GNU Linux-libre 4.4.297-gnu1
[releases.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 #define CREATE_TRACE_POINTS
38 #include "trace.h"
39
40 /*
41  * How the whole thing works (courtesy of Christoffer Dall):
42  *
43  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
44  *   something is pending on the CPU interface.
45  * - Interrupts that are pending on the distributor are stored on the
46  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
47  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
48  *   arch. timers).
49  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
50  *   recalculated
51  * - To calculate the oracle, we need info for each cpu from
52  *   compute_pending_for_cpu, which considers:
53  *   - PPI: dist->irq_pending & dist->irq_enable
54  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
55  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
56  *     registers, stored on each vcpu. We only keep one bit of
57  *     information per interrupt, making sure that only one vcpu can
58  *     accept the interrupt.
59  * - If any of the above state changes, we must recalculate the oracle.
60  * - The same is true when injecting an interrupt, except that we only
61  *   consider a single interrupt at a time. The irq_spi_cpu array
62  *   contains the target CPU for each SPI.
63  *
64  * The handling of level interrupts adds some extra complexity. We
65  * need to track when the interrupt has been EOIed, so we can sample
66  * the 'line' again. This is achieved as such:
67  *
68  * - When a level interrupt is moved onto a vcpu, the corresponding
69  *   bit in irq_queued is set. As long as this bit is set, the line
70  *   will be ignored for further interrupts. The interrupt is injected
71  *   into the vcpu with the GICH_LR_EOI bit set (generate a
72  *   maintenance interrupt on EOI).
73  * - When the interrupt is EOIed, the maintenance interrupt fires,
74  *   and clears the corresponding bit in irq_queued. This allows the
75  *   interrupt line to be sampled again.
76  * - Note that level-triggered interrupts can also be set to pending from
77  *   writes to GICD_ISPENDRn and lowering the external input line does not
78  *   cause the interrupt to become inactive in such a situation.
79  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
80  *   inactive as long as the external input line is held high.
81  *
82  *
83  * Initialization rules: there are multiple stages to the vgic
84  * initialization, both for the distributor and the CPU interfaces.
85  *
86  * Distributor:
87  *
88  * - kvm_vgic_early_init(): initialization of static data that doesn't
89  *   depend on any sizing information or emulation type. No allocation
90  *   is allowed there.
91  *
92  * - vgic_init(): allocation and initialization of the generic data
93  *   structures that depend on sizing information (number of CPUs,
94  *   number of interrupts). Also initializes the vcpu specific data
95  *   structures. Can be executed lazily for GICv2.
96  *   [to be renamed to kvm_vgic_init??]
97  *
98  * CPU Interface:
99  *
100  * - kvm_vgic_cpu_early_init(): initialization of static data that
101  *   doesn't depend on any sizing information or emulation type. No
102  *   allocation is allowed there.
103  */
104
105 #include "vgic.h"
106
107 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
108 static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
109 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
110 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
111 static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
112 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
113                                                 int virt_irq);
114 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
115
116 static const struct vgic_ops *vgic_ops;
117 static const struct vgic_params *vgic;
118
119 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
120 {
121         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
122 }
123
124 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
125 {
126         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
127 }
128
129 int kvm_vgic_map_resources(struct kvm *kvm)
130 {
131         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
132 }
133
134 /*
135  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
136  * extracts u32s out of them.
137  *
138  * This does not work on 64-bit BE systems, because the bitmap access
139  * will store two consecutive 32-bit words with the higher-addressed
140  * register's bits at the lower index and the lower-addressed register's
141  * bits at the higher index.
142  *
143  * Therefore, swizzle the register index when accessing the 32-bit word
144  * registers to access the right register's value.
145  */
146 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
147 #define REG_OFFSET_SWIZZLE      1
148 #else
149 #define REG_OFFSET_SWIZZLE      0
150 #endif
151
152 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
153 {
154         int nr_longs;
155
156         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
157
158         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
159         if (!b->private)
160                 return -ENOMEM;
161
162         b->shared = b->private + nr_cpus;
163
164         return 0;
165 }
166
167 static void vgic_free_bitmap(struct vgic_bitmap *b)
168 {
169         kfree(b->private);
170         b->private = NULL;
171         b->shared = NULL;
172 }
173
174 /*
175  * Call this function to convert a u64 value to an unsigned long * bitmask
176  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
177  *
178  * Warning: Calling this function may modify *val.
179  */
180 static unsigned long *u64_to_bitmask(u64 *val)
181 {
182 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
183         *val = (*val >> 32) | (*val << 32);
184 #endif
185         return (unsigned long *)val;
186 }
187
188 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
189 {
190         offset >>= 2;
191         if (!offset)
192                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
193         else
194                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
195 }
196
197 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
198                                    int cpuid, int irq)
199 {
200         if (irq < VGIC_NR_PRIVATE_IRQS)
201                 return test_bit(irq, x->private + cpuid);
202
203         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
204 }
205
206 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
207                              int irq, int val)
208 {
209         unsigned long *reg;
210
211         if (irq < VGIC_NR_PRIVATE_IRQS) {
212                 reg = x->private + cpuid;
213         } else {
214                 reg = x->shared;
215                 irq -= VGIC_NR_PRIVATE_IRQS;
216         }
217
218         if (val)
219                 set_bit(irq, reg);
220         else
221                 clear_bit(irq, reg);
222 }
223
224 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
225 {
226         return x->private + cpuid;
227 }
228
229 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
230 {
231         return x->shared;
232 }
233
234 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
235 {
236         int size;
237
238         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
239         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
240
241         x->private = kzalloc(size, GFP_KERNEL);
242         if (!x->private)
243                 return -ENOMEM;
244
245         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
246         return 0;
247 }
248
249 static void vgic_free_bytemap(struct vgic_bytemap *b)
250 {
251         kfree(b->private);
252         b->private = NULL;
253         b->shared = NULL;
254 }
255
256 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
257 {
258         u32 *reg;
259
260         if (offset < VGIC_NR_PRIVATE_IRQS) {
261                 reg = x->private;
262                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
263         } else {
264                 reg = x->shared;
265                 offset -= VGIC_NR_PRIVATE_IRQS;
266         }
267
268         return reg + (offset / sizeof(u32));
269 }
270
271 #define VGIC_CFG_LEVEL  0
272 #define VGIC_CFG_EDGE   1
273
274 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277         int irq_val;
278
279         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
280         return irq_val == VGIC_CFG_EDGE;
281 }
282
283 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
284 {
285         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
288 }
289
290 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
291 {
292         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
295 }
296
297 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
298 {
299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
302 }
303
304 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
305 {
306         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
309 }
310
311 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
312 {
313         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
316 }
317
318 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
319 {
320         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
323 }
324
325 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
326 {
327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
330 }
331
332 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
333 {
334         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
337 }
338
339 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
340 {
341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
344 }
345
346 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
347 {
348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
351 }
352
353 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
354 {
355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
358 }
359
360 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
361 {
362         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
363
364         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
365         if (!vgic_dist_irq_get_level(vcpu, irq)) {
366                 vgic_dist_irq_clear_pending(vcpu, irq);
367                 if (!compute_pending_for_cpu(vcpu))
368                         clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
369         }
370 }
371
372 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
373 {
374         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
375
376         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
377 }
378
379 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
380 {
381         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
382
383         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
384 }
385
386 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
387 {
388         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
389
390         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
391 }
392
393 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
394 {
395         if (irq < VGIC_NR_PRIVATE_IRQS)
396                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
397         else
398                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
399                         vcpu->arch.vgic_cpu.pending_shared);
400 }
401
402 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
403 {
404         if (irq < VGIC_NR_PRIVATE_IRQS)
405                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
406         else
407                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
408                           vcpu->arch.vgic_cpu.pending_shared);
409 }
410
411 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
412 {
413         return !vgic_irq_is_queued(vcpu, irq);
414 }
415
416 /**
417  * vgic_reg_access - access vgic register
418  * @mmio:   pointer to the data describing the mmio access
419  * @reg:    pointer to the virtual backing of vgic distributor data
420  * @offset: least significant 2 bits used for word offset
421  * @mode:   ACCESS_ mode (see defines above)
422  *
423  * Helper to make vgic register access easier using one of the access
424  * modes defined for vgic register access
425  * (read,raz,write-ignored,setbit,clearbit,write)
426  */
427 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
428                      phys_addr_t offset, int mode)
429 {
430         int word_offset = (offset & 3) * 8;
431         u32 mask = (1UL << (mmio->len * 8)) - 1;
432         u32 regval;
433
434         /*
435          * Any alignment fault should have been delivered to the guest
436          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
437          */
438
439         if (reg) {
440                 regval = *reg;
441         } else {
442                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
443                 regval = 0;
444         }
445
446         if (mmio->is_write) {
447                 u32 data = mmio_data_read(mmio, mask) << word_offset;
448                 switch (ACCESS_WRITE_MASK(mode)) {
449                 case ACCESS_WRITE_IGNORED:
450                         return;
451
452                 case ACCESS_WRITE_SETBIT:
453                         regval |= data;
454                         break;
455
456                 case ACCESS_WRITE_CLEARBIT:
457                         regval &= ~data;
458                         break;
459
460                 case ACCESS_WRITE_VALUE:
461                         regval = (regval & ~(mask << word_offset)) | data;
462                         break;
463                 }
464                 *reg = regval;
465         } else {
466                 switch (ACCESS_READ_MASK(mode)) {
467                 case ACCESS_READ_RAZ:
468                         regval = 0;
469                         /* fall through */
470
471                 case ACCESS_READ_VALUE:
472                         mmio_data_write(mmio, mask, regval >> word_offset);
473                 }
474         }
475 }
476
477 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
478                         phys_addr_t offset)
479 {
480         vgic_reg_access(mmio, NULL, offset,
481                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
482         return false;
483 }
484
485 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
486                             phys_addr_t offset, int vcpu_id, int access)
487 {
488         u32 *reg;
489         int mode = ACCESS_READ_VALUE | access;
490         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
491
492         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
493         vgic_reg_access(mmio, reg, offset, mode);
494         if (mmio->is_write) {
495                 if (access & ACCESS_WRITE_CLEARBIT) {
496                         if (offset < 4) /* Force SGI enabled */
497                                 *reg |= 0xffff;
498                         vgic_retire_disabled_irqs(target_vcpu);
499                 }
500                 vgic_update_state(kvm);
501                 return true;
502         }
503
504         return false;
505 }
506
507 bool vgic_handle_set_pending_reg(struct kvm *kvm,
508                                  struct kvm_exit_mmio *mmio,
509                                  phys_addr_t offset, int vcpu_id)
510 {
511         u32 *reg, orig;
512         u32 level_mask;
513         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
514         struct vgic_dist *dist = &kvm->arch.vgic;
515
516         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
517         level_mask = (~(*reg));
518
519         /* Mark both level and edge triggered irqs as pending */
520         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521         orig = *reg;
522         vgic_reg_access(mmio, reg, offset, mode);
523
524         if (mmio->is_write) {
525                 /* Set the soft-pending flag only for level-triggered irqs */
526                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
527                                           vcpu_id, offset);
528                 vgic_reg_access(mmio, reg, offset, mode);
529                 *reg &= level_mask;
530
531                 /* Ignore writes to SGIs */
532                 if (offset < 2) {
533                         *reg &= ~0xffff;
534                         *reg |= orig & 0xffff;
535                 }
536
537                 vgic_update_state(kvm);
538                 return true;
539         }
540
541         return false;
542 }
543
544 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
545                                    struct kvm_exit_mmio *mmio,
546                                    phys_addr_t offset, int vcpu_id)
547 {
548         u32 *level_active;
549         u32 *reg, orig;
550         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
551         struct vgic_dist *dist = &kvm->arch.vgic;
552
553         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
554         orig = *reg;
555         vgic_reg_access(mmio, reg, offset, mode);
556         if (mmio->is_write) {
557                 /* Re-set level triggered level-active interrupts */
558                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
559                                           vcpu_id, offset);
560                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
561                 *reg |= *level_active;
562
563                 /* Ignore writes to SGIs */
564                 if (offset < 2) {
565                         *reg &= ~0xffff;
566                         *reg |= orig & 0xffff;
567                 }
568
569                 /* Clear soft-pending flags */
570                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
571                                           vcpu_id, offset);
572                 vgic_reg_access(mmio, reg, offset, mode);
573
574                 vgic_update_state(kvm);
575                 return true;
576         }
577         return false;
578 }
579
580 bool vgic_handle_set_active_reg(struct kvm *kvm,
581                                 struct kvm_exit_mmio *mmio,
582                                 phys_addr_t offset, int vcpu_id)
583 {
584         u32 *reg;
585         struct vgic_dist *dist = &kvm->arch.vgic;
586
587         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
588         vgic_reg_access(mmio, reg, offset,
589                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
590
591         if (mmio->is_write) {
592                 vgic_update_state(kvm);
593                 return true;
594         }
595
596         return false;
597 }
598
599 bool vgic_handle_clear_active_reg(struct kvm *kvm,
600                                   struct kvm_exit_mmio *mmio,
601                                   phys_addr_t offset, int vcpu_id)
602 {
603         u32 *reg;
604         struct vgic_dist *dist = &kvm->arch.vgic;
605
606         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607         vgic_reg_access(mmio, reg, offset,
608                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
609
610         if (mmio->is_write) {
611                 vgic_update_state(kvm);
612                 return true;
613         }
614
615         return false;
616 }
617
618 static u32 vgic_cfg_expand(u16 val)
619 {
620         u32 res = 0;
621         int i;
622
623         /*
624          * Turn a 16bit value like abcd...mnop into a 32bit word
625          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
626          */
627         for (i = 0; i < 16; i++)
628                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
629
630         return res;
631 }
632
633 static u16 vgic_cfg_compress(u32 val)
634 {
635         u16 res = 0;
636         int i;
637
638         /*
639          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
640          * abcd...mnop which is what we really care about.
641          */
642         for (i = 0; i < 16; i++)
643                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
644
645         return res;
646 }
647
648 /*
649  * The distributor uses 2 bits per IRQ for the CFG register, but the
650  * LSB is always 0. As such, we only keep the upper bit, and use the
651  * two above functions to compress/expand the bits
652  */
653 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
654                          phys_addr_t offset)
655 {
656         u32 val;
657
658         if (offset & 4)
659                 val = *reg >> 16;
660         else
661                 val = *reg & 0xffff;
662
663         val = vgic_cfg_expand(val);
664         vgic_reg_access(mmio, &val, offset,
665                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
666         if (mmio->is_write) {
667                 /* Ignore writes to read-only SGI and PPI bits */
668                 if (offset < 8)
669                         return false;
670
671                 val = vgic_cfg_compress(val);
672                 if (offset & 4) {
673                         *reg &= 0xffff;
674                         *reg |= val << 16;
675                 } else {
676                         *reg &= 0xffff << 16;
677                         *reg |= val;
678                 }
679         }
680
681         return false;
682 }
683
684 /**
685  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
686  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
687  *
688  * Move any IRQs that have already been assigned to LRs back to the
689  * emulated distributor state so that the complete emulated state can be read
690  * from the main emulation structures without investigating the LRs.
691  */
692 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
693 {
694         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
695         u64 elrsr = vgic_get_elrsr(vcpu);
696         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
697         int i;
698
699         for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
700                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
701
702                 /*
703                  * There are three options for the state bits:
704                  *
705                  * 01: pending
706                  * 10: active
707                  * 11: pending and active
708                  */
709                 BUG_ON(!(lr.state & LR_STATE_MASK));
710
711                 /* Reestablish SGI source for pending and active IRQs */
712                 if (lr.irq < VGIC_NR_SGIS)
713                         add_sgi_source(vcpu, lr.irq, lr.source);
714
715                 /*
716                  * If the LR holds an active (10) or a pending and active (11)
717                  * interrupt then move the active state to the
718                  * distributor tracking bit.
719                  */
720                 if (lr.state & LR_STATE_ACTIVE)
721                         vgic_irq_set_active(vcpu, lr.irq);
722
723                 /*
724                  * Reestablish the pending state on the distributor and the
725                  * CPU interface and mark the LR as free for other use.
726                  */
727                 vgic_retire_lr(i, vcpu);
728
729                 /* Finally update the VGIC state. */
730                 vgic_update_state(vcpu->kvm);
731         }
732 }
733
734 const
735 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
736                                       int len, gpa_t offset)
737 {
738         while (ranges->len) {
739                 if (offset >= ranges->base &&
740                     (offset + len) <= (ranges->base + ranges->len))
741                         return ranges;
742                 ranges++;
743         }
744
745         return NULL;
746 }
747
748 static bool vgic_validate_access(const struct vgic_dist *dist,
749                                  const struct vgic_io_range *range,
750                                  unsigned long offset)
751 {
752         int irq;
753
754         if (!range->bits_per_irq)
755                 return true;    /* Not an irq-based access */
756
757         irq = offset * 8 / range->bits_per_irq;
758         if (irq >= dist->nr_irqs)
759                 return false;
760
761         return true;
762 }
763
764 /*
765  * Call the respective handler function for the given range.
766  * We split up any 64 bit accesses into two consecutive 32 bit
767  * handler calls and merge the result afterwards.
768  * We do this in a little endian fashion regardless of the host's
769  * or guest's endianness, because the GIC is always LE and the rest of
770  * the code (vgic_reg_access) also puts it in a LE fashion already.
771  * At this point we have already identified the handle function, so
772  * range points to that one entry and offset is relative to this.
773  */
774 static bool call_range_handler(struct kvm_vcpu *vcpu,
775                                struct kvm_exit_mmio *mmio,
776                                unsigned long offset,
777                                const struct vgic_io_range *range)
778 {
779         struct kvm_exit_mmio mmio32;
780         bool ret;
781
782         if (likely(mmio->len <= 4))
783                 return range->handle_mmio(vcpu, mmio, offset);
784
785         /*
786          * Any access bigger than 4 bytes (that we currently handle in KVM)
787          * is actually 8 bytes long, caused by a 64-bit access
788          */
789
790         mmio32.len = 4;
791         mmio32.is_write = mmio->is_write;
792         mmio32.private = mmio->private;
793
794         mmio32.phys_addr = mmio->phys_addr + 4;
795         mmio32.data = &((u32 *)mmio->data)[1];
796         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
797
798         mmio32.phys_addr = mmio->phys_addr;
799         mmio32.data = &((u32 *)mmio->data)[0];
800         ret |= range->handle_mmio(vcpu, &mmio32, offset);
801
802         return ret;
803 }
804
805 /**
806  * vgic_handle_mmio_access - handle an in-kernel MMIO access
807  * This is called by the read/write KVM IO device wrappers below.
808  * @vcpu:       pointer to the vcpu performing the access
809  * @this:       pointer to the KVM IO device in charge
810  * @addr:       guest physical address of the access
811  * @len:        size of the access
812  * @val:        pointer to the data region
813  * @is_write:   read or write access
814  *
815  * returns true if the MMIO access could be performed
816  */
817 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
818                                    struct kvm_io_device *this, gpa_t addr,
819                                    int len, void *val, bool is_write)
820 {
821         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
822         struct vgic_io_device *iodev = container_of(this,
823                                                     struct vgic_io_device, dev);
824         const struct vgic_io_range *range;
825         struct kvm_exit_mmio mmio;
826         bool updated_state;
827         gpa_t offset;
828
829         offset = addr - iodev->addr;
830         range = vgic_find_range(iodev->reg_ranges, len, offset);
831         if (unlikely(!range || !range->handle_mmio)) {
832                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
833                 return -ENXIO;
834         }
835
836         mmio.phys_addr = addr;
837         mmio.len = len;
838         mmio.is_write = is_write;
839         mmio.data = val;
840         mmio.private = iodev->redist_vcpu;
841
842         spin_lock(&dist->lock);
843         offset -= range->base;
844         if (vgic_validate_access(dist, range, offset)) {
845                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
846         } else {
847                 if (!is_write)
848                         memset(val, 0, len);
849                 updated_state = false;
850         }
851         spin_unlock(&dist->lock);
852
853         if (updated_state)
854                 vgic_kick_vcpus(vcpu->kvm);
855
856         return 0;
857 }
858
859 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
860                                  struct kvm_io_device *this,
861                                  gpa_t addr, int len, void *val)
862 {
863         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
864 }
865
866 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
867                                   struct kvm_io_device *this,
868                                   gpa_t addr, int len, const void *val)
869 {
870         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
871                                        true);
872 }
873
874 struct kvm_io_device_ops vgic_io_ops = {
875         .read   = vgic_handle_mmio_read,
876         .write  = vgic_handle_mmio_write,
877 };
878
879 /**
880  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
881  * @kvm:            The VM structure pointer
882  * @base:           The (guest) base address for the register frame
883  * @len:            Length of the register frame window
884  * @ranges:         Describing the handler functions for each register
885  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
886  * @iodev:          Points to memory to be passed on to the handler
887  *
888  * @iodev stores the parameters of this function to be usable by the handler
889  * respectively the dispatcher function (since the KVM I/O bus framework lacks
890  * an opaque parameter). Initialization is done in this function, but the
891  * reference should be valid and unique for the whole VGIC lifetime.
892  * If the register frame is not mapped for a specific VCPU, pass -1 to
893  * @redist_vcpu_id.
894  */
895 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
896                              const struct vgic_io_range *ranges,
897                              int redist_vcpu_id,
898                              struct vgic_io_device *iodev)
899 {
900         struct kvm_vcpu *vcpu = NULL;
901         int ret;
902
903         if (redist_vcpu_id >= 0)
904                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
905
906         iodev->addr             = base;
907         iodev->len              = len;
908         iodev->reg_ranges       = ranges;
909         iodev->redist_vcpu      = vcpu;
910
911         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
912
913         mutex_lock(&kvm->slots_lock);
914
915         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
916                                       &iodev->dev);
917         mutex_unlock(&kvm->slots_lock);
918
919         /* Mark the iodev as invalid if registration fails. */
920         if (ret)
921                 iodev->dev.ops = NULL;
922
923         return ret;
924 }
925
926 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
927 {
928         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
929 }
930
931 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
932 {
933         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
934         unsigned long *active, *enabled, *act_percpu, *act_shared;
935         unsigned long active_private, active_shared;
936         int nr_shared = vgic_nr_shared_irqs(dist);
937         int vcpu_id;
938
939         vcpu_id = vcpu->vcpu_id;
940         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
941         act_shared = vcpu->arch.vgic_cpu.active_shared;
942
943         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
944         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
945         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
946
947         active = vgic_bitmap_get_shared_map(&dist->irq_active);
948         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
949         bitmap_and(act_shared, active, enabled, nr_shared);
950         bitmap_and(act_shared, act_shared,
951                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
952                    nr_shared);
953
954         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
955         active_shared = find_first_bit(act_shared, nr_shared);
956
957         return (active_private < VGIC_NR_PRIVATE_IRQS ||
958                 active_shared < nr_shared);
959 }
960
961 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
962 {
963         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
964         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
965         unsigned long pending_private, pending_shared;
966         int nr_shared = vgic_nr_shared_irqs(dist);
967         int vcpu_id;
968
969         vcpu_id = vcpu->vcpu_id;
970         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
971         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
972
973         if (!dist->enabled) {
974                 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
975                 bitmap_zero(pend_shared, nr_shared);
976                 return 0;
977         }
978
979         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
980         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
981         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
982
983         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
984         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
985         bitmap_and(pend_shared, pending, enabled, nr_shared);
986         bitmap_and(pend_shared, pend_shared,
987                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
988                    nr_shared);
989
990         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
991         pending_shared = find_first_bit(pend_shared, nr_shared);
992         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
993                 pending_shared < vgic_nr_shared_irqs(dist));
994 }
995
996 /*
997  * Update the interrupt state and determine which CPUs have pending
998  * or active interrupts. Must be called with distributor lock held.
999  */
1000 void vgic_update_state(struct kvm *kvm)
1001 {
1002         struct vgic_dist *dist = &kvm->arch.vgic;
1003         struct kvm_vcpu *vcpu;
1004         int c;
1005
1006         kvm_for_each_vcpu(c, vcpu, kvm) {
1007                 if (compute_pending_for_cpu(vcpu))
1008                         set_bit(c, dist->irq_pending_on_cpu);
1009
1010                 if (compute_active_for_cpu(vcpu))
1011                         set_bit(c, dist->irq_active_on_cpu);
1012                 else
1013                         clear_bit(c, dist->irq_active_on_cpu);
1014         }
1015 }
1016
1017 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1018 {
1019         return vgic_ops->get_lr(vcpu, lr);
1020 }
1021
1022 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1023                                struct vgic_lr vlr)
1024 {
1025         vgic_ops->set_lr(vcpu, lr, vlr);
1026 }
1027
1028 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1029 {
1030         return vgic_ops->get_elrsr(vcpu);
1031 }
1032
1033 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1034 {
1035         return vgic_ops->get_eisr(vcpu);
1036 }
1037
1038 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1039 {
1040         vgic_ops->clear_eisr(vcpu);
1041 }
1042
1043 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1044 {
1045         return vgic_ops->get_interrupt_status(vcpu);
1046 }
1047
1048 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1049 {
1050         vgic_ops->enable_underflow(vcpu);
1051 }
1052
1053 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1054 {
1055         vgic_ops->disable_underflow(vcpu);
1056 }
1057
1058 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1059 {
1060         vgic_ops->get_vmcr(vcpu, vmcr);
1061 }
1062
1063 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1064 {
1065         vgic_ops->set_vmcr(vcpu, vmcr);
1066 }
1067
1068 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1069 {
1070         vgic_ops->enable(vcpu);
1071 }
1072
1073 static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
1074 {
1075         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1076
1077         vgic_irq_clear_queued(vcpu, vlr.irq);
1078
1079         /*
1080          * We must transfer the pending state back to the distributor before
1081          * retiring the LR, otherwise we may loose edge-triggered interrupts.
1082          */
1083         if (vlr.state & LR_STATE_PENDING) {
1084                 vgic_dist_irq_set_pending(vcpu, vlr.irq);
1085                 vlr.hwirq = 0;
1086         }
1087
1088         vlr.state = 0;
1089         vgic_set_lr(vcpu, lr_nr, vlr);
1090 }
1091
1092 static bool dist_active_irq(struct kvm_vcpu *vcpu)
1093 {
1094         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1095
1096         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1097 }
1098
1099 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1100 {
1101         int i;
1102
1103         for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) {
1104                 struct vgic_lr vlr = vgic_get_lr(vcpu, i);
1105
1106                 if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE)
1107                         return true;
1108         }
1109
1110         return vgic_irq_is_active(vcpu, map->virt_irq);
1111 }
1112
1113 /*
1114  * An interrupt may have been disabled after being made pending on the
1115  * CPU interface (the classic case is a timer running while we're
1116  * rebooting the guest - the interrupt would kick as soon as the CPU
1117  * interface gets enabled, with deadly consequences).
1118  *
1119  * The solution is to examine already active LRs, and check the
1120  * interrupt is still enabled. If not, just retire it.
1121  */
1122 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1123 {
1124         u64 elrsr = vgic_get_elrsr(vcpu);
1125         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1126         int lr;
1127
1128         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1129                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1130
1131                 if (!vgic_irq_is_enabled(vcpu, vlr.irq))
1132                         vgic_retire_lr(lr, vcpu);
1133         }
1134 }
1135
1136 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1137                                  int lr_nr, struct vgic_lr vlr)
1138 {
1139         if (vgic_irq_is_active(vcpu, irq)) {
1140                 vlr.state |= LR_STATE_ACTIVE;
1141                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1142                 vgic_irq_clear_active(vcpu, irq);
1143                 vgic_update_state(vcpu->kvm);
1144         } else {
1145                 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1146                 vlr.state |= LR_STATE_PENDING;
1147                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1148         }
1149
1150         if (!vgic_irq_is_edge(vcpu, irq))
1151                 vlr.state |= LR_EOI_INT;
1152
1153         if (vlr.irq >= VGIC_NR_SGIS) {
1154                 struct irq_phys_map *map;
1155                 map = vgic_irq_map_search(vcpu, irq);
1156
1157                 if (map) {
1158                         vlr.hwirq = map->phys_irq;
1159                         vlr.state |= LR_HW;
1160                         vlr.state &= ~LR_EOI_INT;
1161
1162                         /*
1163                          * Make sure we're not going to sample this
1164                          * again, as a HW-backed interrupt cannot be
1165                          * in the PENDING_ACTIVE stage.
1166                          */
1167                         vgic_irq_set_queued(vcpu, irq);
1168                 }
1169         }
1170
1171         vgic_set_lr(vcpu, lr_nr, vlr);
1172 }
1173
1174 /*
1175  * Queue an interrupt to a CPU virtual interface. Return true on success,
1176  * or false if it wasn't possible to queue it.
1177  * sgi_source must be zero for any non-SGI interrupts.
1178  */
1179 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1180 {
1181         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1182         u64 elrsr = vgic_get_elrsr(vcpu);
1183         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1184         struct vgic_lr vlr;
1185         int lr;
1186
1187         /* Sanitize the input... */
1188         BUG_ON(sgi_source_id & ~7);
1189         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1190         BUG_ON(irq >= dist->nr_irqs);
1191
1192         kvm_debug("Queue IRQ%d\n", irq);
1193
1194         /* Do we have an active interrupt for the same CPUID? */
1195         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1196                 vlr = vgic_get_lr(vcpu, lr);
1197                 if (vlr.irq == irq && vlr.source == sgi_source_id) {
1198                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1199                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1200                         return true;
1201                 }
1202         }
1203
1204         /* Try to use another LR for this interrupt */
1205         lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
1206         if (lr >= vgic->nr_lr)
1207                 return false;
1208
1209         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1210
1211         vlr.irq = irq;
1212         vlr.source = sgi_source_id;
1213         vlr.state = 0;
1214         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1215
1216         return true;
1217 }
1218
1219 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1220 {
1221         if (!vgic_can_sample_irq(vcpu, irq))
1222                 return true; /* level interrupt, already queued */
1223
1224         if (vgic_queue_irq(vcpu, 0, irq)) {
1225                 if (vgic_irq_is_edge(vcpu, irq)) {
1226                         vgic_dist_irq_clear_pending(vcpu, irq);
1227                         vgic_cpu_irq_clear(vcpu, irq);
1228                 } else {
1229                         vgic_irq_set_queued(vcpu, irq);
1230                 }
1231
1232                 return true;
1233         }
1234
1235         return false;
1236 }
1237
1238 /*
1239  * Fill the list registers with pending interrupts before running the
1240  * guest.
1241  */
1242 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1243 {
1244         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1245         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1246         unsigned long *pa_percpu, *pa_shared;
1247         int i, vcpu_id;
1248         int overflow = 0;
1249         int nr_shared = vgic_nr_shared_irqs(dist);
1250
1251         vcpu_id = vcpu->vcpu_id;
1252
1253         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1254         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1255
1256         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1257                   VGIC_NR_PRIVATE_IRQS);
1258         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1259                   nr_shared);
1260         /*
1261          * We may not have any pending interrupt, or the interrupts
1262          * may have been serviced from another vcpu. In all cases,
1263          * move along.
1264          */
1265         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
1266                 goto epilog;
1267
1268         /* SGIs */
1269         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1270                 if (!queue_sgi(vcpu, i))
1271                         overflow = 1;
1272         }
1273
1274         /* PPIs */
1275         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1276                 if (!vgic_queue_hwirq(vcpu, i))
1277                         overflow = 1;
1278         }
1279
1280         /* SPIs */
1281         for_each_set_bit(i, pa_shared, nr_shared) {
1282                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1283                         overflow = 1;
1284         }
1285
1286
1287
1288
1289 epilog:
1290         if (overflow) {
1291                 vgic_enable_underflow(vcpu);
1292         } else {
1293                 vgic_disable_underflow(vcpu);
1294                 /*
1295                  * We're about to run this VCPU, and we've consumed
1296                  * everything the distributor had in store for
1297                  * us. Claim we don't have anything pending. We'll
1298                  * adjust that if needed while exiting.
1299                  */
1300                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1301         }
1302 }
1303
1304 static int process_queued_irq(struct kvm_vcpu *vcpu,
1305                                    int lr, struct vgic_lr vlr)
1306 {
1307         int pending = 0;
1308
1309         /*
1310          * If the IRQ was EOIed (called from vgic_process_maintenance) or it
1311          * went from active to non-active (called from vgic_sync_hwirq) it was
1312          * also ACKed and we we therefore assume we can clear the soft pending
1313          * state (should it had been set) for this interrupt.
1314          *
1315          * Note: if the IRQ soft pending state was set after the IRQ was
1316          * acked, it actually shouldn't be cleared, but we have no way of
1317          * knowing that unless we start trapping ACKs when the soft-pending
1318          * state is set.
1319          */
1320         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1321
1322         /*
1323          * Tell the gic to start sampling this interrupt again.
1324          */
1325         vgic_irq_clear_queued(vcpu, vlr.irq);
1326
1327         /* Any additional pending interrupt? */
1328         if (vgic_irq_is_edge(vcpu, vlr.irq)) {
1329                 BUG_ON(!(vlr.state & LR_HW));
1330                 pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
1331         } else {
1332                 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1333                         vgic_cpu_irq_set(vcpu, vlr.irq);
1334                         pending = 1;
1335                 } else {
1336                         vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1337                         vgic_cpu_irq_clear(vcpu, vlr.irq);
1338                 }
1339         }
1340
1341         /*
1342          * Despite being EOIed, the LR may not have
1343          * been marked as empty.
1344          */
1345         vlr.state = 0;
1346         vlr.hwirq = 0;
1347         vgic_set_lr(vcpu, lr, vlr);
1348
1349         return pending;
1350 }
1351
1352 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1353 {
1354         u32 status = vgic_get_interrupt_status(vcpu);
1355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1356         struct kvm *kvm = vcpu->kvm;
1357         int level_pending = 0;
1358
1359         kvm_debug("STATUS = %08x\n", status);
1360
1361         if (status & INT_STATUS_EOI) {
1362                 /*
1363                  * Some level interrupts have been EOIed. Clear their
1364                  * active bit.
1365                  */
1366                 u64 eisr = vgic_get_eisr(vcpu);
1367                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1368                 int lr;
1369
1370                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1371                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1372
1373                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1374                         WARN_ON(vlr.state & LR_STATE_MASK);
1375
1376
1377                         /*
1378                          * kvm_notify_acked_irq calls kvm_set_irq()
1379                          * to reset the IRQ level, which grabs the dist->lock
1380                          * so we call this before taking the dist->lock.
1381                          */
1382                         kvm_notify_acked_irq(kvm, 0,
1383                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1384
1385                         spin_lock(&dist->lock);
1386                         level_pending |= process_queued_irq(vcpu, lr, vlr);
1387                         spin_unlock(&dist->lock);
1388                 }
1389         }
1390
1391         if (status & INT_STATUS_UNDERFLOW)
1392                 vgic_disable_underflow(vcpu);
1393
1394         /*
1395          * In the next iterations of the vcpu loop, if we sync the vgic state
1396          * after flushing it, but before entering the guest (this happens for
1397          * pending signals and vmid rollovers), then make sure we don't pick
1398          * up any old maintenance interrupts here.
1399          */
1400         vgic_clear_eisr(vcpu);
1401
1402         return level_pending;
1403 }
1404
1405 /*
1406  * Save the physical active state, and reset it to inactive.
1407  *
1408  * Return true if there's a pending forwarded interrupt to queue.
1409  */
1410 static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
1411 {
1412         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1413         bool level_pending;
1414
1415         if (!(vlr.state & LR_HW))
1416                 return false;
1417
1418         if (vlr.state & LR_STATE_ACTIVE)
1419                 return false;
1420
1421         spin_lock(&dist->lock);
1422         level_pending = process_queued_irq(vcpu, lr, vlr);
1423         spin_unlock(&dist->lock);
1424         return level_pending;
1425 }
1426
1427 /* Sync back the VGIC state after a guest run */
1428 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1429 {
1430         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1431         u64 elrsr;
1432         unsigned long *elrsr_ptr;
1433         int lr, pending;
1434         bool level_pending;
1435
1436         level_pending = vgic_process_maintenance(vcpu);
1437
1438         /* Deal with HW interrupts, and clear mappings for empty LRs */
1439         for (lr = 0; lr < vgic->nr_lr; lr++) {
1440                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1441
1442                 level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
1443                 BUG_ON(vlr.irq >= dist->nr_irqs);
1444         }
1445
1446         /* Check if we still have something up our sleeve... */
1447         elrsr = vgic_get_elrsr(vcpu);
1448         elrsr_ptr = u64_to_bitmask(&elrsr);
1449         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1450         if (level_pending || pending < vgic->nr_lr)
1451                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1452 }
1453
1454 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1455 {
1456         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1457
1458         if (!irqchip_in_kernel(vcpu->kvm))
1459                 return;
1460
1461         spin_lock(&dist->lock);
1462         __kvm_vgic_flush_hwstate(vcpu);
1463         spin_unlock(&dist->lock);
1464 }
1465
1466 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1467 {
1468         if (!irqchip_in_kernel(vcpu->kvm))
1469                 return;
1470
1471         __kvm_vgic_sync_hwstate(vcpu);
1472 }
1473
1474 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1475 {
1476         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1477
1478         if (!irqchip_in_kernel(vcpu->kvm))
1479                 return 0;
1480
1481         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1482 }
1483
1484 void vgic_kick_vcpus(struct kvm *kvm)
1485 {
1486         struct kvm_vcpu *vcpu;
1487         int c;
1488
1489         /*
1490          * We've injected an interrupt, time to find out who deserves
1491          * a good kick...
1492          */
1493         kvm_for_each_vcpu(c, vcpu, kvm) {
1494                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1495                         kvm_vcpu_kick(vcpu);
1496         }
1497 }
1498
1499 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1500 {
1501         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1502
1503         /*
1504          * Only inject an interrupt if:
1505          * - edge triggered and we have a rising edge
1506          * - level triggered and we change level
1507          */
1508         if (edge_triggered) {
1509                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1510                 return level > state;
1511         } else {
1512                 int state = vgic_dist_irq_get_level(vcpu, irq);
1513                 return level != state;
1514         }
1515 }
1516
1517 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1518                                    struct irq_phys_map *map,
1519                                    unsigned int irq_num, bool level)
1520 {
1521         struct vgic_dist *dist = &kvm->arch.vgic;
1522         struct kvm_vcpu *vcpu;
1523         int edge_triggered, level_triggered;
1524         int enabled;
1525         bool ret = true, can_inject = true;
1526
1527         trace_vgic_update_irq_pending(cpuid, irq_num, level);
1528
1529         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1530                 return -EINVAL;
1531
1532         spin_lock(&dist->lock);
1533
1534         vcpu = kvm_get_vcpu(kvm, cpuid);
1535         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1536         level_triggered = !edge_triggered;
1537
1538         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1539                 ret = false;
1540                 goto out;
1541         }
1542
1543         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1544                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1545                 if (cpuid == VCPU_NOT_ALLOCATED) {
1546                         /* Pretend we use CPU0, and prevent injection */
1547                         cpuid = 0;
1548                         can_inject = false;
1549                 }
1550                 vcpu = kvm_get_vcpu(kvm, cpuid);
1551         }
1552
1553         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1554
1555         if (level) {
1556                 if (level_triggered)
1557                         vgic_dist_irq_set_level(vcpu, irq_num);
1558                 vgic_dist_irq_set_pending(vcpu, irq_num);
1559         } else {
1560                 if (level_triggered) {
1561                         vgic_dist_irq_clear_level(vcpu, irq_num);
1562                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1563                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1564                                 vgic_cpu_irq_clear(vcpu, irq_num);
1565                                 if (!compute_pending_for_cpu(vcpu))
1566                                         clear_bit(cpuid, dist->irq_pending_on_cpu);
1567                         }
1568                 }
1569
1570                 ret = false;
1571                 goto out;
1572         }
1573
1574         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1575
1576         if (!enabled || !can_inject) {
1577                 ret = false;
1578                 goto out;
1579         }
1580
1581         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1582                 /*
1583                  * Level interrupt in progress, will be picked up
1584                  * when EOId.
1585                  */
1586                 ret = false;
1587                 goto out;
1588         }
1589
1590         if (level) {
1591                 vgic_cpu_irq_set(vcpu, irq_num);
1592                 set_bit(cpuid, dist->irq_pending_on_cpu);
1593         }
1594
1595 out:
1596         spin_unlock(&dist->lock);
1597
1598         if (ret) {
1599                 /* kick the specified vcpu */
1600                 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1601         }
1602
1603         return 0;
1604 }
1605
1606 static int vgic_lazy_init(struct kvm *kvm)
1607 {
1608         int ret = 0;
1609
1610         if (unlikely(!vgic_initialized(kvm))) {
1611                 /*
1612                  * We only provide the automatic initialization of the VGIC
1613                  * for the legacy case of a GICv2. Any other type must
1614                  * be explicitly initialized once setup with the respective
1615                  * KVM device call.
1616                  */
1617                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1618                         return -EBUSY;
1619
1620                 mutex_lock(&kvm->lock);
1621                 ret = vgic_init(kvm);
1622                 mutex_unlock(&kvm->lock);
1623         }
1624
1625         return ret;
1626 }
1627
1628 /**
1629  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1630  * @kvm:     The VM structure pointer
1631  * @cpuid:   The CPU for PPIs
1632  * @irq_num: The IRQ number that is assigned to the device. This IRQ
1633  *           must not be mapped to a HW interrupt.
1634  * @level:   Edge-triggered:  true:  to trigger the interrupt
1635  *                            false: to ignore the call
1636  *           Level-sensitive  true:  raise the input signal
1637  *                            false: lower the input signal
1638  *
1639  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1640  * level-sensitive interrupts.  You can think of the level parameter as 1
1641  * being HIGH and 0 being LOW and all devices being active-HIGH.
1642  */
1643 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1644                         bool level)
1645 {
1646         struct irq_phys_map *map;
1647         int ret;
1648
1649         ret = vgic_lazy_init(kvm);
1650         if (ret)
1651                 return ret;
1652
1653         map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1654         if (map)
1655                 return -EINVAL;
1656
1657         return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1658 }
1659
1660 /**
1661  * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1662  * @kvm:     The VM structure pointer
1663  * @cpuid:   The CPU for PPIs
1664  * @map:     Pointer to a irq_phys_map structure describing the mapping
1665  * @level:   Edge-triggered:  true:  to trigger the interrupt
1666  *                            false: to ignore the call
1667  *           Level-sensitive  true:  raise the input signal
1668  *                            false: lower the input signal
1669  *
1670  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1671  * level-sensitive interrupts.  You can think of the level parameter as 1
1672  * being HIGH and 0 being LOW and all devices being active-HIGH.
1673  */
1674 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1675                                struct irq_phys_map *map, bool level)
1676 {
1677         int ret;
1678
1679         ret = vgic_lazy_init(kvm);
1680         if (ret)
1681                 return ret;
1682
1683         return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1684 }
1685
1686 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1687 {
1688         /*
1689          * We cannot rely on the vgic maintenance interrupt to be
1690          * delivered synchronously. This means we can only use it to
1691          * exit the VM, and we perform the handling of EOIed
1692          * interrupts on the exit path (see vgic_process_maintenance).
1693          */
1694         return IRQ_HANDLED;
1695 }
1696
1697 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1698                                                     int virt_irq)
1699 {
1700         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1701                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1702         else
1703                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1704 }
1705
1706 /**
1707  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1708  * @vcpu: The VCPU pointer
1709  * @virt_irq: The virtual irq number
1710  * @irq: The Linux IRQ number
1711  *
1712  * Establish a mapping between a guest visible irq (@virt_irq) and a
1713  * Linux irq (@irq). On injection, @virt_irq will be associated with
1714  * the physical interrupt represented by @irq. This mapping can be
1715  * established multiple times as long as the parameters are the same.
1716  *
1717  * Returns a valid pointer on success, and an error pointer otherwise
1718  */
1719 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1720                                            int virt_irq, int irq)
1721 {
1722         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1723         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1724         struct irq_phys_map *map;
1725         struct irq_phys_map_entry *entry;
1726         struct irq_desc *desc;
1727         struct irq_data *data;
1728         int phys_irq;
1729
1730         desc = irq_to_desc(irq);
1731         if (!desc) {
1732                 kvm_err("%s: no interrupt descriptor\n", __func__);
1733                 return ERR_PTR(-EINVAL);
1734         }
1735
1736         data = irq_desc_get_irq_data(desc);
1737         while (data->parent_data)
1738                 data = data->parent_data;
1739
1740         phys_irq = data->hwirq;
1741
1742         /* Create a new mapping */
1743         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1744         if (!entry)
1745                 return ERR_PTR(-ENOMEM);
1746
1747         spin_lock(&dist->irq_phys_map_lock);
1748
1749         /* Try to match an existing mapping */
1750         map = vgic_irq_map_search(vcpu, virt_irq);
1751         if (map) {
1752                 /* Make sure this mapping matches */
1753                 if (map->phys_irq != phys_irq   ||
1754                     map->irq      != irq)
1755                         map = ERR_PTR(-EINVAL);
1756
1757                 /* Found an existing, valid mapping */
1758                 goto out;
1759         }
1760
1761         map           = &entry->map;
1762         map->virt_irq = virt_irq;
1763         map->phys_irq = phys_irq;
1764         map->irq      = irq;
1765
1766         list_add_tail_rcu(&entry->entry, root);
1767
1768 out:
1769         spin_unlock(&dist->irq_phys_map_lock);
1770         /* If we've found a hit in the existing list, free the useless
1771          * entry */
1772         if (IS_ERR(map) || map != &entry->map)
1773                 kfree(entry);
1774         return map;
1775 }
1776
1777 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1778                                                 int virt_irq)
1779 {
1780         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1781         struct irq_phys_map_entry *entry;
1782         struct irq_phys_map *map;
1783
1784         rcu_read_lock();
1785
1786         list_for_each_entry_rcu(entry, root, entry) {
1787                 map = &entry->map;
1788                 if (map->virt_irq == virt_irq) {
1789                         rcu_read_unlock();
1790                         return map;
1791                 }
1792         }
1793
1794         rcu_read_unlock();
1795
1796         return NULL;
1797 }
1798
1799 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1800 {
1801         struct irq_phys_map_entry *entry;
1802
1803         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1804         kfree(entry);
1805 }
1806
1807 /**
1808  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1809  * @vcpu: The VCPU pointer
1810  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1811  *
1812  * Remove an existing mapping between virtual and physical interrupts.
1813  */
1814 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1815 {
1816         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1817         struct irq_phys_map_entry *entry;
1818         struct list_head *root;
1819
1820         if (!map)
1821                 return -EINVAL;
1822
1823         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1824
1825         spin_lock(&dist->irq_phys_map_lock);
1826
1827         list_for_each_entry(entry, root, entry) {
1828                 if (&entry->map == map) {
1829                         list_del_rcu(&entry->entry);
1830                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1831                         break;
1832                 }
1833         }
1834
1835         spin_unlock(&dist->irq_phys_map_lock);
1836
1837         return 0;
1838 }
1839
1840 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1841 {
1842         struct vgic_dist *dist = &kvm->arch.vgic;
1843         struct irq_phys_map_entry *entry;
1844
1845         spin_lock(&dist->irq_phys_map_lock);
1846
1847         list_for_each_entry(entry, root, entry) {
1848                 list_del_rcu(&entry->entry);
1849                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1850         }
1851
1852         spin_unlock(&dist->irq_phys_map_lock);
1853 }
1854
1855 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1856 {
1857         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1858
1859         kfree(vgic_cpu->pending_shared);
1860         kfree(vgic_cpu->active_shared);
1861         kfree(vgic_cpu->pend_act_shared);
1862         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1863         vgic_cpu->pending_shared = NULL;
1864         vgic_cpu->active_shared = NULL;
1865         vgic_cpu->pend_act_shared = NULL;
1866 }
1867
1868 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1869 {
1870         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1871         int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
1872         int sz = nr_longs * sizeof(unsigned long);
1873         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1874         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1875         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1876
1877         if (!vgic_cpu->pending_shared
1878                 || !vgic_cpu->active_shared
1879                 || !vgic_cpu->pend_act_shared) {
1880                 kvm_vgic_vcpu_destroy(vcpu);
1881                 return -ENOMEM;
1882         }
1883
1884         /*
1885          * Store the number of LRs per vcpu, so we don't have to go
1886          * all the way to the distributor structure to find out. Only
1887          * assembly code should use this one.
1888          */
1889         vgic_cpu->nr_lr = vgic->nr_lr;
1890
1891         return 0;
1892 }
1893
1894 /**
1895  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1896  *
1897  * No memory allocation should be performed here, only static init.
1898  */
1899 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1900 {
1901         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1902         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1903 }
1904
1905 /**
1906  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1907  *
1908  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1909  * can use.
1910  */
1911 int kvm_vgic_get_max_vcpus(void)
1912 {
1913         return vgic->max_gic_vcpus;
1914 }
1915
1916 void kvm_vgic_destroy(struct kvm *kvm)
1917 {
1918         struct vgic_dist *dist = &kvm->arch.vgic;
1919         struct kvm_vcpu *vcpu;
1920         int i;
1921
1922         kvm_for_each_vcpu(i, vcpu, kvm)
1923                 kvm_vgic_vcpu_destroy(vcpu);
1924
1925         vgic_free_bitmap(&dist->irq_enabled);
1926         vgic_free_bitmap(&dist->irq_level);
1927         vgic_free_bitmap(&dist->irq_pending);
1928         vgic_free_bitmap(&dist->irq_soft_pend);
1929         vgic_free_bitmap(&dist->irq_queued);
1930         vgic_free_bitmap(&dist->irq_cfg);
1931         vgic_free_bytemap(&dist->irq_priority);
1932         if (dist->irq_spi_target) {
1933                 for (i = 0; i < dist->nr_cpus; i++)
1934                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1935         }
1936         kfree(dist->irq_sgi_sources);
1937         kfree(dist->irq_spi_cpu);
1938         kfree(dist->irq_spi_mpidr);
1939         kfree(dist->irq_spi_target);
1940         kfree(dist->irq_pending_on_cpu);
1941         kfree(dist->irq_active_on_cpu);
1942         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
1943         dist->irq_sgi_sources = NULL;
1944         dist->irq_spi_cpu = NULL;
1945         dist->irq_spi_target = NULL;
1946         dist->irq_pending_on_cpu = NULL;
1947         dist->irq_active_on_cpu = NULL;
1948         dist->nr_cpus = 0;
1949 }
1950
1951 /*
1952  * Allocate and initialize the various data structures. Must be called
1953  * with kvm->lock held!
1954  */
1955 int vgic_init(struct kvm *kvm)
1956 {
1957         struct vgic_dist *dist = &kvm->arch.vgic;
1958         struct kvm_vcpu *vcpu;
1959         int nr_cpus, nr_irqs;
1960         int ret, i, vcpu_id;
1961
1962         if (vgic_initialized(kvm))
1963                 return 0;
1964
1965         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1966         if (!nr_cpus)           /* No vcpus? Can't be good... */
1967                 return -ENODEV;
1968
1969         /*
1970          * If nobody configured the number of interrupts, use the
1971          * legacy one.
1972          */
1973         if (!dist->nr_irqs)
1974                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1975
1976         nr_irqs = dist->nr_irqs;
1977
1978         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1979         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1980         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1981         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1982         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1983         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1984         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1985         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1986
1987         if (ret)
1988                 goto out;
1989
1990         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1991         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1992         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1993                                        GFP_KERNEL);
1994         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1995                                            GFP_KERNEL);
1996         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1997                                            GFP_KERNEL);
1998         if (!dist->irq_sgi_sources ||
1999             !dist->irq_spi_cpu ||
2000             !dist->irq_spi_target ||
2001             !dist->irq_pending_on_cpu ||
2002             !dist->irq_active_on_cpu) {
2003                 ret = -ENOMEM;
2004                 goto out;
2005         }
2006
2007         for (i = 0; i < nr_cpus; i++)
2008                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2009                                         nr_cpus, nr_irqs);
2010
2011         if (ret)
2012                 goto out;
2013
2014         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2015         if (ret)
2016                 goto out;
2017
2018         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2019                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2020                 if (ret) {
2021                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2022                         break;
2023                 }
2024
2025                 /*
2026                  * Enable and configure all SGIs to be edge-triggere and
2027                  * configure all PPIs as level-triggered.
2028                  */
2029                 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
2030                         if (i < VGIC_NR_SGIS) {
2031                                 /* SGIs */
2032                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2033                                                         vcpu->vcpu_id, i, 1);
2034                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2035                                                         vcpu->vcpu_id, i,
2036                                                         VGIC_CFG_EDGE);
2037                         } else if (i < VGIC_NR_PRIVATE_IRQS) {
2038                                 /* PPIs */
2039                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2040                                                         vcpu->vcpu_id, i,
2041                                                         VGIC_CFG_LEVEL);
2042                         }
2043                 }
2044
2045                 vgic_enable(vcpu);
2046         }
2047
2048 out:
2049         if (ret)
2050                 kvm_vgic_destroy(kvm);
2051
2052         return ret;
2053 }
2054
2055 static int init_vgic_model(struct kvm *kvm, int type)
2056 {
2057         switch (type) {
2058         case KVM_DEV_TYPE_ARM_VGIC_V2:
2059                 vgic_v2_init_emulation(kvm);
2060                 break;
2061 #ifdef CONFIG_KVM_ARM_VGIC_V3
2062         case KVM_DEV_TYPE_ARM_VGIC_V3:
2063                 vgic_v3_init_emulation(kvm);
2064                 break;
2065 #endif
2066         default:
2067                 return -ENODEV;
2068         }
2069
2070         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2071                 return -E2BIG;
2072
2073         return 0;
2074 }
2075
2076 /**
2077  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2078  *
2079  * No memory allocation should be performed here, only static init.
2080  */
2081 void kvm_vgic_early_init(struct kvm *kvm)
2082 {
2083         spin_lock_init(&kvm->arch.vgic.lock);
2084         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2085         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2086 }
2087
2088 int kvm_vgic_create(struct kvm *kvm, u32 type)
2089 {
2090         int i, vcpu_lock_idx = -1, ret;
2091         struct kvm_vcpu *vcpu;
2092
2093         mutex_lock(&kvm->lock);
2094
2095         if (irqchip_in_kernel(kvm)) {
2096                 ret = -EEXIST;
2097                 goto out;
2098         }
2099
2100         /*
2101          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2102          * which had no chance yet to check the availability of the GICv2
2103          * emulation. So check this here again. KVM_CREATE_DEVICE does
2104          * the proper checks already.
2105          */
2106         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2107                 ret = -ENODEV;
2108                 goto out;
2109         }
2110
2111         /*
2112          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2113          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2114          * that no other VCPUs are run while we create the vgic.
2115          */
2116         ret = -EBUSY;
2117         kvm_for_each_vcpu(i, vcpu, kvm) {
2118                 if (!mutex_trylock(&vcpu->mutex))
2119                         goto out_unlock;
2120                 vcpu_lock_idx = i;
2121         }
2122
2123         kvm_for_each_vcpu(i, vcpu, kvm) {
2124                 if (vcpu->arch.has_run_once)
2125                         goto out_unlock;
2126         }
2127         ret = 0;
2128
2129         ret = init_vgic_model(kvm, type);
2130         if (ret)
2131                 goto out_unlock;
2132
2133         kvm->arch.vgic.in_kernel = true;
2134         kvm->arch.vgic.vgic_model = type;
2135         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2136         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2137         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2138         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2139
2140 out_unlock:
2141         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2142                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2143                 mutex_unlock(&vcpu->mutex);
2144         }
2145
2146 out:
2147         mutex_unlock(&kvm->lock);
2148         return ret;
2149 }
2150
2151 static int vgic_ioaddr_overlap(struct kvm *kvm)
2152 {
2153         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2154         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2155
2156         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2157                 return 0;
2158         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2159             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2160                 return -EBUSY;
2161         return 0;
2162 }
2163
2164 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2165                               phys_addr_t addr, phys_addr_t size)
2166 {
2167         int ret;
2168
2169         if (addr & ~KVM_PHYS_MASK)
2170                 return -E2BIG;
2171
2172         if (addr & (SZ_4K - 1))
2173                 return -EINVAL;
2174
2175         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2176                 return -EEXIST;
2177         if (addr + size < addr)
2178                 return -EINVAL;
2179
2180         *ioaddr = addr;
2181         ret = vgic_ioaddr_overlap(kvm);
2182         if (ret)
2183                 *ioaddr = VGIC_ADDR_UNDEF;
2184
2185         return ret;
2186 }
2187
2188 /**
2189  * kvm_vgic_addr - set or get vgic VM base addresses
2190  * @kvm:   pointer to the vm struct
2191  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2192  * @addr:  pointer to address value
2193  * @write: if true set the address in the VM address space, if false read the
2194  *          address
2195  *
2196  * Set or get the vgic base addresses for the distributor and the virtual CPU
2197  * interface in the VM physical address space.  These addresses are properties
2198  * of the emulated core/SoC and therefore user space initially knows this
2199  * information.
2200  */
2201 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2202 {
2203         int r = 0;
2204         struct vgic_dist *vgic = &kvm->arch.vgic;
2205         int type_needed;
2206         phys_addr_t *addr_ptr, block_size;
2207         phys_addr_t alignment;
2208
2209         mutex_lock(&kvm->lock);
2210         switch (type) {
2211         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2212                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2213                 addr_ptr = &vgic->vgic_dist_base;
2214                 block_size = KVM_VGIC_V2_DIST_SIZE;
2215                 alignment = SZ_4K;
2216                 break;
2217         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2218                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2219                 addr_ptr = &vgic->vgic_cpu_base;
2220                 block_size = KVM_VGIC_V2_CPU_SIZE;
2221                 alignment = SZ_4K;
2222                 break;
2223 #ifdef CONFIG_KVM_ARM_VGIC_V3
2224         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2225                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2226                 addr_ptr = &vgic->vgic_dist_base;
2227                 block_size = KVM_VGIC_V3_DIST_SIZE;
2228                 alignment = SZ_64K;
2229                 break;
2230         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2231                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2232                 addr_ptr = &vgic->vgic_redist_base;
2233                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2234                 alignment = SZ_64K;
2235                 break;
2236 #endif
2237         default:
2238                 r = -ENODEV;
2239                 goto out;
2240         }
2241
2242         if (vgic->vgic_model != type_needed) {
2243                 r = -ENODEV;
2244                 goto out;
2245         }
2246
2247         if (write) {
2248                 if (!IS_ALIGNED(*addr, alignment))
2249                         r = -EINVAL;
2250                 else
2251                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2252                                                block_size);
2253         } else {
2254                 *addr = *addr_ptr;
2255         }
2256
2257 out:
2258         mutex_unlock(&kvm->lock);
2259         return r;
2260 }
2261
2262 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2263 {
2264         int r;
2265
2266         switch (attr->group) {
2267         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2268                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2269                 u64 addr;
2270                 unsigned long type = (unsigned long)attr->attr;
2271
2272                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2273                         return -EFAULT;
2274
2275                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2276                 return (r == -ENODEV) ? -ENXIO : r;
2277         }
2278         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2279                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2280                 u32 val;
2281                 int ret = 0;
2282
2283                 if (get_user(val, uaddr))
2284                         return -EFAULT;
2285
2286                 /*
2287                  * We require:
2288                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2289                  * - at most 1024 interrupts
2290                  * - a multiple of 32 interrupts
2291                  */
2292                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2293                     val > VGIC_MAX_IRQS ||
2294                     (val & 31))
2295                         return -EINVAL;
2296
2297                 mutex_lock(&dev->kvm->lock);
2298
2299                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2300                         ret = -EBUSY;
2301                 else
2302                         dev->kvm->arch.vgic.nr_irqs = val;
2303
2304                 mutex_unlock(&dev->kvm->lock);
2305
2306                 return ret;
2307         }
2308         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2309                 switch (attr->attr) {
2310                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2311                         r = vgic_init(dev->kvm);
2312                         return r;
2313                 }
2314                 break;
2315         }
2316         }
2317
2318         return -ENXIO;
2319 }
2320
2321 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2322 {
2323         int r = -ENXIO;
2324
2325         switch (attr->group) {
2326         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2327                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2328                 u64 addr;
2329                 unsigned long type = (unsigned long)attr->attr;
2330
2331                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2332                 if (r)
2333                         return (r == -ENODEV) ? -ENXIO : r;
2334
2335                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2336                         return -EFAULT;
2337                 break;
2338         }
2339         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2340                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2341
2342                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2343                 break;
2344         }
2345
2346         }
2347
2348         return r;
2349 }
2350
2351 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2352 {
2353         if (vgic_find_range(ranges, 4, offset))
2354                 return 0;
2355         else
2356                 return -ENXIO;
2357 }
2358
2359 static void vgic_init_maintenance_interrupt(void *info)
2360 {
2361         enable_percpu_irq(vgic->maint_irq, 0);
2362 }
2363
2364 static int vgic_cpu_notify(struct notifier_block *self,
2365                            unsigned long action, void *cpu)
2366 {
2367         switch (action) {
2368         case CPU_STARTING:
2369         case CPU_STARTING_FROZEN:
2370                 vgic_init_maintenance_interrupt(NULL);
2371                 break;
2372         case CPU_DYING:
2373         case CPU_DYING_FROZEN:
2374                 disable_percpu_irq(vgic->maint_irq);
2375                 break;
2376         }
2377
2378         return NOTIFY_OK;
2379 }
2380
2381 static struct notifier_block vgic_cpu_nb = {
2382         .notifier_call = vgic_cpu_notify,
2383 };
2384
2385 static const struct of_device_id vgic_ids[] = {
2386         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2387         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2388         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2389         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2390         {},
2391 };
2392
2393 int kvm_vgic_hyp_init(void)
2394 {
2395         const struct of_device_id *matched_id;
2396         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2397                                 const struct vgic_params **);
2398         struct device_node *vgic_node;
2399         int ret;
2400
2401         vgic_node = of_find_matching_node_and_match(NULL,
2402                                                     vgic_ids, &matched_id);
2403         if (!vgic_node) {
2404                 kvm_err("error: no compatible GIC node found\n");
2405                 return -ENODEV;
2406         }
2407
2408         vgic_probe = matched_id->data;
2409         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2410         if (ret)
2411                 return ret;
2412
2413         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2414                                  "vgic", kvm_get_running_vcpus());
2415         if (ret) {
2416                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2417                 return ret;
2418         }
2419
2420         ret = __register_cpu_notifier(&vgic_cpu_nb);
2421         if (ret) {
2422                 kvm_err("Cannot register vgic CPU notifier\n");
2423                 goto out_free_irq;
2424         }
2425
2426         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2427
2428         return 0;
2429
2430 out_free_irq:
2431         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2432         return ret;
2433 }
2434
2435 int kvm_irq_map_gsi(struct kvm *kvm,
2436                     struct kvm_kernel_irq_routing_entry *entries,
2437                     int gsi)
2438 {
2439         return 0;
2440 }
2441
2442 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2443 {
2444         return pin;
2445 }
2446
2447 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2448                 u32 irq, int level, bool line_status)
2449 {
2450         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2451
2452         trace_kvm_set_irq(irq, level, irq_source_id);
2453
2454         BUG_ON(!vgic_initialized(kvm));
2455
2456         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2457 }
2458
2459 /* MSI not implemented yet */
2460 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2461                 struct kvm *kvm, int irq_source_id,
2462                 int level, bool line_status)
2463 {
2464         return 0;
2465 }