GNU Linux-libre 4.14.265-gnu1
[releases.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #include <linux/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117
118         if (type)
119                 return -EINVAL;
120
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135
136         kvm_vgic_early_init(kvm);
137
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187
188         kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_MAX_VCPU_ID:
221                 r = KVM_MAX_VCPU_ID;
222                 break;
223         case KVM_CAP_NR_MEMSLOTS:
224                 r = KVM_USER_MEM_SLOTS;
225                 break;
226         case KVM_CAP_MSI_DEVID:
227                 if (!kvm)
228                         r = -EINVAL;
229                 else
230                         r = kvm->arch.vgic.msis_require_devid;
231                 break;
232         case KVM_CAP_ARM_USER_IRQ:
233                 /*
234                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235                  * (bump this number if adding more devices)
236                  */
237                 r = 1;
238                 break;
239         default:
240                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241                 break;
242         }
243         return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247                         unsigned int ioctl, unsigned long arg)
248 {
249         return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255         int err;
256         struct kvm_vcpu *vcpu;
257
258         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259                 err = -EBUSY;
260                 goto out;
261         }
262
263         if (id >= kvm->arch.max_vcpus) {
264                 err = -EINVAL;
265                 goto out;
266         }
267
268         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269         if (!vcpu) {
270                 err = -ENOMEM;
271                 goto out;
272         }
273
274         err = kvm_vcpu_init(vcpu, kvm, id);
275         if (err)
276                 goto free_vcpu;
277
278         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279         if (err)
280                 goto vcpu_uninit;
281
282         return vcpu;
283 vcpu_uninit:
284         kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286         kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288         return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293         kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298         kvm_mmu_free_memory_caches(vcpu);
299         kvm_timer_vcpu_terminate(vcpu);
300         kvm_vgic_vcpu_destroy(vcpu);
301         kvm_pmu_vcpu_destroy(vcpu);
302         kvm_vcpu_uninit(vcpu);
303         kmem_cache_free(kvm_vcpu_cache, vcpu);
304 }
305
306 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
307 {
308         kvm_arch_vcpu_free(vcpu);
309 }
310
311 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
312 {
313         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
314                kvm_timer_should_fire(vcpu_ptimer(vcpu));
315 }
316
317 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
318 {
319         kvm_timer_schedule(vcpu);
320         /*
321          * If we're about to block (most likely because we've just hit a
322          * WFI), we need to sync back the state of the GIC CPU interface
323          * so that we have the lastest PMR and group enables. This ensures
324          * that kvm_arch_vcpu_runnable has up-to-date data to decide
325          * whether we have pending interrupts.
326          */
327         preempt_disable();
328         kvm_vgic_vmcr_sync(vcpu);
329         preempt_enable();
330 }
331
332 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
333 {
334         kvm_timer_unschedule(vcpu);
335 }
336
337 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
338 {
339         /* Force users to call KVM_ARM_VCPU_INIT */
340         vcpu->arch.target = -1;
341         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
342
343         /* Set up the timer */
344         kvm_timer_vcpu_init(vcpu);
345
346         kvm_arm_reset_debug_ptr(vcpu);
347
348         return kvm_vgic_vcpu_init(vcpu);
349 }
350
351 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
352 {
353         int *last_ran;
354
355         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
356
357         /*
358          * We might get preempted before the vCPU actually runs, but
359          * over-invalidation doesn't affect correctness.
360          */
361         if (*last_ran != vcpu->vcpu_id) {
362                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
363                 *last_ran = vcpu->vcpu_id;
364         }
365
366         vcpu->cpu = cpu;
367         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
368
369         kvm_arm_set_running_vcpu(vcpu);
370
371         kvm_vgic_load(vcpu);
372 }
373
374 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
375 {
376         kvm_vgic_put(vcpu);
377
378         vcpu->cpu = -1;
379
380         kvm_arm_set_running_vcpu(NULL);
381         kvm_timer_vcpu_put(vcpu);
382 }
383
384 static void vcpu_power_off(struct kvm_vcpu *vcpu)
385 {
386         vcpu->arch.power_off = true;
387         kvm_make_request(KVM_REQ_SLEEP, vcpu);
388         kvm_vcpu_kick(vcpu);
389 }
390
391 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
392                                     struct kvm_mp_state *mp_state)
393 {
394         if (vcpu->arch.power_off)
395                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
396         else
397                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
398
399         return 0;
400 }
401
402 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
403                                     struct kvm_mp_state *mp_state)
404 {
405         switch (mp_state->mp_state) {
406         case KVM_MP_STATE_RUNNABLE:
407                 vcpu->arch.power_off = false;
408                 break;
409         case KVM_MP_STATE_STOPPED:
410                 vcpu_power_off(vcpu);
411                 break;
412         default:
413                 return -EINVAL;
414         }
415
416         return 0;
417 }
418
419 /**
420  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421  * @v:          The VCPU pointer
422  *
423  * If the guest CPU is not waiting for interrupts or an interrupt line is
424  * asserted, the CPU is by definition runnable.
425  */
426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427 {
428         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
429                 && !v->arch.power_off && !v->arch.pause);
430 }
431
432 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
433 {
434         return vcpu_mode_priv(vcpu);
435 }
436
437 /* Just ensure a guest exit from a particular CPU */
438 static void exit_vm_noop(void *info)
439 {
440 }
441
442 void force_vm_exit(const cpumask_t *mask)
443 {
444         preempt_disable();
445         smp_call_function_many(mask, exit_vm_noop, NULL, true);
446         preempt_enable();
447 }
448
449 /**
450  * need_new_vmid_gen - check that the VMID is still valid
451  * @kvm: The VM's VMID to check
452  *
453  * return true if there is a new generation of VMIDs being used
454  *
455  * The hardware supports only 256 values with the value zero reserved for the
456  * host, so we check if an assigned value belongs to a previous generation,
457  * which which requires us to assign a new value. If we're the first to use a
458  * VMID for the new generation, we must flush necessary caches and TLBs on all
459  * CPUs.
460  */
461 static bool need_new_vmid_gen(struct kvm *kvm)
462 {
463         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
464         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
465         return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
466 }
467
468 /**
469  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
470  * @kvm The guest that we are about to run
471  *
472  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
473  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
474  * caches and TLBs.
475  */
476 static void update_vttbr(struct kvm *kvm)
477 {
478         phys_addr_t pgd_phys;
479         u64 vmid;
480
481         if (!need_new_vmid_gen(kvm))
482                 return;
483
484         spin_lock(&kvm_vmid_lock);
485
486         /*
487          * We need to re-check the vmid_gen here to ensure that if another vcpu
488          * already allocated a valid vmid for this vm, then this vcpu should
489          * use the same vmid.
490          */
491         if (!need_new_vmid_gen(kvm)) {
492                 spin_unlock(&kvm_vmid_lock);
493                 return;
494         }
495
496         /* First user of a new VMID generation? */
497         if (unlikely(kvm_next_vmid == 0)) {
498                 atomic64_inc(&kvm_vmid_gen);
499                 kvm_next_vmid = 1;
500
501                 /*
502                  * On SMP we know no other CPUs can use this CPU's or each
503                  * other's VMID after force_vm_exit returns since the
504                  * kvm_vmid_lock blocks them from reentry to the guest.
505                  */
506                 force_vm_exit(cpu_all_mask);
507                 /*
508                  * Now broadcast TLB + ICACHE invalidation over the inner
509                  * shareable domain to make sure all data structures are
510                  * clean.
511                  */
512                 kvm_call_hyp(__kvm_flush_vm_context);
513         }
514
515         kvm->arch.vmid = kvm_next_vmid;
516         kvm_next_vmid++;
517         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
518
519         /* update vttbr to be used with the new vmid */
520         pgd_phys = virt_to_phys(kvm->arch.pgd);
521         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523         kvm->arch.vttbr = pgd_phys | vmid;
524
525         smp_wmb();
526         WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
527
528         spin_unlock(&kvm_vmid_lock);
529 }
530
531 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
532 {
533         struct kvm *kvm = vcpu->kvm;
534         int ret = 0;
535
536         if (likely(vcpu->arch.has_run_once))
537                 return 0;
538
539         vcpu->arch.has_run_once = true;
540
541         /*
542          * Map the VGIC hardware resources before running a vcpu the first
543          * time on this VM.
544          */
545         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
546                 ret = kvm_vgic_map_resources(kvm);
547                 if (ret)
548                         return ret;
549         }
550
551         ret = kvm_timer_enable(vcpu);
552         if (ret)
553                 return ret;
554
555         ret = kvm_arm_pmu_v3_enable(vcpu);
556
557         return ret;
558 }
559
560 bool kvm_arch_intc_initialized(struct kvm *kvm)
561 {
562         return vgic_initialized(kvm);
563 }
564
565 void kvm_arm_halt_guest(struct kvm *kvm)
566 {
567         int i;
568         struct kvm_vcpu *vcpu;
569
570         kvm_for_each_vcpu(i, vcpu, kvm)
571                 vcpu->arch.pause = true;
572         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 }
574
575 void kvm_arm_resume_guest(struct kvm *kvm)
576 {
577         int i;
578         struct kvm_vcpu *vcpu;
579
580         kvm_for_each_vcpu(i, vcpu, kvm) {
581                 vcpu->arch.pause = false;
582                 swake_up(kvm_arch_vcpu_wq(vcpu));
583         }
584 }
585
586 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587 {
588         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
589
590         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
591                                        (!vcpu->arch.pause)));
592
593         if (vcpu->arch.power_off || vcpu->arch.pause) {
594                 /* Awaken to handle a signal, request we sleep again later. */
595                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
596         }
597 }
598
599 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
600 {
601         return vcpu->arch.target >= 0;
602 }
603
604 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
605 {
606         if (kvm_request_pending(vcpu)) {
607                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
608                         vcpu_req_sleep(vcpu);
609
610                 /*
611                  * Clear IRQ_PENDING requests that were made to guarantee
612                  * that a VCPU sees new virtual interrupts.
613                  */
614                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615         }
616 }
617
618 /**
619  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
620  * @vcpu:       The VCPU pointer
621  * @run:        The kvm_run structure pointer used for userspace state exchange
622  *
623  * This function is called through the VCPU_RUN ioctl called from user space. It
624  * will execute VM code in a loop until the time slice for the process is used
625  * or some emulation is needed from user space in which case the function will
626  * return with return value 0 and with the kvm_run structure filled in with the
627  * required data for the requested emulation.
628  */
629 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
630 {
631         int ret;
632
633         if (unlikely(!kvm_vcpu_initialized(vcpu)))
634                 return -ENOEXEC;
635
636         ret = kvm_vcpu_first_run_init(vcpu);
637         if (ret)
638                 return ret;
639
640         if (run->exit_reason == KVM_EXIT_MMIO) {
641                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
642                 if (ret)
643                         return ret;
644         }
645
646         if (run->immediate_exit)
647                 return -EINTR;
648
649         kvm_sigset_activate(vcpu);
650
651         ret = 1;
652         run->exit_reason = KVM_EXIT_UNKNOWN;
653         while (ret > 0) {
654                 /*
655                  * Check conditions before entering the guest
656                  */
657                 cond_resched();
658
659                 update_vttbr(vcpu->kvm);
660
661                 check_vcpu_requests(vcpu);
662
663                 /*
664                  * Preparing the interrupts to be injected also
665                  * involves poking the GIC, which must be done in a
666                  * non-preemptible context.
667                  */
668                 preempt_disable();
669
670                 kvm_pmu_flush_hwstate(vcpu);
671
672                 kvm_timer_flush_hwstate(vcpu);
673                 kvm_vgic_flush_hwstate(vcpu);
674
675                 local_irq_disable();
676
677                 /*
678                  * If we have a singal pending, or need to notify a userspace
679                  * irqchip about timer or PMU level changes, then we exit (and
680                  * update the timer level state in kvm_timer_update_run
681                  * below).
682                  */
683                 if (signal_pending(current) ||
684                     kvm_timer_should_notify_user(vcpu) ||
685                     kvm_pmu_should_notify_user(vcpu)) {
686                         ret = -EINTR;
687                         run->exit_reason = KVM_EXIT_INTR;
688                 }
689
690                 /*
691                  * Ensure we set mode to IN_GUEST_MODE after we disable
692                  * interrupts and before the final VCPU requests check.
693                  * See the comment in kvm_vcpu_exiting_guest_mode() and
694                  * Documentation/virtual/kvm/vcpu-requests.rst
695                  */
696                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
697
698                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
699                     kvm_request_pending(vcpu)) {
700                         vcpu->mode = OUTSIDE_GUEST_MODE;
701                         local_irq_enable();
702                         kvm_pmu_sync_hwstate(vcpu);
703                         kvm_timer_sync_hwstate(vcpu);
704                         kvm_vgic_sync_hwstate(vcpu);
705                         preempt_enable();
706                         continue;
707                 }
708
709                 kvm_arm_setup_debug(vcpu);
710
711                 /**************************************************************
712                  * Enter the guest
713                  */
714                 trace_kvm_entry(*vcpu_pc(vcpu));
715                 guest_enter_irqoff();
716
717                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
718
719                 vcpu->mode = OUTSIDE_GUEST_MODE;
720                 vcpu->stat.exits++;
721                 /*
722                  * Back from guest
723                  *************************************************************/
724
725                 kvm_arm_clear_debug(vcpu);
726
727                 /*
728                  * We may have taken a host interrupt in HYP mode (ie
729                  * while executing the guest). This interrupt is still
730                  * pending, as we haven't serviced it yet!
731                  *
732                  * We're now back in SVC mode, with interrupts
733                  * disabled.  Enabling the interrupts now will have
734                  * the effect of taking the interrupt again, in SVC
735                  * mode this time.
736                  */
737                 local_irq_enable();
738
739                 /*
740                  * We do local_irq_enable() before calling guest_exit() so
741                  * that if a timer interrupt hits while running the guest we
742                  * account that tick as being spent in the guest.  We enable
743                  * preemption after calling guest_exit() so that if we get
744                  * preempted we make sure ticks after that is not counted as
745                  * guest time.
746                  */
747                 guest_exit();
748                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
749
750                 /*
751                  * We must sync the PMU and timer state before the vgic state so
752                  * that the vgic can properly sample the updated state of the
753                  * interrupt line.
754                  */
755                 kvm_pmu_sync_hwstate(vcpu);
756                 kvm_timer_sync_hwstate(vcpu);
757
758                 kvm_vgic_sync_hwstate(vcpu);
759
760                 preempt_enable();
761
762                 ret = handle_exit(vcpu, run, ret);
763         }
764
765         /* Tell userspace about in-kernel device output levels */
766         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
767                 kvm_timer_update_run(vcpu);
768                 kvm_pmu_update_run(vcpu);
769         }
770
771         kvm_sigset_deactivate(vcpu);
772
773         return ret;
774 }
775
776 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
777 {
778         int bit_index;
779         bool set;
780         unsigned long *ptr;
781
782         if (number == KVM_ARM_IRQ_CPU_IRQ)
783                 bit_index = __ffs(HCR_VI);
784         else /* KVM_ARM_IRQ_CPU_FIQ */
785                 bit_index = __ffs(HCR_VF);
786
787         ptr = (unsigned long *)&vcpu->arch.irq_lines;
788         if (level)
789                 set = test_and_set_bit(bit_index, ptr);
790         else
791                 set = test_and_clear_bit(bit_index, ptr);
792
793         /*
794          * If we didn't change anything, no need to wake up or kick other CPUs
795          */
796         if (set == level)
797                 return 0;
798
799         /*
800          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
801          * trigger a world-switch round on the running physical CPU to set the
802          * virtual IRQ/FIQ fields in the HCR appropriately.
803          */
804         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
805         kvm_vcpu_kick(vcpu);
806
807         return 0;
808 }
809
810 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
811                           bool line_status)
812 {
813         u32 irq = irq_level->irq;
814         unsigned int irq_type, vcpu_idx, irq_num;
815         int nrcpus = atomic_read(&kvm->online_vcpus);
816         struct kvm_vcpu *vcpu = NULL;
817         bool level = irq_level->level;
818
819         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
820         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
821         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
822
823         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
824
825         switch (irq_type) {
826         case KVM_ARM_IRQ_TYPE_CPU:
827                 if (irqchip_in_kernel(kvm))
828                         return -ENXIO;
829
830                 if (vcpu_idx >= nrcpus)
831                         return -EINVAL;
832
833                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
834                 if (!vcpu)
835                         return -EINVAL;
836
837                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
838                         return -EINVAL;
839
840                 return vcpu_interrupt_line(vcpu, irq_num, level);
841         case KVM_ARM_IRQ_TYPE_PPI:
842                 if (!irqchip_in_kernel(kvm))
843                         return -ENXIO;
844
845                 if (vcpu_idx >= nrcpus)
846                         return -EINVAL;
847
848                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
849                 if (!vcpu)
850                         return -EINVAL;
851
852                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
853                         return -EINVAL;
854
855                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
856         case KVM_ARM_IRQ_TYPE_SPI:
857                 if (!irqchip_in_kernel(kvm))
858                         return -ENXIO;
859
860                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
861                         return -EINVAL;
862
863                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
864         }
865
866         return -EINVAL;
867 }
868
869 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
870                                const struct kvm_vcpu_init *init)
871 {
872         unsigned int i, ret;
873         int phys_target = kvm_target_cpu();
874
875         if (init->target != phys_target)
876                 return -EINVAL;
877
878         /*
879          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
880          * use the same target.
881          */
882         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
883                 return -EINVAL;
884
885         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
886         for (i = 0; i < sizeof(init->features) * 8; i++) {
887                 bool set = (init->features[i / 32] & (1 << (i % 32)));
888
889                 if (set && i >= KVM_VCPU_MAX_FEATURES)
890                         return -ENOENT;
891
892                 /*
893                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
894                  * use the same feature set.
895                  */
896                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
897                     test_bit(i, vcpu->arch.features) != set)
898                         return -EINVAL;
899
900                 if (set)
901                         set_bit(i, vcpu->arch.features);
902         }
903
904         vcpu->arch.target = phys_target;
905
906         /* Now we know what it is, we can reset it. */
907         ret = kvm_reset_vcpu(vcpu);
908         if (ret) {
909                 vcpu->arch.target = -1;
910                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
911         }
912
913         return ret;
914 }
915
916 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
917                                          struct kvm_vcpu_init *init)
918 {
919         int ret;
920
921         ret = kvm_vcpu_set_target(vcpu, init);
922         if (ret)
923                 return ret;
924
925         /*
926          * Ensure a rebooted VM will fault in RAM pages and detect if the
927          * guest MMU is turned off and flush the caches as needed.
928          */
929         if (vcpu->arch.has_run_once)
930                 stage2_unmap_vm(vcpu->kvm);
931
932         vcpu_reset_hcr(vcpu);
933
934         /*
935          * Handle the "start in power-off" case.
936          */
937         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
938                 vcpu_power_off(vcpu);
939         else
940                 vcpu->arch.power_off = false;
941
942         return 0;
943 }
944
945 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
946                                  struct kvm_device_attr *attr)
947 {
948         int ret = -ENXIO;
949
950         switch (attr->group) {
951         default:
952                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
953                 break;
954         }
955
956         return ret;
957 }
958
959 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
960                                  struct kvm_device_attr *attr)
961 {
962         int ret = -ENXIO;
963
964         switch (attr->group) {
965         default:
966                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
967                 break;
968         }
969
970         return ret;
971 }
972
973 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
974                                  struct kvm_device_attr *attr)
975 {
976         int ret = -ENXIO;
977
978         switch (attr->group) {
979         default:
980                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
981                 break;
982         }
983
984         return ret;
985 }
986
987 long kvm_arch_vcpu_ioctl(struct file *filp,
988                          unsigned int ioctl, unsigned long arg)
989 {
990         struct kvm_vcpu *vcpu = filp->private_data;
991         void __user *argp = (void __user *)arg;
992         struct kvm_device_attr attr;
993
994         switch (ioctl) {
995         case KVM_ARM_VCPU_INIT: {
996                 struct kvm_vcpu_init init;
997
998                 if (copy_from_user(&init, argp, sizeof(init)))
999                         return -EFAULT;
1000
1001                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1002         }
1003         case KVM_SET_ONE_REG:
1004         case KVM_GET_ONE_REG: {
1005                 struct kvm_one_reg reg;
1006
1007                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1008                         return -ENOEXEC;
1009
1010                 if (copy_from_user(&reg, argp, sizeof(reg)))
1011                         return -EFAULT;
1012                 if (ioctl == KVM_SET_ONE_REG)
1013                         return kvm_arm_set_reg(vcpu, &reg);
1014                 else
1015                         return kvm_arm_get_reg(vcpu, &reg);
1016         }
1017         case KVM_GET_REG_LIST: {
1018                 struct kvm_reg_list __user *user_list = argp;
1019                 struct kvm_reg_list reg_list;
1020                 unsigned n;
1021
1022                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1023                         return -ENOEXEC;
1024
1025                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1026                         return -EFAULT;
1027                 n = reg_list.n;
1028                 reg_list.n = kvm_arm_num_regs(vcpu);
1029                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1030                         return -EFAULT;
1031                 if (n < reg_list.n)
1032                         return -E2BIG;
1033                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1034         }
1035         case KVM_SET_DEVICE_ATTR: {
1036                 if (copy_from_user(&attr, argp, sizeof(attr)))
1037                         return -EFAULT;
1038                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1039         }
1040         case KVM_GET_DEVICE_ATTR: {
1041                 if (copy_from_user(&attr, argp, sizeof(attr)))
1042                         return -EFAULT;
1043                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1044         }
1045         case KVM_HAS_DEVICE_ATTR: {
1046                 if (copy_from_user(&attr, argp, sizeof(attr)))
1047                         return -EFAULT;
1048                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1049         }
1050         default:
1051                 return -EINVAL;
1052         }
1053 }
1054
1055 /**
1056  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1057  * @kvm: kvm instance
1058  * @log: slot id and address to which we copy the log
1059  *
1060  * Steps 1-4 below provide general overview of dirty page logging. See
1061  * kvm_get_dirty_log_protect() function description for additional details.
1062  *
1063  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1064  * always flush the TLB (step 4) even if previous step failed  and the dirty
1065  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1066  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1067  * writes will be marked dirty for next log read.
1068  *
1069  *   1. Take a snapshot of the bit and clear it if needed.
1070  *   2. Write protect the corresponding page.
1071  *   3. Copy the snapshot to the userspace.
1072  *   4. Flush TLB's if needed.
1073  */
1074 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1075 {
1076         bool is_dirty = false;
1077         int r;
1078
1079         mutex_lock(&kvm->slots_lock);
1080
1081         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1082
1083         if (is_dirty)
1084                 kvm_flush_remote_tlbs(kvm);
1085
1086         mutex_unlock(&kvm->slots_lock);
1087         return r;
1088 }
1089
1090 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1091                                         struct kvm_arm_device_addr *dev_addr)
1092 {
1093         unsigned long dev_id, type;
1094
1095         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1096                 KVM_ARM_DEVICE_ID_SHIFT;
1097         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1098                 KVM_ARM_DEVICE_TYPE_SHIFT;
1099
1100         switch (dev_id) {
1101         case KVM_ARM_DEVICE_VGIC_V2:
1102                 if (!vgic_present)
1103                         return -ENXIO;
1104                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1105         default:
1106                 return -ENODEV;
1107         }
1108 }
1109
1110 long kvm_arch_vm_ioctl(struct file *filp,
1111                        unsigned int ioctl, unsigned long arg)
1112 {
1113         struct kvm *kvm = filp->private_data;
1114         void __user *argp = (void __user *)arg;
1115
1116         switch (ioctl) {
1117         case KVM_CREATE_IRQCHIP: {
1118                 int ret;
1119                 if (!vgic_present)
1120                         return -ENXIO;
1121                 mutex_lock(&kvm->lock);
1122                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1123                 mutex_unlock(&kvm->lock);
1124                 return ret;
1125         }
1126         case KVM_ARM_SET_DEVICE_ADDR: {
1127                 struct kvm_arm_device_addr dev_addr;
1128
1129                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1130                         return -EFAULT;
1131                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1132         }
1133         case KVM_ARM_PREFERRED_TARGET: {
1134                 int err;
1135                 struct kvm_vcpu_init init;
1136
1137                 err = kvm_vcpu_preferred_target(&init);
1138                 if (err)
1139                         return err;
1140
1141                 if (copy_to_user(argp, &init, sizeof(init)))
1142                         return -EFAULT;
1143
1144                 return 0;
1145         }
1146         default:
1147                 return -EINVAL;
1148         }
1149 }
1150
1151 static void cpu_init_hyp_mode(void *dummy)
1152 {
1153         phys_addr_t pgd_ptr;
1154         unsigned long hyp_stack_ptr;
1155         unsigned long stack_page;
1156         unsigned long vector_ptr;
1157
1158         /* Switch from the HYP stub to our own HYP init vector */
1159         __hyp_set_vectors(kvm_get_idmap_vector());
1160
1161         pgd_ptr = kvm_mmu_get_httbr();
1162         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1163         hyp_stack_ptr = stack_page + PAGE_SIZE;
1164         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1165
1166         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1167         __cpu_init_stage2();
1168 }
1169
1170 static void cpu_hyp_reset(void)
1171 {
1172         if (!is_kernel_in_hyp_mode())
1173                 __hyp_reset_vectors();
1174 }
1175
1176 static void cpu_hyp_reinit(void)
1177 {
1178         cpu_hyp_reset();
1179
1180         if (is_kernel_in_hyp_mode()) {
1181                 /*
1182                  * __cpu_init_stage2() is safe to call even if the PM
1183                  * event was cancelled before the CPU was reset.
1184                  */
1185                 __cpu_init_stage2();
1186                 kvm_timer_init_vhe();
1187         } else {
1188                 cpu_init_hyp_mode(NULL);
1189         }
1190
1191         kvm_arm_init_debug();
1192
1193         if (vgic_present)
1194                 kvm_vgic_init_cpu_hardware();
1195 }
1196
1197 static void _kvm_arch_hardware_enable(void *discard)
1198 {
1199         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1200                 cpu_hyp_reinit();
1201                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1202         }
1203 }
1204
1205 int kvm_arch_hardware_enable(void)
1206 {
1207         _kvm_arch_hardware_enable(NULL);
1208         return 0;
1209 }
1210
1211 static void _kvm_arch_hardware_disable(void *discard)
1212 {
1213         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1214                 cpu_hyp_reset();
1215                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1216         }
1217 }
1218
1219 void kvm_arch_hardware_disable(void)
1220 {
1221         _kvm_arch_hardware_disable(NULL);
1222 }
1223
1224 #ifdef CONFIG_CPU_PM
1225 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1226                                     unsigned long cmd,
1227                                     void *v)
1228 {
1229         /*
1230          * kvm_arm_hardware_enabled is left with its old value over
1231          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1232          * re-enable hyp.
1233          */
1234         switch (cmd) {
1235         case CPU_PM_ENTER:
1236                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1237                         /*
1238                          * don't update kvm_arm_hardware_enabled here
1239                          * so that the hardware will be re-enabled
1240                          * when we resume. See below.
1241                          */
1242                         cpu_hyp_reset();
1243
1244                 return NOTIFY_OK;
1245         case CPU_PM_ENTER_FAILED:
1246         case CPU_PM_EXIT:
1247                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1248                         /* The hardware was enabled before suspend. */
1249                         cpu_hyp_reinit();
1250
1251                 return NOTIFY_OK;
1252
1253         default:
1254                 return NOTIFY_DONE;
1255         }
1256 }
1257
1258 static struct notifier_block hyp_init_cpu_pm_nb = {
1259         .notifier_call = hyp_init_cpu_pm_notifier,
1260 };
1261
1262 static void __init hyp_cpu_pm_init(void)
1263 {
1264         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1265 }
1266 static void __init hyp_cpu_pm_exit(void)
1267 {
1268         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1269 }
1270 #else
1271 static inline void hyp_cpu_pm_init(void)
1272 {
1273 }
1274 static inline void hyp_cpu_pm_exit(void)
1275 {
1276 }
1277 #endif
1278
1279 static int init_common_resources(void)
1280 {
1281         /* set size of VMID supported by CPU */
1282         kvm_vmid_bits = kvm_get_vmid_bits();
1283         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1284
1285         return 0;
1286 }
1287
1288 static int init_subsystems(void)
1289 {
1290         int err = 0;
1291
1292         /*
1293          * Enable hardware so that subsystem initialisation can access EL2.
1294          */
1295         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1296
1297         /*
1298          * Register CPU lower-power notifier
1299          */
1300         hyp_cpu_pm_init();
1301
1302         /*
1303          * Init HYP view of VGIC
1304          */
1305         err = kvm_vgic_hyp_init();
1306         switch (err) {
1307         case 0:
1308                 vgic_present = true;
1309                 break;
1310         case -ENODEV:
1311         case -ENXIO:
1312                 vgic_present = false;
1313                 err = 0;
1314                 break;
1315         default:
1316                 goto out;
1317         }
1318
1319         /*
1320          * Init HYP architected timer support
1321          */
1322         err = kvm_timer_hyp_init();
1323         if (err)
1324                 goto out;
1325
1326         kvm_perf_init();
1327         kvm_coproc_table_init();
1328
1329 out:
1330         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1331
1332         return err;
1333 }
1334
1335 static void teardown_hyp_mode(void)
1336 {
1337         int cpu;
1338
1339         free_hyp_pgds();
1340         for_each_possible_cpu(cpu)
1341                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1342         hyp_cpu_pm_exit();
1343 }
1344
1345 /**
1346  * Inits Hyp-mode on all online CPUs
1347  */
1348 static int init_hyp_mode(void)
1349 {
1350         int cpu;
1351         int err = 0;
1352
1353         /*
1354          * Allocate Hyp PGD and setup Hyp identity mapping
1355          */
1356         err = kvm_mmu_init();
1357         if (err)
1358                 goto out_err;
1359
1360         /*
1361          * Allocate stack pages for Hypervisor-mode
1362          */
1363         for_each_possible_cpu(cpu) {
1364                 unsigned long stack_page;
1365
1366                 stack_page = __get_free_page(GFP_KERNEL);
1367                 if (!stack_page) {
1368                         err = -ENOMEM;
1369                         goto out_err;
1370                 }
1371
1372                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1373         }
1374
1375         /*
1376          * Map the Hyp-code called directly from the host
1377          */
1378         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1379                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1380         if (err) {
1381                 kvm_err("Cannot map world-switch code\n");
1382                 goto out_err;
1383         }
1384
1385         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1386                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1387         if (err) {
1388                 kvm_err("Cannot map rodata section\n");
1389                 goto out_err;
1390         }
1391
1392         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1393                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1394         if (err) {
1395                 kvm_err("Cannot map bss section\n");
1396                 goto out_err;
1397         }
1398
1399         err = kvm_map_vectors();
1400         if (err) {
1401                 kvm_err("Cannot map vectors\n");
1402                 goto out_err;
1403         }
1404
1405         /*
1406          * Map the Hyp stack pages
1407          */
1408         for_each_possible_cpu(cpu) {
1409                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1410                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1411                                           PAGE_HYP);
1412
1413                 if (err) {
1414                         kvm_err("Cannot map hyp stack\n");
1415                         goto out_err;
1416                 }
1417         }
1418
1419         for_each_possible_cpu(cpu) {
1420                 kvm_cpu_context_t *cpu_ctxt;
1421
1422                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1423                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1424
1425                 if (err) {
1426                         kvm_err("Cannot map host CPU state: %d\n", err);
1427                         goto out_err;
1428                 }
1429         }
1430
1431         err = hyp_map_aux_data();
1432         if (err)
1433                 kvm_err("Cannot map host auxilary data: %d\n", err);
1434
1435         return 0;
1436
1437 out_err:
1438         teardown_hyp_mode();
1439         kvm_err("error initializing Hyp mode: %d\n", err);
1440         return err;
1441 }
1442
1443 static void check_kvm_target_cpu(void *ret)
1444 {
1445         *(int *)ret = kvm_target_cpu();
1446 }
1447
1448 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1449 {
1450         struct kvm_vcpu *vcpu;
1451         int i;
1452
1453         mpidr &= MPIDR_HWID_BITMASK;
1454         kvm_for_each_vcpu(i, vcpu, kvm) {
1455                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1456                         return vcpu;
1457         }
1458         return NULL;
1459 }
1460
1461 /**
1462  * Initialize Hyp-mode and memory mappings on all CPUs.
1463  */
1464 int kvm_arch_init(void *opaque)
1465 {
1466         int err;
1467         int ret, cpu;
1468         bool in_hyp_mode;
1469
1470         if (!is_hyp_mode_available()) {
1471                 kvm_info("HYP mode not available\n");
1472                 return -ENODEV;
1473         }
1474
1475         for_each_online_cpu(cpu) {
1476                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1477                 if (ret < 0) {
1478                         kvm_err("Error, CPU %d not supported!\n", cpu);
1479                         return -ENODEV;
1480                 }
1481         }
1482
1483         err = init_common_resources();
1484         if (err)
1485                 return err;
1486
1487         in_hyp_mode = is_kernel_in_hyp_mode();
1488
1489         if (!in_hyp_mode) {
1490                 err = init_hyp_mode();
1491                 if (err)
1492                         goto out_err;
1493         }
1494
1495         err = init_subsystems();
1496         if (err)
1497                 goto out_hyp;
1498
1499         if (in_hyp_mode)
1500                 kvm_info("VHE mode initialized successfully\n");
1501         else
1502                 kvm_info("Hyp mode initialized successfully\n");
1503
1504         return 0;
1505
1506 out_hyp:
1507         if (!in_hyp_mode)
1508                 teardown_hyp_mode();
1509 out_err:
1510         return err;
1511 }
1512
1513 /* NOP: Compiling as a module not supported */
1514 void kvm_arch_exit(void)
1515 {
1516         kvm_perf_teardown();
1517 }
1518
1519 static int arm_init(void)
1520 {
1521         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1522         return rc;
1523 }
1524
1525 module_init(arm_init);