GNU Linux-libre 4.19.281-gnu1
[releases.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_arm.h>
22 #include <asm/kvm_mmu.h>
23
24 #include "vgic.h"
25 #include "vgic-mmio.h"
26
27 /* extract @num bytes at @offset bytes offset in data */
28 unsigned long extract_bytes(u64 data, unsigned int offset,
29                             unsigned int num)
30 {
31         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32 }
33
34 /* allows updates of any half of a 64-bit register (or the whole thing) */
35 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36                      unsigned long val)
37 {
38         int lower = (offset & 4) * 8;
39         int upper = lower + 8 * len - 1;
40
41         reg &= ~GENMASK_ULL(upper, lower);
42         val &= GENMASK_ULL(len * 8 - 1, 0);
43
44         return reg | ((u64)val << lower);
45 }
46
47 bool vgic_has_its(struct kvm *kvm)
48 {
49         struct vgic_dist *dist = &kvm->arch.vgic;
50
51         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52                 return false;
53
54         return dist->has_its;
55 }
56
57 bool vgic_supports_direct_msis(struct kvm *kvm)
58 {
59         return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
60 }
61
62 /*
63  * The Revision field in the IIDR have the following meanings:
64  *
65  * Revision 2: Interrupt groups are guest-configurable and signaled using
66  *             their configured groups.
67  */
68
69 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
70                                             gpa_t addr, unsigned int len)
71 {
72         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
73         u32 value = 0;
74
75         switch (addr & 0x0c) {
76         case GICD_CTLR:
77                 if (vgic->enabled)
78                         value |= GICD_CTLR_ENABLE_SS_G1;
79                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
80                 break;
81         case GICD_TYPER:
82                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
83                 value = (value >> 5) - 1;
84                 if (vgic_has_its(vcpu->kvm)) {
85                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
86                         value |= GICD_TYPER_LPIS;
87                 } else {
88                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
89                 }
90                 break;
91         case GICD_IIDR:
92                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
93                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
94                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
95                 break;
96         default:
97                 return 0;
98         }
99
100         return value;
101 }
102
103 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
104                                     gpa_t addr, unsigned int len,
105                                     unsigned long val)
106 {
107         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
108         bool was_enabled = dist->enabled;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR:
112                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
113
114                 if (!was_enabled && dist->enabled)
115                         vgic_kick_vcpus(vcpu->kvm);
116                 break;
117         case GICD_TYPER:
118         case GICD_IIDR:
119                 return;
120         }
121 }
122
123 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
124                                            gpa_t addr, unsigned int len,
125                                            unsigned long val)
126 {
127         switch (addr & 0x0c) {
128         case GICD_IIDR:
129                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
130                         return -EINVAL;
131         }
132
133         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
134         return 0;
135 }
136
137 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
138                                             gpa_t addr, unsigned int len)
139 {
140         int intid = VGIC_ADDR_TO_INTID(addr, 64);
141         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
142         unsigned long ret = 0;
143
144         if (!irq)
145                 return 0;
146
147         /* The upper word is RAZ for us. */
148         if (!(addr & 4))
149                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
150
151         vgic_put_irq(vcpu->kvm, irq);
152         return ret;
153 }
154
155 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
156                                     gpa_t addr, unsigned int len,
157                                     unsigned long val)
158 {
159         int intid = VGIC_ADDR_TO_INTID(addr, 64);
160         struct vgic_irq *irq;
161         unsigned long flags;
162
163         /* The upper word is WI for us since we don't implement Aff3. */
164         if (addr & 4)
165                 return;
166
167         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
168
169         if (!irq)
170                 return;
171
172         spin_lock_irqsave(&irq->irq_lock, flags);
173
174         /* We only care about and preserve Aff0, Aff1 and Aff2. */
175         irq->mpidr = val & GENMASK(23, 0);
176         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
177
178         spin_unlock_irqrestore(&irq->irq_lock, flags);
179         vgic_put_irq(vcpu->kvm, irq);
180 }
181
182 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
183                                              gpa_t addr, unsigned int len)
184 {
185         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
186
187         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
188 }
189
190
191 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
192                                      gpa_t addr, unsigned int len,
193                                      unsigned long val)
194 {
195         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
196         bool was_enabled = vgic_cpu->lpis_enabled;
197
198         if (!vgic_has_its(vcpu->kvm))
199                 return;
200
201         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
202
203         if (!was_enabled && vgic_cpu->lpis_enabled)
204                 vgic_enable_lpis(vcpu);
205 }
206
207 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
208                                               gpa_t addr, unsigned int len)
209 {
210         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
211         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
212         struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
213         int target_vcpu_id = vcpu->vcpu_id;
214         gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
215                         (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
216         u64 value;
217
218         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
219         value |= ((target_vcpu_id & 0xffff) << 8);
220
221         if (addr == last_rdist_typer)
222                 value |= GICR_TYPER_LAST;
223         if (vgic_has_its(vcpu->kvm))
224                 value |= GICR_TYPER_PLPIS;
225
226         return extract_bytes(value, addr & 7, len);
227 }
228
229 static unsigned long vgic_uaccess_read_v3r_typer(struct kvm_vcpu *vcpu,
230                                                  gpa_t addr, unsigned int len)
231 {
232         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
233         int target_vcpu_id = vcpu->vcpu_id;
234         u64 value;
235
236         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
237         value |= ((target_vcpu_id & 0xffff) << 8);
238
239         if (vgic_has_its(vcpu->kvm))
240                 value |= GICR_TYPER_PLPIS;
241
242         /* reporting of the Last bit is not supported for userspace */
243         return extract_bytes(value, addr & 7, len);
244 }
245
246 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
247                                              gpa_t addr, unsigned int len)
248 {
249         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
250 }
251
252 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
253                                               gpa_t addr, unsigned int len)
254 {
255         switch (addr & 0xffff) {
256         case GICD_PIDR2:
257                 /* report a GICv3 compliant implementation */
258                 return 0x3b;
259         }
260
261         return 0;
262 }
263
264 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
265                                                   gpa_t addr, unsigned int len)
266 {
267         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
268         u32 value = 0;
269         int i;
270
271         /*
272          * pending state of interrupt is latched in pending_latch variable.
273          * Userspace will save and restore pending state and line_level
274          * separately.
275          * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
276          * for handling of ISPENDR and ICPENDR.
277          */
278         for (i = 0; i < len * 8; i++) {
279                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
280
281                 if (irq->pending_latch)
282                         value |= (1U << i);
283
284                 vgic_put_irq(vcpu->kvm, irq);
285         }
286
287         return value;
288 }
289
290 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
291                                          gpa_t addr, unsigned int len,
292                                          unsigned long val)
293 {
294         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
295         int i;
296         unsigned long flags;
297
298         for (i = 0; i < len * 8; i++) {
299                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
300
301                 spin_lock_irqsave(&irq->irq_lock, flags);
302                 if (test_bit(i, &val)) {
303                         /*
304                          * pending_latch is set irrespective of irq type
305                          * (level or edge) to avoid dependency that VM should
306                          * restore irq config before pending info.
307                          */
308                         irq->pending_latch = true;
309                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
310                 } else {
311                         irq->pending_latch = false;
312                         spin_unlock_irqrestore(&irq->irq_lock, flags);
313                 }
314
315                 vgic_put_irq(vcpu->kvm, irq);
316         }
317
318         return 0;
319 }
320
321 /* We want to avoid outer shareable. */
322 u64 vgic_sanitise_shareability(u64 field)
323 {
324         switch (field) {
325         case GIC_BASER_OuterShareable:
326                 return GIC_BASER_InnerShareable;
327         default:
328                 return field;
329         }
330 }
331
332 /* Avoid any inner non-cacheable mapping. */
333 u64 vgic_sanitise_inner_cacheability(u64 field)
334 {
335         switch (field) {
336         case GIC_BASER_CACHE_nCnB:
337         case GIC_BASER_CACHE_nC:
338                 return GIC_BASER_CACHE_RaWb;
339         default:
340                 return field;
341         }
342 }
343
344 /* Non-cacheable or same-as-inner are OK. */
345 u64 vgic_sanitise_outer_cacheability(u64 field)
346 {
347         switch (field) {
348         case GIC_BASER_CACHE_SameAsInner:
349         case GIC_BASER_CACHE_nC:
350                 return field;
351         default:
352                 return GIC_BASER_CACHE_nC;
353         }
354 }
355
356 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
357                         u64 (*sanitise_fn)(u64))
358 {
359         u64 field = (reg & field_mask) >> field_shift;
360
361         field = sanitise_fn(field) << field_shift;
362         return (reg & ~field_mask) | field;
363 }
364
365 #define PROPBASER_RES0_MASK                                             \
366         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
367 #define PENDBASER_RES0_MASK                                             \
368         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
369          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
370
371 static u64 vgic_sanitise_pendbaser(u64 reg)
372 {
373         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
374                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
375                                   vgic_sanitise_shareability);
376         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
377                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
378                                   vgic_sanitise_inner_cacheability);
379         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
380                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
381                                   vgic_sanitise_outer_cacheability);
382
383         reg &= ~PENDBASER_RES0_MASK;
384         reg &= ~GENMASK_ULL(51, 48);
385
386         return reg;
387 }
388
389 static u64 vgic_sanitise_propbaser(u64 reg)
390 {
391         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
392                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
393                                   vgic_sanitise_shareability);
394         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
395                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
396                                   vgic_sanitise_inner_cacheability);
397         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
398                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
399                                   vgic_sanitise_outer_cacheability);
400
401         reg &= ~PROPBASER_RES0_MASK;
402         reg &= ~GENMASK_ULL(51, 48);
403         return reg;
404 }
405
406 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
407                                              gpa_t addr, unsigned int len)
408 {
409         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
410
411         return extract_bytes(dist->propbaser, addr & 7, len);
412 }
413
414 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
415                                      gpa_t addr, unsigned int len,
416                                      unsigned long val)
417 {
418         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
419         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
420         u64 old_propbaser, propbaser;
421
422         /* Storing a value with LPIs already enabled is undefined */
423         if (vgic_cpu->lpis_enabled)
424                 return;
425
426         do {
427                 old_propbaser = READ_ONCE(dist->propbaser);
428                 propbaser = old_propbaser;
429                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
430                 propbaser = vgic_sanitise_propbaser(propbaser);
431         } while (cmpxchg64(&dist->propbaser, old_propbaser,
432                            propbaser) != old_propbaser);
433 }
434
435 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
436                                              gpa_t addr, unsigned int len)
437 {
438         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
439
440         return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
441 }
442
443 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
444                                      gpa_t addr, unsigned int len,
445                                      unsigned long val)
446 {
447         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
448         u64 old_pendbaser, pendbaser;
449
450         /* Storing a value with LPIs already enabled is undefined */
451         if (vgic_cpu->lpis_enabled)
452                 return;
453
454         do {
455                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
456                 pendbaser = old_pendbaser;
457                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
458                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
459         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
460                            pendbaser) != old_pendbaser);
461 }
462
463 /*
464  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
465  * redistributors, while SPIs are covered by registers in the distributor
466  * block. Trying to set private IRQs in this block gets ignored.
467  * We take some special care here to fix the calculation of the register
468  * offset.
469  */
470 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
471         {                                                               \
472                 .reg_offset = off,                                      \
473                 .bits_per_irq = bpi,                                    \
474                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
475                 .access_flags = acc,                                    \
476                 .read = vgic_mmio_read_raz,                             \
477                 .write = vgic_mmio_write_wi,                            \
478         }, {                                                            \
479                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
480                 .bits_per_irq = bpi,                                    \
481                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
482                 .access_flags = acc,                                    \
483                 .read = rd,                                             \
484                 .write = wr,                                            \
485                 .uaccess_read = ur,                                     \
486                 .uaccess_write = uw,                                    \
487         }
488
489 static const struct vgic_register_region vgic_v3_dist_registers[] = {
490         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
491                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
492                 NULL, vgic_mmio_uaccess_write_v3_misc,
493                 16, VGIC_ACCESS_32bit),
494         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
495                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
496                 VGIC_ACCESS_32bit),
497         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
498                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
499                 VGIC_ACCESS_32bit),
500         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
501                 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
502                 VGIC_ACCESS_32bit),
503         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
504                 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
505                 VGIC_ACCESS_32bit),
506         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
507                 vgic_mmio_read_pending, vgic_mmio_write_spending,
508                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
509                 VGIC_ACCESS_32bit),
510         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
511                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
512                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
513                 VGIC_ACCESS_32bit),
514         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
515                 vgic_mmio_read_active, vgic_mmio_write_sactive,
516                 NULL, vgic_mmio_uaccess_write_sactive, 1,
517                 VGIC_ACCESS_32bit),
518         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
519                 vgic_mmio_read_active, vgic_mmio_write_cactive,
520                 NULL, vgic_mmio_uaccess_write_cactive,
521                 1, VGIC_ACCESS_32bit),
522         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
523                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
524                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
525         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
526                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
527                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
528         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
529                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
530                 VGIC_ACCESS_32bit),
531         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
532                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
533                 VGIC_ACCESS_32bit),
534         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
535                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
536                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
537         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
538                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
539                 VGIC_ACCESS_32bit),
540 };
541
542 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
543         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
544                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
545                 VGIC_ACCESS_32bit),
546         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
547                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
548                 VGIC_ACCESS_32bit),
549         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
550                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
551                 VGIC_ACCESS_32bit),
552         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
553                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
554                 vgic_uaccess_read_v3r_typer, vgic_mmio_uaccess_write_wi, 8,
555                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
556         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
557                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
558                 VGIC_ACCESS_32bit),
559         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
560                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
561                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
562         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
563                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
564                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
565         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
566                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
567                 VGIC_ACCESS_32bit),
568 };
569
570 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
571         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
572                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
573                 VGIC_ACCESS_32bit),
574         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
575                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
576                 VGIC_ACCESS_32bit),
577         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
578                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
579                 VGIC_ACCESS_32bit),
580         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
581                 vgic_mmio_read_pending, vgic_mmio_write_spending,
582                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
583                 VGIC_ACCESS_32bit),
584         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
585                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
586                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
587                 VGIC_ACCESS_32bit),
588         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
589                 vgic_mmio_read_active, vgic_mmio_write_sactive,
590                 NULL, vgic_mmio_uaccess_write_sactive,
591                 4, VGIC_ACCESS_32bit),
592         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
593                 vgic_mmio_read_active, vgic_mmio_write_cactive,
594                 NULL, vgic_mmio_uaccess_write_cactive,
595                 4, VGIC_ACCESS_32bit),
596         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
597                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
598                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
599         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
600                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
601                 VGIC_ACCESS_32bit),
602         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
603                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
604                 VGIC_ACCESS_32bit),
605         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
606                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
607                 VGIC_ACCESS_32bit),
608 };
609
610 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
611 {
612         dev->regions = vgic_v3_dist_registers;
613         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
614
615         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
616
617         return SZ_64K;
618 }
619
620 /**
621  * vgic_register_redist_iodev - register a single redist iodev
622  * @vcpu:    The VCPU to which the redistributor belongs
623  *
624  * Register a KVM iodev for this VCPU's redistributor using the address
625  * provided.
626  *
627  * Return 0 on success, -ERRNO otherwise.
628  */
629 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
630 {
631         struct kvm *kvm = vcpu->kvm;
632         struct vgic_dist *vgic = &kvm->arch.vgic;
633         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
634         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
635         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
636         struct vgic_redist_region *rdreg;
637         gpa_t rd_base, sgi_base;
638         int ret;
639
640         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
641                 return 0;
642
643         /*
644          * We may be creating VCPUs before having set the base address for the
645          * redistributor region, in which case we will come back to this
646          * function for all VCPUs when the base address is set.  Just return
647          * without doing any work for now.
648          */
649         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
650         if (!rdreg)
651                 return 0;
652
653         if (!vgic_v3_check_base(kvm))
654                 return -EINVAL;
655
656         vgic_cpu->rdreg = rdreg;
657
658         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
659         sgi_base = rd_base + SZ_64K;
660
661         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
662         rd_dev->base_addr = rd_base;
663         rd_dev->iodev_type = IODEV_REDIST;
664         rd_dev->regions = vgic_v3_rdbase_registers;
665         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
666         rd_dev->redist_vcpu = vcpu;
667
668         mutex_lock(&kvm->slots_lock);
669         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
670                                       SZ_64K, &rd_dev->dev);
671         mutex_unlock(&kvm->slots_lock);
672
673         if (ret)
674                 return ret;
675
676         kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
677         sgi_dev->base_addr = sgi_base;
678         sgi_dev->iodev_type = IODEV_REDIST;
679         sgi_dev->regions = vgic_v3_sgibase_registers;
680         sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
681         sgi_dev->redist_vcpu = vcpu;
682
683         mutex_lock(&kvm->slots_lock);
684         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
685                                       SZ_64K, &sgi_dev->dev);
686         if (ret) {
687                 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
688                                           &rd_dev->dev);
689                 goto out;
690         }
691
692         rdreg->free_index++;
693 out:
694         mutex_unlock(&kvm->slots_lock);
695         return ret;
696 }
697
698 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
699 {
700         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
701         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
702
703         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
704         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
705 }
706
707 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
708 {
709         struct kvm_vcpu *vcpu;
710         int c, ret = 0;
711
712         kvm_for_each_vcpu(c, vcpu, kvm) {
713                 ret = vgic_register_redist_iodev(vcpu);
714                 if (ret)
715                         break;
716         }
717
718         if (ret) {
719                 /* The current c failed, so we start with the previous one. */
720                 mutex_lock(&kvm->slots_lock);
721                 for (c--; c >= 0; c--) {
722                         vcpu = kvm_get_vcpu(kvm, c);
723                         vgic_unregister_redist_iodev(vcpu);
724                 }
725                 mutex_unlock(&kvm->slots_lock);
726         }
727
728         return ret;
729 }
730
731 /**
732  * vgic_v3_insert_redist_region - Insert a new redistributor region
733  *
734  * Performs various checks before inserting the rdist region in the list.
735  * Those tests depend on whether the size of the rdist region is known
736  * (ie. count != 0). The list is sorted by rdist region index.
737  *
738  * @kvm: kvm handle
739  * @index: redist region index
740  * @base: base of the new rdist region
741  * @count: number of redistributors the region is made of (0 in the old style
742  * single region, whose size is induced from the number of vcpus)
743  *
744  * Return 0 on success, < 0 otherwise
745  */
746 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
747                                         gpa_t base, uint32_t count)
748 {
749         struct vgic_dist *d = &kvm->arch.vgic;
750         struct vgic_redist_region *rdreg;
751         struct list_head *rd_regions = &d->rd_regions;
752         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
753         int ret;
754
755         /* single rdist region already set ?*/
756         if (!count && !list_empty(rd_regions))
757                 return -EINVAL;
758
759         /* cross the end of memory ? */
760         if (base + size < base)
761                 return -EINVAL;
762
763         if (list_empty(rd_regions)) {
764                 if (index != 0)
765                         return -EINVAL;
766         } else {
767                 rdreg = list_last_entry(rd_regions,
768                                         struct vgic_redist_region, list);
769                 if (index != rdreg->index + 1)
770                         return -EINVAL;
771
772                 /* Cannot add an explicitly sized regions after legacy region */
773                 if (!rdreg->count)
774                         return -EINVAL;
775         }
776
777         /*
778          * For legacy single-region redistributor regions (!count),
779          * check that the redistributor region does not overlap with the
780          * distributor's address space.
781          */
782         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
783                 vgic_dist_overlap(kvm, base, size))
784                 return -EINVAL;
785
786         /* collision with any other rdist region? */
787         if (vgic_v3_rdist_overlap(kvm, base, size))
788                 return -EINVAL;
789
790         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
791         if (!rdreg)
792                 return -ENOMEM;
793
794         rdreg->base = VGIC_ADDR_UNDEF;
795
796         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
797         if (ret)
798                 goto free;
799
800         rdreg->base = base;
801         rdreg->count = count;
802         rdreg->free_index = 0;
803         rdreg->index = index;
804
805         list_add_tail(&rdreg->list, rd_regions);
806         return 0;
807 free:
808         kfree(rdreg);
809         return ret;
810 }
811
812 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
813 {
814         int ret;
815
816         ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
817         if (ret)
818                 return ret;
819
820         /*
821          * Register iodevs for each existing VCPU.  Adding more VCPUs
822          * afterwards will register the iodevs when needed.
823          */
824         ret = vgic_register_all_redist_iodevs(kvm);
825         if (ret)
826                 return ret;
827
828         return 0;
829 }
830
831 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
832 {
833         const struct vgic_register_region *region;
834         struct vgic_io_device iodev;
835         struct vgic_reg_attr reg_attr;
836         struct kvm_vcpu *vcpu;
837         gpa_t addr;
838         int ret;
839
840         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
841         if (ret)
842                 return ret;
843
844         vcpu = reg_attr.vcpu;
845         addr = reg_attr.addr;
846
847         switch (attr->group) {
848         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
849                 iodev.regions = vgic_v3_dist_registers;
850                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
851                 iodev.base_addr = 0;
852                 break;
853         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
854                 iodev.regions = vgic_v3_rdbase_registers;
855                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
856                 iodev.base_addr = 0;
857                 break;
858         }
859         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
860                 u64 reg, id;
861
862                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
863                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
864         }
865         default:
866                 return -ENXIO;
867         }
868
869         /* We only support aligned 32-bit accesses. */
870         if (addr & 3)
871                 return -ENXIO;
872
873         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
874         if (!region)
875                 return -ENXIO;
876
877         return 0;
878 }
879 /*
880  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
881  * generation register ICC_SGI1R_EL1) with a given VCPU.
882  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
883  * return -1.
884  */
885 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
886 {
887         unsigned long affinity;
888         int level0;
889
890         /*
891          * Split the current VCPU's MPIDR into affinity level 0 and the
892          * rest as this is what we have to compare against.
893          */
894         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
895         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
896         affinity &= ~MPIDR_LEVEL_MASK;
897
898         /* bail out if the upper three levels don't match */
899         if (sgi_aff != affinity)
900                 return -1;
901
902         /* Is this VCPU's bit set in the mask ? */
903         if (!(sgi_cpu_mask & BIT(level0)))
904                 return -1;
905
906         return level0;
907 }
908
909 /*
910  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
911  * so provide a wrapper to use the existing defines to isolate a certain
912  * affinity level.
913  */
914 #define SGI_AFFINITY_LEVEL(reg, level) \
915         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
916         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
917
918 /**
919  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
920  * @vcpu: The VCPU requesting a SGI
921  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
922  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
923  *
924  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
925  * This will trap in sys_regs.c and call this function.
926  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
927  * target processors as well as a bitmask of 16 Aff0 CPUs.
928  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
929  * check for matching ones. If this bit is set, we signal all, but not the
930  * calling VCPU.
931  */
932 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
933 {
934         struct kvm *kvm = vcpu->kvm;
935         struct kvm_vcpu *c_vcpu;
936         u16 target_cpus;
937         u64 mpidr;
938         int sgi, c;
939         int vcpu_id = vcpu->vcpu_id;
940         bool broadcast;
941         unsigned long flags;
942
943         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
944         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
945         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
946         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
947         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
948         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
949
950         /*
951          * We iterate over all VCPUs to find the MPIDRs matching the request.
952          * If we have handled one CPU, we clear its bit to detect early
953          * if we are already finished. This avoids iterating through all
954          * VCPUs when most of the times we just signal a single VCPU.
955          */
956         kvm_for_each_vcpu(c, c_vcpu, kvm) {
957                 struct vgic_irq *irq;
958
959                 /* Exit early if we have dealt with all requested CPUs */
960                 if (!broadcast && target_cpus == 0)
961                         break;
962
963                 /* Don't signal the calling VCPU */
964                 if (broadcast && c == vcpu_id)
965                         continue;
966
967                 if (!broadcast) {
968                         int level0;
969
970                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
971                         if (level0 == -1)
972                                 continue;
973
974                         /* remove this matching VCPU from the mask */
975                         target_cpus &= ~BIT(level0);
976                 }
977
978                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
979
980                 spin_lock_irqsave(&irq->irq_lock, flags);
981
982                 /*
983                  * An access targetting Group0 SGIs can only generate
984                  * those, while an access targetting Group1 SGIs can
985                  * generate interrupts of either group.
986                  */
987                 if (!irq->group || allow_group1) {
988                         irq->pending_latch = true;
989                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
990                 } else {
991                         spin_unlock_irqrestore(&irq->irq_lock, flags);
992                 }
993
994                 vgic_put_irq(vcpu->kvm, irq);
995         }
996 }
997
998 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
999                          int offset, u32 *val)
1000 {
1001         struct vgic_io_device dev = {
1002                 .regions = vgic_v3_dist_registers,
1003                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1004         };
1005
1006         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1007 }
1008
1009 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1010                            int offset, u32 *val)
1011 {
1012         struct vgic_io_device rd_dev = {
1013                 .regions = vgic_v3_rdbase_registers,
1014                 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
1015         };
1016
1017         struct vgic_io_device sgi_dev = {
1018                 .regions = vgic_v3_sgibase_registers,
1019                 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
1020         };
1021
1022         /* SGI_base is the next 64K frame after RD_base */
1023         if (offset >= SZ_64K)
1024                 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1025                                     val);
1026         else
1027                 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1028 }
1029
1030 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1031                                     u32 intid, u64 *val)
1032 {
1033         if (intid % 32)
1034                 return -EINVAL;
1035
1036         if (is_write)
1037                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1038         else
1039                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1040
1041         return 0;
1042 }