Mention branches and keyring.
[releases.git] / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23                             unsigned int num)
24 {
25         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30                      unsigned long val)
31 {
32         int lower = (offset & 4) * 8;
33         int upper = lower + 8 * len - 1;
34
35         reg &= ~GENMASK_ULL(upper, lower);
36         val &= GENMASK_ULL(len * 8 - 1, 0);
37
38         return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43         struct vgic_dist *dist = &kvm->arch.vgic;
44
45         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46                 return false;
47
48         return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53         return (kvm_vgic_global_state.has_gicv4_1 ||
54                 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  *             their configured groups.
62  */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65                                             gpa_t addr, unsigned int len)
66 {
67         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68         u32 value = 0;
69
70         switch (addr & 0x0c) {
71         case GICD_CTLR:
72                 if (vgic->enabled)
73                         value |= GICD_CTLR_ENABLE_SS_G1;
74                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75                 if (vgic->nassgireq)
76                         value |= GICD_CTLR_nASSGIreq;
77                 break;
78         case GICD_TYPER:
79                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80                 value = (value >> 5) - 1;
81                 if (vgic_has_its(vcpu->kvm)) {
82                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83                         value |= GICD_TYPER_LPIS;
84                 } else {
85                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86                 }
87                 break;
88         case GICD_TYPER2:
89                 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90                         value = GICD_TYPER2_nASSGIcap;
91                 break;
92         case GICD_IIDR:
93                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96                 break;
97         default:
98                 return 0;
99         }
100
101         return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105                                     gpa_t addr, unsigned int len,
106                                     unsigned long val)
107 {
108         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR: {
112                 bool was_enabled, is_hwsgi;
113
114                 mutex_lock(&vcpu->kvm->arch.config_lock);
115
116                 was_enabled = dist->enabled;
117                 is_hwsgi = dist->nassgireq;
118
119                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121                 /* Not a GICv4.1? No HW SGIs */
122                 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123                         val &= ~GICD_CTLR_nASSGIreq;
124
125                 /* Dist stays enabled? nASSGIreq is RO */
126                 if (was_enabled && dist->enabled) {
127                         val &= ~GICD_CTLR_nASSGIreq;
128                         val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129                 }
130
131                 /* Switching HW SGIs? */
132                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133                 if (is_hwsgi != dist->nassgireq)
134                         vgic_v4_configure_vsgis(vcpu->kvm);
135
136                 if (kvm_vgic_global_state.has_gicv4_1 &&
137                     was_enabled != dist->enabled)
138                         kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139                 else if (!was_enabled && dist->enabled)
140                         vgic_kick_vcpus(vcpu->kvm);
141
142                 mutex_unlock(&vcpu->kvm->arch.config_lock);
143                 break;
144         }
145         case GICD_TYPER:
146         case GICD_TYPER2:
147         case GICD_IIDR:
148                 /* This is at best for documentation purposes... */
149                 return;
150         }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154                                            gpa_t addr, unsigned int len,
155                                            unsigned long val)
156 {
157         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158         u32 reg;
159
160         switch (addr & 0x0c) {
161         case GICD_TYPER2:
162                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163                         return -EINVAL;
164                 return 0;
165         case GICD_IIDR:
166                 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167                 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168                         return -EINVAL;
169
170                 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171                 switch (reg) {
172                 case KVM_VGIC_IMP_REV_2:
173                 case KVM_VGIC_IMP_REV_3:
174                         dist->implementation_rev = reg;
175                         return 0;
176                 default:
177                         return -EINVAL;
178                 }
179         case GICD_CTLR:
180                 /* Not a GICv4.1? No HW SGIs */
181                 if (!kvm_vgic_global_state.has_gicv4_1)
182                         val &= ~GICD_CTLR_nASSGIreq;
183
184                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186                 return 0;
187         }
188
189         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190         return 0;
191 }
192
193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194                                             gpa_t addr, unsigned int len)
195 {
196         int intid = VGIC_ADDR_TO_INTID(addr, 64);
197         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198         unsigned long ret = 0;
199
200         if (!irq)
201                 return 0;
202
203         /* The upper word is RAZ for us. */
204         if (!(addr & 4))
205                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207         vgic_put_irq(vcpu->kvm, irq);
208         return ret;
209 }
210
211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212                                     gpa_t addr, unsigned int len,
213                                     unsigned long val)
214 {
215         int intid = VGIC_ADDR_TO_INTID(addr, 64);
216         struct vgic_irq *irq;
217         unsigned long flags;
218
219         /* The upper word is WI for us since we don't implement Aff3. */
220         if (addr & 4)
221                 return;
222
223         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225         if (!irq)
226                 return;
227
228         raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230         /* We only care about and preserve Aff0, Aff1 and Aff2. */
231         irq->mpidr = val & GENMASK(23, 0);
232         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235         vgic_put_irq(vcpu->kvm, irq);
236 }
237
238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242         return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246                                              gpa_t addr, unsigned int len)
247 {
248         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249         unsigned long val;
250
251         val = atomic_read(&vgic_cpu->ctlr);
252         if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253                 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255         return val;
256 }
257
258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259                                      gpa_t addr, unsigned int len,
260                                      unsigned long val)
261 {
262         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263         u32 ctlr;
264
265         if (!vgic_has_its(vcpu->kvm))
266                 return;
267
268         if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269                 /*
270                  * Don't disable if RWP is set, as there already an
271                  * ongoing disable. Funky guest...
272                  */
273                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274                                               GICR_CTLR_ENABLE_LPIS,
275                                               GICR_CTLR_RWP);
276                 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277                         return;
278
279                 vgic_flush_pending_lpis(vcpu);
280                 vgic_its_invalidate_cache(vcpu->kvm);
281                 atomic_set_release(&vgic_cpu->ctlr, 0);
282         } else {
283                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284                                               GICR_CTLR_ENABLE_LPIS);
285                 if (ctlr != 0)
286                         return;
287
288                 vgic_enable_lpis(vcpu);
289         }
290 }
291
292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296         struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298         if (!rdreg)
299                 return false;
300
301         if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302                 return false;
303         } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304                 struct list_head *rd_regions = &vgic->rd_regions;
305                 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307                 /*
308                  * the rdist is the last one of the redist region,
309                  * check whether there is no other contiguous rdist region
310                  */
311                 list_for_each_entry(iter, rd_regions, list) {
312                         if (iter->base == end && iter->free_index > 0)
313                                 return false;
314                 }
315         }
316         return true;
317 }
318
319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320                                               gpa_t addr, unsigned int len)
321 {
322         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323         int target_vcpu_id = vcpu->vcpu_id;
324         u64 value;
325
326         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327         value |= ((target_vcpu_id & 0xffff) << 8);
328
329         if (vgic_has_its(vcpu->kvm))
330                 value |= GICR_TYPER_PLPIS;
331
332         if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333                 value |= GICR_TYPER_LAST;
334
335         return extract_bytes(value, addr & 7, len);
336 }
337
338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339                                              gpa_t addr, unsigned int len)
340 {
341         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345                                               gpa_t addr, unsigned int len)
346 {
347         switch (addr & 0xffff) {
348         case GICD_PIDR2:
349                 /* report a GICv3 compliant implementation */
350                 return 0x3b;
351         }
352
353         return 0;
354 }
355
356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357                                          gpa_t addr, unsigned int len,
358                                          unsigned long val)
359 {
360         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
361         int i;
362         unsigned long flags;
363
364         for (i = 0; i < len * 8; i++) {
365                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
366
367                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
368
369                 /*
370                  * pending_latch is set irrespective of irq type
371                  * (level or edge) to avoid dependency that VM should
372                  * restore irq config before pending info.
373                  */
374                 irq->pending_latch = test_bit(i, &val);
375
376                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
377                         irq_set_irqchip_state(irq->host_irq,
378                                               IRQCHIP_STATE_PENDING,
379                                               irq->pending_latch);
380                         irq->pending_latch = false;
381                 }
382
383                 if (irq->pending_latch)
384                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
385                 else
386                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
387
388                 vgic_put_irq(vcpu->kvm, irq);
389         }
390
391         return 0;
392 }
393
394 /* We want to avoid outer shareable. */
395 u64 vgic_sanitise_shareability(u64 field)
396 {
397         switch (field) {
398         case GIC_BASER_OuterShareable:
399                 return GIC_BASER_InnerShareable;
400         default:
401                 return field;
402         }
403 }
404
405 /* Avoid any inner non-cacheable mapping. */
406 u64 vgic_sanitise_inner_cacheability(u64 field)
407 {
408         switch (field) {
409         case GIC_BASER_CACHE_nCnB:
410         case GIC_BASER_CACHE_nC:
411                 return GIC_BASER_CACHE_RaWb;
412         default:
413                 return field;
414         }
415 }
416
417 /* Non-cacheable or same-as-inner are OK. */
418 u64 vgic_sanitise_outer_cacheability(u64 field)
419 {
420         switch (field) {
421         case GIC_BASER_CACHE_SameAsInner:
422         case GIC_BASER_CACHE_nC:
423                 return field;
424         default:
425                 return GIC_BASER_CACHE_SameAsInner;
426         }
427 }
428
429 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
430                         u64 (*sanitise_fn)(u64))
431 {
432         u64 field = (reg & field_mask) >> field_shift;
433
434         field = sanitise_fn(field) << field_shift;
435         return (reg & ~field_mask) | field;
436 }
437
438 #define PROPBASER_RES0_MASK                                             \
439         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
440 #define PENDBASER_RES0_MASK                                             \
441         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
442          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
443
444 static u64 vgic_sanitise_pendbaser(u64 reg)
445 {
446         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
447                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
448                                   vgic_sanitise_shareability);
449         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
450                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
451                                   vgic_sanitise_inner_cacheability);
452         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
453                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
454                                   vgic_sanitise_outer_cacheability);
455
456         reg &= ~PENDBASER_RES0_MASK;
457
458         return reg;
459 }
460
461 static u64 vgic_sanitise_propbaser(u64 reg)
462 {
463         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
464                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
465                                   vgic_sanitise_shareability);
466         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
467                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
468                                   vgic_sanitise_inner_cacheability);
469         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
470                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
471                                   vgic_sanitise_outer_cacheability);
472
473         reg &= ~PROPBASER_RES0_MASK;
474         return reg;
475 }
476
477 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
478                                              gpa_t addr, unsigned int len)
479 {
480         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
481
482         return extract_bytes(dist->propbaser, addr & 7, len);
483 }
484
485 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
486                                      gpa_t addr, unsigned int len,
487                                      unsigned long val)
488 {
489         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
490         u64 old_propbaser, propbaser;
491
492         /* Storing a value with LPIs already enabled is undefined */
493         if (vgic_lpis_enabled(vcpu))
494                 return;
495
496         do {
497                 old_propbaser = READ_ONCE(dist->propbaser);
498                 propbaser = old_propbaser;
499                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
500                 propbaser = vgic_sanitise_propbaser(propbaser);
501         } while (cmpxchg64(&dist->propbaser, old_propbaser,
502                            propbaser) != old_propbaser);
503 }
504
505 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
506                                              gpa_t addr, unsigned int len)
507 {
508         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
509         u64 value = vgic_cpu->pendbaser;
510
511         value &= ~GICR_PENDBASER_PTZ;
512
513         return extract_bytes(value, addr & 7, len);
514 }
515
516 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
517                                      gpa_t addr, unsigned int len,
518                                      unsigned long val)
519 {
520         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
521         u64 old_pendbaser, pendbaser;
522
523         /* Storing a value with LPIs already enabled is undefined */
524         if (vgic_lpis_enabled(vcpu))
525                 return;
526
527         do {
528                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
529                 pendbaser = old_pendbaser;
530                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
531                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
532         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
533                            pendbaser) != old_pendbaser);
534 }
535
536 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
537                                          gpa_t addr, unsigned int len)
538 {
539         return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
540 }
541
542 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
543 {
544         if (busy) {
545                 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
546                 smp_mb__after_atomic();
547         } else {
548                 smp_mb__before_atomic();
549                 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
550         }
551 }
552
553 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
554                                    gpa_t addr, unsigned int len,
555                                    unsigned long val)
556 {
557         struct vgic_irq *irq;
558
559         /*
560          * If the guest wrote only to the upper 32bit part of the
561          * register, drop the write on the floor, as it is only for
562          * vPEs (which we don't support for obvious reasons).
563          *
564          * Also discard the access if LPIs are not enabled.
565          */
566         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
567                 return;
568
569         vgic_set_rdist_busy(vcpu, true);
570
571         irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
572         if (irq) {
573                 vgic_its_inv_lpi(vcpu->kvm, irq);
574                 vgic_put_irq(vcpu->kvm, irq);
575         }
576
577         vgic_set_rdist_busy(vcpu, false);
578 }
579
580 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
581                                    gpa_t addr, unsigned int len,
582                                    unsigned long val)
583 {
584         /* See vgic_mmio_write_invlpi() for the early return rationale */
585         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
586                 return;
587
588         vgic_set_rdist_busy(vcpu, true);
589         vgic_its_invall(vcpu);
590         vgic_set_rdist_busy(vcpu, false);
591 }
592
593 /*
594  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
595  * redistributors, while SPIs are covered by registers in the distributor
596  * block. Trying to set private IRQs in this block gets ignored.
597  * We take some special care here to fix the calculation of the register
598  * offset.
599  */
600 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
601         {                                                               \
602                 .reg_offset = off,                                      \
603                 .bits_per_irq = bpi,                                    \
604                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
605                 .access_flags = acc,                                    \
606                 .read = vgic_mmio_read_raz,                             \
607                 .write = vgic_mmio_write_wi,                            \
608         }, {                                                            \
609                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
610                 .bits_per_irq = bpi,                                    \
611                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
612                 .access_flags = acc,                                    \
613                 .read = rd,                                             \
614                 .write = wr,                                            \
615                 .uaccess_read = ur,                                     \
616                 .uaccess_write = uw,                                    \
617         }
618
619 static const struct vgic_register_region vgic_v3_dist_registers[] = {
620         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
621                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
622                 NULL, vgic_mmio_uaccess_write_v3_misc,
623                 16, VGIC_ACCESS_32bit),
624         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
625                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
626                 VGIC_ACCESS_32bit),
627         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
628                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
629                 VGIC_ACCESS_32bit),
630         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
631                 vgic_mmio_read_enable, vgic_mmio_write_senable,
632                 NULL, vgic_uaccess_write_senable, 1,
633                 VGIC_ACCESS_32bit),
634         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
635                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
636                NULL, vgic_uaccess_write_cenable, 1,
637                 VGIC_ACCESS_32bit),
638         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
639                 vgic_mmio_read_pending, vgic_mmio_write_spending,
640                 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
641                 VGIC_ACCESS_32bit),
642         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
643                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
644                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
645                 VGIC_ACCESS_32bit),
646         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
647                 vgic_mmio_read_active, vgic_mmio_write_sactive,
648                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
649                 VGIC_ACCESS_32bit),
650         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
651                 vgic_mmio_read_active, vgic_mmio_write_cactive,
652                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
653                 1, VGIC_ACCESS_32bit),
654         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
655                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
656                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
657         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
658                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
659                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
660         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
661                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
662                 VGIC_ACCESS_32bit),
663         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
664                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
665                 VGIC_ACCESS_32bit),
666         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
667                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
668                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
669         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
670                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
671                 VGIC_ACCESS_32bit),
672 };
673
674 static const struct vgic_register_region vgic_v3_rd_registers[] = {
675         /* RD_base registers */
676         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
677                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
678                 VGIC_ACCESS_32bit),
679         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
680                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
681                 VGIC_ACCESS_32bit),
682         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
683                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
684                 VGIC_ACCESS_32bit),
685         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
686                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
687                 NULL, vgic_mmio_uaccess_write_wi, 8,
688                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
689         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
690                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
691                 VGIC_ACCESS_32bit),
692         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
693                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
694                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
695         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
696                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
697                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
698         REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
699                 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
700                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
701         REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
702                 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
703                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
704         REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
705                 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
706                 VGIC_ACCESS_32bit),
707         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
708                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
709                 VGIC_ACCESS_32bit),
710         /* SGI_base registers */
711         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
712                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
713                 VGIC_ACCESS_32bit),
714         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
715                 vgic_mmio_read_enable, vgic_mmio_write_senable,
716                 NULL, vgic_uaccess_write_senable, 4,
717                 VGIC_ACCESS_32bit),
718         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
719                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
720                 NULL, vgic_uaccess_write_cenable, 4,
721                 VGIC_ACCESS_32bit),
722         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
723                 vgic_mmio_read_pending, vgic_mmio_write_spending,
724                 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
725                 VGIC_ACCESS_32bit),
726         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
727                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
728                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
729                 VGIC_ACCESS_32bit),
730         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
731                 vgic_mmio_read_active, vgic_mmio_write_sactive,
732                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
733                 VGIC_ACCESS_32bit),
734         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
735                 vgic_mmio_read_active, vgic_mmio_write_cactive,
736                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
737                 VGIC_ACCESS_32bit),
738         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
739                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
740                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
741         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
742                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
743                 VGIC_ACCESS_32bit),
744         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
745                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
746                 VGIC_ACCESS_32bit),
747         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
748                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
749                 VGIC_ACCESS_32bit),
750 };
751
752 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
753 {
754         dev->regions = vgic_v3_dist_registers;
755         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
756
757         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
758
759         return SZ_64K;
760 }
761
762 /**
763  * vgic_register_redist_iodev - register a single redist iodev
764  * @vcpu:    The VCPU to which the redistributor belongs
765  *
766  * Register a KVM iodev for this VCPU's redistributor using the address
767  * provided.
768  *
769  * Return 0 on success, -ERRNO otherwise.
770  */
771 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
772 {
773         struct kvm *kvm = vcpu->kvm;
774         struct vgic_dist *vgic = &kvm->arch.vgic;
775         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
776         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
777         struct vgic_redist_region *rdreg;
778         gpa_t rd_base;
779         int ret = 0;
780
781         lockdep_assert_held(&kvm->slots_lock);
782         mutex_lock(&kvm->arch.config_lock);
783
784         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
785                 goto out_unlock;
786
787         /*
788          * We may be creating VCPUs before having set the base address for the
789          * redistributor region, in which case we will come back to this
790          * function for all VCPUs when the base address is set.  Just return
791          * without doing any work for now.
792          */
793         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
794         if (!rdreg)
795                 goto out_unlock;
796
797         if (!vgic_v3_check_base(kvm)) {
798                 ret = -EINVAL;
799                 goto out_unlock;
800         }
801
802         vgic_cpu->rdreg = rdreg;
803         vgic_cpu->rdreg_index = rdreg->free_index;
804
805         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
806
807         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
808         rd_dev->base_addr = rd_base;
809         rd_dev->iodev_type = IODEV_REDIST;
810         rd_dev->regions = vgic_v3_rd_registers;
811         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
812         rd_dev->redist_vcpu = vcpu;
813
814         mutex_unlock(&kvm->arch.config_lock);
815
816         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
817                                       2 * SZ_64K, &rd_dev->dev);
818         if (ret)
819                 return ret;
820
821         /* Protected by slots_lock */
822         rdreg->free_index++;
823         return 0;
824
825 out_unlock:
826         mutex_unlock(&kvm->arch.config_lock);
827         return ret;
828 }
829
830 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
831 {
832         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
833
834         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
835 }
836
837 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
838 {
839         struct kvm_vcpu *vcpu;
840         unsigned long c;
841         int ret = 0;
842
843         lockdep_assert_held(&kvm->slots_lock);
844
845         kvm_for_each_vcpu(c, vcpu, kvm) {
846                 ret = vgic_register_redist_iodev(vcpu);
847                 if (ret)
848                         break;
849         }
850
851         if (ret) {
852                 /* The current c failed, so iterate over the previous ones. */
853                 int i;
854
855                 for (i = 0; i < c; i++) {
856                         vcpu = kvm_get_vcpu(kvm, i);
857                         vgic_unregister_redist_iodev(vcpu);
858                 }
859         }
860
861         return ret;
862 }
863
864 /**
865  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
866  *
867  * Performs various checks before inserting the rdist region in the list.
868  * Those tests depend on whether the size of the rdist region is known
869  * (ie. count != 0). The list is sorted by rdist region index.
870  *
871  * @kvm: kvm handle
872  * @index: redist region index
873  * @base: base of the new rdist region
874  * @count: number of redistributors the region is made of (0 in the old style
875  * single region, whose size is induced from the number of vcpus)
876  *
877  * Return 0 on success, < 0 otherwise
878  */
879 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
880                                        gpa_t base, uint32_t count)
881 {
882         struct vgic_dist *d = &kvm->arch.vgic;
883         struct vgic_redist_region *rdreg;
884         struct list_head *rd_regions = &d->rd_regions;
885         int nr_vcpus = atomic_read(&kvm->online_vcpus);
886         size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
887                             : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
888         int ret;
889
890         /* cross the end of memory ? */
891         if (base + size < base)
892                 return -EINVAL;
893
894         if (list_empty(rd_regions)) {
895                 if (index != 0)
896                         return -EINVAL;
897         } else {
898                 rdreg = list_last_entry(rd_regions,
899                                         struct vgic_redist_region, list);
900
901                 /* Don't mix single region and discrete redist regions */
902                 if (!count && rdreg->count)
903                         return -EINVAL;
904
905                 if (!count)
906                         return -EEXIST;
907
908                 if (index != rdreg->index + 1)
909                         return -EINVAL;
910         }
911
912         /*
913          * For legacy single-region redistributor regions (!count),
914          * check that the redistributor region does not overlap with the
915          * distributor's address space.
916          */
917         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
918                 vgic_dist_overlap(kvm, base, size))
919                 return -EINVAL;
920
921         /* collision with any other rdist region? */
922         if (vgic_v3_rdist_overlap(kvm, base, size))
923                 return -EINVAL;
924
925         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
926         if (!rdreg)
927                 return -ENOMEM;
928
929         rdreg->base = VGIC_ADDR_UNDEF;
930
931         ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
932         if (ret)
933                 goto free;
934
935         rdreg->base = base;
936         rdreg->count = count;
937         rdreg->free_index = 0;
938         rdreg->index = index;
939
940         list_add_tail(&rdreg->list, rd_regions);
941         return 0;
942 free:
943         kfree(rdreg);
944         return ret;
945 }
946
947 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
948 {
949         list_del(&rdreg->list);
950         kfree(rdreg);
951 }
952
953 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
954 {
955         int ret;
956
957         mutex_lock(&kvm->arch.config_lock);
958         ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
959         mutex_unlock(&kvm->arch.config_lock);
960         if (ret)
961                 return ret;
962
963         /*
964          * Register iodevs for each existing VCPU.  Adding more VCPUs
965          * afterwards will register the iodevs when needed.
966          */
967         ret = vgic_register_all_redist_iodevs(kvm);
968         if (ret) {
969                 struct vgic_redist_region *rdreg;
970
971                 mutex_lock(&kvm->arch.config_lock);
972                 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
973                 vgic_v3_free_redist_region(rdreg);
974                 mutex_unlock(&kvm->arch.config_lock);
975                 return ret;
976         }
977
978         return 0;
979 }
980
981 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
982 {
983         const struct vgic_register_region *region;
984         struct vgic_io_device iodev;
985         struct vgic_reg_attr reg_attr;
986         struct kvm_vcpu *vcpu;
987         gpa_t addr;
988         int ret;
989
990         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
991         if (ret)
992                 return ret;
993
994         vcpu = reg_attr.vcpu;
995         addr = reg_attr.addr;
996
997         switch (attr->group) {
998         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
999                 iodev.regions = vgic_v3_dist_registers;
1000                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1001                 iodev.base_addr = 0;
1002                 break;
1003         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1004                 iodev.regions = vgic_v3_rd_registers;
1005                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1006                 iodev.base_addr = 0;
1007                 break;
1008         }
1009         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1010                 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1011         default:
1012                 return -ENXIO;
1013         }
1014
1015         /* We only support aligned 32-bit accesses. */
1016         if (addr & 3)
1017                 return -ENXIO;
1018
1019         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1020         if (!region)
1021                 return -ENXIO;
1022
1023         return 0;
1024 }
1025
1026 /*
1027  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1028  * so provide a wrapper to use the existing defines to isolate a certain
1029  * affinity level.
1030  */
1031 #define SGI_AFFINITY_LEVEL(reg, level) \
1032         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1033         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1034
1035 static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1036 {
1037         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, sgi);
1038         unsigned long flags;
1039
1040         raw_spin_lock_irqsave(&irq->irq_lock, flags);
1041
1042         /*
1043          * An access targeting Group0 SGIs can only generate
1044          * those, while an access targeting Group1 SGIs can
1045          * generate interrupts of either group.
1046          */
1047         if (!irq->group || allow_group1) {
1048                 if (!irq->hw) {
1049                         irq->pending_latch = true;
1050                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1051                 } else {
1052                         /* HW SGI? Ask the GIC to inject it */
1053                         int err;
1054                         err = irq_set_irqchip_state(irq->host_irq,
1055                                                     IRQCHIP_STATE_PENDING,
1056                                                     true);
1057                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1058                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1059                 }
1060         } else {
1061                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1062         }
1063
1064         vgic_put_irq(vcpu->kvm, irq);
1065 }
1066
1067 /**
1068  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1069  * @vcpu: The VCPU requesting a SGI
1070  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1071  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1072  *
1073  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1074  * This will trap in sys_regs.c and call this function.
1075  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1076  * target processors as well as a bitmask of 16 Aff0 CPUs.
1077  *
1078  * If the interrupt routing mode bit is not set, we iterate over the Aff0
1079  * bits and signal the VCPUs matching the provided Aff{3,2,1}.
1080  *
1081  * If this bit is set, we signal all, but not the calling VCPU.
1082  */
1083 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1084 {
1085         struct kvm *kvm = vcpu->kvm;
1086         struct kvm_vcpu *c_vcpu;
1087         unsigned long target_cpus;
1088         u64 mpidr;
1089         u32 sgi, aff0;
1090         unsigned long c;
1091
1092         sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1093
1094         /* Broadcast */
1095         if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1096                 kvm_for_each_vcpu(c, c_vcpu, kvm) {
1097                         /* Don't signal the calling VCPU */
1098                         if (c_vcpu == vcpu)
1099                                 continue;
1100
1101                         vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1102                 }
1103
1104                 return;
1105         }
1106
1107         /* We iterate over affinities to find the corresponding vcpus */
1108         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1109         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1110         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1111         target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1112
1113         for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1114                 c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1115                 if (c_vcpu)
1116                         vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1117         }
1118 }
1119
1120 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1121                          int offset, u32 *val)
1122 {
1123         struct vgic_io_device dev = {
1124                 .regions = vgic_v3_dist_registers,
1125                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1126         };
1127
1128         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1129 }
1130
1131 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1132                            int offset, u32 *val)
1133 {
1134         struct vgic_io_device rd_dev = {
1135                 .regions = vgic_v3_rd_registers,
1136                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1137         };
1138
1139         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1140 }
1141
1142 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1143                                     u32 intid, u32 *val)
1144 {
1145         if (intid % 32)
1146                 return -EINVAL;
1147
1148         if (is_write)
1149                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1150         else
1151                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1152
1153         return 0;
1154 }