GNU Linux-libre 4.19.268-gnu1
[releases.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension        virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_SPINLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84  * Must be called from non-preemptible context
85  */
86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88         return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93  */
94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96         return &kvm_arm_running_vcpu;
97 }
98
99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111         *(int *)rtn = 0;
112 }
113
114
115 /**
116  * kvm_arch_init_vm - initializes a VM data structure
117  * @kvm:        pointer to the KVM struct
118  */
119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121         int ret, cpu;
122
123         if (type)
124                 return -EINVAL;
125
126         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127         if (!kvm->arch.last_vcpu_ran)
128                 return -ENOMEM;
129
130         for_each_possible_cpu(cpu)
131                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_vgic_early_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         /* The maximum number of VCPUs is limited by the host's GIC model */
147         kvm->arch.max_vcpus = vgic_present ?
148                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
150         return ret;
151 out_free_stage2_pgd:
152         kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154         free_percpu(kvm->arch.last_vcpu_ran);
155         kvm->arch.last_vcpu_ran = NULL;
156         return ret;
157 }
158
159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161         return false;
162 }
163
164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166         return 0;
167 }
168
169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171         return VM_FAULT_SIGBUS;
172 }
173
174
175 /**
176  * kvm_arch_destroy_vm - destroy the VM data structure
177  * @kvm:        pointer to the KVM struct
178  */
179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181         int i;
182
183         kvm_vgic_destroy(kvm);
184
185         free_percpu(kvm->arch.last_vcpu_ran);
186         kvm->arch.last_vcpu_ran = NULL;
187
188         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189                 if (kvm->vcpus[i]) {
190                         kvm_arch_vcpu_free(kvm->vcpus[i]);
191                         kvm->vcpus[i] = NULL;
192                 }
193         }
194         atomic_set(&kvm->online_vcpus, 0);
195 }
196
197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199         int r;
200         switch (ext) {
201         case KVM_CAP_IRQCHIP:
202                 r = vgic_present;
203                 break;
204         case KVM_CAP_IOEVENTFD:
205         case KVM_CAP_DEVICE_CTRL:
206         case KVM_CAP_USER_MEMORY:
207         case KVM_CAP_SYNC_MMU:
208         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209         case KVM_CAP_ONE_REG:
210         case KVM_CAP_ARM_PSCI:
211         case KVM_CAP_ARM_PSCI_0_2:
212         case KVM_CAP_READONLY_MEM:
213         case KVM_CAP_MP_STATE:
214         case KVM_CAP_IMMEDIATE_EXIT:
215                 r = 1;
216                 break;
217         case KVM_CAP_ARM_SET_DEVICE_ADDR:
218                 r = 1;
219                 break;
220         case KVM_CAP_NR_VCPUS:
221                 r = num_online_cpus();
222                 break;
223         case KVM_CAP_MAX_VCPUS:
224                 r = KVM_MAX_VCPUS;
225                 break;
226         case KVM_CAP_MAX_VCPU_ID:
227                 r = KVM_MAX_VCPU_ID;
228                 break;
229         case KVM_CAP_NR_MEMSLOTS:
230                 r = KVM_USER_MEM_SLOTS;
231                 break;
232         case KVM_CAP_MSI_DEVID:
233                 if (!kvm)
234                         r = -EINVAL;
235                 else
236                         r = kvm->arch.vgic.msis_require_devid;
237                 break;
238         case KVM_CAP_ARM_USER_IRQ:
239                 /*
240                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
241                  * (bump this number if adding more devices)
242                  */
243                 r = 1;
244                 break;
245         default:
246                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
247                 break;
248         }
249         return r;
250 }
251
252 long kvm_arch_dev_ioctl(struct file *filp,
253                         unsigned int ioctl, unsigned long arg)
254 {
255         return -EINVAL;
256 }
257
258 struct kvm *kvm_arch_alloc_vm(void)
259 {
260         if (!has_vhe())
261                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
262
263         return vzalloc(sizeof(struct kvm));
264 }
265
266 void kvm_arch_free_vm(struct kvm *kvm)
267 {
268         if (!has_vhe())
269                 kfree(kvm);
270         else
271                 vfree(kvm);
272 }
273
274 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
275 {
276         int err;
277         struct kvm_vcpu *vcpu;
278
279         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
280                 err = -EBUSY;
281                 goto out;
282         }
283
284         if (id >= kvm->arch.max_vcpus) {
285                 err = -EINVAL;
286                 goto out;
287         }
288
289         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
290         if (!vcpu) {
291                 err = -ENOMEM;
292                 goto out;
293         }
294
295         err = kvm_vcpu_init(vcpu, kvm, id);
296         if (err)
297                 goto free_vcpu;
298
299         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
300         if (err)
301                 goto vcpu_uninit;
302
303         return vcpu;
304 vcpu_uninit:
305         kvm_vcpu_uninit(vcpu);
306 free_vcpu:
307         kmem_cache_free(kvm_vcpu_cache, vcpu);
308 out:
309         return ERR_PTR(err);
310 }
311
312 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
313 {
314 }
315
316 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
317 {
318         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
319                 static_branch_dec(&userspace_irqchip_in_use);
320
321         kvm_mmu_free_memory_caches(vcpu);
322         kvm_timer_vcpu_terminate(vcpu);
323         kvm_pmu_vcpu_destroy(vcpu);
324         kvm_vcpu_uninit(vcpu);
325         kmem_cache_free(kvm_vcpu_cache, vcpu);
326 }
327
328 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
329 {
330         kvm_arch_vcpu_free(vcpu);
331 }
332
333 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
334 {
335         return kvm_timer_is_pending(vcpu);
336 }
337
338 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
339 {
340         kvm_timer_schedule(vcpu);
341         /*
342          * If we're about to block (most likely because we've just hit a
343          * WFI), we need to sync back the state of the GIC CPU interface
344          * so that we have the lastest PMR and group enables. This ensures
345          * that kvm_arch_vcpu_runnable has up-to-date data to decide
346          * whether we have pending interrupts.
347          */
348         preempt_disable();
349         kvm_vgic_vmcr_sync(vcpu);
350         preempt_enable();
351
352         kvm_vgic_v4_enable_doorbell(vcpu);
353 }
354
355 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
356 {
357         kvm_timer_unschedule(vcpu);
358         kvm_vgic_v4_disable_doorbell(vcpu);
359 }
360
361 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
362 {
363         /* Force users to call KVM_ARM_VCPU_INIT */
364         vcpu->arch.target = -1;
365         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
366
367         /* Set up the timer */
368         kvm_timer_vcpu_init(vcpu);
369
370         kvm_arm_reset_debug_ptr(vcpu);
371
372         return kvm_vgic_vcpu_init(vcpu);
373 }
374
375 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
376 {
377         int *last_ran;
378
379         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
380
381         /*
382          * We might get preempted before the vCPU actually runs, but
383          * over-invalidation doesn't affect correctness.
384          */
385         if (*last_ran != vcpu->vcpu_id) {
386                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
387                 *last_ran = vcpu->vcpu_id;
388         }
389
390         vcpu->cpu = cpu;
391         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
392
393         kvm_arm_set_running_vcpu(vcpu);
394         kvm_vgic_load(vcpu);
395         kvm_timer_vcpu_load(vcpu);
396         kvm_vcpu_load_sysregs(vcpu);
397         kvm_arch_vcpu_load_fp(vcpu);
398
399         if (single_task_running())
400                 vcpu_clear_wfe_traps(vcpu);
401         else
402                 vcpu_set_wfe_traps(vcpu);
403 }
404
405 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
406 {
407         kvm_arch_vcpu_put_fp(vcpu);
408         kvm_vcpu_put_sysregs(vcpu);
409         kvm_timer_vcpu_put(vcpu);
410         kvm_vgic_put(vcpu);
411
412         vcpu->cpu = -1;
413
414         kvm_arm_set_running_vcpu(NULL);
415 }
416
417 static void vcpu_power_off(struct kvm_vcpu *vcpu)
418 {
419         vcpu->arch.power_off = true;
420         kvm_make_request(KVM_REQ_SLEEP, vcpu);
421         kvm_vcpu_kick(vcpu);
422 }
423
424 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
425                                     struct kvm_mp_state *mp_state)
426 {
427         if (vcpu->arch.power_off)
428                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
429         else
430                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
431
432         return 0;
433 }
434
435 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
436                                     struct kvm_mp_state *mp_state)
437 {
438         int ret = 0;
439
440         switch (mp_state->mp_state) {
441         case KVM_MP_STATE_RUNNABLE:
442                 vcpu->arch.power_off = false;
443                 break;
444         case KVM_MP_STATE_STOPPED:
445                 vcpu_power_off(vcpu);
446                 break;
447         default:
448                 ret = -EINVAL;
449         }
450
451         return ret;
452 }
453
454 /**
455  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
456  * @v:          The VCPU pointer
457  *
458  * If the guest CPU is not waiting for interrupts or an interrupt line is
459  * asserted, the CPU is by definition runnable.
460  */
461 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
462 {
463         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
464         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
465                 && !v->arch.power_off && !v->arch.pause);
466 }
467
468 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
469 {
470         return vcpu_mode_priv(vcpu);
471 }
472
473 /* Just ensure a guest exit from a particular CPU */
474 static void exit_vm_noop(void *info)
475 {
476 }
477
478 void force_vm_exit(const cpumask_t *mask)
479 {
480         preempt_disable();
481         smp_call_function_many(mask, exit_vm_noop, NULL, true);
482         preempt_enable();
483 }
484
485 /**
486  * need_new_vmid_gen - check that the VMID is still valid
487  * @kvm: The VM's VMID to check
488  *
489  * return true if there is a new generation of VMIDs being used
490  *
491  * The hardware supports only 256 values with the value zero reserved for the
492  * host, so we check if an assigned value belongs to a previous generation,
493  * which which requires us to assign a new value. If we're the first to use a
494  * VMID for the new generation, we must flush necessary caches and TLBs on all
495  * CPUs.
496  */
497 static bool need_new_vmid_gen(struct kvm *kvm)
498 {
499         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
500         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
501         return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
502 }
503
504 /**
505  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
506  * @kvm The guest that we are about to run
507  *
508  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
509  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
510  * caches and TLBs.
511  */
512 static void update_vttbr(struct kvm *kvm)
513 {
514         phys_addr_t pgd_phys;
515         u64 vmid;
516
517         if (!need_new_vmid_gen(kvm))
518                 return;
519
520         spin_lock(&kvm_vmid_lock);
521
522         /*
523          * We need to re-check the vmid_gen here to ensure that if another vcpu
524          * already allocated a valid vmid for this vm, then this vcpu should
525          * use the same vmid.
526          */
527         if (!need_new_vmid_gen(kvm)) {
528                 spin_unlock(&kvm_vmid_lock);
529                 return;
530         }
531
532         /* First user of a new VMID generation? */
533         if (unlikely(kvm_next_vmid == 0)) {
534                 atomic64_inc(&kvm_vmid_gen);
535                 kvm_next_vmid = 1;
536
537                 /*
538                  * On SMP we know no other CPUs can use this CPU's or each
539                  * other's VMID after force_vm_exit returns since the
540                  * kvm_vmid_lock blocks them from reentry to the guest.
541                  */
542                 force_vm_exit(cpu_all_mask);
543                 /*
544                  * Now broadcast TLB + ICACHE invalidation over the inner
545                  * shareable domain to make sure all data structures are
546                  * clean.
547                  */
548                 kvm_call_hyp(__kvm_flush_vm_context);
549         }
550
551         kvm->arch.vmid = kvm_next_vmid;
552         kvm_next_vmid++;
553         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
554
555         /* update vttbr to be used with the new vmid */
556         pgd_phys = virt_to_phys(kvm->arch.pgd);
557         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
558         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
559         kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
560
561         smp_wmb();
562         WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
563
564         spin_unlock(&kvm_vmid_lock);
565 }
566
567 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
568 {
569         struct kvm *kvm = vcpu->kvm;
570         int ret = 0;
571
572         if (likely(vcpu->arch.has_run_once))
573                 return 0;
574
575         vcpu->arch.has_run_once = true;
576
577         kvm_arm_vcpu_init_debug(vcpu);
578
579         if (likely(irqchip_in_kernel(kvm))) {
580                 /*
581                  * Map the VGIC hardware resources before running a vcpu the
582                  * first time on this VM.
583                  */
584                 if (unlikely(!vgic_ready(kvm))) {
585                         ret = kvm_vgic_map_resources(kvm);
586                         if (ret)
587                                 return ret;
588                 }
589         } else {
590                 /*
591                  * Tell the rest of the code that there are userspace irqchip
592                  * VMs in the wild.
593                  */
594                 static_branch_inc(&userspace_irqchip_in_use);
595         }
596
597         ret = kvm_timer_enable(vcpu);
598         if (ret)
599                 return ret;
600
601         ret = kvm_arm_pmu_v3_enable(vcpu);
602
603         return ret;
604 }
605
606 bool kvm_arch_intc_initialized(struct kvm *kvm)
607 {
608         return vgic_initialized(kvm);
609 }
610
611 void kvm_arm_halt_guest(struct kvm *kvm)
612 {
613         int i;
614         struct kvm_vcpu *vcpu;
615
616         kvm_for_each_vcpu(i, vcpu, kvm)
617                 vcpu->arch.pause = true;
618         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
619 }
620
621 void kvm_arm_resume_guest(struct kvm *kvm)
622 {
623         int i;
624         struct kvm_vcpu *vcpu;
625
626         kvm_for_each_vcpu(i, vcpu, kvm) {
627                 vcpu->arch.pause = false;
628                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
629         }
630 }
631
632 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
633 {
634         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
635
636         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
637                                        (!vcpu->arch.pause)));
638
639         if (vcpu->arch.power_off || vcpu->arch.pause) {
640                 /* Awaken to handle a signal, request we sleep again later. */
641                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
642         }
643
644         /*
645          * Make sure we will observe a potential reset request if we've
646          * observed a change to the power state. Pairs with the smp_wmb() in
647          * kvm_psci_vcpu_on().
648          */
649         smp_rmb();
650 }
651
652 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
653 {
654         return vcpu->arch.target >= 0;
655 }
656
657 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
658 {
659         if (kvm_request_pending(vcpu)) {
660                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
661                         vcpu_req_sleep(vcpu);
662
663                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
664                         kvm_reset_vcpu(vcpu);
665
666                 /*
667                  * Clear IRQ_PENDING requests that were made to guarantee
668                  * that a VCPU sees new virtual interrupts.
669                  */
670                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
671         }
672 }
673
674 /**
675  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
676  * @vcpu:       The VCPU pointer
677  * @run:        The kvm_run structure pointer used for userspace state exchange
678  *
679  * This function is called through the VCPU_RUN ioctl called from user space. It
680  * will execute VM code in a loop until the time slice for the process is used
681  * or some emulation is needed from user space in which case the function will
682  * return with return value 0 and with the kvm_run structure filled in with the
683  * required data for the requested emulation.
684  */
685 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
686 {
687         int ret;
688
689         if (unlikely(!kvm_vcpu_initialized(vcpu)))
690                 return -ENOEXEC;
691
692         ret = kvm_vcpu_first_run_init(vcpu);
693         if (ret)
694                 return ret;
695
696         if (run->exit_reason == KVM_EXIT_MMIO) {
697                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
698                 if (ret)
699                         return ret;
700                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
701                         return 0;
702         }
703
704         if (run->immediate_exit)
705                 return -EINTR;
706
707         vcpu_load(vcpu);
708
709         kvm_sigset_activate(vcpu);
710
711         ret = 1;
712         run->exit_reason = KVM_EXIT_UNKNOWN;
713         while (ret > 0) {
714                 /*
715                  * Check conditions before entering the guest
716                  */
717                 cond_resched();
718
719                 update_vttbr(vcpu->kvm);
720
721                 check_vcpu_requests(vcpu);
722
723                 /*
724                  * Preparing the interrupts to be injected also
725                  * involves poking the GIC, which must be done in a
726                  * non-preemptible context.
727                  */
728                 preempt_disable();
729
730                 kvm_pmu_flush_hwstate(vcpu);
731
732                 local_irq_disable();
733
734                 kvm_vgic_flush_hwstate(vcpu);
735
736                 /*
737                  * Exit if we have a signal pending so that we can deliver the
738                  * signal to user space.
739                  */
740                 if (signal_pending(current)) {
741                         ret = -EINTR;
742                         run->exit_reason = KVM_EXIT_INTR;
743                 }
744
745                 /*
746                  * If we're using a userspace irqchip, then check if we need
747                  * to tell a userspace irqchip about timer or PMU level
748                  * changes and if so, exit to userspace (the actual level
749                  * state gets updated in kvm_timer_update_run and
750                  * kvm_pmu_update_run below).
751                  */
752                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
753                         if (kvm_timer_should_notify_user(vcpu) ||
754                             kvm_pmu_should_notify_user(vcpu)) {
755                                 ret = -EINTR;
756                                 run->exit_reason = KVM_EXIT_INTR;
757                         }
758                 }
759
760                 /*
761                  * Ensure we set mode to IN_GUEST_MODE after we disable
762                  * interrupts and before the final VCPU requests check.
763                  * See the comment in kvm_vcpu_exiting_guest_mode() and
764                  * Documentation/virtual/kvm/vcpu-requests.rst
765                  */
766                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
767
768                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
769                     kvm_request_pending(vcpu)) {
770                         vcpu->mode = OUTSIDE_GUEST_MODE;
771                         isb(); /* Ensure work in x_flush_hwstate is committed */
772                         kvm_pmu_sync_hwstate(vcpu);
773                         if (static_branch_unlikely(&userspace_irqchip_in_use))
774                                 kvm_timer_sync_hwstate(vcpu);
775                         kvm_vgic_sync_hwstate(vcpu);
776                         local_irq_enable();
777                         preempt_enable();
778                         continue;
779                 }
780
781                 kvm_arm_setup_debug(vcpu);
782
783                 /**************************************************************
784                  * Enter the guest
785                  */
786                 trace_kvm_entry(*vcpu_pc(vcpu));
787                 guest_enter_irqoff();
788
789                 if (has_vhe()) {
790                         kvm_arm_vhe_guest_enter();
791                         ret = kvm_vcpu_run_vhe(vcpu);
792                         kvm_arm_vhe_guest_exit();
793                 } else {
794                         ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
795                 }
796
797                 vcpu->mode = OUTSIDE_GUEST_MODE;
798                 vcpu->stat.exits++;
799                 /*
800                  * Back from guest
801                  *************************************************************/
802
803                 kvm_arm_clear_debug(vcpu);
804
805                 /*
806                  * We must sync the PMU state before the vgic state so
807                  * that the vgic can properly sample the updated state of the
808                  * interrupt line.
809                  */
810                 kvm_pmu_sync_hwstate(vcpu);
811
812                 /*
813                  * Sync the vgic state before syncing the timer state because
814                  * the timer code needs to know if the virtual timer
815                  * interrupts are active.
816                  */
817                 kvm_vgic_sync_hwstate(vcpu);
818
819                 /*
820                  * Sync the timer hardware state before enabling interrupts as
821                  * we don't want vtimer interrupts to race with syncing the
822                  * timer virtual interrupt state.
823                  */
824                 if (static_branch_unlikely(&userspace_irqchip_in_use))
825                         kvm_timer_sync_hwstate(vcpu);
826
827                 kvm_arch_vcpu_ctxsync_fp(vcpu);
828
829                 /*
830                  * We may have taken a host interrupt in HYP mode (ie
831                  * while executing the guest). This interrupt is still
832                  * pending, as we haven't serviced it yet!
833                  *
834                  * We're now back in SVC mode, with interrupts
835                  * disabled.  Enabling the interrupts now will have
836                  * the effect of taking the interrupt again, in SVC
837                  * mode this time.
838                  */
839                 local_irq_enable();
840
841                 /*
842                  * We do local_irq_enable() before calling guest_exit() so
843                  * that if a timer interrupt hits while running the guest we
844                  * account that tick as being spent in the guest.  We enable
845                  * preemption after calling guest_exit() so that if we get
846                  * preempted we make sure ticks after that is not counted as
847                  * guest time.
848                  */
849                 guest_exit();
850                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
851
852                 /* Exit types that need handling before we can be preempted */
853                 handle_exit_early(vcpu, run, ret);
854
855                 preempt_enable();
856
857                 ret = handle_exit(vcpu, run, ret);
858         }
859
860         /* Tell userspace about in-kernel device output levels */
861         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
862                 kvm_timer_update_run(vcpu);
863                 kvm_pmu_update_run(vcpu);
864         }
865
866         kvm_sigset_deactivate(vcpu);
867
868         vcpu_put(vcpu);
869         return ret;
870 }
871
872 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
873 {
874         int bit_index;
875         bool set;
876         unsigned long *hcr;
877
878         if (number == KVM_ARM_IRQ_CPU_IRQ)
879                 bit_index = __ffs(HCR_VI);
880         else /* KVM_ARM_IRQ_CPU_FIQ */
881                 bit_index = __ffs(HCR_VF);
882
883         hcr = vcpu_hcr(vcpu);
884         if (level)
885                 set = test_and_set_bit(bit_index, hcr);
886         else
887                 set = test_and_clear_bit(bit_index, hcr);
888
889         /*
890          * If we didn't change anything, no need to wake up or kick other CPUs
891          */
892         if (set == level)
893                 return 0;
894
895         /*
896          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
897          * trigger a world-switch round on the running physical CPU to set the
898          * virtual IRQ/FIQ fields in the HCR appropriately.
899          */
900         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
901         kvm_vcpu_kick(vcpu);
902
903         return 0;
904 }
905
906 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
907                           bool line_status)
908 {
909         u32 irq = irq_level->irq;
910         unsigned int irq_type, vcpu_idx, irq_num;
911         int nrcpus = atomic_read(&kvm->online_vcpus);
912         struct kvm_vcpu *vcpu = NULL;
913         bool level = irq_level->level;
914
915         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
916         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
917         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
918
919         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
920
921         switch (irq_type) {
922         case KVM_ARM_IRQ_TYPE_CPU:
923                 if (irqchip_in_kernel(kvm))
924                         return -ENXIO;
925
926                 if (vcpu_idx >= nrcpus)
927                         return -EINVAL;
928
929                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
930                 if (!vcpu)
931                         return -EINVAL;
932
933                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
934                         return -EINVAL;
935
936                 return vcpu_interrupt_line(vcpu, irq_num, level);
937         case KVM_ARM_IRQ_TYPE_PPI:
938                 if (!irqchip_in_kernel(kvm))
939                         return -ENXIO;
940
941                 if (vcpu_idx >= nrcpus)
942                         return -EINVAL;
943
944                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
945                 if (!vcpu)
946                         return -EINVAL;
947
948                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
949                         return -EINVAL;
950
951                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
952         case KVM_ARM_IRQ_TYPE_SPI:
953                 if (!irqchip_in_kernel(kvm))
954                         return -ENXIO;
955
956                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
957                         return -EINVAL;
958
959                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
960         }
961
962         return -EINVAL;
963 }
964
965 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
966                                const struct kvm_vcpu_init *init)
967 {
968         unsigned int i, ret;
969         int phys_target = kvm_target_cpu();
970
971         if (init->target != phys_target)
972                 return -EINVAL;
973
974         /*
975          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
976          * use the same target.
977          */
978         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
979                 return -EINVAL;
980
981         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
982         for (i = 0; i < sizeof(init->features) * 8; i++) {
983                 bool set = (init->features[i / 32] & (1 << (i % 32)));
984
985                 if (set && i >= KVM_VCPU_MAX_FEATURES)
986                         return -ENOENT;
987
988                 /*
989                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
990                  * use the same feature set.
991                  */
992                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
993                     test_bit(i, vcpu->arch.features) != set)
994                         return -EINVAL;
995
996                 if (set)
997                         set_bit(i, vcpu->arch.features);
998         }
999
1000         vcpu->arch.target = phys_target;
1001
1002         /* Now we know what it is, we can reset it. */
1003         ret = kvm_reset_vcpu(vcpu);
1004         if (ret) {
1005                 vcpu->arch.target = -1;
1006                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1007         }
1008
1009         return ret;
1010 }
1011
1012 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1013                                          struct kvm_vcpu_init *init)
1014 {
1015         int ret;
1016
1017         ret = kvm_vcpu_set_target(vcpu, init);
1018         if (ret)
1019                 return ret;
1020
1021         /*
1022          * Ensure a rebooted VM will fault in RAM pages and detect if the
1023          * guest MMU is turned off and flush the caches as needed.
1024          */
1025         if (vcpu->arch.has_run_once)
1026                 stage2_unmap_vm(vcpu->kvm);
1027
1028         vcpu_reset_hcr(vcpu);
1029
1030         /*
1031          * Handle the "start in power-off" case.
1032          */
1033         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1034                 vcpu_power_off(vcpu);
1035         else
1036                 vcpu->arch.power_off = false;
1037
1038         return 0;
1039 }
1040
1041 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1042                                  struct kvm_device_attr *attr)
1043 {
1044         int ret = -ENXIO;
1045
1046         switch (attr->group) {
1047         default:
1048                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1049                 break;
1050         }
1051
1052         return ret;
1053 }
1054
1055 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1056                                  struct kvm_device_attr *attr)
1057 {
1058         int ret = -ENXIO;
1059
1060         switch (attr->group) {
1061         default:
1062                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1063                 break;
1064         }
1065
1066         return ret;
1067 }
1068
1069 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1070                                  struct kvm_device_attr *attr)
1071 {
1072         int ret = -ENXIO;
1073
1074         switch (attr->group) {
1075         default:
1076                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1077                 break;
1078         }
1079
1080         return ret;
1081 }
1082
1083 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1084                                    struct kvm_vcpu_events *events)
1085 {
1086         memset(events, 0, sizeof(*events));
1087
1088         return __kvm_arm_vcpu_get_events(vcpu, events);
1089 }
1090
1091 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1092                                    struct kvm_vcpu_events *events)
1093 {
1094         int i;
1095
1096         /* check whether the reserved field is zero */
1097         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1098                 if (events->reserved[i])
1099                         return -EINVAL;
1100
1101         /* check whether the pad field is zero */
1102         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1103                 if (events->exception.pad[i])
1104                         return -EINVAL;
1105
1106         return __kvm_arm_vcpu_set_events(vcpu, events);
1107 }
1108
1109 long kvm_arch_vcpu_ioctl(struct file *filp,
1110                          unsigned int ioctl, unsigned long arg)
1111 {
1112         struct kvm_vcpu *vcpu = filp->private_data;
1113         void __user *argp = (void __user *)arg;
1114         struct kvm_device_attr attr;
1115         long r;
1116
1117         switch (ioctl) {
1118         case KVM_ARM_VCPU_INIT: {
1119                 struct kvm_vcpu_init init;
1120
1121                 r = -EFAULT;
1122                 if (copy_from_user(&init, argp, sizeof(init)))
1123                         break;
1124
1125                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1126                 break;
1127         }
1128         case KVM_SET_ONE_REG:
1129         case KVM_GET_ONE_REG: {
1130                 struct kvm_one_reg reg;
1131
1132                 r = -ENOEXEC;
1133                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1134                         break;
1135
1136                 r = -EFAULT;
1137                 if (copy_from_user(&reg, argp, sizeof(reg)))
1138                         break;
1139
1140                 /*
1141                  * We could owe a reset due to PSCI. Handle the pending reset
1142                  * here to ensure userspace register accesses are ordered after
1143                  * the reset.
1144                  */
1145                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1146                         kvm_reset_vcpu(vcpu);
1147
1148                 if (ioctl == KVM_SET_ONE_REG)
1149                         r = kvm_arm_set_reg(vcpu, &reg);
1150                 else
1151                         r = kvm_arm_get_reg(vcpu, &reg);
1152                 break;
1153         }
1154         case KVM_GET_REG_LIST: {
1155                 struct kvm_reg_list __user *user_list = argp;
1156                 struct kvm_reg_list reg_list;
1157                 unsigned n;
1158
1159                 r = -ENOEXEC;
1160                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1161                         break;
1162
1163                 r = -EFAULT;
1164                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1165                         break;
1166                 n = reg_list.n;
1167                 reg_list.n = kvm_arm_num_regs(vcpu);
1168                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1169                         break;
1170                 r = -E2BIG;
1171                 if (n < reg_list.n)
1172                         break;
1173                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1174                 break;
1175         }
1176         case KVM_SET_DEVICE_ATTR: {
1177                 r = -EFAULT;
1178                 if (copy_from_user(&attr, argp, sizeof(attr)))
1179                         break;
1180                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1181                 break;
1182         }
1183         case KVM_GET_DEVICE_ATTR: {
1184                 r = -EFAULT;
1185                 if (copy_from_user(&attr, argp, sizeof(attr)))
1186                         break;
1187                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1188                 break;
1189         }
1190         case KVM_HAS_DEVICE_ATTR: {
1191                 r = -EFAULT;
1192                 if (copy_from_user(&attr, argp, sizeof(attr)))
1193                         break;
1194                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1195                 break;
1196         }
1197         case KVM_GET_VCPU_EVENTS: {
1198                 struct kvm_vcpu_events events;
1199
1200                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1201                         return -EINVAL;
1202
1203                 if (copy_to_user(argp, &events, sizeof(events)))
1204                         return -EFAULT;
1205
1206                 return 0;
1207         }
1208         case KVM_SET_VCPU_EVENTS: {
1209                 struct kvm_vcpu_events events;
1210
1211                 if (copy_from_user(&events, argp, sizeof(events)))
1212                         return -EFAULT;
1213
1214                 return kvm_arm_vcpu_set_events(vcpu, &events);
1215         }
1216         default:
1217                 r = -EINVAL;
1218         }
1219
1220         return r;
1221 }
1222
1223 /**
1224  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1225  * @kvm: kvm instance
1226  * @log: slot id and address to which we copy the log
1227  *
1228  * Steps 1-4 below provide general overview of dirty page logging. See
1229  * kvm_get_dirty_log_protect() function description for additional details.
1230  *
1231  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1232  * always flush the TLB (step 4) even if previous step failed  and the dirty
1233  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1234  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1235  * writes will be marked dirty for next log read.
1236  *
1237  *   1. Take a snapshot of the bit and clear it if needed.
1238  *   2. Write protect the corresponding page.
1239  *   3. Copy the snapshot to the userspace.
1240  *   4. Flush TLB's if needed.
1241  */
1242 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1243 {
1244         bool is_dirty = false;
1245         int r;
1246
1247         mutex_lock(&kvm->slots_lock);
1248
1249         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1250
1251         if (is_dirty)
1252                 kvm_flush_remote_tlbs(kvm);
1253
1254         mutex_unlock(&kvm->slots_lock);
1255         return r;
1256 }
1257
1258 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1259                                         struct kvm_arm_device_addr *dev_addr)
1260 {
1261         unsigned long dev_id, type;
1262
1263         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1264                 KVM_ARM_DEVICE_ID_SHIFT;
1265         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1266                 KVM_ARM_DEVICE_TYPE_SHIFT;
1267
1268         switch (dev_id) {
1269         case KVM_ARM_DEVICE_VGIC_V2:
1270                 if (!vgic_present)
1271                         return -ENXIO;
1272                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1273         default:
1274                 return -ENODEV;
1275         }
1276 }
1277
1278 long kvm_arch_vm_ioctl(struct file *filp,
1279                        unsigned int ioctl, unsigned long arg)
1280 {
1281         struct kvm *kvm = filp->private_data;
1282         void __user *argp = (void __user *)arg;
1283
1284         switch (ioctl) {
1285         case KVM_CREATE_IRQCHIP: {
1286                 int ret;
1287                 if (!vgic_present)
1288                         return -ENXIO;
1289                 mutex_lock(&kvm->lock);
1290                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1291                 mutex_unlock(&kvm->lock);
1292                 return ret;
1293         }
1294         case KVM_ARM_SET_DEVICE_ADDR: {
1295                 struct kvm_arm_device_addr dev_addr;
1296
1297                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1298                         return -EFAULT;
1299                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1300         }
1301         case KVM_ARM_PREFERRED_TARGET: {
1302                 int err;
1303                 struct kvm_vcpu_init init;
1304
1305                 err = kvm_vcpu_preferred_target(&init);
1306                 if (err)
1307                         return err;
1308
1309                 if (copy_to_user(argp, &init, sizeof(init)))
1310                         return -EFAULT;
1311
1312                 return 0;
1313         }
1314         default:
1315                 return -EINVAL;
1316         }
1317 }
1318
1319 static void cpu_init_hyp_mode(void *dummy)
1320 {
1321         phys_addr_t pgd_ptr;
1322         unsigned long hyp_stack_ptr;
1323         unsigned long stack_page;
1324         unsigned long vector_ptr;
1325
1326         /* Switch from the HYP stub to our own HYP init vector */
1327         __hyp_set_vectors(kvm_get_idmap_vector());
1328
1329         pgd_ptr = kvm_mmu_get_httbr();
1330         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1331         hyp_stack_ptr = stack_page + PAGE_SIZE;
1332         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1333
1334         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1335         __cpu_init_stage2();
1336 }
1337
1338 static void cpu_hyp_reset(void)
1339 {
1340         if (!is_kernel_in_hyp_mode())
1341                 __hyp_reset_vectors();
1342 }
1343
1344 static void cpu_hyp_reinit(void)
1345 {
1346         cpu_hyp_reset();
1347
1348         if (is_kernel_in_hyp_mode()) {
1349                 /*
1350                  * __cpu_init_stage2() is safe to call even if the PM
1351                  * event was cancelled before the CPU was reset.
1352                  */
1353                 __cpu_init_stage2();
1354                 kvm_timer_init_vhe();
1355         } else {
1356                 cpu_init_hyp_mode(NULL);
1357         }
1358
1359         kvm_arm_init_debug();
1360
1361         if (vgic_present)
1362                 kvm_vgic_init_cpu_hardware();
1363 }
1364
1365 static void _kvm_arch_hardware_enable(void *discard)
1366 {
1367         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1368                 cpu_hyp_reinit();
1369                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1370         }
1371 }
1372
1373 int kvm_arch_hardware_enable(void)
1374 {
1375         _kvm_arch_hardware_enable(NULL);
1376         return 0;
1377 }
1378
1379 static void _kvm_arch_hardware_disable(void *discard)
1380 {
1381         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1382                 cpu_hyp_reset();
1383                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1384         }
1385 }
1386
1387 void kvm_arch_hardware_disable(void)
1388 {
1389         _kvm_arch_hardware_disable(NULL);
1390 }
1391
1392 #ifdef CONFIG_CPU_PM
1393 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1394                                     unsigned long cmd,
1395                                     void *v)
1396 {
1397         /*
1398          * kvm_arm_hardware_enabled is left with its old value over
1399          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1400          * re-enable hyp.
1401          */
1402         switch (cmd) {
1403         case CPU_PM_ENTER:
1404                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1405                         /*
1406                          * don't update kvm_arm_hardware_enabled here
1407                          * so that the hardware will be re-enabled
1408                          * when we resume. See below.
1409                          */
1410                         cpu_hyp_reset();
1411
1412                 return NOTIFY_OK;
1413         case CPU_PM_ENTER_FAILED:
1414         case CPU_PM_EXIT:
1415                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1416                         /* The hardware was enabled before suspend. */
1417                         cpu_hyp_reinit();
1418
1419                 return NOTIFY_OK;
1420
1421         default:
1422                 return NOTIFY_DONE;
1423         }
1424 }
1425
1426 static struct notifier_block hyp_init_cpu_pm_nb = {
1427         .notifier_call = hyp_init_cpu_pm_notifier,
1428 };
1429
1430 static void __init hyp_cpu_pm_init(void)
1431 {
1432         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1433 }
1434 static void __init hyp_cpu_pm_exit(void)
1435 {
1436         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1437 }
1438 #else
1439 static inline void hyp_cpu_pm_init(void)
1440 {
1441 }
1442 static inline void hyp_cpu_pm_exit(void)
1443 {
1444 }
1445 #endif
1446
1447 static int init_common_resources(void)
1448 {
1449         /* set size of VMID supported by CPU */
1450         kvm_vmid_bits = kvm_get_vmid_bits();
1451         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1452
1453         return 0;
1454 }
1455
1456 static int init_subsystems(void)
1457 {
1458         int err = 0;
1459
1460         /*
1461          * Enable hardware so that subsystem initialisation can access EL2.
1462          */
1463         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1464
1465         /*
1466          * Register CPU lower-power notifier
1467          */
1468         hyp_cpu_pm_init();
1469
1470         /*
1471          * Init HYP view of VGIC
1472          */
1473         err = kvm_vgic_hyp_init();
1474         switch (err) {
1475         case 0:
1476                 vgic_present = true;
1477                 break;
1478         case -ENODEV:
1479         case -ENXIO:
1480                 vgic_present = false;
1481                 err = 0;
1482                 break;
1483         default:
1484                 goto out;
1485         }
1486
1487         /*
1488          * Init HYP architected timer support
1489          */
1490         err = kvm_timer_hyp_init(vgic_present);
1491         if (err)
1492                 goto out;
1493
1494         kvm_perf_init();
1495         kvm_coproc_table_init();
1496
1497 out:
1498         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1499
1500         return err;
1501 }
1502
1503 static void teardown_hyp_mode(void)
1504 {
1505         int cpu;
1506
1507         free_hyp_pgds();
1508         for_each_possible_cpu(cpu)
1509                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1510         hyp_cpu_pm_exit();
1511 }
1512
1513 /**
1514  * Inits Hyp-mode on all online CPUs
1515  */
1516 static int init_hyp_mode(void)
1517 {
1518         int cpu;
1519         int err = 0;
1520
1521         /*
1522          * Allocate Hyp PGD and setup Hyp identity mapping
1523          */
1524         err = kvm_mmu_init();
1525         if (err)
1526                 goto out_err;
1527
1528         /*
1529          * Allocate stack pages for Hypervisor-mode
1530          */
1531         for_each_possible_cpu(cpu) {
1532                 unsigned long stack_page;
1533
1534                 stack_page = __get_free_page(GFP_KERNEL);
1535                 if (!stack_page) {
1536                         err = -ENOMEM;
1537                         goto out_err;
1538                 }
1539
1540                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1541         }
1542
1543         /*
1544          * Map the Hyp-code called directly from the host
1545          */
1546         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1547                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1548         if (err) {
1549                 kvm_err("Cannot map world-switch code\n");
1550                 goto out_err;
1551         }
1552
1553         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1554                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1555         if (err) {
1556                 kvm_err("Cannot map rodata section\n");
1557                 goto out_err;
1558         }
1559
1560         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1561                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1562         if (err) {
1563                 kvm_err("Cannot map bss section\n");
1564                 goto out_err;
1565         }
1566
1567         err = kvm_map_vectors();
1568         if (err) {
1569                 kvm_err("Cannot map vectors\n");
1570                 goto out_err;
1571         }
1572
1573         /*
1574          * Map the Hyp stack pages
1575          */
1576         for_each_possible_cpu(cpu) {
1577                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1578                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1579                                           PAGE_HYP);
1580
1581                 if (err) {
1582                         kvm_err("Cannot map hyp stack\n");
1583                         goto out_err;
1584                 }
1585         }
1586
1587         for_each_possible_cpu(cpu) {
1588                 kvm_cpu_context_t *cpu_ctxt;
1589
1590                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1591                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1592
1593                 if (err) {
1594                         kvm_err("Cannot map host CPU state: %d\n", err);
1595                         goto out_err;
1596                 }
1597         }
1598
1599         err = hyp_map_aux_data();
1600         if (err)
1601                 kvm_err("Cannot map host auxilary data: %d\n", err);
1602
1603         return 0;
1604
1605 out_err:
1606         teardown_hyp_mode();
1607         kvm_err("error initializing Hyp mode: %d\n", err);
1608         return err;
1609 }
1610
1611 static void check_kvm_target_cpu(void *ret)
1612 {
1613         *(int *)ret = kvm_target_cpu();
1614 }
1615
1616 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1617 {
1618         struct kvm_vcpu *vcpu;
1619         int i;
1620
1621         mpidr &= MPIDR_HWID_BITMASK;
1622         kvm_for_each_vcpu(i, vcpu, kvm) {
1623                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1624                         return vcpu;
1625         }
1626         return NULL;
1627 }
1628
1629 bool kvm_arch_has_irq_bypass(void)
1630 {
1631         return true;
1632 }
1633
1634 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1635                                       struct irq_bypass_producer *prod)
1636 {
1637         struct kvm_kernel_irqfd *irqfd =
1638                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1639
1640         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1641                                           &irqfd->irq_entry);
1642 }
1643 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1644                                       struct irq_bypass_producer *prod)
1645 {
1646         struct kvm_kernel_irqfd *irqfd =
1647                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1648
1649         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1650                                      &irqfd->irq_entry);
1651 }
1652
1653 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1654 {
1655         struct kvm_kernel_irqfd *irqfd =
1656                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1657
1658         kvm_arm_halt_guest(irqfd->kvm);
1659 }
1660
1661 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1662 {
1663         struct kvm_kernel_irqfd *irqfd =
1664                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1665
1666         kvm_arm_resume_guest(irqfd->kvm);
1667 }
1668
1669 /**
1670  * Initialize Hyp-mode and memory mappings on all CPUs.
1671  */
1672 int kvm_arch_init(void *opaque)
1673 {
1674         int err;
1675         int ret, cpu;
1676         bool in_hyp_mode;
1677
1678         if (!is_hyp_mode_available()) {
1679                 kvm_info("HYP mode not available\n");
1680                 return -ENODEV;
1681         }
1682
1683         if (!kvm_arch_check_sve_has_vhe()) {
1684                 kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
1685                 return -ENODEV;
1686         }
1687
1688         for_each_online_cpu(cpu) {
1689                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1690                 if (ret < 0) {
1691                         kvm_err("Error, CPU %d not supported!\n", cpu);
1692                         return -ENODEV;
1693                 }
1694         }
1695
1696         err = init_common_resources();
1697         if (err)
1698                 return err;
1699
1700         in_hyp_mode = is_kernel_in_hyp_mode();
1701
1702         if (!in_hyp_mode) {
1703                 err = init_hyp_mode();
1704                 if (err)
1705                         goto out_err;
1706         }
1707
1708         err = init_subsystems();
1709         if (err)
1710                 goto out_hyp;
1711
1712         if (in_hyp_mode)
1713                 kvm_info("VHE mode initialized successfully\n");
1714         else
1715                 kvm_info("Hyp mode initialized successfully\n");
1716
1717         return 0;
1718
1719 out_hyp:
1720         if (!in_hyp_mode)
1721                 teardown_hyp_mode();
1722 out_err:
1723         return err;
1724 }
1725
1726 /* NOP: Compiling as a module not supported */
1727 void kvm_arch_exit(void)
1728 {
1729         kvm_perf_teardown();
1730 }
1731
1732 static int arm_init(void)
1733 {
1734         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1735         return rc;
1736 }
1737
1738 module_init(arm_init);