         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074                                       kvm_vcpu_stats_header.num_desc;
1075
1076         if (IS_ERR(kvm->debugfs_dentry))
1077                 return;
1078
1079         debugfs_remove_recursive(kvm->debugfs_dentry);
1080
1081         if (kvm->debugfs_stat_data) {
1082                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1083                         kfree(kvm->debugfs_stat_data[i]);
1084                 kfree(kvm->debugfs_stat_data);
1085         }
1086 }
1087
1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089 {
1090         static DEFINE_MUTEX(kvm_debugfs_lock);
1091         struct dentry *dent;
1092         char dir_name[ITOA_MAX_LEN * 2];
1093         struct kvm_stat_data *stat_data;
1094         const struct _kvm_stats_desc *pdesc;
1095         int i, ret = -ENOMEM;
1096         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097                                       kvm_vcpu_stats_header.num_desc;
1098
1099         if (!debugfs_initialized())
1100                 return 0;
1101
1102         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103         mutex_lock(&kvm_debugfs_lock);
1104         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105         if (dent) {
1106                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107                 dput(dent);
1108                 mutex_unlock(&kvm_debugfs_lock);
1109                 return 0;
1110         }
1111         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112         mutex_unlock(&kvm_debugfs_lock);
1113         if (IS_ERR(dent))
1114                 return 0;
1115
1116         kvm->debugfs_dentry = dent;
1117         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118                                          sizeof(*kvm->debugfs_stat_data),
1119                                          GFP_KERNEL_ACCOUNT);
1120         if (!kvm->debugfs_stat_data)
1121                 goto out_err;
1122
1123         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124                 pdesc = &kvm_vm_stats_desc[i];
1125                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126                 if (!stat_data)
1127                         goto out_err;
1128
1129                 stat_data->kvm = kvm;
1130                 stat_data->desc = pdesc;
1131                 stat_data->kind = KVM_STAT_VM;
1132                 kvm->debugfs_stat_data[i] = stat_data;
1133                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134                                     kvm->debugfs_dentry, stat_data,
1135                                     &stat_fops_per_vm);
1136         }
1137
1138         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139                 pdesc = &kvm_vcpu_stats_desc[i];
1140                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141                 if (!stat_data)
1142                         goto out_err;
1143
1144                 stat_data->kvm = kvm;
1145                 stat_data->desc = pdesc;
1146                 stat_data->kind = KVM_STAT_VCPU;
1147                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149                                     kvm->debugfs_dentry, stat_data,
1150                                     &stat_fops_per_vm);
1151         }
1152
1153         ret = kvm_arch_create_vm_debugfs(kvm);
1154         if (ret)
1155                 goto out_err;
1156
1157         return 0;
1158 out_err:
1159         kvm_destroy_vm_debugfs(kvm);
1160         return ret;
1161 }
1162
1163 /*
1164  * Called after the VM is otherwise initialized, but just before adding it to
1165  * the vm_list.
1166  */
1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1168 {
1169         return 0;
1170 }
1171
1172 /*
1173  * Called just after removing the VM from the vm_list, but before doing any
1174  * other destruction.
1175  */
1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1177 {
1178 }
1179
1180 /*
1181  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1182  * be setup already, so we can create arch-specific debugfs entries under it.
1183  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1184  * a per-arch destroy interface is not needed.
1185  */
1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1187 {
1188         return 0;
1189 }
1190
1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1192 {
1193         struct kvm *kvm = kvm_arch_alloc_vm();
1194         struct kvm_memslots *slots;
1195         int r = -ENOMEM;
1196         int i, j;
1197
1198         if (!kvm)
1199                 return ERR_PTR(-ENOMEM);
1200
1201         KVM_MMU_LOCK_INIT(kvm);
1202         mmgrab(current->mm);
1203         kvm->mm = current->mm;
1204         kvm_eventfd_init(kvm);
1205         mutex_init(&kvm->lock);
1206         mutex_init(&kvm->irq_lock);
1207         mutex_init(&kvm->slots_lock);
1208         mutex_init(&kvm->slots_arch_lock);
1209         spin_lock_init(&kvm->mn_invalidate_lock);
1210         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1211         xa_init(&kvm->vcpu_array);
1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1213         xa_init(&kvm->mem_attr_array);
1214 #endif
1215
1216         INIT_LIST_HEAD(&kvm->gpc_list);
1217         spin_lock_init(&kvm->gpc_lock);
1218
1219         INIT_LIST_HEAD(&kvm->devices);
1220         kvm->max_vcpus = KVM_MAX_VCPUS;
1221
1222         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1223
1224         /*
1225          * Force subsequent debugfs file creations to fail if the VM directory
1226          * is not created (by kvm_create_vm_debugfs()).
1227          */
1228         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1229
1230         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1231                  task_pid_nr(current));
1232
1233         if (init_srcu_struct(&kvm->srcu))
1234                 goto out_err_no_srcu;
1235         if (init_srcu_struct(&kvm->irq_srcu))
1236                 goto out_err_no_irq_srcu;
1237
1238         refcount_set(&kvm->users_count, 1);
1239         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1240                 for (j = 0; j < 2; j++) {
1241                         slots = &kvm->__memslots[i][j];
1242
1243                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1244                         slots->hva_tree = RB_ROOT_CACHED;
1245                         slots->gfn_tree = RB_ROOT;
1246                         hash_init(slots->id_hash);
1247                         slots->node_idx = j;
1248
1249                         /* Generations must be different for each address space. */
1250                         slots->generation = i;
1251                 }
1252
1253                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1254         }
1255
1256         for (i = 0; i < KVM_NR_BUSES; i++) {
1257                 rcu_assign_pointer(kvm->buses[i],
1258                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1259                 if (!kvm->buses[i])
1260                         goto out_err_no_arch_destroy_vm;
1261         }
1262
1263         r = kvm_arch_init_vm(kvm, type);
1264         if (r)
1265                 goto out_err_no_arch_destroy_vm;
1266
1267         r = hardware_enable_all();
1268         if (r)
1269                 goto out_err_no_disable;
1270
1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1272         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1273 #endif
1274
1275         r = kvm_init_mmu_notifier(kvm);
1276         if (r)
1277                 goto out_err_no_mmu_notifier;
1278
1279         r = kvm_coalesced_mmio_init(kvm);
1280         if (r < 0)
1281                 goto out_no_coalesced_mmio;
1282
1283         r = kvm_create_vm_debugfs(kvm, fdname);
1284         if (r)
1285                 goto out_err_no_debugfs;
1286
1287         r = kvm_arch_post_init_vm(kvm);
1288         if (r)
1289                 goto out_err;
1290
1291         mutex_lock(&kvm_lock);
1292         list_add(&kvm->vm_list, &vm_list);
1293         mutex_unlock(&kvm_lock);
1294
1295         preempt_notifier_inc();
1296         kvm_init_pm_notifier(kvm);
1297
1298         return kvm;
1299
1300 out_err:
1301         kvm_destroy_vm_debugfs(kvm);
1302 out_err_no_debugfs:
1303         kvm_coalesced_mmio_free(kvm);
1304 out_no_coalesced_mmio:
1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1306         if (kvm->mmu_notifier.ops)
1307                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1308 #endif
1309 out_err_no_mmu_notifier:
1310         hardware_disable_all();
1311 out_err_no_disable:
1312         kvm_arch_destroy_vm(kvm);
1313 out_err_no_arch_destroy_vm:
1314         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1315         for (i = 0; i < KVM_NR_BUSES; i++)
1316                 kfree(kvm_get_bus(kvm, i));
1317         cleanup_srcu_struct(&kvm->irq_srcu);
1318 out_err_no_irq_srcu:
1319         cleanup_srcu_struct(&kvm->srcu);
1320 out_err_no_srcu:
1321         kvm_arch_free_vm(kvm);
1322         mmdrop(current->mm);
1323         return ERR_PTR(r);
1324 }
1325
1326 static void kvm_destroy_devices(struct kvm *kvm)
1327 {
1328         struct kvm_device *dev, *tmp;
1329
1330         /*
1331          * We do not need to take the kvm->lock here, because nobody else
1332          * has a reference to the struct kvm at this point and therefore
1333          * cannot access the devices list anyhow.
1334          */
1335         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1336                 list_del(&dev->vm_node);
1337                 dev->ops->destroy(dev);
1338         }
1339 }
1340
1341 static void kvm_destroy_vm(struct kvm *kvm)
1342 {
1343         int i;
1344         struct mm_struct *mm = kvm->mm;
1345
1346         kvm_destroy_pm_notifier(kvm);
1347         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1348         kvm_destroy_vm_debugfs(kvm);
1349         kvm_arch_sync_events(kvm);
1350         mutex_lock(&kvm_lock);
1351         list_del(&kvm->vm_list);
1352         mutex_unlock(&kvm_lock);
1353         kvm_arch_pre_destroy_vm(kvm);
1354
1355         kvm_free_irq_routing(kvm);
1356         for (i = 0; i < KVM_NR_BUSES; i++) {
1357                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1358
1359                 if (bus)
1360                         kvm_io_bus_destroy(bus);
1361                 kvm->buses[i] = NULL;
1362         }
1363         kvm_coalesced_mmio_free(kvm);
1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1365         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1366         /*
1367          * At this point, pending calls to invalidate_range_start()
1368          * have completed but no more MMU notifiers will run, so
1369          * mn_active_invalidate_count may remain unbalanced.
1370          * No threads can be waiting in kvm_swap_active_memslots() as the
1371          * last reference on KVM has been dropped, but freeing
1372          * memslots would deadlock without this manual intervention.
1373          *
1374          * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1375          * notifier between a start() and end(), then there shouldn't be any
1376          * in-progress invalidations.
1377          */
1378         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1379         if (kvm->mn_active_invalidate_count)
1380                 kvm->mn_active_invalidate_count = 0;
1381         else
1382                 WARN_ON(kvm->mmu_invalidate_in_progress);
1383 #else
1384         kvm_flush_shadow_all(kvm);
1385 #endif
1386         kvm_arch_destroy_vm(kvm);
1387         kvm_destroy_devices(kvm);
1388         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1389                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1390                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1391         }
1392         cleanup_srcu_struct(&kvm->irq_srcu);
1393         cleanup_srcu_struct(&kvm->srcu);
1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1395         xa_destroy(&kvm->mem_attr_array);
1396 #endif
1397         kvm_arch_free_vm(kvm);
1398         preempt_notifier_dec();
1399         hardware_disable_all();
1400         mmdrop(mm);
1401 }
1402
1403 void kvm_get_kvm(struct kvm *kvm)
1404 {
1405         refcount_inc(&kvm->users_count);
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1408
1409 /*
1410  * Make sure the vm is not during destruction, which is a safe version of
1411  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1412  */
1413 bool kvm_get_kvm_safe(struct kvm *kvm)
1414 {
1415         return refcount_inc_not_zero(&kvm->users_count);
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1418
1419 void kvm_put_kvm(struct kvm *kvm)
1420 {
1421         if (refcount_dec_and_test(&kvm->users_count))
1422                 kvm_destroy_vm(kvm);
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1425
1426 /*
1427  * Used to put a reference that was taken on behalf of an object associated
1428  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1429  * of the new file descriptor fails and the reference cannot be transferred to
1430  * its final owner.  In such cases, the caller is still actively using @kvm and
1431  * will fail miserably if the refcount unexpectedly hits zero.
1432  */
1433 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1434 {
1435         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1438
1439 static int kvm_vm_release(struct inode *inode, struct file *filp)
1440 {
1441         struct kvm *kvm = filp->private_data;
1442
1443         kvm_irqfd_release(kvm);
1444
1445         kvm_put_kvm(kvm);
1446         return 0;
1447 }
1448
1449 /*
1450  * Allocation size is twice as large as the actual dirty bitmap size.
1451  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1452  */
1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1454 {
1455         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1456
1457         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1458         if (!memslot->dirty_bitmap)
1459                 return -ENOMEM;
1460
1461         return 0;
1462 }
1463
1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1465 {
1466         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1467         int node_idx_inactive = active->node_idx ^ 1;
1468
1469         return &kvm->__memslots[as_id][node_idx_inactive];
1470 }
1471
1472 /*
1473  * Helper to get the address space ID when one of memslot pointers may be NULL.
1474  * This also serves as a sanity that at least one of the pointers is non-NULL,
1475  * and that their address space IDs don't diverge.
1476  */
1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1478                                   struct kvm_memory_slot *b)
1479 {
1480         if (WARN_ON_ONCE(!a && !b))
1481                 return 0;
1482
1483         if (!a)
1484                 return b->as_id;
1485         if (!b)
1486                 return a->as_id;
1487
1488         WARN_ON_ONCE(a->as_id != b->as_id);
1489         return a->as_id;
1490 }
1491
1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1493                                 struct kvm_memory_slot *slot)
1494 {
1495         struct rb_root *gfn_tree = &slots->gfn_tree;
1496         struct rb_node **node, *parent;
1497         int idx = slots->node_idx;
1498
1499         parent = NULL;
1500         for (node = &gfn_tree->rb_node; *node; ) {
1501                 struct kvm_memory_slot *tmp;
1502
1503                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1504                 parent = *node;
1505                 if (slot->base_gfn < tmp->base_gfn)
1506                         node = &(*node)->rb_left;
1507                 else if (slot->base_gfn > tmp->base_gfn)
1508                         node = &(*node)->rb_right;
1509                 else
1510                         BUG();
1511         }
1512
1513         rb_link_node(&slot->gfn_node[idx], parent, node);
1514         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1515 }
1516
1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1518                                struct kvm_memory_slot *slot)
1519 {
1520         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1521 }
1522
1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1524                                  struct kvm_memory_slot *old,
1525                                  struct kvm_memory_slot *new)
1526 {
1527         int idx = slots->node_idx;
1528
1529         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1530
1531         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1532                         &slots->gfn_tree);
1533 }
1534
1535 /*
1536  * Replace @old with @new in the inactive memslots.
1537  *
1538  * With NULL @old this simply adds @new.
1539  * With NULL @new this simply removes @old.
1540  *
1541  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1542  * appropriately.
1543  */
1544 static void kvm_replace_memslot(struct kvm *kvm,
1545                                 struct kvm_memory_slot *old,
1546                                 struct kvm_memory_slot *new)
1547 {
1548         int as_id = kvm_memslots_get_as_id(old, new);
1549         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550         int idx = slots->node_idx;
1551
1552         if (old) {
1553                 hash_del(&old->id_node[idx]);
1554                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1555
1556                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1557                         atomic_long_set(&slots->last_used_slot, (long)new);
1558
1559                 if (!new) {
1560                         kvm_erase_gfn_node(slots, old);
1561                         return;
1562                 }
1563         }
1564
1565         /*
1566          * Initialize @new's hva range.  Do this even when replacing an @old
1567          * slot, kvm_copy_memslot() deliberately does not touch node data.
1568          */
1569         new->hva_node[idx].start = new->userspace_addr;
1570         new->hva_node[idx].last = new->userspace_addr +
1571                                   (new->npages << PAGE_SHIFT) - 1;
1572
1573         /*
1574          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1575          * hva_node needs to be swapped with remove+insert even though hva can't
1576          * change when replacing an existing slot.
1577          */
1578         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1579         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1580
1581         /*
1582          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1583          * switch the node in the gfn tree instead of removing the old and
1584          * inserting the new as two separate operations. Replacement is a
1585          * single O(1) operation versus two O(log(n)) operations for
1586          * remove+insert.
1587          */
1588         if (old && old->base_gfn == new->base_gfn) {
1589                 kvm_replace_gfn_node(slots, old, new);
1590         } else {
1591                 if (old)
1592                         kvm_erase_gfn_node(slots, old);
1593                 kvm_insert_gfn_node(slots, new);
1594         }
1595 }
1596
1597 /*
1598  * Flags that do not access any of the extra space of struct
1599  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1600  * only allows these.
1601  */
1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1603         (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1604
1605 static int check_memory_region_flags(struct kvm *kvm,
1606                                      const struct kvm_userspace_memory_region2 *mem)
1607 {
1608         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1609
1610         if (kvm_arch_has_private_mem(kvm))
1611                 valid_flags |= KVM_MEM_GUEST_MEMFD;
1612
1613         /* Dirty logging private memory is not currently supported. */
1614         if (mem->flags & KVM_MEM_GUEST_MEMFD)
1615                 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1616
1617 #ifdef __KVM_HAVE_READONLY_MEM
1618         /*
1619          * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1620          * read-only memslots have emulated MMIO, not page fault, semantics,
1621          * and KVM doesn't allow emulated MMIO for private memory.
1622          */
1623         if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1624                 valid_flags |= KVM_MEM_READONLY;
1625 #endif
1626
1627         if (mem->flags & ~valid_flags)
1628                 return -EINVAL;
1629
1630         return 0;
1631 }
1632
1633 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1634 {
1635         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1636
1637         /* Grab the generation from the activate memslots. */
1638         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1639
1640         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1641         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1642
1643         /*
1644          * Do not store the new memslots while there are invalidations in
1645          * progress, otherwise the locking in invalidate_range_start and
1646          * invalidate_range_end will be unbalanced.
1647          */
1648         spin_lock(&kvm->mn_invalidate_lock);
1649         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1650         while (kvm->mn_active_invalidate_count) {
1651                 set_current_state(TASK_UNINTERRUPTIBLE);
1652                 spin_unlock(&kvm->mn_invalidate_lock);
1653                 schedule();
1654                 spin_lock(&kvm->mn_invalidate_lock);
1655         }
1656         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1657         rcu_assign_pointer(kvm->memslots[as_id], slots);
1658         spin_unlock(&kvm->mn_invalidate_lock);
1659
1660         /*
1661          * Acquired in kvm_set_memslot. Must be released before synchronize
1662          * SRCU below in order to avoid deadlock with another thread
1663          * acquiring the slots_arch_lock in an srcu critical section.
1664          */
1665         mutex_unlock(&kvm->slots_arch_lock);
1666
1667         synchronize_srcu_expedited(&kvm->srcu);
1668
1669         /*
1670          * Increment the new memslot generation a second time, dropping the
1671          * update in-progress flag and incrementing the generation based on
1672          * the number of address spaces.  This provides a unique and easily
1673          * identifiable generation number while the memslots are in flux.
1674          */
1675         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1676
1677         /*
1678          * Generations must be unique even across address spaces.  We do not need
1679          * a global counter for that, instead the generation space is evenly split
1680          * across address spaces.  For example, with two address spaces, address
1681          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1682          * use generations 1, 3, 5, ...
1683          */
1684         gen += kvm_arch_nr_memslot_as_ids(kvm);
1685
1686         kvm_arch_memslots_updated(kvm, gen);
1687
1688         slots->generation = gen;
1689 }
1690
1691 static int kvm_prepare_memory_region(struct kvm *kvm,
1692                                      const struct kvm_memory_slot *old,
1693                                      struct kvm_memory_slot *new,
1694                                      enum kvm_mr_change change)
1695 {
1696         int r;
1697
1698         /*
1699          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1700          * will be freed on "commit".  If logging is enabled in both old and
1701          * new, reuse the existing bitmap.  If logging is enabled only in the
1702          * new and KVM isn't using a ring buffer, allocate and initialize a
1703          * new bitmap.
1704          */
1705         if (change != KVM_MR_DELETE) {
1706                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1707                         new->dirty_bitmap = NULL;
1708                 else if (old && old->dirty_bitmap)
1709                         new->dirty_bitmap = old->dirty_bitmap;
1710                 else if (kvm_use_dirty_bitmap(kvm)) {
1711                         r = kvm_alloc_dirty_bitmap(new);
1712                         if (r)
1713                                 return r;
1714
1715                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1716                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1717                 }
1718         }
1719
1720         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1721
1722         /* Free the bitmap on failure if it was allocated above. */
1723         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1724                 kvm_destroy_dirty_bitmap(new);
1725
1726         return r;
1727 }
1728
1729 static void kvm_commit_memory_region(struct kvm *kvm,
1730                                      struct kvm_memory_slot *old,
1731                                      const struct kvm_memory_slot *new,
1732                                      enum kvm_mr_change change)
1733 {
1734         int old_flags = old ? old->flags : 0;
1735         int new_flags = new ? new->flags : 0;
1736         /*
1737          * Update the total number of memslot pages before calling the arch
1738          * hook so that architectures can consume the result directly.
1739          */
1740         if (change == KVM_MR_DELETE)
1741                 kvm->nr_memslot_pages -= old->npages;
1742         else if (change == KVM_MR_CREATE)
1743                 kvm->nr_memslot_pages += new->npages;
1744
1745         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1746                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1747                 atomic_set(&kvm->nr_memslots_dirty_logging,
1748                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1749         }
1750
1751         kvm_arch_commit_memory_region(kvm, old, new, change);
1752
1753         switch (change) {
1754         case KVM_MR_CREATE:
1755                 /* Nothing more to do. */
1756                 break;
1757         case KVM_MR_DELETE:
1758                 /* Free the old memslot and all its metadata. */
1759                 kvm_free_memslot(kvm, old);
1760                 break;
1761         case KVM_MR_MOVE:
1762         case KVM_MR_FLAGS_ONLY:
1763                 /*
1764                  * Free the dirty bitmap as needed; the below check encompasses
1765                  * both the flags and whether a ring buffer is being used)
1766                  */
1767                 if (old->dirty_bitmap && !new->dirty_bitmap)
1768                         kvm_destroy_dirty_bitmap(old);
1769
1770                 /*
1771                  * The final quirk.  Free the detached, old slot, but only its
1772                  * memory, not any metadata.  Metadata, including arch specific
1773                  * data, may be reused by @new.
1774                  */
1775                 kfree(old);
1776                 break;
1777         default:
1778                 BUG();
1779         }
1780 }
1781
1782 /*
1783  * Activate @new, which must be installed in the inactive slots by the caller,
1784  * by swapping the active slots and then propagating @new to @old once @old is
1785  * unreachable and can be safely modified.
1786  *
1787  * With NULL @old this simply adds @new to @active (while swapping the sets).
1788  * With NULL @new this simply removes @old from @active and frees it
1789  * (while also swapping the sets).
1790  */
1791 static void kvm_activate_memslot(struct kvm *kvm,
1792                                  struct kvm_memory_slot *old,
1793                                  struct kvm_memory_slot *new)
1794 {
1795         int as_id = kvm_memslots_get_as_id(old, new);
1796
1797         kvm_swap_active_memslots(kvm, as_id);
1798
1799         /* Propagate the new memslot to the now inactive memslots. */
1800         kvm_replace_memslot(kvm, old, new);
1801 }
1802
1803 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1804                              const struct kvm_memory_slot *src)
1805 {
1806         dest->base_gfn = src->base_gfn;
1807         dest->npages = src->npages;
1808         dest->dirty_bitmap = src->dirty_bitmap;
1809         dest->arch = src->arch;
1810         dest->userspace_addr = src->userspace_addr;
1811         dest->flags = src->flags;
1812         dest->id = src->id;
1813         dest->as_id = src->as_id;
1814 }
1815
1816 static void kvm_invalidate_memslot(struct kvm *kvm,
1817                                    struct kvm_memory_slot *old,
1818                                    struct kvm_memory_slot *invalid_slot)
1819 {
1820         /*
1821          * Mark the current slot INVALID.  As with all memslot modifications,
1822          * this must be done on an unreachable slot to avoid modifying the
1823          * current slot in the active tree.
1824          */
1825         kvm_copy_memslot(invalid_slot, old);
1826         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1827         kvm_replace_memslot(kvm, old, invalid_slot);
1828
1829         /*
1830          * Activate the slot that is now marked INVALID, but don't propagate
1831          * the slot to the now inactive slots. The slot is either going to be
1832          * deleted or recreated as a new slot.
1833          */
1834         kvm_swap_active_memslots(kvm, old->as_id);
1835
1836         /*
1837          * From this point no new shadow pages pointing to a deleted, or moved,
1838          * memslot will be created.  Validation of sp->gfn happens in:
1839          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1840          *      - kvm_is_visible_gfn (mmu_check_root)
1841          */
1842         kvm_arch_flush_shadow_memslot(kvm, old);
1843         kvm_arch_guest_memory_reclaimed(kvm);
1844
1845         /* Was released by kvm_swap_active_memslots(), reacquire. */
1846         mutex_lock(&kvm->slots_arch_lock);
1847
1848         /*
1849          * Copy the arch-specific field of the newly-installed slot back to the
1850          * old slot as the arch data could have changed between releasing
1851          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1852          * above.  Writers are required to retrieve memslots *after* acquiring
1853          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1854          */
1855         old->arch = invalid_slot->arch;
1856 }
1857
1858 static void kvm_create_memslot(struct kvm *kvm,
1859                                struct kvm_memory_slot *new)
1860 {
1861         /* Add the new memslot to the inactive set and activate. */
1862         kvm_replace_memslot(kvm, NULL, new);
1863         kvm_activate_memslot(kvm, NULL, new);
1864 }
1865
1866 static void kvm_delete_memslot(struct kvm *kvm,
1867                                struct kvm_memory_slot *old,
1868                                struct kvm_memory_slot *invalid_slot)
1869 {
1870         /*
1871          * Remove the old memslot (in the inactive memslots) by passing NULL as
1872          * the "new" slot, and for the invalid version in the active slots.
1873          */
1874         kvm_replace_memslot(kvm, old, NULL);
1875         kvm_activate_memslot(kvm, invalid_slot, NULL);
1876 }
1877
1878 static void kvm_move_memslot(struct kvm *kvm,
1879                              struct kvm_memory_slot *old,
1880                              struct kvm_memory_slot *new,
1881                              struct kvm_memory_slot *invalid_slot)
1882 {
1883         /*
1884          * Replace the old memslot in the inactive slots, and then swap slots
1885          * and replace the current INVALID with the new as well.
1886          */
1887         kvm_replace_memslot(kvm, old, new);
1888         kvm_activate_memslot(kvm, invalid_slot, new);
1889 }
1890
1891 static void kvm_update_flags_memslot(struct kvm *kvm,
1892                                      struct kvm_memory_slot *old,
1893                                      struct kvm_memory_slot *new)
1894 {
1895         /*
1896          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1897          * an intermediate step. Instead, the old memslot is simply replaced
1898          * with a new, updated copy in both memslot sets.
1899          */
1900         kvm_replace_memslot(kvm, old, new);
1901         kvm_activate_memslot(kvm, old, new);
1902 }
1903
1904 static int kvm_set_memslot(struct kvm *kvm,
1905                            struct kvm_memory_slot *old,
1906                            struct kvm_memory_slot *new,
1907                            enum kvm_mr_change change)
1908 {
1909         struct kvm_memory_slot *invalid_slot;
1910         int r;
1911
1912         /*
1913          * Released in kvm_swap_active_memslots().
1914          *
1915          * Must be held from before the current memslots are copied until after
1916          * the new memslots are installed with rcu_assign_pointer, then
1917          * released before the synchronize srcu in kvm_swap_active_memslots().
1918          *
1919          * When modifying memslots outside of the slots_lock, must be held
1920          * before reading the pointer to the current memslots until after all
1921          * changes to those memslots are complete.
1922          *
1923          * These rules ensure that installing new memslots does not lose
1924          * changes made to the previous memslots.
1925          */
1926         mutex_lock(&kvm->slots_arch_lock);
1927
1928         /*
1929          * Invalidate the old slot if it's being deleted or moved.  This is
1930          * done prior to actually deleting/moving the memslot to allow vCPUs to
1931          * continue running by ensuring there are no mappings or shadow pages
1932          * for the memslot when it is deleted/moved.  Without pre-invalidation
1933          * (and without a lock), a window would exist between effecting the
1934          * delete/move and committing the changes in arch code where KVM or a
1935          * guest could access a non-existent memslot.
1936          *
1937          * Modifications are done on a temporary, unreachable slot.  The old
1938          * slot needs to be preserved in case a later step fails and the
1939          * invalidation needs to be reverted.
1940          */
1941         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1942                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1943                 if (!invalid_slot) {
1944                         mutex_unlock(&kvm->slots_arch_lock);
1945                         return -ENOMEM;
1946                 }
1947                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1948         }
1949
1950         r = kvm_prepare_memory_region(kvm, old, new, change);
1951         if (r) {
1952                 /*
1953                  * For DELETE/MOVE, revert the above INVALID change.  No
1954                  * modifications required since the original slot was preserved
1955                  * in the inactive slots.  Changing the active memslots also
1956                  * release slots_arch_lock.
1957                  */
1958                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1959                         kvm_activate_memslot(kvm, invalid_slot, old);
1960                         kfree(invalid_slot);
1961                 } else {
1962                         mutex_unlock(&kvm->slots_arch_lock);
1963                 }
1964                 return r;
1965         }
1966
1967         /*
1968          * For DELETE and MOVE, the working slot is now active as the INVALID
1969          * version of the old slot.  MOVE is particularly special as it reuses
1970          * the old slot and returns a copy of the old slot (in working_slot).
1971          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1972          * old slot is detached but otherwise preserved.
1973          */
1974         if (change == KVM_MR_CREATE)
1975                 kvm_create_memslot(kvm, new);
1976         else if (change == KVM_MR_DELETE)
1977                 kvm_delete_memslot(kvm, old, invalid_slot);
1978         else if (change == KVM_MR_MOVE)
1979                 kvm_move_memslot(kvm, old, new, invalid_slot);
1980         else if (change == KVM_MR_FLAGS_ONLY)
1981                 kvm_update_flags_memslot(kvm, old, new);
1982         else
1983                 BUG();
1984
1985         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1986         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1987                 kfree(invalid_slot);
1988
1989         /*
1990          * No need to refresh new->arch, changes after dropping slots_arch_lock
1991          * will directly hit the final, active memslot.  Architectures are
1992          * responsible for knowing that new->arch may be stale.
1993          */
1994         kvm_commit_memory_region(kvm, old, new, change);
1995
1996         return 0;
1997 }
1998
1999 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2000                                       gfn_t start, gfn_t end)
2001 {
2002         struct kvm_memslot_iter iter;
2003
2004         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2005                 if (iter.slot->id != id)
2006                         return true;
2007         }
2008
2009         return false;
2010 }
2011
2012 /*
2013  * Allocate some memory and give it an address in the guest physical address
2014  * space.
2015  *
2016  * Discontiguous memory is allowed, mostly for framebuffers.
2017  *
2018  * Must be called holding kvm->slots_lock for write.
2019  */
2020 int __kvm_set_memory_region(struct kvm *kvm,
2021                             const struct kvm_userspace_memory_region2 *mem)
2022 {
2023         struct kvm_memory_slot *old, *new;
2024         struct kvm_memslots *slots;
2025         enum kvm_mr_change change;
2026         unsigned long npages;
2027         gfn_t base_gfn;
2028         int as_id, id;
2029         int r;
2030
2031         r = check_memory_region_flags(kvm, mem);
2032         if (r)
2033                 return r;
2034
2035         as_id = mem->slot >> 16;
2036         id = (u16)mem->slot;
2037
2038         /* General sanity checks */
2039         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2040             (mem->memory_size != (unsigned long)mem->memory_size))
2041                 return -EINVAL;
2042         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2043                 return -EINVAL;
2044         /* We can read the guest memory with __xxx_user() later on. */
2045         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2046             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2047              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2048                         mem->memory_size))
2049                 return -EINVAL;
2050         if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2051             (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2052              mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2053                 return -EINVAL;
2054         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2055                 return -EINVAL;
2056         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2057                 return -EINVAL;
2058         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2059                 return -EINVAL;
2060
2061         slots = __kvm_memslots(kvm, as_id);
2062
2063         /*
2064          * Note, the old memslot (and the pointer itself!) may be invalidated
2065          * and/or destroyed by kvm_set_memslot().
2066          */
2067         old = id_to_memslot(slots, id);
2068
2069         if (!mem->memory_size) {
2070                 if (!old || !old->npages)
2071                         return -EINVAL;
2072
2073                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2074                         return -EIO;
2075
2076                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2077         }
2078
2079         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2080         npages = (mem->memory_size >> PAGE_SHIFT);
2081
2082         if (!old || !old->npages) {
2083                 change = KVM_MR_CREATE;
2084
2085                 /*
2086                  * To simplify KVM internals, the total number of pages across
2087                  * all memslots must fit in an unsigned long.
2088                  */
2089                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2090                         return -EINVAL;
2091         } else { /* Modify an existing slot. */
2092                 /* Private memslots are immutable, they can only be deleted. */
2093                 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2094                         return -EINVAL;
2095                 if ((mem->userspace_addr != old->userspace_addr) ||
2096                     (npages != old->npages) ||
2097                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2098                         return -EINVAL;
2099
2100                 if (base_gfn != old->base_gfn)
2101                         change = KVM_MR_MOVE;
2102                 else if (mem->flags != old->flags)
2103                         change = KVM_MR_FLAGS_ONLY;
2104                 else /* Nothing to change. */
2105                         return 0;
2106         }
2107
2108         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2109             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2110                 return -EEXIST;
2111
2112         /* Allocate a slot that will persist in the memslot. */
2113         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2114         if (!new)
2115                 return -ENOMEM;
2116
2117         new->as_id = as_id;
2118         new->id = id;
2119         new->base_gfn = base_gfn;
2120         new->npages = npages;
2121         new->flags = mem->flags;
2122         new->userspace_addr = mem->userspace_addr;
2123         if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2124                 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2125                 if (r)
2126                         goto out;
2127         }
2128
2129         r = kvm_set_memslot(kvm, old, new, change);
2130         if (r)
2131                 goto out_unbind;
2132
2133         return 0;
2134
2135 out_unbind:
2136         if (mem->flags & KVM_MEM_GUEST_MEMFD)
2137                 kvm_gmem_unbind(new);
2138 out:
2139         kfree(new);
2140         return r;
2141 }
2142 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2143
2144 int kvm_set_memory_region(struct kvm *kvm,
2145                           const struct kvm_userspace_memory_region2 *mem)
2146 {
2147         int r;
2148
2149         mutex_lock(&kvm->slots_lock);
2150         r = __kvm_set_memory_region(kvm, mem);
2151         mutex_unlock(&kvm->slots_lock);
2152         return r;
2153 }
2154 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2155
2156 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2157                                           struct kvm_userspace_memory_region2 *mem)
2158 {
2159         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2160                 return -EINVAL;
2161
2162         return kvm_set_memory_region(kvm, mem);
2163 }
2164
2165 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2166 /**
2167  * kvm_get_dirty_log - get a snapshot of dirty pages
2168  * @kvm:        pointer to kvm instance
2169  * @log:        slot id and address to which we copy the log
2170  * @is_dirty:   set to '1' if any dirty pages were found
2171  * @memslot:    set to the associated memslot, always valid on success
2172  */
2173 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2174                       int *is_dirty, struct kvm_memory_slot **memslot)
2175 {
2176         struct kvm_memslots *slots;
2177         int i, as_id, id;
2178         unsigned long n;
2179         unsigned long any = 0;
2180
2181         /* Dirty ring tracking may be exclusive to dirty log tracking */
2182         if (!kvm_use_dirty_bitmap(kvm))
2183                 return -ENXIO;
2184
2185         *memslot = NULL;
2186         *is_dirty = 0;
2187
2188         as_id = log->slot >> 16;
2189         id = (u16)log->slot;
2190         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2191                 return -EINVAL;
2192
2193         slots = __kvm_memslots(kvm, as_id);
2194         *memslot = id_to_memslot(slots, id);
2195         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2196                 return -ENOENT;
2197
2198         kvm_arch_sync_dirty_log(kvm, *memslot);
2199
2200         n = kvm_dirty_bitmap_bytes(*memslot);
2201
2202         for (i = 0; !any && i < n/sizeof(long); ++i)
2203                 any = (*memslot)->dirty_bitmap[i];
2204
2205         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2206                 return -EFAULT;
2207
2208         if (any)
2209                 *is_dirty = 1;
2210         return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2213
2214 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2215 /**
2216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2217  *      and reenable dirty page tracking for the corresponding pages.
2218  * @kvm:        pointer to kvm instance
2219  * @log:        slot id and address to which we copy the log
2220  *
2221  * We need to keep it in mind that VCPU threads can write to the bitmap
2222  * concurrently. So, to avoid losing track of dirty pages we keep the
2223  * following order:
2224  *
2225  *    1. Take a snapshot of the bit and clear it if needed.
2226  *    2. Write protect the corresponding page.
2227  *    3. Copy the snapshot to the userspace.
2228  *    4. Upon return caller flushes TLB's if needed.
2229  *
2230  * Between 2 and 4, the guest may write to the page using the remaining TLB
2231  * entry.  This is not a problem because the page is reported dirty using
2232  * the snapshot taken before and step 4 ensures that writes done after
2233  * exiting to userspace will be logged for the next call.
2234  *
2235  */
2236 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2237 {
2238         struct kvm_memslots *slots;
2239         struct kvm_memory_slot *memslot;
2240         int i, as_id, id;
2241         unsigned long n;
2242         unsigned long *dirty_bitmap;
2243         unsigned long *dirty_bitmap_buffer;
2244         bool flush;
2245
2246         /* Dirty ring tracking may be exclusive to dirty log tracking */
2247         if (!kvm_use_dirty_bitmap(kvm))
2248                 return -ENXIO;
2249
2250         as_id = log->slot >> 16;
2251         id = (u16)log->slot;
2252         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2253                 return -EINVAL;
2254
2255         slots = __kvm_memslots(kvm, as_id);
2256         memslot = id_to_memslot(slots, id);
2257         if (!memslot || !memslot->dirty_bitmap)
2258                 return -ENOENT;
2259
2260         dirty_bitmap = memslot->dirty_bitmap;
2261
2262         kvm_arch_sync_dirty_log(kvm, memslot);
2263
2264         n = kvm_dirty_bitmap_bytes(memslot);
2265         flush = false;
2266         if (kvm->manual_dirty_log_protect) {
2267                 /*
2268                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2269                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2270                  * is some code duplication between this function and
2271                  * kvm_get_dirty_log, but hopefully all architecture
2272                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2273                  * can be eliminated.
2274                  */
2275                 dirty_bitmap_buffer = dirty_bitmap;
2276         } else {
2277                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2278                 memset(dirty_bitmap_buffer, 0, n);
2279
2280                 KVM_MMU_LOCK(kvm);
2281                 for (i = 0; i < n / sizeof(long); i++) {
2282                         unsigned long mask;
2283                         gfn_t offset;
2284
2285                         if (!dirty_bitmap[i])
2286                                 continue;
2287
2288                         flush = true;
2289                         mask = xchg(&dirty_bitmap[i], 0);
2290                         dirty_bitmap_buffer[i] = mask;
2291
2292                         offset = i * BITS_PER_LONG;
2293                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294                                                                 offset, mask);
2295                 }
2296                 KVM_MMU_UNLOCK(kvm);
2297         }
2298
2299         if (flush)
2300                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2301
2302         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2303                 return -EFAULT;
2304         return 0;
2305 }
2306
2307
2308 /**
2309  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2310  * @kvm: kvm instance
2311  * @log: slot id and address to which we copy the log
2312  *
2313  * Steps 1-4 below provide general overview of dirty page logging. See
2314  * kvm_get_dirty_log_protect() function description for additional details.
2315  *
2316  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2317  * always flush the TLB (step 4) even if previous step failed  and the dirty
2318  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2319  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2320  * writes will be marked dirty for next log read.
2321  *
2322  *   1. Take a snapshot of the bit and clear it if needed.
2323  *   2. Write protect the corresponding page.
2324  *   3. Copy the snapshot to the userspace.
2325  *   4. Flush TLB's if needed.
2326  */
2327 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2328                                       struct kvm_dirty_log *log)
2329 {
2330         int r;
2331
2332         mutex_lock(&kvm->slots_lock);
2333
2334         r = kvm_get_dirty_log_protect(kvm, log);
2335
2336         mutex_unlock(&kvm->slots_lock);
2337         return r;
2338 }
2339
2340 /**
2341  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2342  *      and reenable dirty page tracking for the corresponding pages.
2343  * @kvm:        pointer to kvm instance
2344  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2345  */
2346 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2347                                        struct kvm_clear_dirty_log *log)
2348 {
2349         struct kvm_memslots *slots;
2350         struct kvm_memory_slot *memslot;
2351         int as_id, id;
2352         gfn_t offset;
2353         unsigned long i, n;
2354         unsigned long *dirty_bitmap;
2355         unsigned long *dirty_bitmap_buffer;
2356         bool flush;
2357
2358         /* Dirty ring tracking may be exclusive to dirty log tracking */
2359         if (!kvm_use_dirty_bitmap(kvm))
2360                 return -ENXIO;
2361
2362         as_id = log->slot >> 16;
2363         id = (u16)log->slot;
2364         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2365                 return -EINVAL;
2366
2367         if (log->first_page & 63)
2368                 return -EINVAL;
2369
2370         slots = __kvm_memslots(kvm, as_id);
2371         memslot = id_to_memslot(slots, id);
2372         if (!memslot || !memslot->dirty_bitmap)
2373                 return -ENOENT;
2374
2375         dirty_bitmap = memslot->dirty_bitmap;
2376
2377         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2378
2379         if (log->first_page > memslot->npages ||
2380             log->num_pages > memslot->npages - log->first_page ||
2381             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2382             return -EINVAL;
2383
2384         kvm_arch_sync_dirty_log(kvm, memslot);
2385
2386         flush = false;
2387         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2388         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2389                 return -EFAULT;
2390
2391         KVM_MMU_LOCK(kvm);
2392         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2393                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2394              i++, offset += BITS_PER_LONG) {
2395                 unsigned long mask = *dirty_bitmap_buffer++;
2396                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2397                 if (!mask)
2398                         continue;
2399
2400                 mask &= atomic_long_fetch_andnot(mask, p);
2401
2402                 /*
2403                  * mask contains the bits that really have been cleared.  This
2404                  * never includes any bits beyond the length of the memslot (if
2405                  * the length is not aligned to 64 pages), therefore it is not
2406                  * a problem if userspace sets them in log->dirty_bitmap.
2407                 */
2408                 if (mask) {
2409                         flush = true;
2410                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2411                                                                 offset, mask);
2412                 }
2413         }
2414         KVM_MMU_UNLOCK(kvm);
2415
2416         if (flush)
2417                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2418
2419         return 0;
2420 }
2421
2422 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2423                                         struct kvm_clear_dirty_log *log)
2424 {
2425         int r;
2426
2427         mutex_lock(&kvm->slots_lock);
2428
2429         r = kvm_clear_dirty_log_protect(kvm, log);
2430
2431         mutex_unlock(&kvm->slots_lock);
2432         return r;
2433 }
2434 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2435
2436 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2437 /*
2438  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2439  * matching @attrs.
2440  */
2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2442                                      unsigned long attrs)
2443 {
2444         XA_STATE(xas, &kvm->mem_attr_array, start);
2445         unsigned long index;
2446         bool has_attrs;
2447         void *entry;
2448
2449         rcu_read_lock();
2450
2451         if (!attrs) {
2452                 has_attrs = !xas_find(&xas, end - 1);
2453                 goto out;
2454         }
2455
2456         has_attrs = true;
2457         for (index = start; index < end; index++) {
2458                 do {
2459                         entry = xas_next(&xas);
2460                 } while (xas_retry(&xas, entry));
2461
2462                 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2463                         has_attrs = false;
2464                         break;
2465                 }
2466         }
2467
2468 out:
2469         rcu_read_unlock();
2470         return has_attrs;
2471 }
2472
2473 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2474 {
2475         if (!kvm || kvm_arch_has_private_mem(kvm))
2476                 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2477
2478         return 0;
2479 }
2480
2481 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2482                                                  struct kvm_mmu_notifier_range *range)
2483 {
2484         struct kvm_gfn_range gfn_range;
2485         struct kvm_memory_slot *slot;
2486         struct kvm_memslots *slots;
2487         struct kvm_memslot_iter iter;
2488         bool found_memslot = false;
2489         bool ret = false;
2490         int i;
2491
2492         gfn_range.arg = range->arg;
2493         gfn_range.may_block = range->may_block;
2494
2495         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2496                 slots = __kvm_memslots(kvm, i);
2497
2498                 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2499                         slot = iter.slot;
2500                         gfn_range.slot = slot;
2501
2502                         gfn_range.start = max(range->start, slot->base_gfn);
2503                         gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2504                         if (gfn_range.start >= gfn_range.end)
2505                                 continue;
2506
2507                         if (!found_memslot) {
2508                                 found_memslot = true;
2509                                 KVM_MMU_LOCK(kvm);
2510                                 if (!IS_KVM_NULL_FN(range->on_lock))
2511                                         range->on_lock(kvm);
2512                         }
2513
2514                         ret |= range->handler(kvm, &gfn_range);
2515                 }
2516         }
2517
2518         if (range->flush_on_ret && ret)
2519                 kvm_flush_remote_tlbs(kvm);
2520
2521         if (found_memslot)
2522                 KVM_MMU_UNLOCK(kvm);
2523 }
2524
2525 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2526                                           struct kvm_gfn_range *range)
2527 {
2528         /*
2529          * Unconditionally add the range to the invalidation set, regardless of
2530          * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2531          * if KVM supports RWX attributes in the future and the attributes are
2532          * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2533          * adding the range allows KVM to require that MMU invalidations add at
2534          * least one range between begin() and end(), e.g. allows KVM to detect
2535          * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2536          * but it's not obvious that allowing new mappings while the attributes
2537          * are in flux is desirable or worth the complexity.
2538          */
2539         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2540
2541         return kvm_arch_pre_set_memory_attributes(kvm, range);
2542 }
2543
2544 /* Set @attributes for the gfn range [@start, @end). */
2545 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2546                                      unsigned long attributes)
2547 {
2548         struct kvm_mmu_notifier_range pre_set_range = {
2549                 .start = start,
2550                 .end = end,
2551                 .handler = kvm_pre_set_memory_attributes,
2552                 .on_lock = kvm_mmu_invalidate_begin,
2553                 .flush_on_ret = true,
2554                 .may_block = true,
2555         };
2556         struct kvm_mmu_notifier_range post_set_range = {
2557                 .start = start,
2558                 .end = end,
2559                 .arg.attributes = attributes,
2560                 .handler = kvm_arch_post_set_memory_attributes,
2561                 .on_lock = kvm_mmu_invalidate_end,
2562                 .may_block = true,
2563         };
2564         unsigned long i;
2565         void *entry;
2566         int r = 0;
2567
2568         entry = attributes ? xa_mk_value(attributes) : NULL;
2569
2570         mutex_lock(&kvm->slots_lock);
2571
2572         /* Nothing to do if the entire range as the desired attributes. */
2573         if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2574                 goto out_unlock;
2575
2576         /*
2577          * Reserve memory ahead of time to avoid having to deal with failures
2578          * partway through setting the new attributes.
2579          */
2580         for (i = start; i < end; i++) {
2581                 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2582                 if (r)
2583                         goto out_unlock;
2584         }
2585
2586         kvm_handle_gfn_range(kvm, &pre_set_range);
2587
2588         for (i = start; i < end; i++) {
2589                 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2590                                     GFP_KERNEL_ACCOUNT));
2591                 KVM_BUG_ON(r, kvm);
2592         }
2593
2594         kvm_handle_gfn_range(kvm, &post_set_range);
2595
2596 out_unlock:
2597         mutex_unlock(&kvm->slots_lock);
2598
2599         return r;
2600 }
2601 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2602                                            struct kvm_memory_attributes *attrs)
2603 {
2604         gfn_t start, end;
2605
2606         /* flags is currently not used. */
2607         if (attrs->flags)
2608                 return -EINVAL;
2609         if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2610                 return -EINVAL;
2611         if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2612                 return -EINVAL;
2613         if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2614                 return -EINVAL;
2615
2616         start = attrs->address >> PAGE_SHIFT;
2617         end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2618
2619         /*
2620          * xarray tracks data using "unsigned long", and as a result so does
2621          * KVM.  For simplicity, supports generic attributes only on 64-bit
2622          * architectures.
2623          */
2624         BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2625
2626         return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2627 }
2628 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2629
2630 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2631 {
2632         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2633 }
2634 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2635
2636 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2637 {
2638         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2639         u64 gen = slots->generation;
2640         struct kvm_memory_slot *slot;
2641
2642         /*
2643          * This also protects against using a memslot from a different address space,
2644          * since different address spaces have different generation numbers.
2645          */
2646         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2647                 vcpu->last_used_slot = NULL;
2648                 vcpu->last_used_slot_gen = gen;
2649         }
2650
2651         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2652         if (slot)
2653                 return slot;
2654
2655         /*
2656          * Fall back to searching all memslots. We purposely use
2657          * search_memslots() instead of __gfn_to_memslot() to avoid
2658          * thrashing the VM-wide last_used_slot in kvm_memslots.
2659          */
2660         slot = search_memslots(slots, gfn, false);
2661         if (slot) {
2662                 vcpu->last_used_slot = slot;
2663                 return slot;
2664         }
2665
2666         return NULL;
2667 }
2668
2669 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2670 {
2671         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2672
2673         return kvm_is_visible_memslot(memslot);
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2676
2677 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2678 {
2679         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2680
2681         return kvm_is_visible_memslot(memslot);
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2684
2685 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2686 {
2687         struct vm_area_struct *vma;
2688         unsigned long addr, size;
2689
2690         size = PAGE_SIZE;
2691
2692         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2693         if (kvm_is_error_hva(addr))
2694                 return PAGE_SIZE;
2695
2696         mmap_read_lock(current->mm);
2697         vma = find_vma(current->mm, addr);
2698         if (!vma)
2699                 goto out;
2700
2701         size = vma_kernel_pagesize(vma);
2702
2703 out:
2704         mmap_read_unlock(current->mm);
2705
2706         return size;
2707 }
2708
2709 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2710 {
2711         return slot->flags & KVM_MEM_READONLY;
2712 }
2713
2714 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2715                                        gfn_t *nr_pages, bool write)
2716 {
2717         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2718                 return KVM_HVA_ERR_BAD;
2719
2720         if (memslot_is_readonly(slot) && write)
2721                 return KVM_HVA_ERR_RO_BAD;
2722
2723         if (nr_pages)
2724                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2725
2726         return __gfn_to_hva_memslot(slot, gfn);
2727 }
2728
2729 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2730                                      gfn_t *nr_pages)
2731 {
2732         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2733 }
2734
2735 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2736                                         gfn_t gfn)
2737 {
2738         return gfn_to_hva_many(slot, gfn, NULL);
2739 }
2740 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2741
2742 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2743 {
2744         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2745 }
2746 EXPORT_SYMBOL_GPL(gfn_to_hva);
2747
2748 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2749 {
2750         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2751 }
2752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2753
2754 /*
2755  * Return the hva of a @gfn and the R/W attribute if possible.
2756  *
2757  * @slot: the kvm_memory_slot which contains @gfn
2758  * @gfn: the gfn to be translated
2759  * @writable: used to return the read/write attribute of the @slot if the hva
2760  * is valid and @writable is not NULL
2761  */
2762 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2763                                       gfn_t gfn, bool *writable)
2764 {
2765         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2766
2767         if (!kvm_is_error_hva(hva) && writable)
2768                 *writable = !memslot_is_readonly(slot);
2769
2770         return hva;
2771 }
2772
2773 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2774 {
2775         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776
2777         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2778 }
2779
2780 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2781 {
2782         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2783
2784         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2785 }
2786
2787 static inline int check_user_page_hwpoison(unsigned long addr)
2788 {
2789         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2790
2791         rc = get_user_pages(addr, 1, flags, NULL);
2792         return rc == -EHWPOISON;
2793 }
2794
2795 /*
2796  * The fast path to get the writable pfn which will be stored in @pfn,
2797  * true indicates success, otherwise false is returned.  It's also the
2798  * only part that runs if we can in atomic context.
2799  */
2800 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2801                             bool *writable, kvm_pfn_t *pfn)
2802 {
2803         struct page *page[1];
2804
2805         /*
2806          * Fast pin a writable pfn only if it is a write fault request
2807          * or the caller allows to map a writable pfn for a read fault
2808          * request.
2809          */
2810         if (!(write_fault || writable))
2811                 return false;
2812
2813         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2814                 *pfn = page_to_pfn(page[0]);
2815
2816                 if (writable)
2817                         *writable = true;
2818                 return true;
2819         }
2820
2821         return false;
2822 }
2823
2824 /*
2825  * The slow path to get the pfn of the specified host virtual address,
2826  * 1 indicates success, -errno is returned if error is detected.
2827  */
2828 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2829                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2830 {
2831         /*
2832          * When a VCPU accesses a page that is not mapped into the secondary
2833          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2834          * make progress. We always want to honor NUMA hinting faults in that
2835          * case, because GUP usage corresponds to memory accesses from the VCPU.
2836          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2837          * mapped into the secondary MMU and gets accessed by a VCPU.
2838          *
2839          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2840          * implicitly honor NUMA hinting faults and don't need this flag.
2841          */
2842         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2843         struct page *page;
2844         int npages;
2845
2846         might_sleep();
2847
2848         if (writable)
2849                 *writable = write_fault;
2850
2851         if (write_fault)
2852                 flags |= FOLL_WRITE;
2853         if (async)
2854                 flags |= FOLL_NOWAIT;
2855         if (interruptible)
2856                 flags |= FOLL_INTERRUPTIBLE;
2857
2858         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2859         if (npages != 1)
2860                 return npages;
2861
2862         /* map read fault as writable if possible */
2863         if (unlikely(!write_fault) && writable) {
2864                 struct page *wpage;
2865
2866                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2867                         *writable = true;
2868                         put_page(page);
2869                         page = wpage;
2870                 }
2871         }
2872         *pfn = page_to_pfn(page);
2873         return npages;
2874 }
2875
2876 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2877 {
2878         if (unlikely(!(vma->vm_flags & VM_READ)))
2879                 return false;
2880
2881         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2882                 return false;
2883
2884         return true;
2885 }
2886
2887 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2888 {
2889         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2890
2891         if (!page)
2892                 return 1;
2893
2894         return get_page_unless_zero(page);
2895 }
2896
2897 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2898                                unsigned long addr, bool write_fault,
2899                                bool *writable, kvm_pfn_t *p_pfn)
2900 {
2901         kvm_pfn_t pfn;
2902         pte_t *ptep;
2903         pte_t pte;
2904         spinlock_t *ptl;
2905         int r;
2906
2907         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2908         if (r) {
2909                 /*
2910                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2911                  * not call the fault handler, so do it here.
2912                  */
2913                 bool unlocked = false;
2914                 r = fixup_user_fault(current->mm, addr,
2915                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2916                                      &unlocked);
2917                 if (unlocked)
2918                         return -EAGAIN;
2919                 if (r)
2920                         return r;
2921
2922                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2923                 if (r)
2924                         return r;
2925         }
2926
2927         pte = ptep_get(ptep);
2928
2929         if (write_fault && !pte_write(pte)) {
2930                 pfn = KVM_PFN_ERR_RO_FAULT;
2931                 goto out;
2932         }
2933
2934         if (writable)
2935                 *writable = pte_write(pte);
2936         pfn = pte_pfn(pte);
2937
2938         /*
2939          * Get a reference here because callers of *hva_to_pfn* and
2940          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2941          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2942          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2943          * simply do nothing for reserved pfns.
2944          *
2945          * Whoever called remap_pfn_range is also going to call e.g.
2946          * unmap_mapping_range before the underlying pages are freed,
2947          * causing a call to our MMU notifier.
2948          *
2949          * Certain IO or PFNMAP mappings can be backed with valid
2950          * struct pages, but be allocated without refcounting e.g.,
2951          * tail pages of non-compound higher order allocations, which
2952          * would then underflow the refcount when the caller does the
2953          * required put_page. Don't allow those pages here.
2954          */
2955         if (!kvm_try_get_pfn(pfn))
2956                 r = -EFAULT;
2957
2958 out:
2959         pte_unmap_unlock(ptep, ptl);
2960         *p_pfn = pfn;
2961
2962         return r;
2963 }
2964
2965 /*
2966  * Pin guest page in memory and return its pfn.
2967  * @addr: host virtual address which maps memory to the guest
2968  * @atomic: whether this function can sleep
2969  * @interruptible: whether the process can be interrupted by non-fatal signals
2970  * @async: whether this function need to wait IO complete if the
2971  *         host page is not in the memory
2972  * @write_fault: whether we should get a writable host page
2973  * @writable: whether it allows to map a writable host page for !@write_fault
2974  *
2975  * The function will map a writable host page for these two cases:
2976  * 1): @write_fault = true
2977  * 2): @write_fault = false && @writable, @writable will tell the caller
2978  *     whether the mapping is writable.
2979  */
2980 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2981                      bool *async, bool write_fault, bool *writable)
2982 {
2983         struct vm_area_struct *vma;
2984         kvm_pfn_t pfn;
2985         int npages, r;
2986
2987         /* we can do it either atomically or asynchronously, not both */
2988         BUG_ON(atomic && async);
2989
2990         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2991                 return pfn;
2992
2993         if (atomic)
2994                 return KVM_PFN_ERR_FAULT;
2995
2996         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2997                                  writable, &pfn);
2998         if (npages == 1)
2999                 return pfn;
3000         if (npages == -EINTR)
3001                 return KVM_PFN_ERR_SIGPENDING;
3002
3003         mmap_read_lock(current->mm);
3004         if (npages == -EHWPOISON ||
3005               (!async && check_user_page_hwpoison(addr))) {
3006                 pfn = KVM_PFN_ERR_HWPOISON;
3007                 goto exit;
3008         }
3009
3010 retry:
3011         vma = vma_lookup(current->mm, addr);
3012
3013         if (vma == NULL)
3014                 pfn = KVM_PFN_ERR_FAULT;
3015         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3016                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3017                 if (r == -EAGAIN)
3018                         goto retry;
3019                 if (r < 0)
3020                         pfn = KVM_PFN_ERR_FAULT;
3021         } else {
3022                 if (async && vma_is_valid(vma, write_fault))
3023                         *async = true;
3024                 pfn = KVM_PFN_ERR_FAULT;
3025         }
3026 exit:
3027         mmap_read_unlock(current->mm);
3028         return pfn;
3029 }
3030
3031 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3032                                bool atomic, bool interruptible, bool *async,
3033                                bool write_fault, bool *writable, hva_t *hva)
3034 {
3035         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3036
3037         if (hva)
3038                 *hva = addr;
3039
3040         if (addr == KVM_HVA_ERR_RO_BAD) {
3041                 if (writable)
3042                         *writable = false;
3043                 return KVM_PFN_ERR_RO_FAULT;
3044         }
3045
3046         if (kvm_is_error_hva(addr)) {
3047                 if (writable)
3048                         *writable = false;
3049                 return KVM_PFN_NOSLOT;
3050         }
3051
3052         /* Do not map writable pfn in the readonly memslot. */
3053         if (writable && memslot_is_readonly(slot)) {
3054                 *writable = false;
3055                 writable = NULL;
3056         }
3057
3058         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3059                           writable);
3060 }
3061 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3062
3063 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3064                       bool *writable)
3065 {
3066         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3067                                     NULL, write_fault, writable, NULL);
3068 }
3069 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3070
3071 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3072 {
3073         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3074                                     NULL, NULL);
3075 }
3076 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3077
3078 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3079 {
3080         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3081                                     NULL, NULL);
3082 }
3083 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3084
3085 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3086 {
3087         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3088 }
3089 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3090
3091 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3092 {
3093         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3094 }
3095 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3096
3097 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3098 {
3099         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3102
3103 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3104                             struct page **pages, int nr_pages)
3105 {
3106         unsigned long addr;
3107         gfn_t entry = 0;
3108
3109         addr = gfn_to_hva_many(slot, gfn, &entry);
3110         if (kvm_is_error_hva(addr))
3111                 return -1;
3112
3113         if (entry < nr_pages)
3114                 return 0;
3115
3116         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3117 }
3118 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3119
3120 /*
3121  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3122  * backed by 'struct page'.  A valid example is if the backing memslot is
3123  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3124  * been elevated by gfn_to_pfn().
3125  */
3126 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3127 {
3128         struct page *page;
3129         kvm_pfn_t pfn;
3130
3131         pfn = gfn_to_pfn(kvm, gfn);
3132
3133         if (is_error_noslot_pfn(pfn))
3134                 return KVM_ERR_PTR_BAD_PAGE;
3135
3136         page = kvm_pfn_to_refcounted_page(pfn);
3137         if (!page)
3138                 return KVM_ERR_PTR_BAD_PAGE;
3139
3140         return page;
3141 }
3142 EXPORT_SYMBOL_GPL(gfn_to_page);
3143
3144 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3145 {
3146         if (dirty)
3147                 kvm_release_pfn_dirty(pfn);
3148         else
3149                 kvm_release_pfn_clean(pfn);
3150 }
3151
3152 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3153 {
3154         kvm_pfn_t pfn;
3155         void *hva = NULL;
3156         struct page *page = KVM_UNMAPPED_PAGE;
3157
3158         if (!map)
3159                 return -EINVAL;
3160
3161         pfn = gfn_to_pfn(vcpu->kvm, gfn);
3162         if (is_error_noslot_pfn(pfn))
3163                 return -EINVAL;
3164
3165         if (pfn_valid(pfn)) {
3166                 page = pfn_to_page(pfn);
3167                 hva = kmap(page);
3168 #ifdef CONFIG_HAS_IOMEM
3169         } else {
3170                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3171 #endif
3172         }
3173
3174         if (!hva)
3175                 return -EFAULT;
3176
3177         map->page = page;
3178         map->hva = hva;
3179         map->pfn = pfn;
3180         map->gfn = gfn;
3181
3182         return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3185
3186 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3187 {
3188         if (!map)
3189                 return;
3190
3191         if (!map->hva)
3192                 return;
3193
3194         if (map->page != KVM_UNMAPPED_PAGE)
3195                 kunmap(map->page);
3196 #ifdef CONFIG_HAS_IOMEM
3197         else
3198                 memunmap(map->hva);
3199 #endif
3200
3201         if (dirty)
3202                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3203
3204         kvm_release_pfn(map->pfn, dirty);
3205
3206         map->hva = NULL;
3207         map->page = NULL;
3208 }
3209 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3210
3211 static bool kvm_is_ad_tracked_page(struct page *page)
3212 {
3213         /*
3214          * Per page-flags.h, pages tagged PG_reserved "should in general not be
3215          * touched (e.g. set dirty) except by its owner".
3216          */
3217         return !PageReserved(page);
3218 }
3219
3220 static void kvm_set_page_dirty(struct page *page)
3221 {
3222         if (kvm_is_ad_tracked_page(page))
3223                 SetPageDirty(page);
3224 }
3225
3226 static void kvm_set_page_accessed(struct page *page)
3227 {
3228         if (kvm_is_ad_tracked_page(page))
3229                 mark_page_accessed(page);
3230 }
3231
3232 void kvm_release_page_clean(struct page *page)
3233 {
3234         WARN_ON(is_error_page(page));
3235
3236         kvm_set_page_accessed(page);
3237         put_page(page);
3238 }
3239 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3240
3241 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3242 {
3243         struct page *page;
3244
3245         if (is_error_noslot_pfn(pfn))
3246                 return;
3247
3248         page = kvm_pfn_to_refcounted_page(pfn);
3249         if (!page)
3250                 return;
3251
3252         kvm_release_page_clean(page);
3253 }
3254 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3255
3256 void kvm_release_page_dirty(struct page *page)
3257 {
3258         WARN_ON(is_error_page(page));
3259
3260         kvm_set_page_dirty(page);
3261         kvm_release_page_clean(page);
3262 }
3263 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3264
3265 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3266 {
3267         struct page *page;
3268
3269         if (is_error_noslot_pfn(pfn))
3270                 return;
3271
3272         page = kvm_pfn_to_refcounted_page(pfn);
3273         if (!page)
3274                 return;
3275
3276         kvm_release_page_dirty(page);
3277 }
3278 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3279
3280 /*
3281  * Note, checking for an error/noslot pfn is the caller's responsibility when
3282  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3283  * "set" helpers are not to be used when the pfn might point at garbage.
3284  */
3285 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3286 {
3287         if (WARN_ON(is_error_noslot_pfn(pfn)))
3288                 return;
3289
3290         if (pfn_valid(pfn))
3291                 kvm_set_page_dirty(pfn_to_page(pfn));
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3294
3295 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3296 {
3297         if (WARN_ON(is_error_noslot_pfn(pfn)))
3298                 return;
3299
3300         if (pfn_valid(pfn))
3301                 kvm_set_page_accessed(pfn_to_page(pfn));
3302 }
3303 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3304
3305 static int next_segment(unsigned long len, int offset)
3306 {
3307         if (len > PAGE_SIZE - offset)
3308                 return PAGE_SIZE - offset;
3309         else
3310                 return len;
3311 }
3312
3313 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3314                                  void *data, int offset, int len)
3315 {
3316         int r;
3317         unsigned long addr;
3318
3319         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3320         if (kvm_is_error_hva(addr))
3321                 return -EFAULT;
3322         r = __copy_from_user(data, (void __user *)addr + offset, len);
3323         if (r)
3324                 return -EFAULT;
3325         return 0;
3326 }
3327
3328 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3329                         int len)
3330 {
3331         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3332
3333         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3334 }
3335 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3336
3337 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3338                              int offset, int len)
3339 {
3340         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3341
3342         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3343 }
3344 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3345
3346 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3347 {
3348         gfn_t gfn = gpa >> PAGE_SHIFT;
3349         int seg;
3350         int offset = offset_in_page(gpa);
3351         int ret;
3352
3353         while ((seg = next_segment(len, offset)) != 0) {
3354                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3355                 if (ret < 0)
3356                         return ret;
3357                 offset = 0;
3358                 len -= seg;
3359                 data += seg;
3360                 ++gfn;
3361         }
3362         return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_read_guest);
3365
3366 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3367 {
3368         gfn_t gfn = gpa >> PAGE_SHIFT;
3369         int seg;
3370         int offset = offset_in_page(gpa);
3371         int ret;
3372
3373         while ((seg = next_segment(len, offset)) != 0) {
3374                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3375                 if (ret < 0)
3376                         return ret;
3377                 offset = 0;
3378                 len -= seg;
3379                 data += seg;
3380                 ++gfn;
3381         }
3382         return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3385
3386 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3387                                    void *data, int offset, unsigned long len)
3388 {
3389         int r;
3390         unsigned long addr;
3391
3392         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3393         if (kvm_is_error_hva(addr))
3394                 return -EFAULT;
3395         pagefault_disable();
3396         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3397         pagefault_enable();
3398         if (r)
3399                 return -EFAULT;
3400         return 0;
3401 }
3402
3403 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3404                                void *data, unsigned long len)
3405 {
3406         gfn_t gfn = gpa >> PAGE_SHIFT;
3407         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3408         int offset = offset_in_page(gpa);
3409
3410         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3413
3414 static int __kvm_write_guest_page(struct kvm *kvm,
3415                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3416                                   const void *data, int offset, int len)
3417 {
3418         int r;
3419         unsigned long addr;
3420
3421         addr = gfn_to_hva_memslot(memslot, gfn);
3422         if (kvm_is_error_hva(addr))
3423                 return -EFAULT;
3424         r = __copy_to_user((void __user *)addr + offset, data, len);
3425         if (r)
3426                 return -EFAULT;
3427         mark_page_dirty_in_slot(kvm, memslot, gfn);
3428         return 0;
3429 }
3430
3431 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3432                          const void *data, int offset, int len)
3433 {
3434         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3435
3436         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3437 }
3438 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3439
3440 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3441                               const void *data, int offset, int len)
3442 {
3443         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3444
3445         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3446 }
3447 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3448
3449 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3450                     unsigned long len)
3451 {
3452         gfn_t gfn = gpa >> PAGE_SHIFT;
3453         int seg;
3454         int offset = offset_in_page(gpa);
3455         int ret;
3456
3457         while ((seg = next_segment(len, offset)) != 0) {
3458                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3459                 if (ret < 0)
3460                         return ret;
3461                 offset = 0;
3462                 len -= seg;
3463                 data += seg;
3464                 ++gfn;
3465         }
3466         return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(kvm_write_guest);
3469
3470 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3471                          unsigned long len)
3472 {
3473         gfn_t gfn = gpa >> PAGE_SHIFT;
3474         int seg;
3475         int offset = offset_in_page(gpa);
3476         int ret;
3477
3478         while ((seg = next_segment(len, offset)) != 0) {
3479                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3480                 if (ret < 0)
3481                         return ret;
3482                 offset = 0;
3483                 len -= seg;
3484                 data += seg;
3485                 ++gfn;
3486         }
3487         return 0;
3488 }
3489 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3490
3491 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3492                                        struct gfn_to_hva_cache *ghc,
3493                                        gpa_t gpa, unsigned long len)
3494 {
3495         int offset = offset_in_page(gpa);
3496         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3497         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3498         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3499         gfn_t nr_pages_avail;
3500
3501         /* Update ghc->generation before performing any error checks. */
3502         ghc->generation = slots->generation;
3503
3504         if (start_gfn > end_gfn) {
3505                 ghc->hva = KVM_HVA_ERR_BAD;
3506                 return -EINVAL;
3507         }
3508
3509         /*
3510          * If the requested region crosses two memslots, we still
3511          * verify that the entire region is valid here.
3512          */
3513         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3514                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3515                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3516                                            &nr_pages_avail);
3517                 if (kvm_is_error_hva(ghc->hva))
3518                         return -EFAULT;
3519         }
3520
3521         /* Use the slow path for cross page reads and writes. */
3522         if (nr_pages_needed == 1)
3523                 ghc->hva += offset;
3524         else
3525                 ghc->memslot = NULL;
3526
3527         ghc->gpa = gpa;
3528         ghc->len = len;
3529         return 0;
3530 }
3531
3532 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3533                               gpa_t gpa, unsigned long len)
3534 {
3535         struct kvm_memslots *slots = kvm_memslots(kvm);
3536         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3537 }
3538 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3539
3540 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3541                                   void *data, unsigned int offset,
3542                                   unsigned long len)
3543 {
3544         struct kvm_memslots *slots = kvm_memslots(kvm);
3545         int r;
3546         gpa_t gpa = ghc->gpa + offset;
3547
3548         if (WARN_ON_ONCE(len + offset > ghc->len))
3549                 return -EINVAL;
3550
3551         if (slots->generation != ghc->generation) {
3552                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3553                         return -EFAULT;
3554         }
3555
3556         if (kvm_is_error_hva(ghc->hva))
3557                 return -EFAULT;
3558
3559         if (unlikely(!ghc->memslot))
3560                 return kvm_write_guest(kvm, gpa, data, len);
3561
3562         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3563         if (r)
3564                 return -EFAULT;
3565         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3566
3567         return 0;
3568 }
3569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3570
3571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3572                            void *data, unsigned long len)
3573 {
3574         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3575 }
3576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3577
3578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3579                                  void *data, unsigned int offset,
3580                                  unsigned long len)
3581 {
3582         struct kvm_memslots *slots = kvm_memslots(kvm);
3583         int r;
3584         gpa_t gpa = ghc->gpa + offset;
3585
3586         if (WARN_ON_ONCE(len + offset > ghc->len))
3587                 return -EINVAL;
3588
3589         if (slots->generation != ghc->generation) {
3590                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3591                         return -EFAULT;
3592         }
3593
3594         if (kvm_is_error_hva(ghc->hva))
3595                 return -EFAULT;
3596
3597         if (unlikely(!ghc->memslot))
3598                 return kvm_read_guest(kvm, gpa, data, len);
3599
3600         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3601         if (r)
3602                 return -EFAULT;
3603
3604         return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3607
3608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3609                           void *data, unsigned long len)
3610 {
3611         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3614
3615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3616 {
3617         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3618         gfn_t gfn = gpa >> PAGE_SHIFT;
3619         int seg;
3620         int offset = offset_in_page(gpa);
3621         int ret;
3622
3623         while ((seg = next_segment(len, offset)) != 0) {
3624                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3625                 if (ret < 0)
3626                         return ret;
3627                 offset = 0;
3628                 len -= seg;
3629                 ++gfn;
3630         }
3631         return 0;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3634
3635 void mark_page_dirty_in_slot(struct kvm *kvm,
3636                              const struct kvm_memory_slot *memslot,
3637                              gfn_t gfn)
3638 {
3639         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3640
3641 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3642         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3643                 return;
3644
3645         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3646 #endif
3647
3648         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3649                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3650                 u32 slot = (memslot->as_id << 16) | memslot->id;
3651
3652                 if (kvm->dirty_ring_size && vcpu)
3653                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3654                 else if (memslot->dirty_bitmap)
3655                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3656         }
3657 }
3658 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3659
3660 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3661 {
3662         struct kvm_memory_slot *memslot;
3663
3664         memslot = gfn_to_memslot(kvm, gfn);
3665         mark_page_dirty_in_slot(kvm, memslot, gfn);
3666 }
3667 EXPORT_SYMBOL_GPL(mark_page_dirty);
3668
3669 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3670 {
3671         struct kvm_memory_slot *memslot;
3672
3673         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3674         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3677
3678 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3679 {
3680         if (!vcpu->sigset_active)
3681                 return;
3682
3683         /*
3684          * This does a lockless modification of ->real_blocked, which is fine
3685          * because, only current can change ->real_blocked and all readers of
3686          * ->real_blocked don't care as long ->real_blocked is always a subset
3687          * of ->blocked.
3688          */
3689         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3690 }
3691
3692 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3693 {
3694         if (!vcpu->sigset_active)
3695                 return;
3696
3697         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3698         sigemptyset(&current->real_blocked);
3699 }
3700
3701 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3702 {
3703         unsigned int old, val, grow, grow_start;
3704
3705         old = val = vcpu->halt_poll_ns;
3706         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3707         grow = READ_ONCE(halt_poll_ns_grow);
3708         if (!grow)
3709                 goto out;
3710
3711         val *= grow;
3712         if (val < grow_start)
3713                 val = grow_start;
3714
3715         vcpu->halt_poll_ns = val;
3716 out:
3717         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3718 }
3719
3720 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3721 {
3722         unsigned int old, val, shrink, grow_start;
3723
3724         old = val = vcpu->halt_poll_ns;
3725         shrink = READ_ONCE(halt_poll_ns_shrink);
3726         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3727         if (shrink == 0)
3728                 val = 0;
3729         else
3730                 val /= shrink;
3731
3732         if (val < grow_start)
3733                 val = 0;
3734
3735         vcpu->halt_poll_ns = val;
3736         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3737 }
3738
3739 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3740 {
3741         int ret = -EINTR;
3742         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3743
3744         if (kvm_arch_vcpu_runnable(vcpu))
3745                 goto out;
3746         if (kvm_cpu_has_pending_timer(vcpu))
3747                 goto out;
3748         if (signal_pending(current))
3749                 goto out;
3750         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3751                 goto out;
3752
3753         ret = 0;
3754 out:
3755         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3756         return ret;
3757 }
3758
3759 /*
3760  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3761  * pending.  This is mostly used when halting a vCPU, but may also be used
3762  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3763  */
3764 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3765 {
3766         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3767         bool waited = false;
3768
3769         vcpu->stat.generic.blocking = 1;
3770
3771         preempt_disable();
3772         kvm_arch_vcpu_blocking(vcpu);
3773         prepare_to_rcuwait(wait);
3774         preempt_enable();
3775
3776         for (;;) {
3777                 set_current_state(TASK_INTERRUPTIBLE);
3778
3779                 if (kvm_vcpu_check_block(vcpu) < 0)
3780                         break;
3781
3782                 waited = true;
3783                 schedule();
3784         }
3785
3786         preempt_disable();
3787         finish_rcuwait(wait);
3788         kvm_arch_vcpu_unblocking(vcpu);
3789         preempt_enable();
3790
3791         vcpu->stat.generic.blocking = 0;
3792
3793         return waited;
3794 }
3795
3796 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3797                                           ktime_t end, bool success)
3798 {
3799         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3800         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3801
3802         ++vcpu->stat.generic.halt_attempted_poll;
3803
3804         if (success) {
3805                 ++vcpu->stat.generic.halt_successful_poll;
3806
3807                 if (!vcpu_valid_wakeup(vcpu))
3808                         ++vcpu->stat.generic.halt_poll_invalid;
3809
3810                 stats->halt_poll_success_ns += poll_ns;
3811                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3812         } else {
3813                 stats->halt_poll_fail_ns += poll_ns;
3814                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3815         }
3816 }
3817
3818 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3819 {
3820         struct kvm *kvm = vcpu->kvm;
3821
3822         if (kvm->override_halt_poll_ns) {
3823                 /*
3824                  * Ensure kvm->max_halt_poll_ns is not read before
3825                  * kvm->override_halt_poll_ns.
3826                  *
3827                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3828                  */
3829                 smp_rmb();
3830                 return READ_ONCE(kvm->max_halt_poll_ns);
3831         }
3832
3833         return READ_ONCE(halt_poll_ns);
3834 }
3835
3836 /*
3837  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3838  * polling is enabled, busy wait for a short time before blocking to avoid the
3839  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3840  * is halted.
3841  */
3842 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3843 {
3844         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3845         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3846         ktime_t start, cur, poll_end;
3847         bool waited = false;
3848         bool do_halt_poll;
3849         u64 halt_ns;
3850
3851         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3852                 vcpu->halt_poll_ns = max_halt_poll_ns;
3853
3854         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3855
3856         start = cur = poll_end = ktime_get();
3857         if (do_halt_poll) {
3858                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3859
3860                 do {
3861                         if (kvm_vcpu_check_block(vcpu) < 0)
3862                                 goto out;
3863                         cpu_relax();
3864                         poll_end = cur = ktime_get();
3865                 } while (kvm_vcpu_can_poll(cur, stop));
3866         }
3867
3868         waited = kvm_vcpu_block(vcpu);
3869
3870         cur = ktime_get();
3871         if (waited) {
3872                 vcpu->stat.generic.halt_wait_ns +=
3873                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3874                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3875                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3876         }
3877 out:
3878         /* The total time the vCPU was "halted", including polling time. */
3879         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3880
3881         /*
3882          * Note, halt-polling is considered successful so long as the vCPU was
3883          * never actually scheduled out, i.e. even if the wake event arrived
3884          * after of the halt-polling loop itself, but before the full wait.
3885          */
3886         if (do_halt_poll)
3887                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3888
3889         if (halt_poll_allowed) {
3890                 /* Recompute the max halt poll time in case it changed. */
3891                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3892
3893                 if (!vcpu_valid_wakeup(vcpu)) {
3894                         shrink_halt_poll_ns(vcpu);
3895                 } else if (max_halt_poll_ns) {
3896                         if (halt_ns <= vcpu->halt_poll_ns)
3897                                 ;
3898                         /* we had a long block, shrink polling */
3899                         else if (vcpu->halt_poll_ns &&
3900                                  halt_ns > max_halt_poll_ns)
3901                                 shrink_halt_poll_ns(vcpu);
3902                         /* we had a short halt and our poll time is too small */
3903                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3904                                  halt_ns < max_halt_poll_ns)
3905                                 grow_halt_poll_ns(vcpu);
3906                 } else {
3907                         vcpu->halt_poll_ns = 0;
3908                 }
3909         }
3910
3911         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3912 }
3913 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3914
3915 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3916 {
3917         if (__kvm_vcpu_wake_up(vcpu)) {
3918                 WRITE_ONCE(vcpu->ready, true);
3919                 ++vcpu->stat.generic.halt_wakeup;
3920                 return true;
3921         }
3922
3923         return false;
3924 }
3925 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3926
3927 #ifndef CONFIG_S390
3928 /*
3929  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3930  */
3931 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3932 {
3933         int me, cpu;
3934
3935         if (kvm_vcpu_wake_up(vcpu))
3936                 return;
3937
3938         me = get_cpu();
3939         /*
3940          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3941          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3942          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3943          * within the vCPU thread itself.
3944          */
3945         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3946                 if (vcpu->mode == IN_GUEST_MODE)
3947                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3948                 goto out;
3949         }
3950
3951         /*
3952          * Note, the vCPU could get migrated to a different pCPU at any point
3953          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3954          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3955          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3956          * vCPU also requires it to leave IN_GUEST_MODE.
3957          */
3958         if (kvm_arch_vcpu_should_kick(vcpu)) {
3959                 cpu = READ_ONCE(vcpu->cpu);
3960                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3961                         smp_send_reschedule(cpu);
3962         }
3963 out:
3964         put_cpu();
3965 }
3966 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3967 #endif /* !CONFIG_S390 */
3968
3969 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3970 {
3971         struct pid *pid;
3972         struct task_struct *task = NULL;
3973         int ret = 0;
3974
3975         rcu_read_lock();
3976         pid = rcu_dereference(target->pid);
3977         if (pid)
3978                 task = get_pid_task(pid, PIDTYPE_PID);
3979         rcu_read_unlock();
3980         if (!task)
3981                 return ret;
3982         ret = yield_to(task, 1);
3983         put_task_struct(task);
3984
3985         return ret;
3986 }
3987 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3988
3989 /*
3990  * Helper that checks whether a VCPU is eligible for directed yield.
3991  * Most eligible candidate to yield is decided by following heuristics:
3992  *
3993  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3994  *  (preempted lock holder), indicated by @in_spin_loop.
3995  *  Set at the beginning and cleared at the end of interception/PLE handler.
3996  *
3997  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3998  *  chance last time (mostly it has become eligible now since we have probably
3999  *  yielded to lockholder in last iteration. This is done by toggling
4000  *  @dy_eligible each time a VCPU checked for eligibility.)
4001  *
4002  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4003  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4004  *  burning. Giving priority for a potential lock-holder increases lock
4005  *  progress.
4006  *
4007  *  Since algorithm is based on heuristics, accessing another VCPU data without
4008  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4009  *  and continue with next VCPU and so on.
4010  */
4011 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4012 {
4013 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4014         bool eligible;
4015
4016         eligible = !vcpu->spin_loop.in_spin_loop ||
4017                     vcpu->spin_loop.dy_eligible;
4018
4019         if (vcpu->spin_loop.in_spin_loop)
4020                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4021
4022         return eligible;
4023 #else
4024         return true;
4025 #endif
4026 }
4027
4028 /*
4029  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4030  * a vcpu_load/vcpu_put pair.  However, for most architectures
4031  * kvm_arch_vcpu_runnable does not require vcpu_load.
4032  */
4033 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4034 {
4035         return kvm_arch_vcpu_runnable(vcpu);
4036 }
4037
4038 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4039 {
4040         if (kvm_arch_dy_runnable(vcpu))
4041                 return true;
4042
4043 #ifdef CONFIG_KVM_ASYNC_PF
4044         if (!list_empty_careful(&vcpu->async_pf.done))
4045                 return true;
4046 #endif
4047
4048         return false;
4049 }
4050
4051 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4052 {
4053         return false;
4054 }
4055
4056 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4057 {
4058         struct kvm *kvm = me->kvm;
4059         struct kvm_vcpu *vcpu;
4060         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4061         unsigned long i;
4062         int yielded = 0;
4063         int try = 3;
4064         int pass;
4065
4066         kvm_vcpu_set_in_spin_loop(me, true);
4067         /*
4068          * We boost the priority of a VCPU that is runnable but not
4069          * currently running, because it got preempted by something
4070          * else and called schedule in __vcpu_run.  Hopefully that
4071          * VCPU is holding the lock that we need and will release it.
4072          * We approximate round-robin by starting at the last boosted VCPU.
4073          */
4074         for (pass = 0; pass < 2 && !yielded && try; pass++) {
4075                 kvm_for_each_vcpu(i, vcpu, kvm) {
4076                         if (!pass && i <= last_boosted_vcpu) {
4077                                 i = last_boosted_vcpu;
4078                                 continue;
4079                         } else if (pass && i > last_boosted_vcpu)
4080                                 break;
4081                         if (!READ_ONCE(vcpu->ready))
4082                                 continue;
4083                         if (vcpu == me)
4084                                 continue;
4085                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4086                                 continue;
4087                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4088                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4089                             !kvm_arch_vcpu_in_kernel(vcpu))
4090                                 continue;
4091                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4092                                 continue;
4093
4094                         yielded = kvm_vcpu_yield_to(vcpu);
4095                         if (yielded > 0) {
4096                                 kvm->last_boosted_vcpu = i;
4097                                 break;
4098                         } else if (yielded < 0) {
4099                                 try--;
4100                                 if (!try)
4101                                         break;
4102                         }
4103                 }
4104         }
4105         kvm_vcpu_set_in_spin_loop(me, false);
4106
4107         /* Ensure vcpu is not eligible during next spinloop */
4108         kvm_vcpu_set_dy_eligible(me, false);
4109 }
4110 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4111
4112 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4113 {
4114 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4115         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4116             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4117              kvm->dirty_ring_size / PAGE_SIZE);
4118 #else
4119         return false;
4120 #endif
4121 }
4122
4123 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4124 {
4125         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4126         struct page *page;
4127
4128         if (vmf->pgoff == 0)
4129                 page = virt_to_page(vcpu->run);
4130 #ifdef CONFIG_X86
4131         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4132                 page = virt_to_page(vcpu->arch.pio_data);
4133 #endif
4134 #ifdef CONFIG_KVM_MMIO
4135         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4136                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4137 #endif
4138         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4139                 page = kvm_dirty_ring_get_page(
4140                     &vcpu->dirty_ring,
4141                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4142         else
4143                 return kvm_arch_vcpu_fault(vcpu, vmf);
4144         get_page(page);
4145         vmf->page = page;
4146         return 0;
4147 }
4148
4149 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4150         .fault = kvm_vcpu_fault,
4151 };
4152
4153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4154 {
4155         struct kvm_vcpu *vcpu = file->private_data;
4156         unsigned long pages = vma_pages(vma);
4157
4158         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4159              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4160             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4161                 return -EINVAL;
4162
4163         vma->vm_ops = &kvm_vcpu_vm_ops;
4164         return 0;
4165 }
4166
4167 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4168 {
4169         struct kvm_vcpu *vcpu = filp->private_data;
4170
4171         kvm_put_kvm(vcpu->kvm);
4172         return 0;
4173 }
4174
4175 static struct file_operations kvm_vcpu_fops = {
4176         .release        = kvm_vcpu_release,
4177         .unlocked_ioctl = kvm_vcpu_ioctl,
4178         .mmap           = kvm_vcpu_mmap,
4179         .llseek         = noop_llseek,
4180         KVM_COMPAT(kvm_vcpu_compat_ioctl),
4181 };
4182
4183 /*
4184  * Allocates an inode for the vcpu.
4185  */
4186 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4187 {
4188         char name[8 + 1 + ITOA_MAX_LEN + 1];
4189
4190         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4191         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4192 }
4193
4194 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4195 static int vcpu_get_pid(void *data, u64 *val)
4196 {
4197         struct kvm_vcpu *vcpu = data;
4198
4199         rcu_read_lock();
4200         *val = pid_nr(rcu_dereference(vcpu->pid));
4201         rcu_read_unlock();
4202         return 0;
4203 }
4204
4205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4206
4207 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4208 {
4209         struct dentry *debugfs_dentry;
4210         char dir_name[ITOA_MAX_LEN * 2];
4211
4212         if (!debugfs_initialized())
4213                 return;
4214
4215         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4216         debugfs_dentry = debugfs_create_dir(dir_name,
4217                                             vcpu->kvm->debugfs_dentry);
4218         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4219                             &vcpu_get_pid_fops);
4220
4221         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4222 }
4223 #endif
4224
4225 /*
4226  * Creates some virtual cpus.  Good luck creating more than one.
4227  */
4228 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4229 {
4230         int r;
4231         struct kvm_vcpu *vcpu;
4232         struct page *page;
4233
4234         if (id >= KVM_MAX_VCPU_IDS)
4235                 return -EINVAL;
4236
4237         mutex_lock(&kvm->lock);
4238         if (kvm->created_vcpus >= kvm->max_vcpus) {
4239                 mutex_unlock(&kvm->lock);
4240                 return -EINVAL;
4241         }
4242
4243         r = kvm_arch_vcpu_precreate(kvm, id);
4244         if (r) {
4245                 mutex_unlock(&kvm->lock);
4246                 return r;
4247         }
4248
4249         kvm->created_vcpus++;
4250         mutex_unlock(&kvm->lock);
4251
4252         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4253         if (!vcpu) {
4254                 r = -ENOMEM;
4255                 goto vcpu_decrement;
4256         }
4257
4258         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4259         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4260         if (!page) {
4261                 r = -ENOMEM;
4262                 goto vcpu_free;
4263         }
4264         vcpu->run = page_address(page);
4265
4266         kvm_vcpu_init(vcpu, kvm, id);
4267
4268         r = kvm_arch_vcpu_create(vcpu);
4269         if (r)
4270                 goto vcpu_free_run_page;
4271
4272         if (kvm->dirty_ring_size) {
4273                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4274                                          id, kvm->dirty_ring_size);
4275                 if (r)
4276                         goto arch_vcpu_destroy;
4277         }
4278
4279         mutex_lock(&kvm->lock);
4280
4281 #ifdef CONFIG_LOCKDEP
4282         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4283         mutex_lock(&vcpu->mutex);
4284         mutex_unlock(&vcpu->mutex);
4285 #endif
4286
4287         if (kvm_get_vcpu_by_id(kvm, id)) {
4288                 r = -EEXIST;
4289                 goto unlock_vcpu_destroy;
4290         }
4291
4292         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4293         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4294         if (r)
4295                 goto unlock_vcpu_destroy;
4296
4297         /* Now it's all set up, let userspace reach it */
4298         kvm_get_kvm(kvm);
4299         r = create_vcpu_fd(vcpu);
4300         if (r < 0)
4301                 goto kvm_put_xa_release;
4302
4303         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4304                 r = -EINVAL;
4305                 goto kvm_put_xa_release;
4306         }
4307
4308         /*
4309          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4310          * pointer before kvm->online_vcpu's incremented value.
4311          */
4312         smp_wmb();
4313         atomic_inc(&kvm->online_vcpus);
4314
4315         mutex_unlock(&kvm->lock);
4316         kvm_arch_vcpu_postcreate(vcpu);
4317         kvm_create_vcpu_debugfs(vcpu);
4318         return r;
4319
4320 kvm_put_xa_release:
4321         kvm_put_kvm_no_destroy(kvm);
4322         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4323 unlock_vcpu_destroy:
4324         mutex_unlock(&kvm->lock);
4325         kvm_dirty_ring_free(&vcpu->dirty_ring);
4326 arch_vcpu_destroy:
4327         kvm_arch_vcpu_destroy(vcpu);
4328 vcpu_free_run_page:
4329         free_page((unsigned long)vcpu->run);
4330 vcpu_free:
4331         kmem_cache_free(kvm_vcpu_cache, vcpu);
4332 vcpu_decrement:
4333         mutex_lock(&kvm->lock);
4334         kvm->created_vcpus--;
4335         mutex_unlock(&kvm->lock);
4336         return r;
4337 }
4338
4339 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4340 {
4341         if (sigset) {
4342                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4343                 vcpu->sigset_active = 1;
4344                 vcpu->sigset = *sigset;
4345         } else
4346                 vcpu->sigset_active = 0;
4347         return 0;
4348 }
4349
4350 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4351                               size_t size, loff_t *offset)
4352 {
4353         struct kvm_vcpu *vcpu = file->private_data;
4354
4355         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4356                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4357                         sizeof(vcpu->stat), user_buffer, size, offset);
4358 }
4359
4360 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4361 {
4362         struct kvm_vcpu *vcpu = file->private_data;
4363
4364         kvm_put_kvm(vcpu->kvm);
4365         return 0;
4366 }
4367
4368 static const struct file_operations kvm_vcpu_stats_fops = {
4369         .owner = THIS_MODULE,
4370         .read = kvm_vcpu_stats_read,
4371         .release = kvm_vcpu_stats_release,
4372         .llseek = noop_llseek,
4373 };
4374
4375 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4376 {
4377         int fd;
4378         struct file *file;
4379         char name[15 + ITOA_MAX_LEN + 1];
4380
4381         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4382
4383         fd = get_unused_fd_flags(O_CLOEXEC);
4384         if (fd < 0)
4385                 return fd;
4386
4387         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4388         if (IS_ERR(file)) {
4389                 put_unused_fd(fd);
4390                 return PTR_ERR(file);
4391         }
4392
4393         kvm_get_kvm(vcpu->kvm);
4394
4395         file->f_mode |= FMODE_PREAD;
4396         fd_install(fd, file);
4397
4398         return fd;
4399 }
4400
4401 static long kvm_vcpu_ioctl(struct file *filp,
4402                            unsigned int ioctl, unsigned long arg)
4403 {
4404         struct kvm_vcpu *vcpu = filp->private_data;
4405         void __user *argp = (void __user *)arg;
4406         int r;
4407         struct kvm_fpu *fpu = NULL;
4408         struct kvm_sregs *kvm_sregs = NULL;
4409
4410         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4411                 return -EIO;
4412
4413         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4414                 return -EINVAL;
4415
4416         /*
4417          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4418          * execution; mutex_lock() would break them.
4419          */
4420         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4421         if (r != -ENOIOCTLCMD)
4422                 return r;
4423
4424         if (mutex_lock_killable(&vcpu->mutex))
4425                 return -EINTR;
4426         switch (ioctl) {
4427         case KVM_RUN: {
4428                 struct pid *oldpid;
4429                 r = -EINVAL;
4430                 if (arg)
4431                         goto out;
4432                 oldpid = rcu_access_pointer(vcpu->pid);
4433                 if (unlikely(oldpid != task_pid(current))) {
4434                         /* The thread running this VCPU changed. */
4435                         struct pid *newpid;
4436
4437                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4438                         if (r)
4439                                 break;
4440
4441                         newpid = get_task_pid(current, PIDTYPE_PID);
4442                         rcu_assign_pointer(vcpu->pid, newpid);
4443                         if (oldpid)
4444                                 synchronize_rcu();
4445                         put_pid(oldpid);
4446                 }
4447                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4448                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4449                 break;
4450         }
4451         case KVM_GET_REGS: {
4452                 struct kvm_regs *kvm_regs;
4453
4454                 r = -ENOMEM;
4455                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4456                 if (!kvm_regs)
4457                         goto out;
4458                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4459                 if (r)
4460                         goto out_free1;
4461                 r = -EFAULT;
4462                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4463                         goto out_free1;
4464                 r = 0;
4465 out_free1:
4466                 kfree(kvm_regs);
4467                 break;
4468         }
4469         case KVM_SET_REGS: {
4470                 struct kvm_regs *kvm_regs;
4471
4472                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4473                 if (IS_ERR(kvm_regs)) {
4474                         r = PTR_ERR(kvm_regs);
4475                         goto out;
4476                 }
4477                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4478                 kfree(kvm_regs);
4479                 break;
4480         }
4481         case KVM_GET_SREGS: {
4482                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4483                                     GFP_KERNEL_ACCOUNT);
4484                 r = -ENOMEM;
4485                 if (!kvm_sregs)
4486                         goto out;
4487                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4488                 if (r)
4489                         goto out;
4490                 r = -EFAULT;
4491                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4492                         goto out;
4493                 r = 0;
4494                 break;
4495         }
4496         case KVM_SET_SREGS: {
4497                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4498                 if (IS_ERR(kvm_sregs)) {
4499                         r = PTR_ERR(kvm_sregs);
4500                         kvm_sregs = NULL;
4501                         goto out;
4502                 }
4503                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4504                 break;
4505         }
4506         case KVM_GET_MP_STATE: {
4507                 struct kvm_mp_state mp_state;
4508
4509                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4510                 if (r)
4511                         goto out;
4512                 r = -EFAULT;
4513                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4514                         goto out;
4515                 r = 0;
4516                 break;
4517         }
4518         case KVM_SET_MP_STATE: {
4519                 struct kvm_mp_state mp_state;
4520
4521                 r = -EFAULT;
4522                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4523                         goto out;
4524                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4525                 break;
4526         }
4527         case KVM_TRANSLATE: {
4528                 struct kvm_translation tr;
4529
4530                 r = -EFAULT;
4531                 if (copy_from_user(&tr, argp, sizeof(tr)))
4532                         goto out;
4533                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4534                 if (r)
4535                         goto out;
4536                 r = -EFAULT;
4537                 if (copy_to_user(argp, &tr, sizeof(tr)))
4538                         goto out;
4539                 r = 0;
4540                 break;
4541         }
4542         case KVM_SET_GUEST_DEBUG: {
4543                 struct kvm_guest_debug dbg;
4544
4545                 r = -EFAULT;
4546                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4547                         goto out;
4548                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4549                 break;
4550         }
4551         case KVM_SET_SIGNAL_MASK: {
4552                 struct kvm_signal_mask __user *sigmask_arg = argp;
4553                 struct kvm_signal_mask kvm_sigmask;
4554                 sigset_t sigset, *p;
4555
4556                 p = NULL;
4557                 if (argp) {
4558                         r = -EFAULT;
4559                         if (copy_from_user(&kvm_sigmask, argp,
4560                                            sizeof(kvm_sigmask)))
4561                                 goto out;
4562                         r = -EINVAL;
4563                         if (kvm_sigmask.len != sizeof(sigset))
4564                                 goto out;
4565                         r = -EFAULT;
4566                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4567                                            sizeof(sigset)))
4568                                 goto out;
4569                         p = &sigset;
4570                 }
4571                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4572                 break;
4573         }
4574         case KVM_GET_FPU: {
4575                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4576                 r = -ENOMEM;
4577                 if (!fpu)
4578                         goto out;
4579                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4580                 if (r)
4581                         goto out;
4582                 r = -EFAULT;
4583                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4584                         goto out;
4585                 r = 0;
4586                 break;
4587         }
4588         case KVM_SET_FPU: {
4589                 fpu = memdup_user(argp, sizeof(*fpu));
4590                 if (IS_ERR(fpu)) {
4591                         r = PTR_ERR(fpu);
4592                         fpu = NULL;
4593                         goto out;
4594                 }
4595                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4596                 break;
4597         }
4598         case KVM_GET_STATS_FD: {
4599                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4600                 break;
4601         }
4602         default:
4603                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4604         }
4605 out:
4606         mutex_unlock(&vcpu->mutex);
4607         kfree(fpu);
4608         kfree(kvm_sregs);
4609         return r;
4610 }
4611
4612 #ifdef CONFIG_KVM_COMPAT
4613 static long kvm_vcpu_compat_ioctl(struct file *filp,
4614                                   unsigned int ioctl, unsigned long arg)
4615 {
4616         struct kvm_vcpu *vcpu = filp->private_data;
4617         void __user *argp = compat_ptr(arg);
4618         int r;
4619
4620         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4621                 return -EIO;
4622
4623         switch (ioctl) {
4624         case KVM_SET_SIGNAL_MASK: {
4625                 struct kvm_signal_mask __user *sigmask_arg = argp;
4626                 struct kvm_signal_mask kvm_sigmask;
4627                 sigset_t sigset;
4628
4629                 if (argp) {
4630                         r = -EFAULT;
4631                         if (copy_from_user(&kvm_sigmask, argp,
4632                                            sizeof(kvm_sigmask)))
4633                                 goto out;
4634                         r = -EINVAL;
4635                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4636                                 goto out;
4637                         r = -EFAULT;
4638                         if (get_compat_sigset(&sigset,
4639                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4640                                 goto out;
4641                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4642                 } else
4643                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4644                 break;
4645         }
4646         default:
4647                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4648         }
4649
4650 out:
4651         return r;
4652 }
4653 #endif
4654
4655 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4656 {
4657         struct kvm_device *dev = filp->private_data;
4658
4659         if (dev->ops->mmap)
4660                 return dev->ops->mmap(dev, vma);
4661
4662         return -ENODEV;
4663 }
4664
4665 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4666                                  int (*accessor)(struct kvm_device *dev,
4667                                                  struct kvm_device_attr *attr),
4668                                  unsigned long arg)
4669 {
4670         struct kvm_device_attr attr;
4671
4672         if (!accessor)
4673                 return -EPERM;
4674
4675         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676                 return -EFAULT;
4677
4678         return accessor(dev, &attr);
4679 }
4680
4681 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4682                              unsigned long arg)
4683 {
4684         struct kvm_device *dev = filp->private_data;
4685
4686         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4687                 return -EIO;
4688
4689         switch (ioctl) {
4690         case KVM_SET_DEVICE_ATTR:
4691                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4692         case KVM_GET_DEVICE_ATTR:
4693                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4694         case KVM_HAS_DEVICE_ATTR:
4695                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4696         default:
4697                 if (dev->ops->ioctl)
4698                         return dev->ops->ioctl(dev, ioctl, arg);
4699
4700                 return -ENOTTY;
4701         }
4702 }
4703
4704 static int kvm_device_release(struct inode *inode, struct file *filp)
4705 {
4706         struct kvm_device *dev = filp->private_data;
4707         struct kvm *kvm = dev->kvm;
4708
4709         if (dev->ops->release) {
4710                 mutex_lock(&kvm->lock);
4711                 list_del(&dev->vm_node);
4712                 dev->ops->release(dev);
4713                 mutex_unlock(&kvm->lock);
4714         }
4715
4716         kvm_put_kvm(kvm);
4717         return 0;
4718 }
4719
4720 static struct file_operations kvm_device_fops = {
4721         .unlocked_ioctl = kvm_device_ioctl,
4722         .release = kvm_device_release,
4723         KVM_COMPAT(kvm_device_ioctl),
4724         .mmap = kvm_device_mmap,
4725 };
4726
4727 struct kvm_device *kvm_device_from_filp(struct file *filp)
4728 {
4729         if (filp->f_op != &kvm_device_fops)
4730                 return NULL;
4731
4732         return filp->private_data;
4733 }
4734
4735 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4736 #ifdef CONFIG_KVM_MPIC
4737         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4738         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4739 #endif
4740 };
4741
4742 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4743 {
4744         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4745                 return -ENOSPC;
4746
4747         if (kvm_device_ops_table[type] != NULL)
4748                 return -EEXIST;
4749
4750         kvm_device_ops_table[type] = ops;
4751         return 0;
4752 }
4753
4754 void kvm_unregister_device_ops(u32 type)
4755 {
4756         if (kvm_device_ops_table[type] != NULL)
4757                 kvm_device_ops_table[type] = NULL;
4758 }
4759
4760 static int kvm_ioctl_create_device(struct kvm *kvm,
4761                                    struct kvm_create_device *cd)
4762 {
4763         const struct kvm_device_ops *ops;
4764         struct kvm_device *dev;
4765         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4766         int type;
4767         int ret;
4768
4769         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4770                 return -ENODEV;
4771
4772         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4773         ops = kvm_device_ops_table[type];
4774         if (ops == NULL)
4775                 return -ENODEV;
4776
4777         if (test)
4778                 return 0;
4779
4780         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4781         if (!dev)
4782                 return -ENOMEM;
4783
4784         dev->ops = ops;
4785         dev->kvm = kvm;
4786
4787         mutex_lock(&kvm->lock);
4788         ret = ops->create(dev, type);
4789         if (ret < 0) {
4790                 mutex_unlock(&kvm->lock);
4791                 kfree(dev);
4792                 return ret;
4793         }
4794         list_add(&dev->vm_node, &kvm->devices);
4795         mutex_unlock(&kvm->lock);
4796
4797         if (ops->init)
4798                 ops->init(dev);
4799
4800         kvm_get_kvm(kvm);
4801         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4802         if (ret < 0) {
4803                 kvm_put_kvm_no_destroy(kvm);
4804                 mutex_lock(&kvm->lock);
4805                 list_del(&dev->vm_node);
4806                 if (ops->release)
4807                         ops->release(dev);
4808                 mutex_unlock(&kvm->lock);
4809                 if (ops->destroy)
4810                         ops->destroy(dev);
4811                 return ret;
4812         }
4813
4814         cd->fd = ret;
4815         return 0;
4816 }
4817
4818 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4819 {
4820         switch (arg) {
4821         case KVM_CAP_USER_MEMORY:
4822         case KVM_CAP_USER_MEMORY2:
4823         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4824         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4825         case KVM_CAP_INTERNAL_ERROR_DATA:
4826 #ifdef CONFIG_HAVE_KVM_MSI
4827         case KVM_CAP_SIGNAL_MSI:
4828 #endif
4829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4830         case KVM_CAP_IRQFD:
4831 #endif
4832         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4833         case KVM_CAP_CHECK_EXTENSION_VM:
4834         case KVM_CAP_ENABLE_CAP_VM:
4835         case KVM_CAP_HALT_POLL:
4836                 return 1;
4837 #ifdef CONFIG_KVM_MMIO
4838         case KVM_CAP_COALESCED_MMIO:
4839                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4840         case KVM_CAP_COALESCED_PIO:
4841                 return 1;
4842 #endif
4843 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4844         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4845                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4846 #endif
4847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4848         case KVM_CAP_IRQ_ROUTING:
4849                 return KVM_MAX_IRQ_ROUTES;
4850 #endif
4851 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4852         case KVM_CAP_MULTI_ADDRESS_SPACE:
4853                 if (kvm)
4854                         return kvm_arch_nr_memslot_as_ids(kvm);
4855                 return KVM_MAX_NR_ADDRESS_SPACES;
4856 #endif
4857         case KVM_CAP_NR_MEMSLOTS:
4858                 return KVM_USER_MEM_SLOTS;
4859         case KVM_CAP_DIRTY_LOG_RING:
4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4861                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862 #else
4863                 return 0;
4864 #endif
4865         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4866 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4867                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4868 #else
4869                 return 0;
4870 #endif
4871 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4872         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4873 #endif
4874         case KVM_CAP_BINARY_STATS_FD:
4875         case KVM_CAP_SYSTEM_EVENT_DATA:
4876         case KVM_CAP_DEVICE_CTRL:
4877                 return 1;
4878 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4879         case KVM_CAP_MEMORY_ATTRIBUTES:
4880                 return kvm_supported_mem_attributes(kvm);
4881 #endif
4882 #ifdef CONFIG_KVM_PRIVATE_MEM
4883         case KVM_CAP_GUEST_MEMFD:
4884                 return !kvm || kvm_arch_has_private_mem(kvm);
4885 #endif
4886         default:
4887                 break;
4888         }
4889         return kvm_vm_ioctl_check_extension(kvm, arg);
4890 }
4891
4892 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4893 {
4894         int r;
4895
4896         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4897                 return -EINVAL;
4898
4899         /* the size should be power of 2 */
4900         if (!size || (size & (size - 1)))
4901                 return -EINVAL;
4902
4903         /* Should be bigger to keep the reserved entries, or a page */
4904         if (size < kvm_dirty_ring_get_rsvd_entries() *
4905             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4906                 return -EINVAL;
4907
4908         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4909             sizeof(struct kvm_dirty_gfn))
4910                 return -E2BIG;
4911
4912         /* We only allow it to set once */
4913         if (kvm->dirty_ring_size)
4914                 return -EINVAL;
4915
4916         mutex_lock(&kvm->lock);
4917
4918         if (kvm->created_vcpus) {
4919                 /* We don't allow to change this value after vcpu created */
4920                 r = -EINVAL;
4921         } else {
4922                 kvm->dirty_ring_size = size;
4923                 r = 0;
4924         }
4925
4926         mutex_unlock(&kvm->lock);
4927         return r;
4928 }
4929
4930 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4931 {
4932         unsigned long i;
4933         struct kvm_vcpu *vcpu;
4934         int cleared = 0;
4935
4936         if (!kvm->dirty_ring_size)
4937                 return -EINVAL;
4938
4939         mutex_lock(&kvm->slots_lock);
4940
4941         kvm_for_each_vcpu(i, vcpu, kvm)
4942                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4943
4944         mutex_unlock(&kvm->slots_lock);
4945
4946         if (cleared)
4947                 kvm_flush_remote_tlbs(kvm);
4948
4949         return cleared;
4950 }
4951
4952 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4953                                                   struct kvm_enable_cap *cap)
4954 {
4955         return -EINVAL;
4956 }
4957
4958 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4959 {
4960         int i;
4961
4962         lockdep_assert_held(&kvm->slots_lock);
4963
4964         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4965                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4966                         return false;
4967         }
4968
4969         return true;
4970 }
4971 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4972
4973 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4974                                            struct kvm_enable_cap *cap)
4975 {
4976         switch (cap->cap) {
4977 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4978         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4979                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4980
4981                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4982                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4983
4984                 if (cap->flags || (cap->args[0] & ~allowed_options))
4985                         return -EINVAL;
4986                 kvm->manual_dirty_log_protect = cap->args[0];
4987                 return 0;
4988         }
4989 #endif
4990         case KVM_CAP_HALT_POLL: {
4991                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4992                         return -EINVAL;
4993
4994                 kvm->max_halt_poll_ns = cap->args[0];
4995
4996                 /*
4997                  * Ensure kvm->override_halt_poll_ns does not become visible
4998                  * before kvm->max_halt_poll_ns.
4999                  *
5000                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5001                  */
5002                 smp_wmb();
5003                 kvm->override_halt_poll_ns = true;
5004
5005                 return 0;
5006         }
5007         case KVM_CAP_DIRTY_LOG_RING:
5008         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5009                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5010                         return -EINVAL;
5011
5012                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5013         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5014                 int r = -EINVAL;
5015
5016                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5017                     !kvm->dirty_ring_size || cap->flags)
5018                         return r;
5019
5020                 mutex_lock(&kvm->slots_lock);
5021
5022                 /*
5023                  * For simplicity, allow enabling ring+bitmap if and only if
5024                  * there are no memslots, e.g. to ensure all memslots allocate
5025                  * a bitmap after the capability is enabled.
5026                  */
5027                 if (kvm_are_all_memslots_empty(kvm)) {
5028                         kvm->dirty_ring_with_bitmap = true;
5029                         r = 0;
5030                 }
5031
5032                 mutex_unlock(&kvm->slots_lock);
5033
5034                 return r;
5035         }
5036         default:
5037                 return kvm_vm_ioctl_enable_cap(kvm, cap);
5038         }
5039 }
5040
5041 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5042                               size_t size, loff_t *offset)
5043 {
5044         struct kvm *kvm = file->private_data;
5045
5046         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5047                                 &kvm_vm_stats_desc[0], &kvm->stat,
5048                                 sizeof(kvm->stat), user_buffer, size, offset);
5049 }
5050
5051 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5052 {
5053         struct kvm *kvm = file->private_data;
5054
5055         kvm_put_kvm(kvm);
5056         return 0;
5057 }
5058
5059 static const struct file_operations kvm_vm_stats_fops = {
5060         .owner = THIS_MODULE,
5061         .read = kvm_vm_stats_read,
5062         .release = kvm_vm_stats_release,
5063         .llseek = noop_llseek,
5064 };
5065
5066 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5067 {
5068         int fd;
5069         struct file *file;
5070
5071         fd = get_unused_fd_flags(O_CLOEXEC);
5072         if (fd < 0)
5073                 return fd;
5074
5075         file = anon_inode_getfile("kvm-vm-stats",
5076                         &kvm_vm_stats_fops, kvm, O_RDONLY);
5077         if (IS_ERR(file)) {
5078                 put_unused_fd(fd);
5079                 return PTR_ERR(file);
5080         }
5081
5082         kvm_get_kvm(kvm);
5083
5084         file->f_mode |= FMODE_PREAD;
5085         fd_install(fd, file);
5086
5087         return fd;
5088 }
5089
5090 #define SANITY_CHECK_MEM_REGION_FIELD(field)                                    \
5091 do {                                                                            \
5092         BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=             \
5093                      offsetof(struct kvm_userspace_memory_region2, field));     \
5094         BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=         \
5095                      sizeof_field(struct kvm_userspace_memory_region2, field)); \
5096 } while (0)
5097
5098 static long kvm_vm_ioctl(struct file *filp,
5099                            unsigned int ioctl, unsigned long arg)
5100 {
5101         struct kvm *kvm = filp->private_data;
5102         void __user *argp = (void __user *)arg;
5103         int r;
5104
5105         if (kvm->mm != current->mm || kvm->vm_dead)
5106                 return -EIO;
5107         switch (ioctl) {
5108         case KVM_CREATE_VCPU:
5109                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5110                 break;
5111         case KVM_ENABLE_CAP: {
5112                 struct kvm_enable_cap cap;
5113
5114                 r = -EFAULT;
5115                 if (copy_from_user(&cap, argp, sizeof(cap)))
5116                         goto out;
5117                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5118                 break;
5119         }
5120         case KVM_SET_USER_MEMORY_REGION2:
5121         case KVM_SET_USER_MEMORY_REGION: {
5122                 struct kvm_userspace_memory_region2 mem;
5123                 unsigned long size;
5124
5125                 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5126                         /*
5127                          * Fields beyond struct kvm_userspace_memory_region shouldn't be
5128                          * accessed, but avoid leaking kernel memory in case of a bug.
5129                          */
5130                         memset(&mem, 0, sizeof(mem));
5131                         size = sizeof(struct kvm_userspace_memory_region);
5132                 } else {
5133                         size = sizeof(struct kvm_userspace_memory_region2);
5134                 }
5135
5136                 /* Ensure the common parts of the two structs are identical. */
5137                 SANITY_CHECK_MEM_REGION_FIELD(slot);
5138                 SANITY_CHECK_MEM_REGION_FIELD(flags);
5139                 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5140                 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5141                 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5142
5143                 r = -EFAULT;
5144                 if (copy_from_user(&mem, argp, size))
5145                         goto out;
5146
5147                 r = -EINVAL;
5148                 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5149                     (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5150                         goto out;
5151
5152                 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5153                 break;
5154         }
5155         case KVM_GET_DIRTY_LOG: {
5156                 struct kvm_dirty_log log;
5157
5158                 r = -EFAULT;
5159                 if (copy_from_user(&log, argp, sizeof(log)))
5160                         goto out;
5161                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5162                 break;
5163         }
5164 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5165         case KVM_CLEAR_DIRTY_LOG: {
5166                 struct kvm_clear_dirty_log log;
5167
5168                 r = -EFAULT;
5169                 if (copy_from_user(&log, argp, sizeof(log)))
5170                         goto out;
5171                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5172                 break;
5173         }
5174 #endif
5175 #ifdef CONFIG_KVM_MMIO
5176         case KVM_REGISTER_COALESCED_MMIO: {
5177                 struct kvm_coalesced_mmio_zone zone;
5178
5179                 r = -EFAULT;
5180                 if (copy_from_user(&zone, argp, sizeof(zone)))
5181                         goto out;
5182                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5183                 break;
5184         }
5185         case KVM_UNREGISTER_COALESCED_MMIO: {
5186                 struct kvm_coalesced_mmio_zone zone;
5187
5188                 r = -EFAULT;
5189                 if (copy_from_user(&zone, argp, sizeof(zone)))
5190                         goto out;
5191                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5192                 break;
5193         }
5194 #endif
5195         case KVM_IRQFD: {
5196                 struct kvm_irqfd data;
5197
5198                 r = -EFAULT;
5199                 if (copy_from_user(&data, argp, sizeof(data)))
5200                         goto out;
5201                 r = kvm_irqfd(kvm, &data);
5202                 break;
5203         }
5204         case KVM_IOEVENTFD: {
5205                 struct kvm_ioeventfd data;
5206
5207                 r = -EFAULT;
5208                 if (copy_from_user(&data, argp, sizeof(data)))
5209                         goto out;
5210                 r = kvm_ioeventfd(kvm, &data);
5211                 break;
5212         }
5213 #ifdef CONFIG_HAVE_KVM_MSI
5214         case KVM_SIGNAL_MSI: {
5215                 struct kvm_msi msi;
5216
5217                 r = -EFAULT;
5218                 if (copy_from_user(&msi, argp, sizeof(msi)))
5219                         goto out;
5220                 r = kvm_send_userspace_msi(kvm, &msi);
5221                 break;
5222         }
5223 #endif
5224 #ifdef __KVM_HAVE_IRQ_LINE
5225         case KVM_IRQ_LINE_STATUS:
5226         case KVM_IRQ_LINE: {
5227                 struct kvm_irq_level irq_event;
5228
5229                 r = -EFAULT;
5230                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5231                         goto out;
5232
5233                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5234                                         ioctl == KVM_IRQ_LINE_STATUS);
5235                 if (r)
5236                         goto out;
5237
5238                 r = -EFAULT;
5239                 if (ioctl == KVM_IRQ_LINE_STATUS) {
5240                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5241                                 goto out;
5242                 }
5243
5244                 r = 0;
5245                 break;
5246         }
5247 #endif
5248 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5249         case KVM_SET_GSI_ROUTING: {
5250                 struct kvm_irq_routing routing;
5251                 struct kvm_irq_routing __user *urouting;
5252                 struct kvm_irq_routing_entry *entries = NULL;
5253
5254                 r = -EFAULT;
5255                 if (copy_from_user(&routing, argp, sizeof(routing)))
5256                         goto out;
5257                 r = -EINVAL;
5258                 if (!kvm_arch_can_set_irq_routing(kvm))
5259                         goto out;
5260                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5261                         goto out;
5262                 if (routing.flags)
5263                         goto out;
5264                 if (routing.nr) {
5265                         urouting = argp;
5266                         entries = vmemdup_array_user(urouting->entries,
5267                                                      routing.nr, sizeof(*entries));
5268                         if (IS_ERR(entries)) {
5269                                 r = PTR_ERR(entries);
5270                                 goto out;
5271                         }
5272                 }
5273                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5274                                         routing.flags);
5275                 kvfree(entries);
5276                 break;
5277         }
5278 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5279 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5280         case KVM_SET_MEMORY_ATTRIBUTES: {
5281                 struct kvm_memory_attributes attrs;
5282
5283                 r = -EFAULT;
5284                 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5285                         goto out;
5286
5287                 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5288                 break;
5289         }
5290 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5291         case KVM_CREATE_DEVICE: {
5292                 struct kvm_create_device cd;
5293
5294                 r = -EFAULT;
5295                 if (copy_from_user(&cd, argp, sizeof(cd)))
5296                         goto out;
5297
5298                 r = kvm_ioctl_create_device(kvm, &cd);
5299                 if (r)
5300                         goto out;
5301
5302                 r = -EFAULT;
5303                 if (copy_to_user(argp, &cd, sizeof(cd)))
5304                         goto out;
5305
5306                 r = 0;
5307                 break;
5308         }
5309         case KVM_CHECK_EXTENSION:
5310                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5311                 break;
5312         case KVM_RESET_DIRTY_RINGS:
5313                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5314                 break;
5315         case KVM_GET_STATS_FD:
5316                 r = kvm_vm_ioctl_get_stats_fd(kvm);
5317                 break;
5318 #ifdef CONFIG_KVM_PRIVATE_MEM
5319         case KVM_CREATE_GUEST_MEMFD: {
5320                 struct kvm_create_guest_memfd guest_memfd;
5321
5322                 r = -EFAULT;
5323                 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5324                         goto out;
5325
5326                 r = kvm_gmem_create(kvm, &guest_memfd);
5327                 break;
5328         }
5329 #endif
5330         default:
5331                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5332         }
5333 out:
5334         return r;
5335 }
5336
5337 #ifdef CONFIG_KVM_COMPAT
5338 struct compat_kvm_dirty_log {
5339         __u32 slot;
5340         __u32 padding1;
5341         union {
5342                 compat_uptr_t dirty_bitmap; /* one bit per page */
5343                 __u64 padding2;
5344         };
5345 };
5346
5347 struct compat_kvm_clear_dirty_log {
5348         __u32 slot;
5349         __u32 num_pages;
5350         __u64 first_page;
5351         union {
5352                 compat_uptr_t dirty_bitmap; /* one bit per page */
5353                 __u64 padding2;
5354         };
5355 };
5356
5357 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5358                                      unsigned long arg)
5359 {
5360         return -ENOTTY;
5361 }
5362
5363 static long kvm_vm_compat_ioctl(struct file *filp,
5364                            unsigned int ioctl, unsigned long arg)
5365 {
5366         struct kvm *kvm = filp->private_data;
5367         int r;
5368
5369         if (kvm->mm != current->mm || kvm->vm_dead)
5370                 return -EIO;
5371
5372         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5373         if (r != -ENOTTY)
5374                 return r;
5375
5376         switch (ioctl) {
5377 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5378         case KVM_CLEAR_DIRTY_LOG: {
5379                 struct compat_kvm_clear_dirty_log compat_log;
5380                 struct kvm_clear_dirty_log log;
5381
5382                 if (copy_from_user(&compat_log, (void __user *)arg,
5383                                    sizeof(compat_log)))
5384                         return -EFAULT;
5385                 log.slot         = compat_log.slot;
5386                 log.num_pages    = compat_log.num_pages;
5387                 log.first_page   = compat_log.first_page;
5388                 log.padding2     = compat_log.padding2;
5389                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5390
5391                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5392                 break;
5393         }
5394 #endif
5395         case KVM_GET_DIRTY_LOG: {
5396                 struct compat_kvm_dirty_log compat_log;
5397                 struct kvm_dirty_log log;
5398
5399                 if (copy_from_user(&compat_log, (void __user *)arg,
5400                                    sizeof(compat_log)))
5401                         return -EFAULT;
5402                 log.slot         = compat_log.slot;
5403                 log.padding1     = compat_log.padding1;
5404                 log.padding2     = compat_log.padding2;
5405                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406
5407                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5408                 break;
5409         }
5410         default:
5411                 r = kvm_vm_ioctl(filp, ioctl, arg);
5412         }
5413         return r;
5414 }
5415 #endif
5416
5417 static struct file_operations kvm_vm_fops = {
5418         .release        = kvm_vm_release,
5419         .unlocked_ioctl = kvm_vm_ioctl,
5420         .llseek         = noop_llseek,
5421         KVM_COMPAT(kvm_vm_compat_ioctl),
5422 };
5423
5424 bool file_is_kvm(struct file *file)
5425 {
5426         return file && file->f_op == &kvm_vm_fops;
5427 }
5428 EXPORT_SYMBOL_GPL(file_is_kvm);
5429
5430 static int kvm_dev_ioctl_create_vm(unsigned long type)
5431 {
5432         char fdname[ITOA_MAX_LEN + 1];
5433         int r, fd;
5434         struct kvm *kvm;
5435         struct file *file;
5436
5437         fd = get_unused_fd_flags(O_CLOEXEC);
5438         if (fd < 0)
5439                 return fd;
5440
5441         snprintf(fdname, sizeof(fdname), "%d", fd);
5442
5443         kvm = kvm_create_vm(type, fdname);
5444         if (IS_ERR(kvm)) {
5445                 r = PTR_ERR(kvm);
5446                 goto put_fd;
5447         }
5448
5449         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5450         if (IS_ERR(file)) {
5451                 r = PTR_ERR(file);
5452                 goto put_kvm;
5453         }
5454
5455         /*
5456          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5457          * already set, with ->release() being kvm_vm_release().  In error
5458          * cases it will be called by the final fput(file) and will take
5459          * care of doing kvm_put_kvm(kvm).
5460          */
5461         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5462
5463         fd_install(fd, file);
5464         return fd;
5465
5466 put_kvm:
5467         kvm_put_kvm(kvm);
5468 put_fd:
5469         put_unused_fd(fd);
5470         return r;
5471 }
5472
5473 static long kvm_dev_ioctl(struct file *filp,
5474                           unsigned int ioctl, unsigned long arg)
5475 {
5476         int r = -EINVAL;
5477
5478         switch (ioctl) {
5479         case KVM_GET_API_VERSION:
5480                 if (arg)
5481                         goto out;
5482                 r = KVM_API_VERSION;
5483                 break;
5484         case KVM_CREATE_VM:
5485                 r = kvm_dev_ioctl_create_vm(arg);
5486                 break;
5487         case KVM_CHECK_EXTENSION:
5488                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5489                 break;
5490         case KVM_GET_VCPU_MMAP_SIZE:
5491                 if (arg)
5492                         goto out;
5493                 r = PAGE_SIZE;     /* struct kvm_run */
5494 #ifdef CONFIG_X86
5495                 r += PAGE_SIZE;    /* pio data page */
5496 #endif
5497 #ifdef CONFIG_KVM_MMIO
5498                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5499 #endif
5500                 break;
5501         default:
5502                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5503         }
5504 out:
5505         return r;
5506 }
5507
5508 static struct file_operations kvm_chardev_ops = {
5509         .unlocked_ioctl = kvm_dev_ioctl,
5510         .llseek         = noop_llseek,
5511         KVM_COMPAT(kvm_dev_ioctl),
5512 };
5513
5514 static struct miscdevice kvm_dev = {
5515         KVM_MINOR,
5516         "kvm",
5517         &kvm_chardev_ops,
5518 };
5519
5520 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5521 __visible bool kvm_rebooting;
5522 EXPORT_SYMBOL_GPL(kvm_rebooting);
5523
5524 static DEFINE_PER_CPU(bool, hardware_enabled);
5525 static int kvm_usage_count;
5526
5527 static int __hardware_enable_nolock(void)
5528 {
5529         if (__this_cpu_read(hardware_enabled))
5530                 return 0;
5531
5532         if (kvm_arch_hardware_enable()) {
5533                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5534                         raw_smp_processor_id());
5535                 return -EIO;
5536         }
5537
5538         __this_cpu_write(hardware_enabled, true);
5539         return 0;
5540 }
5541
5542 static void hardware_enable_nolock(void *failed)
5543 {
5544         if (__hardware_enable_nolock())
5545                 atomic_inc(failed);
5546 }
5547
5548 static int kvm_online_cpu(unsigned int cpu)
5549 {
5550         int ret = 0;
5551
5552         /*
5553          * Abort the CPU online process if hardware virtualization cannot
5554          * be enabled. Otherwise running VMs would encounter unrecoverable
5555          * errors when scheduled to this CPU.
5556          */
5557         mutex_lock(&kvm_lock);
5558         if (kvm_usage_count)
5559                 ret = __hardware_enable_nolock();
5560         mutex_unlock(&kvm_lock);
5561         return ret;
5562 }
5563
5564 static void hardware_disable_nolock(void *junk)
5565 {
5566         /*
5567          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5568          * hardware, not just CPUs that successfully enabled hardware!
5569          */
5570         if (!__this_cpu_read(hardware_enabled))
5571                 return;
5572
5573         kvm_arch_hardware_disable();
5574
5575         __this_cpu_write(hardware_enabled, false);
5576 }
5577
5578 static int kvm_offline_cpu(unsigned int cpu)
5579 {
5580         mutex_lock(&kvm_lock);
5581         if (kvm_usage_count)
5582                 hardware_disable_nolock(NULL);
5583         mutex_unlock(&kvm_lock);
5584         return 0;
5585 }
5586
5587 static void hardware_disable_all_nolock(void)
5588 {
5589         BUG_ON(!kvm_usage_count);
5590
5591         kvm_usage_count--;
5592         if (!kvm_usage_count)
5593                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5594 }
5595
5596 static void hardware_disable_all(void)
5597 {
5598         cpus_read_lock();
5599         mutex_lock(&kvm_lock);
5600         hardware_disable_all_nolock();
5601         mutex_unlock(&kvm_lock);
5602         cpus_read_unlock();
5603 }
5604
5605 static int hardware_enable_all(void)
5606 {
5607         atomic_t failed = ATOMIC_INIT(0);
5608         int r;
5609
5610         /*
5611          * Do not enable hardware virtualization if the system is going down.
5612          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5613          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5614          * after kvm_reboot() is called.  Note, this relies on system_state
5615          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5616          * hook instead of registering a dedicated reboot notifier (the latter
5617          * runs before system_state is updated).
5618          */
5619         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5620             system_state == SYSTEM_RESTART)
5621                 return -EBUSY;
5622
5623         /*
5624          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5625          * is called, and so on_each_cpu() between them includes the CPU that
5626          * is being onlined.  As a result, hardware_enable_nolock() may get
5627          * invoked before kvm_online_cpu(), which also enables hardware if the
5628          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5629          * enable hardware multiple times.
5630          */
5631         cpus_read_lock();
5632         mutex_lock(&kvm_lock);
5633
5634         r = 0;
5635
5636         kvm_usage_count++;
5637         if (kvm_usage_count == 1) {
5638                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5639
5640                 if (atomic_read(&failed)) {
5641                         hardware_disable_all_nolock();
5642                         r = -EBUSY;
5643                 }
5644         }
5645
5646         mutex_unlock(&kvm_lock);
5647         cpus_read_unlock();
5648
5649         return r;
5650 }
5651
5652 static void kvm_shutdown(void)
5653 {
5654         /*
5655          * Disable hardware virtualization and set kvm_rebooting to indicate
5656          * that KVM has asynchronously disabled hardware virtualization, i.e.
5657          * that relevant errors and exceptions aren't entirely unexpected.
5658          * Some flavors of hardware virtualization need to be disabled before
5659          * transferring control to firmware (to perform shutdown/reboot), e.g.
5660          * on x86, virtualization can block INIT interrupts, which are used by
5661          * firmware to pull APs back under firmware control.  Note, this path
5662          * is used for both shutdown and reboot scenarios, i.e. neither name is
5663          * 100% comprehensive.
5664          */
5665         pr_info("kvm: exiting hardware virtualization\n");
5666         kvm_rebooting = true;
5667         on_each_cpu(hardware_disable_nolock, NULL, 1);
5668 }
5669
5670 static int kvm_suspend(void)
5671 {
5672         /*
5673          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5674          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5675          * is stable.  Assert that kvm_lock is not held to ensure the system
5676          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5677          * can be preempted, but the task cannot be frozen until it has dropped
5678          * all locks (userspace tasks are frozen via a fake signal).
5679          */
5680         lockdep_assert_not_held(&kvm_lock);
5681         lockdep_assert_irqs_disabled();
5682
5683         if (kvm_usage_count)
5684                 hardware_disable_nolock(NULL);
5685         return 0;
5686 }
5687
5688 static void kvm_resume(void)
5689 {
5690         lockdep_assert_not_held(&kvm_lock);
5691         lockdep_assert_irqs_disabled();
5692
5693         if (kvm_usage_count)
5694                 WARN_ON_ONCE(__hardware_enable_nolock());
5695 }
5696
5697 static struct syscore_ops kvm_syscore_ops = {
5698         .suspend = kvm_suspend,
5699         .resume = kvm_resume,
5700         .shutdown = kvm_shutdown,
5701 };
5702 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5703 static int hardware_enable_all(void)
5704 {
5705         return 0;
5706 }
5707
5708 static void hardware_disable_all(void)
5709 {
5710
5711 }
5712 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5713
5714 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5715 {
5716         if (dev->ops->destructor)
5717                 dev->ops->destructor(dev);
5718 }
5719
5720 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5721 {
5722         int i;
5723
5724         for (i = 0; i < bus->dev_count; i++) {
5725                 struct kvm_io_device *pos = bus->range[i].dev;
5726
5727                 kvm_iodevice_destructor(pos);
5728         }
5729         kfree(bus);
5730 }
5731
5732 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5733                                  const struct kvm_io_range *r2)
5734 {
5735         gpa_t addr1 = r1->addr;
5736         gpa_t addr2 = r2->addr;
5737
5738         if (addr1 < addr2)
5739                 return -1;
5740
5741         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5742          * accept any overlapping write.  Any order is acceptable for
5743          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5744          * we process all of them.
5745          */
5746         if (r2->len) {
5747                 addr1 += r1->len;
5748                 addr2 += r2->len;
5749         }
5750
5751         if (addr1 > addr2)
5752                 return 1;
5753
5754         return 0;
5755 }
5756
5757 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5758 {
5759         return kvm_io_bus_cmp(p1, p2);
5760 }
5761
5762 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5763                              gpa_t addr, int len)
5764 {
5765         struct kvm_io_range *range, key;
5766         int off;
5767
5768         key = (struct kvm_io_range) {
5769                 .addr = addr,
5770                 .len = len,
5771         };
5772
5773         range = bsearch(&key, bus->range, bus->dev_count,
5774                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5775         if (range == NULL)
5776                 return -ENOENT;
5777
5778         off = range - bus->range;
5779
5780         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5781                 off--;
5782
5783         return off;
5784 }
5785
5786 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5787                               struct kvm_io_range *range, const void *val)
5788 {
5789         int idx;
5790
5791         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5792         if (idx < 0)
5793                 return -EOPNOTSUPP;
5794
5795         while (idx < bus->dev_count &&
5796                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5797                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5798                                         range->len, val))
5799                         return idx;
5800                 idx++;
5801         }
5802
5803         return -EOPNOTSUPP;
5804 }
5805
5806 /* kvm_io_bus_write - called under kvm->slots_lock */
5807 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5808                      int len, const void *val)
5809 {
5810         struct kvm_io_bus *bus;
5811         struct kvm_io_range range;
5812         int r;
5813
5814         range = (struct kvm_io_range) {
5815                 .addr = addr,
5816                 .len = len,
5817         };
5818
5819         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5820         if (!bus)
5821                 return -ENOMEM;
5822         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5823         return r < 0 ? r : 0;
5824 }
5825 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5826
5827 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5828 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5829                             gpa_t addr, int len, const void *val, long cookie)
5830 {
5831         struct kvm_io_bus *bus;
5832         struct kvm_io_range range;
5833
5834         range = (struct kvm_io_range) {
5835                 .addr = addr,
5836                 .len = len,
5837         };
5838
5839         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5840         if (!bus)
5841                 return -ENOMEM;
5842
5843         /* First try the device referenced by cookie. */
5844         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5845             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5846                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5847                                         val))
5848                         return cookie;
5849
5850         /*
5851          * cookie contained garbage; fall back to search and return the
5852          * correct cookie value.
5853          */
5854         return __kvm_io_bus_write(vcpu, bus, &range, val);
5855 }
5856
5857 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5858                              struct kvm_io_range *range, void *val)
5859 {
5860         int idx;
5861
5862         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5863         if (idx < 0)
5864                 return -EOPNOTSUPP;
5865
5866         while (idx < bus->dev_count &&
5867                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5868                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5869                                        range->len, val))
5870                         return idx;
5871                 idx++;
5872         }
5873
5874         return -EOPNOTSUPP;
5875 }
5876
5877 /* kvm_io_bus_read - called under kvm->slots_lock */
5878 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5879                     int len, void *val)
5880 {
5881         struct kvm_io_bus *bus;
5882         struct kvm_io_range range;
5883         int r;
5884
5885         range = (struct kvm_io_range) {
5886                 .addr = addr,
5887                 .len = len,
5888         };
5889
5890         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5891         if (!bus)
5892                 return -ENOMEM;
5893         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5894         return r < 0 ? r : 0;
5895 }
5896
5897 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5898                             int len, struct kvm_io_device *dev)
5899 {
5900         int i;
5901         struct kvm_io_bus *new_bus, *bus;
5902         struct kvm_io_range range;
5903
5904         lockdep_assert_held(&kvm->slots_lock);
5905
5906         bus = kvm_get_bus(kvm, bus_idx);
5907         if (!bus)
5908                 return -ENOMEM;
5909
5910         /* exclude ioeventfd which is limited by maximum fd */
5911         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5912                 return -ENOSPC;
5913
5914         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5915                           GFP_KERNEL_ACCOUNT);
5916         if (!new_bus)
5917                 return -ENOMEM;
5918
5919         range = (struct kvm_io_range) {
5920                 .addr = addr,
5921                 .len = len,
5922                 .dev = dev,
5923         };
5924
5925         for (i = 0; i < bus->dev_count; i++)
5926                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5927                         break;
5928
5929         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5930         new_bus->dev_count++;
5931         new_bus->range[i] = range;
5932         memcpy(new_bus->range + i + 1, bus->range + i,
5933                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5934         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5935         synchronize_srcu_expedited(&kvm->srcu);
5936         kfree(bus);
5937
5938         return 0;
5939 }
5940
5941 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5942                               struct kvm_io_device *dev)
5943 {
5944         int i;
5945         struct kvm_io_bus *new_bus, *bus;
5946
5947         lockdep_assert_held(&kvm->slots_lock);
5948
5949         bus = kvm_get_bus(kvm, bus_idx);
5950         if (!bus)
5951                 return 0;
5952
5953         for (i = 0; i < bus->dev_count; i++) {
5954                 if (bus->range[i].dev == dev) {
5955                         break;
5956                 }
5957         }
5958
5959         if (i == bus->dev_count)
5960                 return 0;
5961
5962         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5963                           GFP_KERNEL_ACCOUNT);
5964         if (new_bus) {
5965                 memcpy(new_bus, bus, struct_size(bus, range, i));
5966                 new_bus->dev_count--;
5967                 memcpy(new_bus->range + i, bus->range + i + 1,
5968                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5969         }
5970
5971         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5972         synchronize_srcu_expedited(&kvm->srcu);
5973
5974         /*
5975          * If NULL bus is installed, destroy the old bus, including all the
5976          * attached devices. Otherwise, destroy the caller's device only.
5977          */
5978         if (!new_bus) {
5979                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5980                 kvm_io_bus_destroy(bus);
5981                 return -ENOMEM;
5982         }
5983
5984         kvm_iodevice_destructor(dev);
5985         kfree(bus);
5986         return 0;
5987 }
5988
5989 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5990                                          gpa_t addr)
5991 {
5992         struct kvm_io_bus *bus;
5993         int dev_idx, srcu_idx;
5994         struct kvm_io_device *iodev = NULL;
5995
5996         srcu_idx = srcu_read_lock(&kvm->srcu);
5997
5998         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5999         if (!bus)
6000                 goto out_unlock;
6001
6002         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6003         if (dev_idx < 0)
6004                 goto out_unlock;
6005
6006         iodev = bus->range[dev_idx].dev;
6007
6008 out_unlock:
6009         srcu_read_unlock(&kvm->srcu, srcu_idx);
6010
6011         return iodev;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6014
6015 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6016                            int (*get)(void *, u64 *), int (*set)(void *, u64),
6017                            const char *fmt)
6018 {
6019         int ret;
6020         struct kvm_stat_data *stat_data = inode->i_private;
6021
6022         /*
6023          * The debugfs files are a reference to the kvm struct which
6024         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6025         * avoids the race between open and the removal of the debugfs directory.
6026          */
6027         if (!kvm_get_kvm_safe(stat_data->kvm))
6028                 return -ENOENT;
6029
6030         ret = simple_attr_open(inode, file, get,
6031                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
6032                                ? set : NULL, fmt);
6033         if (ret)
6034                 kvm_put_kvm(stat_data->kvm);
6035
6036         return ret;
6037 }
6038
6039 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6040 {
6041         struct kvm_stat_data *stat_data = inode->i_private;
6042
6043         simple_attr_release(inode, file);
6044         kvm_put_kvm(stat_data->kvm);
6045
6046         return 0;
6047 }
6048
6049 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6050 {
6051         *val = *(u64 *)((void *)(&kvm->stat) + offset);
6052
6053         return 0;
6054 }
6055
6056 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6057 {
6058         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6059
6060         return 0;
6061 }
6062
6063 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6064 {
6065         unsigned long i;
6066         struct kvm_vcpu *vcpu;
6067
6068         *val = 0;
6069
6070         kvm_for_each_vcpu(i, vcpu, kvm)
6071                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6072
6073         return 0;
6074 }
6075
6076 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6077 {
6078         unsigned long i;
6079         struct kvm_vcpu *vcpu;
6080
6081         kvm_for_each_vcpu(i, vcpu, kvm)
6082                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6083
6084         return 0;
6085 }
6086
6087 static int kvm_stat_data_get(void *data, u64 *val)
6088 {
6089         int r = -EFAULT;
6090         struct kvm_stat_data *stat_data = data;
6091
6092         switch (stat_data->kind) {
6093         case KVM_STAT_VM:
6094                 r = kvm_get_stat_per_vm(stat_data->kvm,
6095                                         stat_data->desc->desc.offset, val);
6096                 break;
6097         case KVM_STAT_VCPU:
6098                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6099                                           stat_data->desc->desc.offset, val);
6100                 break;
6101         }
6102
6103         return r;
6104 }
6105
6106 static int kvm_stat_data_clear(void *data, u64 val)
6107 {
6108         int r = -EFAULT;
6109         struct kvm_stat_data *stat_data = data;
6110
6111         if (val)
6112                 return -EINVAL;
6113
6114         switch (stat_data->kind) {
6115         case KVM_STAT_VM:
6116                 r = kvm_clear_stat_per_vm(stat_data->kvm,
6117                                           stat_data->desc->desc.offset);
6118                 break;
6119         case KVM_STAT_VCPU:
6120                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6121                                             stat_data->desc->desc.offset);
6122                 break;
6123         }
6124
6125         return r;
6126 }
6127
6128 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6129 {
6130         __simple_attr_check_format("%llu\n", 0ull);
6131         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6132                                 kvm_stat_data_clear, "%llu\n");
6133 }
6134
6135 static const struct file_operations stat_fops_per_vm = {
6136         .owner = THIS_MODULE,
6137         .open = kvm_stat_data_open,
6138         .release = kvm_debugfs_release,
6139         .read = simple_attr_read,
6140         .write = simple_attr_write,
6141         .llseek = no_llseek,
6142 };
6143
6144 static int vm_stat_get(void *_offset, u64 *val)
6145 {
6146         unsigned offset = (long)_offset;
6147         struct kvm *kvm;
6148         u64 tmp_val;
6149
6150         *val = 0;
6151         mutex_lock(&kvm_lock);
6152         list_for_each_entry(kvm, &vm_list, vm_list) {
6153                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6154                 *val += tmp_val;
6155         }
6156         mutex_unlock(&kvm_lock);
6157         return 0;
6158 }
6159
6160 static int vm_stat_clear(void *_offset, u64 val)
6161 {
6162         unsigned offset = (long)_offset;
6163         struct kvm *kvm;
6164
6165         if (val)
6166                 return -EINVAL;
6167
6168         mutex_lock(&kvm_lock);
6169         list_for_each_entry(kvm, &vm_list, vm_list) {
6170                 kvm_clear_stat_per_vm(kvm, offset);
6171         }
6172         mutex_unlock(&kvm_lock);
6173
6174         return 0;
6175 }
6176
6177 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6178 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6179
6180 static int vcpu_stat_get(void *_offset, u64 *val)
6181 {
6182         unsigned offset = (long)_offset;
6183         struct kvm *kvm;
6184         u64 tmp_val;
6185
6186         *val = 0;
6187         mutex_lock(&kvm_lock);
6188         list_for_each_entry(kvm, &vm_list, vm_list) {
6189                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6190                 *val += tmp_val;
6191         }
6192         mutex_unlock(&kvm_lock);
6193         return 0;
6194 }
6195
6196 static int vcpu_stat_clear(void *_offset, u64 val)
6197 {
6198         unsigned offset = (long)_offset;
6199         struct kvm *kvm;
6200
6201         if (val)
6202                 return -EINVAL;
6203
6204         mutex_lock(&kvm_lock);
6205         list_for_each_entry(kvm, &vm_list, vm_list) {
6206                 kvm_clear_stat_per_vcpu(kvm, offset);
6207         }
6208         mutex_unlock(&kvm_lock);
6209
6210         return 0;
6211 }
6212
6213 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6214                         "%llu\n");
6215 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6216
6217 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6218 {
6219         struct kobj_uevent_env *env;
6220         unsigned long long created, active;
6221
6222         if (!kvm_dev.this_device || !kvm)
6223                 return;
6224
6225         mutex_lock(&kvm_lock);
6226         if (type == KVM_EVENT_CREATE_VM) {
6227                 kvm_createvm_count++;
6228                 kvm_active_vms++;
6229         } else if (type == KVM_EVENT_DESTROY_VM) {
6230                 kvm_active_vms--;
6231         }
6232         created = kvm_createvm_count;
6233         active = kvm_active_vms;
6234         mutex_unlock(&kvm_lock);
6235
6236         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6237         if (!env)
6238                 return;
6239
6240         add_uevent_var(env, "CREATED=%llu", created);
6241         add_uevent_var(env, "COUNT=%llu", active);
6242
6243         if (type == KVM_EVENT_CREATE_VM) {
6244                 add_uevent_var(env, "EVENT=create");
6245                 kvm->userspace_pid = task_pid_nr(current);
6246         } else if (type == KVM_EVENT_DESTROY_VM) {
6247                 add_uevent_var(env, "EVENT=destroy");
6248         }
6249         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6250
6251         if (!IS_ERR(kvm->debugfs_dentry)) {
6252                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6253
6254                 if (p) {
6255                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6256                         if (!IS_ERR(tmp))
6257                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
6258                         kfree(p);
6259                 }
6260         }
6261         /* no need for checks, since we are adding at most only 5 keys */
6262         env->envp[env->envp_idx++] = NULL;
6263         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6264         kfree(env);
6265 }
6266
6267 static void kvm_init_debug(void)
6268 {
6269         const struct file_operations *fops;
6270         const struct _kvm_stats_desc *pdesc;
6271         int i;
6272
6273         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6274
6275         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6276                 pdesc = &kvm_vm_stats_desc[i];
6277                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6278                         fops = &vm_stat_fops;
6279                 else
6280                         fops = &vm_stat_readonly_fops;
6281                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6282                                 kvm_debugfs_dir,
6283                                 (void *)(long)pdesc->desc.offset, fops);
6284         }
6285
6286         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6287                 pdesc = &kvm_vcpu_stats_desc[i];
6288                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6289                         fops = &vcpu_stat_fops;
6290                 else
6291                         fops = &vcpu_stat_readonly_fops;
6292                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6293                                 kvm_debugfs_dir,
6294                                 (void *)(long)pdesc->desc.offset, fops);
6295         }
6296 }
6297
6298 static inline
6299 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6300 {
6301         return container_of(pn, struct kvm_vcpu, preempt_notifier);
6302 }
6303
6304 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6305 {
6306         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6307
6308         WRITE_ONCE(vcpu->preempted, false);
6309         WRITE_ONCE(vcpu->ready, false);
6310
6311         __this_cpu_write(kvm_running_vcpu, vcpu);
6312         kvm_arch_sched_in(vcpu, cpu);
6313         kvm_arch_vcpu_load(vcpu, cpu);
6314 }
6315
6316 static void kvm_sched_out(struct preempt_notifier *pn,
6317                           struct task_struct *next)
6318 {
6319         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6320
6321         if (current->on_rq) {
6322                 WRITE_ONCE(vcpu->preempted, true);
6323                 WRITE_ONCE(vcpu->ready, true);
6324         }
6325         kvm_arch_vcpu_put(vcpu);
6326         __this_cpu_write(kvm_running_vcpu, NULL);
6327 }
6328
6329 /**
6330  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6331  *
6332  * We can disable preemption locally around accessing the per-CPU variable,
6333  * and use the resolved vcpu pointer after enabling preemption again,
6334  * because even if the current thread is migrated to another CPU, reading
6335  * the per-CPU value later will give us the same value as we update the
6336  * per-CPU variable in the preempt notifier handlers.
6337  */
6338 struct kvm_vcpu *kvm_get_running_vcpu(void)
6339 {
6340         struct kvm_vcpu *vcpu;
6341
6342         preempt_disable();
6343         vcpu = __this_cpu_read(kvm_running_vcpu);
6344         preempt_enable();
6345
6346         return vcpu;
6347 }
6348 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6349
6350 /**
6351  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6352  */
6353 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6354 {
6355         return &kvm_running_vcpu;
6356 }
6357
6358 #ifdef CONFIG_GUEST_PERF_EVENTS
6359 static unsigned int kvm_guest_state(void)
6360 {
6361         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6362         unsigned int state;
6363
6364         if (!kvm_arch_pmi_in_guest(vcpu))
6365                 return 0;
6366
6367         state = PERF_GUEST_ACTIVE;
6368         if (!kvm_arch_vcpu_in_kernel(vcpu))
6369                 state |= PERF_GUEST_USER;
6370
6371         return state;
6372 }
6373
6374 static unsigned long kvm_guest_get_ip(void)
6375 {
6376         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6377
6378         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6379         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6380                 return 0;
6381
6382         return kvm_arch_vcpu_get_ip(vcpu);
6383 }
6384
6385 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6386         .state                  = kvm_guest_state,
6387         .get_ip                 = kvm_guest_get_ip,
6388         .handle_intel_pt_intr   = NULL,
6389 };
6390
6391 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6392 {
6393         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6394         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6395 }
6396 void kvm_unregister_perf_callbacks(void)
6397 {
6398         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6399 }
6400 #endif
6401
6402 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6403 {
6404         int r;
6405         int cpu;
6406
6407 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6408         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6409                                       kvm_online_cpu, kvm_offline_cpu);
6410         if (r)
6411                 return r;
6412
6413         register_syscore_ops(&kvm_syscore_ops);
6414 #endif
6415
6416         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6417         if (!vcpu_align)
6418                 vcpu_align = __alignof__(struct kvm_vcpu);
6419         kvm_vcpu_cache =
6420                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6421                                            SLAB_ACCOUNT,
6422                                            offsetof(struct kvm_vcpu, arch),
6423                                            offsetofend(struct kvm_vcpu, stats_id)
6424                                            - offsetof(struct kvm_vcpu, arch),
6425                                            NULL);
6426         if (!kvm_vcpu_cache) {
6427                 r = -ENOMEM;
6428                 goto err_vcpu_cache;
6429         }
6430
6431         for_each_possible_cpu(cpu) {
6432                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6433                                             GFP_KERNEL, cpu_to_node(cpu))) {
6434                         r = -ENOMEM;
6435                         goto err_cpu_kick_mask;
6436                 }
6437         }
6438
6439         r = kvm_irqfd_init();
6440         if (r)
6441                 goto err_irqfd;
6442
6443         r = kvm_async_pf_init();
6444         if (r)
6445                 goto err_async_pf;
6446
6447         kvm_chardev_ops.owner = module;
6448         kvm_vm_fops.owner = module;
6449         kvm_vcpu_fops.owner = module;
6450         kvm_device_fops.owner = module;
6451
6452         kvm_preempt_ops.sched_in = kvm_sched_in;
6453         kvm_preempt_ops.sched_out = kvm_sched_out;
6454
6455         kvm_init_debug();
6456
6457         r = kvm_vfio_ops_init();
6458         if (WARN_ON_ONCE(r))
6459                 goto err_vfio;
6460
6461         kvm_gmem_init(module);
6462
6463         /*
6464          * Registration _must_ be the very last thing done, as this exposes
6465          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6466          */
6467         r = misc_register(&kvm_dev);
6468         if (r) {
6469                 pr_err("kvm: misc device register failed\n");
6470                 goto err_register;
6471         }
6472
6473         return 0;
6474
6475 err_register:
6476         kvm_vfio_ops_exit();
6477 err_vfio:
6478         kvm_async_pf_deinit();
6479 err_async_pf:
6480         kvm_irqfd_exit();
6481 err_irqfd:
6482 err_cpu_kick_mask:
6483         for_each_possible_cpu(cpu)
6484                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6485         kmem_cache_destroy(kvm_vcpu_cache);
6486 err_vcpu_cache:
6487 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6488         unregister_syscore_ops(&kvm_syscore_ops);
6489         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6490 #endif
6491         return r;
6492 }
6493 EXPORT_SYMBOL_GPL(kvm_init);
6494
6495 void kvm_exit(void)
6496 {
6497         int cpu;
6498
6499         /*
6500          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6501          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6502          * to KVM while the module is being stopped.
6503          */
6504         misc_deregister(&kvm_dev);
6505
6506         debugfs_remove_recursive(kvm_debugfs_dir);
6507         for_each_possible_cpu(cpu)
6508                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6509         kmem_cache_destroy(kvm_vcpu_cache);
6510         kvm_vfio_ops_exit();
6511         kvm_async_pf_deinit();
6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6513         unregister_syscore_ops(&kvm_syscore_ops);
6514         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6515 #endif
6516         kvm_irqfd_exit();
6517 }
6518 EXPORT_SYMBOL_GPL(kvm_exit);
6519
6520 struct kvm_vm_worker_thread_context {
6521         struct kvm *kvm;
6522         struct task_struct *parent;
6523         struct completion init_done;
6524         kvm_vm_thread_fn_t thread_fn;
6525         uintptr_t data;
6526         int err;
6527 };
6528
6529 static int kvm_vm_worker_thread(void *context)
6530 {
6531         /*
6532          * The init_context is allocated on the stack of the parent thread, so
6533          * we have to locally copy anything that is needed beyond initialization
6534          */
6535         struct kvm_vm_worker_thread_context *init_context = context;
6536         struct task_struct *parent;
6537         struct kvm *kvm = init_context->kvm;
6538         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6539         uintptr_t data = init_context->data;
6540         int err;
6541
6542         err = kthread_park(current);
6543         /* kthread_park(current) is never supposed to return an error */
6544         WARN_ON(err != 0);
6545         if (err)
6546                 goto init_complete;
6547
6548         err = cgroup_attach_task_all(init_context->parent, current);
6549         if (err) {
6550                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6551                         __func__, err);
6552                 goto init_complete;
6553         }
6554
6555         set_user_nice(current, task_nice(init_context->parent));
6556
6557 init_complete:
6558         init_context->err = err;
6559         complete(&init_context->init_done);
6560         init_context = NULL;
6561
6562         if (err)
6563                 goto out;
6564
6565         /* Wait to be woken up by the spawner before proceeding. */
6566         kthread_parkme();
6567
6568         if (!kthread_should_stop())
6569                 err = thread_fn(kvm, data);
6570
6571 out:
6572         /*
6573          * Move kthread back to its original cgroup to prevent it lingering in
6574          * the cgroup of the VM process, after the latter finishes its
6575          * execution.
6576          *
6577          * kthread_stop() waits on the 'exited' completion condition which is
6578          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6579          * kthread is removed from the cgroup in the cgroup_exit() which is
6580          * called after the exit_mm(). This causes the kthread_stop() to return
6581          * before the kthread actually quits the cgroup.
6582          */
6583         rcu_read_lock();
6584         parent = rcu_dereference(current->real_parent);
6585         get_task_struct(parent);
6586         rcu_read_unlock();
6587         cgroup_attach_task_all(parent, current);
6588         put_task_struct(parent);
6589
6590         return err;
6591 }
6592
6593 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6594                                 uintptr_t data, const char *name,
6595                                 struct task_struct **thread_ptr)
6596 {
6597         struct kvm_vm_worker_thread_context init_context = {};
6598         struct task_struct *thread;
6599
6600         *thread_ptr = NULL;
6601         init_context.kvm = kvm;
6602         init_context.parent = current;
6603         init_context.thread_fn = thread_fn;
6604         init_context.data = data;
6605         init_completion(&init_context.init_done);
6606
6607         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6608                              "%s-%d", name, task_pid_nr(current));
6609         if (IS_ERR(thread))
6610                 return PTR_ERR(thread);
6611
6612         /* kthread_run is never supposed to return NULL */
6613         WARN_ON(thread == NULL);
6614
6615         wait_for_completion(&init_context.init_done);
6616
6617         if (!init_context.err)
6618                 *thread_ptr = thread;
6619
6620         return init_context.err;
6621 }