Mention branches and keyring.
[releases.git] / vgic / vgic-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30                              struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40                                      struct kvm_vcpu *vcpu)
41 {
42         struct vgic_dist *dist = &kvm->arch.vgic;
43         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44         unsigned long flags;
45         int ret;
46
47         /* In this case there is no put, since we keep the reference. */
48         if (irq)
49                 return irq;
50
51         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52         if (!irq)
53                 return ERR_PTR(-ENOMEM);
54
55         INIT_LIST_HEAD(&irq->lpi_list);
56         INIT_LIST_HEAD(&irq->ap_list);
57         raw_spin_lock_init(&irq->irq_lock);
58
59         irq->config = VGIC_CONFIG_EDGE;
60         kref_init(&irq->refcount);
61         irq->intid = intid;
62         irq->target_vcpu = vcpu;
63         irq->group = 1;
64
65         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67         /*
68          * There could be a race with another vgic_add_lpi(), so we need to
69          * check that we don't add a second list entry with the same LPI.
70          */
71         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72                 if (oldirq->intid != intid)
73                         continue;
74
75                 /* Someone was faster with adding this LPI, lets use that. */
76                 kfree(irq);
77                 irq = oldirq;
78
79                 /*
80                  * This increases the refcount, the caller is expected to
81                  * call vgic_put_irq() on the returned pointer once it's
82                  * finished with the IRQ.
83                  */
84                 vgic_get_irq_kref(irq);
85
86                 goto out_unlock;
87         }
88
89         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90         dist->lpi_list_count++;
91
92 out_unlock:
93         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95         /*
96          * We "cache" the configuration table entries in our struct vgic_irq's.
97          * However we only have those structs for mapped IRQs, so we read in
98          * the respective config data from memory here upon mapping the LPI.
99          *
100          * Should any of these fail, behave as if we couldn't create the LPI
101          * by dropping the refcount and returning the error.
102          */
103         ret = update_lpi_config(kvm, irq, NULL, false);
104         if (ret) {
105                 vgic_put_irq(kvm, irq);
106                 return ERR_PTR(ret);
107         }
108
109         ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110         if (ret) {
111                 vgic_put_irq(kvm, irq);
112                 return ERR_PTR(ret);
113         }
114
115         return irq;
116 }
117
118 struct its_device {
119         struct list_head dev_list;
120
121         /* the head for the list of ITTEs */
122         struct list_head itt_head;
123         u32 num_eventid_bits;
124         gpa_t itt_addr;
125         u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131         struct list_head coll_list;
132
133         u32 collection_id;
134         u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141         struct list_head ite_list;
142
143         struct vgic_irq *irq;
144         struct its_collection *collection;
145         u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149         struct list_head        entry;
150         phys_addr_t             db;
151         u32                     devid;
152         u32                     eventid;
153         struct vgic_irq         *irq;
154 };
155
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168         int cte_esz;
169         int dte_esz;
170         int ite_esz;
171         int (*save_tables)(struct vgic_its *its);
172         int (*restore_tables)(struct vgic_its *its);
173         int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ       8
177 #define ESZ_MAX         ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180         [0] = {
181          .cte_esz = ABI_0_ESZ,
182          .dte_esz = ABI_0_ESZ,
183          .ite_esz = ABI_0_ESZ,
184          .save_tables = vgic_its_save_tables_v0,
185          .restore_tables = vgic_its_restore_tables_v0,
186          .commit = vgic_its_commit_v0,
187         },
188 };
189
190 #define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
191
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194         return &its_table_abi_versions[its->abi_rev];
195 }
196
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199         const struct vgic_its_abi *abi;
200
201         its->abi_rev = rev;
202         abi = vgic_its_get_abi(its);
203         return abi->commit(its);
204 }
205
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212         struct its_device *device;
213
214         list_for_each_entry(device, &its->device_list, dev_list)
215                 if (device_id == device->device_id)
216                         return device;
217
218         return NULL;
219 }
220
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227                                   u32 event_id)
228 {
229         struct its_device *device;
230         struct its_ite *ite;
231
232         device = find_its_device(its, device_id);
233         if (device == NULL)
234                 return NULL;
235
236         list_for_each_entry(ite, &device->itt_head, ite_list)
237                 if (ite->event_id == event_id)
238                         return ite;
239
240         return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245         list_for_each_entry(dev, &(its)->device_list, dev_list) \
246                 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
254
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261         struct its_collection *collection;
262
263         list_for_each_entry(collection, &its->collection_list, coll_list) {
264                 if (coll_id == collection->collection_id)
265                         return collection;
266         }
267
268         return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
273
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281                              struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283         u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284         u8 prop;
285         int ret;
286         unsigned long flags;
287
288         ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289                                   &prop, 1);
290
291         if (ret)
292                 return ret;
293
294         raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297                 irq->priority = LPI_PROP_PRIORITY(prop);
298                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300                 if (!irq->hw) {
301                         vgic_queue_irq_unlock(kvm, irq, flags);
302                         return 0;
303                 }
304         }
305
306         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308         if (irq->hw)
309                 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311         return 0;
312 }
313
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321         struct vgic_dist *dist = &kvm->arch.vgic;
322         struct vgic_irq *irq;
323         unsigned long flags;
324         u32 *intids;
325         int irq_count, i = 0;
326
327         /*
328          * There is an obvious race between allocating the array and LPIs
329          * being mapped/unmapped. If we ended up here as a result of a
330          * command, we're safe (locks are held, preventing another
331          * command). If coming from another path (such as enabling LPIs),
332          * we must be careful not to overrun the array.
333          */
334         irq_count = READ_ONCE(dist->lpi_list_count);
335         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336         if (!intids)
337                 return -ENOMEM;
338
339         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341                 if (i == irq_count)
342                         break;
343                 /* We don't need to "get" the IRQ, as we hold the list lock. */
344                 if (vcpu && irq->target_vcpu != vcpu)
345                         continue;
346                 intids[i++] = irq->intid;
347         }
348         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350         *intid_ptr = intids;
351         return i;
352 }
353
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356         int ret = 0;
357         unsigned long flags;
358
359         raw_spin_lock_irqsave(&irq->irq_lock, flags);
360         irq->target_vcpu = vcpu;
361         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363         if (irq->hw) {
364                 struct its_vlpi_map map;
365
366                 ret = its_get_vlpi(irq->host_irq, &map);
367                 if (ret)
368                         return ret;
369
370                 if (map.vpe)
371                         atomic_dec(&map.vpe->vlpi_count);
372                 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373                 atomic_inc(&map.vpe->vlpi_count);
374
375                 ret = its_map_vlpi(irq->host_irq, &map);
376         }
377
378         return ret;
379 }
380
381 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
382                                            struct its_collection *col)
383 {
384         return kvm_get_vcpu_by_id(kvm, col->target_addr);
385 }
386
387 /*
388  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
389  * is targeting) to the VGIC's view, which deals with target VCPUs.
390  * Needs to be called whenever either the collection for a LPIs has
391  * changed or the collection itself got retargeted.
392  */
393 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
394 {
395         struct kvm_vcpu *vcpu;
396
397         if (!its_is_collection_mapped(ite->collection))
398                 return;
399
400         vcpu = collection_to_vcpu(kvm, ite->collection);
401         update_affinity(ite->irq, vcpu);
402 }
403
404 /*
405  * Updates the target VCPU for every LPI targeting this collection.
406  * Must be called with the its_lock mutex held.
407  */
408 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
409                                        struct its_collection *coll)
410 {
411         struct its_device *device;
412         struct its_ite *ite;
413
414         for_each_lpi_its(device, ite, its) {
415                 if (ite->collection != coll)
416                         continue;
417
418                 update_affinity_ite(kvm, ite);
419         }
420 }
421
422 static u32 max_lpis_propbaser(u64 propbaser)
423 {
424         int nr_idbits = (propbaser & 0x1f) + 1;
425
426         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
427 }
428
429 /*
430  * Sync the pending table pending bit of LPIs targeting @vcpu
431  * with our own data structures. This relies on the LPI being
432  * mapped before.
433  */
434 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
435 {
436         gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
437         struct vgic_irq *irq;
438         int last_byte_offset = -1;
439         int ret = 0;
440         u32 *intids;
441         int nr_irqs, i;
442         unsigned long flags;
443         u8 pendmask;
444
445         nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
446         if (nr_irqs < 0)
447                 return nr_irqs;
448
449         for (i = 0; i < nr_irqs; i++) {
450                 int byte_offset, bit_nr;
451
452                 byte_offset = intids[i] / BITS_PER_BYTE;
453                 bit_nr = intids[i] % BITS_PER_BYTE;
454
455                 /*
456                  * For contiguously allocated LPIs chances are we just read
457                  * this very same byte in the last iteration. Reuse that.
458                  */
459                 if (byte_offset != last_byte_offset) {
460                         ret = kvm_read_guest_lock(vcpu->kvm,
461                                                   pendbase + byte_offset,
462                                                   &pendmask, 1);
463                         if (ret) {
464                                 kfree(intids);
465                                 return ret;
466                         }
467                         last_byte_offset = byte_offset;
468                 }
469
470                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
471                 if (!irq)
472                         continue;
473
474                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
475                 irq->pending_latch = pendmask & (1U << bit_nr);
476                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
477                 vgic_put_irq(vcpu->kvm, irq);
478         }
479
480         kfree(intids);
481
482         return ret;
483 }
484
485 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
486                                               struct vgic_its *its,
487                                               gpa_t addr, unsigned int len)
488 {
489         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
490         u64 reg = GITS_TYPER_PLPIS;
491
492         /*
493          * We use linear CPU numbers for redistributor addressing,
494          * so GITS_TYPER.PTA is 0.
495          * Also we force all PROPBASER registers to be the same, so
496          * CommonLPIAff is 0 as well.
497          * To avoid memory waste in the guest, we keep the number of IDBits and
498          * DevBits low - as least for the time being.
499          */
500         reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
501         reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
502         reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
503
504         return extract_bytes(reg, addr & 7, len);
505 }
506
507 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
508                                              struct vgic_its *its,
509                                              gpa_t addr, unsigned int len)
510 {
511         u32 val;
512
513         val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
514         val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
515         return val;
516 }
517
518 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
519                                             struct vgic_its *its,
520                                             gpa_t addr, unsigned int len,
521                                             unsigned long val)
522 {
523         u32 rev = GITS_IIDR_REV(val);
524
525         if (rev >= NR_ITS_ABIS)
526                 return -EINVAL;
527         return vgic_its_set_abi(its, rev);
528 }
529
530 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
531                                                struct vgic_its *its,
532                                                gpa_t addr, unsigned int len)
533 {
534         switch (addr & 0xffff) {
535         case GITS_PIDR0:
536                 return 0x92;    /* part number, bits[7:0] */
537         case GITS_PIDR1:
538                 return 0xb4;    /* part number, bits[11:8] */
539         case GITS_PIDR2:
540                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
541         case GITS_PIDR4:
542                 return 0x40;    /* This is a 64K software visible page */
543         /* The following are the ID registers for (any) GIC. */
544         case GITS_CIDR0:
545                 return 0x0d;
546         case GITS_CIDR1:
547                 return 0xf0;
548         case GITS_CIDR2:
549                 return 0x05;
550         case GITS_CIDR3:
551                 return 0xb1;
552         }
553
554         return 0;
555 }
556
557 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
558                                                phys_addr_t db,
559                                                u32 devid, u32 eventid)
560 {
561         struct vgic_translation_cache_entry *cte;
562
563         list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
564                 /*
565                  * If we hit a NULL entry, there is nothing after this
566                  * point.
567                  */
568                 if (!cte->irq)
569                         break;
570
571                 if (cte->db != db || cte->devid != devid ||
572                     cte->eventid != eventid)
573                         continue;
574
575                 /*
576                  * Move this entry to the head, as it is the most
577                  * recently used.
578                  */
579                 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
580                         list_move(&cte->entry, &dist->lpi_translation_cache);
581
582                 return cte->irq;
583         }
584
585         return NULL;
586 }
587
588 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
589                                              u32 devid, u32 eventid)
590 {
591         struct vgic_dist *dist = &kvm->arch.vgic;
592         struct vgic_irq *irq;
593         unsigned long flags;
594
595         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
596
597         irq = __vgic_its_check_cache(dist, db, devid, eventid);
598         if (irq)
599                 vgic_get_irq_kref(irq);
600
601         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
602
603         return irq;
604 }
605
606 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
607                                        u32 devid, u32 eventid,
608                                        struct vgic_irq *irq)
609 {
610         struct vgic_dist *dist = &kvm->arch.vgic;
611         struct vgic_translation_cache_entry *cte;
612         unsigned long flags;
613         phys_addr_t db;
614
615         /* Do not cache a directly injected interrupt */
616         if (irq->hw)
617                 return;
618
619         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
620
621         if (unlikely(list_empty(&dist->lpi_translation_cache)))
622                 goto out;
623
624         /*
625          * We could have raced with another CPU caching the same
626          * translation behind our back, so let's check it is not in
627          * already
628          */
629         db = its->vgic_its_base + GITS_TRANSLATER;
630         if (__vgic_its_check_cache(dist, db, devid, eventid))
631                 goto out;
632
633         /* Always reuse the last entry (LRU policy) */
634         cte = list_last_entry(&dist->lpi_translation_cache,
635                               typeof(*cte), entry);
636
637         /*
638          * Caching the translation implies having an extra reference
639          * to the interrupt, so drop the potential reference on what
640          * was in the cache, and increment it on the new interrupt.
641          */
642         if (cte->irq)
643                 __vgic_put_lpi_locked(kvm, cte->irq);
644
645         vgic_get_irq_kref(irq);
646
647         cte->db         = db;
648         cte->devid      = devid;
649         cte->eventid    = eventid;
650         cte->irq        = irq;
651
652         /* Move the new translation to the head of the list */
653         list_move(&cte->entry, &dist->lpi_translation_cache);
654
655 out:
656         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
657 }
658
659 void vgic_its_invalidate_cache(struct kvm *kvm)
660 {
661         struct vgic_dist *dist = &kvm->arch.vgic;
662         struct vgic_translation_cache_entry *cte;
663         unsigned long flags;
664
665         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
666
667         list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
668                 /*
669                  * If we hit a NULL entry, there is nothing after this
670                  * point.
671                  */
672                 if (!cte->irq)
673                         break;
674
675                 __vgic_put_lpi_locked(kvm, cte->irq);
676                 cte->irq = NULL;
677         }
678
679         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
680 }
681
682 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
683                          u32 devid, u32 eventid, struct vgic_irq **irq)
684 {
685         struct kvm_vcpu *vcpu;
686         struct its_ite *ite;
687
688         if (!its->enabled)
689                 return -EBUSY;
690
691         ite = find_ite(its, devid, eventid);
692         if (!ite || !its_is_collection_mapped(ite->collection))
693                 return E_ITS_INT_UNMAPPED_INTERRUPT;
694
695         vcpu = collection_to_vcpu(kvm, ite->collection);
696         if (!vcpu)
697                 return E_ITS_INT_UNMAPPED_INTERRUPT;
698
699         if (!vgic_lpis_enabled(vcpu))
700                 return -EBUSY;
701
702         vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
703
704         *irq = ite->irq;
705         return 0;
706 }
707
708 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
709 {
710         u64 address;
711         struct kvm_io_device *kvm_io_dev;
712         struct vgic_io_device *iodev;
713
714         if (!vgic_has_its(kvm))
715                 return ERR_PTR(-ENODEV);
716
717         if (!(msi->flags & KVM_MSI_VALID_DEVID))
718                 return ERR_PTR(-EINVAL);
719
720         address = (u64)msi->address_hi << 32 | msi->address_lo;
721
722         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
723         if (!kvm_io_dev)
724                 return ERR_PTR(-EINVAL);
725
726         if (kvm_io_dev->ops != &kvm_io_gic_ops)
727                 return ERR_PTR(-EINVAL);
728
729         iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
730         if (iodev->iodev_type != IODEV_ITS)
731                 return ERR_PTR(-EINVAL);
732
733         return iodev->its;
734 }
735
736 /*
737  * Find the target VCPU and the LPI number for a given devid/eventid pair
738  * and make this IRQ pending, possibly injecting it.
739  * Must be called with the its_lock mutex held.
740  * Returns 0 on success, a positive error value for any ITS mapping
741  * related errors and negative error values for generic errors.
742  */
743 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
744                                 u32 devid, u32 eventid)
745 {
746         struct vgic_irq *irq = NULL;
747         unsigned long flags;
748         int err;
749
750         err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
751         if (err)
752                 return err;
753
754         if (irq->hw)
755                 return irq_set_irqchip_state(irq->host_irq,
756                                              IRQCHIP_STATE_PENDING, true);
757
758         raw_spin_lock_irqsave(&irq->irq_lock, flags);
759         irq->pending_latch = true;
760         vgic_queue_irq_unlock(kvm, irq, flags);
761
762         return 0;
763 }
764
765 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
766 {
767         struct vgic_irq *irq;
768         unsigned long flags;
769         phys_addr_t db;
770
771         db = (u64)msi->address_hi << 32 | msi->address_lo;
772         irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
773         if (!irq)
774                 return -EWOULDBLOCK;
775
776         raw_spin_lock_irqsave(&irq->irq_lock, flags);
777         irq->pending_latch = true;
778         vgic_queue_irq_unlock(kvm, irq, flags);
779         vgic_put_irq(kvm, irq);
780
781         return 0;
782 }
783
784 /*
785  * Queries the KVM IO bus framework to get the ITS pointer from the given
786  * doorbell address.
787  * We then call vgic_its_trigger_msi() with the decoded data.
788  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
789  */
790 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
791 {
792         struct vgic_its *its;
793         int ret;
794
795         if (!vgic_its_inject_cached_translation(kvm, msi))
796                 return 1;
797
798         its = vgic_msi_to_its(kvm, msi);
799         if (IS_ERR(its))
800                 return PTR_ERR(its);
801
802         mutex_lock(&its->its_lock);
803         ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
804         mutex_unlock(&its->its_lock);
805
806         if (ret < 0)
807                 return ret;
808
809         /*
810          * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
811          * if the guest has blocked the MSI. So we map any LPI mapping
812          * related error to that.
813          */
814         if (ret)
815                 return 0;
816         else
817                 return 1;
818 }
819
820 /* Requires the its_lock to be held. */
821 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
822 {
823         list_del(&ite->ite_list);
824
825         /* This put matches the get in vgic_add_lpi. */
826         if (ite->irq) {
827                 if (ite->irq->hw)
828                         WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
829
830                 vgic_put_irq(kvm, ite->irq);
831         }
832
833         kfree(ite);
834 }
835
836 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
837 {
838         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
839 }
840
841 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
842 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
843 #define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
844 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
845 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
846 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
847 #define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
848 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
849 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
850
851 /*
852  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
853  * Must be called with the its_lock mutex held.
854  */
855 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
856                                        u64 *its_cmd)
857 {
858         u32 device_id = its_cmd_get_deviceid(its_cmd);
859         u32 event_id = its_cmd_get_id(its_cmd);
860         struct its_ite *ite;
861
862         ite = find_ite(its, device_id, event_id);
863         if (ite && its_is_collection_mapped(ite->collection)) {
864                 /*
865                  * Though the spec talks about removing the pending state, we
866                  * don't bother here since we clear the ITTE anyway and the
867                  * pending state is a property of the ITTE struct.
868                  */
869                 vgic_its_invalidate_cache(kvm);
870
871                 its_free_ite(kvm, ite);
872                 return 0;
873         }
874
875         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
876 }
877
878 /*
879  * The MOVI command moves an ITTE to a different collection.
880  * Must be called with the its_lock mutex held.
881  */
882 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
883                                     u64 *its_cmd)
884 {
885         u32 device_id = its_cmd_get_deviceid(its_cmd);
886         u32 event_id = its_cmd_get_id(its_cmd);
887         u32 coll_id = its_cmd_get_collection(its_cmd);
888         struct kvm_vcpu *vcpu;
889         struct its_ite *ite;
890         struct its_collection *collection;
891
892         ite = find_ite(its, device_id, event_id);
893         if (!ite)
894                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
895
896         if (!its_is_collection_mapped(ite->collection))
897                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
898
899         collection = find_collection(its, coll_id);
900         if (!its_is_collection_mapped(collection))
901                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
902
903         ite->collection = collection;
904         vcpu = collection_to_vcpu(kvm, collection);
905
906         vgic_its_invalidate_cache(kvm);
907
908         return update_affinity(ite->irq, vcpu);
909 }
910
911 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
912 {
913         gfn_t gfn = gpa >> PAGE_SHIFT;
914         int idx;
915         bool ret;
916
917         idx = srcu_read_lock(&its->dev->kvm->srcu);
918         ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
919         srcu_read_unlock(&its->dev->kvm->srcu, idx);
920         return ret;
921 }
922
923 /*
924  * Check whether an ID can be stored into the corresponding guest table.
925  * For a direct table this is pretty easy, but gets a bit nasty for
926  * indirect tables. We check whether the resulting guest physical address
927  * is actually valid (covered by a memslot and guest accessible).
928  * For this we have to read the respective first level entry.
929  */
930 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
931                               gpa_t *eaddr)
932 {
933         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
934         u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
935         phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
936         int esz = GITS_BASER_ENTRY_SIZE(baser);
937         int index;
938
939         switch (type) {
940         case GITS_BASER_TYPE_DEVICE:
941                 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
942                         return false;
943                 break;
944         case GITS_BASER_TYPE_COLLECTION:
945                 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
946                 if (id >= BIT_ULL(16))
947                         return false;
948                 break;
949         default:
950                 return false;
951         }
952
953         if (!(baser & GITS_BASER_INDIRECT)) {
954                 phys_addr_t addr;
955
956                 if (id >= (l1_tbl_size / esz))
957                         return false;
958
959                 addr = base + id * esz;
960
961                 if (eaddr)
962                         *eaddr = addr;
963
964                 return __is_visible_gfn_locked(its, addr);
965         }
966
967         /* calculate and check the index into the 1st level */
968         index = id / (SZ_64K / esz);
969         if (index >= (l1_tbl_size / sizeof(u64)))
970                 return false;
971
972         /* Each 1st level entry is represented by a 64-bit value. */
973         if (kvm_read_guest_lock(its->dev->kvm,
974                            base + index * sizeof(indirect_ptr),
975                            &indirect_ptr, sizeof(indirect_ptr)))
976                 return false;
977
978         indirect_ptr = le64_to_cpu(indirect_ptr);
979
980         /* check the valid bit of the first level entry */
981         if (!(indirect_ptr & BIT_ULL(63)))
982                 return false;
983
984         /* Mask the guest physical address and calculate the frame number. */
985         indirect_ptr &= GENMASK_ULL(51, 16);
986
987         /* Find the address of the actual entry */
988         index = id % (SZ_64K / esz);
989         indirect_ptr += index * esz;
990
991         if (eaddr)
992                 *eaddr = indirect_ptr;
993
994         return __is_visible_gfn_locked(its, indirect_ptr);
995 }
996
997 /*
998  * Check whether an event ID can be stored in the corresponding Interrupt
999  * Translation Table, which starts at device->itt_addr.
1000  */
1001 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
1002                 u32 event_id)
1003 {
1004         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1005         int ite_esz = abi->ite_esz;
1006         gpa_t gpa;
1007
1008         /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1009         if (event_id >= BIT_ULL(device->num_eventid_bits))
1010                 return false;
1011
1012         gpa = device->itt_addr + event_id * ite_esz;
1013         return __is_visible_gfn_locked(its, gpa);
1014 }
1015
1016 /*
1017  * Add a new collection into the ITS collection table.
1018  * Returns 0 on success, and a negative error value for generic errors.
1019  */
1020 static int vgic_its_alloc_collection(struct vgic_its *its,
1021                                      struct its_collection **colp,
1022                                      u32 coll_id)
1023 {
1024         struct its_collection *collection;
1025
1026         collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1027         if (!collection)
1028                 return -ENOMEM;
1029
1030         collection->collection_id = coll_id;
1031         collection->target_addr = COLLECTION_NOT_MAPPED;
1032
1033         list_add_tail(&collection->coll_list, &its->collection_list);
1034         *colp = collection;
1035
1036         return 0;
1037 }
1038
1039 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1040 {
1041         struct its_collection *collection;
1042         struct its_device *device;
1043         struct its_ite *ite;
1044
1045         /*
1046          * Clearing the mapping for that collection ID removes the
1047          * entry from the list. If there wasn't any before, we can
1048          * go home early.
1049          */
1050         collection = find_collection(its, coll_id);
1051         if (!collection)
1052                 return;
1053
1054         for_each_lpi_its(device, ite, its)
1055                 if (ite->collection &&
1056                     ite->collection->collection_id == coll_id)
1057                         ite->collection = NULL;
1058
1059         list_del(&collection->coll_list);
1060         kfree(collection);
1061 }
1062
1063 /* Must be called with its_lock mutex held */
1064 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1065                                           struct its_collection *collection,
1066                                           u32 event_id)
1067 {
1068         struct its_ite *ite;
1069
1070         ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1071         if (!ite)
1072                 return ERR_PTR(-ENOMEM);
1073
1074         ite->event_id   = event_id;
1075         ite->collection = collection;
1076
1077         list_add_tail(&ite->ite_list, &device->itt_head);
1078         return ite;
1079 }
1080
1081 /*
1082  * The MAPTI and MAPI commands map LPIs to ITTEs.
1083  * Must be called with its_lock mutex held.
1084  */
1085 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1086                                     u64 *its_cmd)
1087 {
1088         u32 device_id = its_cmd_get_deviceid(its_cmd);
1089         u32 event_id = its_cmd_get_id(its_cmd);
1090         u32 coll_id = its_cmd_get_collection(its_cmd);
1091         struct its_ite *ite;
1092         struct kvm_vcpu *vcpu = NULL;
1093         struct its_device *device;
1094         struct its_collection *collection, *new_coll = NULL;
1095         struct vgic_irq *irq;
1096         int lpi_nr;
1097
1098         device = find_its_device(its, device_id);
1099         if (!device)
1100                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1101
1102         if (!vgic_its_check_event_id(its, device, event_id))
1103                 return E_ITS_MAPTI_ID_OOR;
1104
1105         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1106                 lpi_nr = its_cmd_get_physical_id(its_cmd);
1107         else
1108                 lpi_nr = event_id;
1109         if (lpi_nr < GIC_LPI_OFFSET ||
1110             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1111                 return E_ITS_MAPTI_PHYSICALID_OOR;
1112
1113         /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1114         if (find_ite(its, device_id, event_id))
1115                 return 0;
1116
1117         collection = find_collection(its, coll_id);
1118         if (!collection) {
1119                 int ret;
1120
1121                 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1122                         return E_ITS_MAPC_COLLECTION_OOR;
1123
1124                 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1125                 if (ret)
1126                         return ret;
1127                 new_coll = collection;
1128         }
1129
1130         ite = vgic_its_alloc_ite(device, collection, event_id);
1131         if (IS_ERR(ite)) {
1132                 if (new_coll)
1133                         vgic_its_free_collection(its, coll_id);
1134                 return PTR_ERR(ite);
1135         }
1136
1137         if (its_is_collection_mapped(collection))
1138                 vcpu = collection_to_vcpu(kvm, collection);
1139
1140         irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1141         if (IS_ERR(irq)) {
1142                 if (new_coll)
1143                         vgic_its_free_collection(its, coll_id);
1144                 its_free_ite(kvm, ite);
1145                 return PTR_ERR(irq);
1146         }
1147         ite->irq = irq;
1148
1149         return 0;
1150 }
1151
1152 /* Requires the its_lock to be held. */
1153 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1154 {
1155         struct its_ite *ite, *temp;
1156
1157         /*
1158          * The spec says that unmapping a device with still valid
1159          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1160          * since we cannot leave the memory unreferenced.
1161          */
1162         list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1163                 its_free_ite(kvm, ite);
1164
1165         vgic_its_invalidate_cache(kvm);
1166
1167         list_del(&device->dev_list);
1168         kfree(device);
1169 }
1170
1171 /* its lock must be held */
1172 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1173 {
1174         struct its_device *cur, *temp;
1175
1176         list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1177                 vgic_its_free_device(kvm, cur);
1178 }
1179
1180 /* its lock must be held */
1181 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1182 {
1183         struct its_collection *cur, *temp;
1184
1185         list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1186                 vgic_its_free_collection(its, cur->collection_id);
1187 }
1188
1189 /* Must be called with its_lock mutex held */
1190 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1191                                                 u32 device_id, gpa_t itt_addr,
1192                                                 u8 num_eventid_bits)
1193 {
1194         struct its_device *device;
1195
1196         device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1197         if (!device)
1198                 return ERR_PTR(-ENOMEM);
1199
1200         device->device_id = device_id;
1201         device->itt_addr = itt_addr;
1202         device->num_eventid_bits = num_eventid_bits;
1203         INIT_LIST_HEAD(&device->itt_head);
1204
1205         list_add_tail(&device->dev_list, &its->device_list);
1206         return device;
1207 }
1208
1209 /*
1210  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1211  * Must be called with the its_lock mutex held.
1212  */
1213 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1214                                     u64 *its_cmd)
1215 {
1216         u32 device_id = its_cmd_get_deviceid(its_cmd);
1217         bool valid = its_cmd_get_validbit(its_cmd);
1218         u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1219         gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1220         struct its_device *device;
1221
1222         if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1223                 return E_ITS_MAPD_DEVICE_OOR;
1224
1225         if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1226                 return E_ITS_MAPD_ITTSIZE_OOR;
1227
1228         device = find_its_device(its, device_id);
1229
1230         /*
1231          * The spec says that calling MAPD on an already mapped device
1232          * invalidates all cached data for this device. We implement this
1233          * by removing the mapping and re-establishing it.
1234          */
1235         if (device)
1236                 vgic_its_free_device(kvm, device);
1237
1238         /*
1239          * The spec does not say whether unmapping a not-mapped device
1240          * is an error, so we are done in any case.
1241          */
1242         if (!valid)
1243                 return 0;
1244
1245         device = vgic_its_alloc_device(its, device_id, itt_addr,
1246                                        num_eventid_bits);
1247
1248         return PTR_ERR_OR_ZERO(device);
1249 }
1250
1251 /*
1252  * The MAPC command maps collection IDs to redistributors.
1253  * Must be called with the its_lock mutex held.
1254  */
1255 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1256                                     u64 *its_cmd)
1257 {
1258         u16 coll_id;
1259         struct its_collection *collection;
1260         bool valid;
1261
1262         valid = its_cmd_get_validbit(its_cmd);
1263         coll_id = its_cmd_get_collection(its_cmd);
1264
1265         if (!valid) {
1266                 vgic_its_free_collection(its, coll_id);
1267                 vgic_its_invalidate_cache(kvm);
1268         } else {
1269                 struct kvm_vcpu *vcpu;
1270
1271                 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1272                 if (!vcpu)
1273                         return E_ITS_MAPC_PROCNUM_OOR;
1274
1275                 collection = find_collection(its, coll_id);
1276
1277                 if (!collection) {
1278                         int ret;
1279
1280                         if (!vgic_its_check_id(its, its->baser_coll_table,
1281                                                 coll_id, NULL))
1282                                 return E_ITS_MAPC_COLLECTION_OOR;
1283
1284                         ret = vgic_its_alloc_collection(its, &collection,
1285                                                         coll_id);
1286                         if (ret)
1287                                 return ret;
1288                         collection->target_addr = vcpu->vcpu_id;
1289                 } else {
1290                         collection->target_addr = vcpu->vcpu_id;
1291                         update_affinity_collection(kvm, its, collection);
1292                 }
1293         }
1294
1295         return 0;
1296 }
1297
1298 /*
1299  * The CLEAR command removes the pending state for a particular LPI.
1300  * Must be called with the its_lock mutex held.
1301  */
1302 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1303                                      u64 *its_cmd)
1304 {
1305         u32 device_id = its_cmd_get_deviceid(its_cmd);
1306         u32 event_id = its_cmd_get_id(its_cmd);
1307         struct its_ite *ite;
1308
1309
1310         ite = find_ite(its, device_id, event_id);
1311         if (!ite)
1312                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1313
1314         ite->irq->pending_latch = false;
1315
1316         if (ite->irq->hw)
1317                 return irq_set_irqchip_state(ite->irq->host_irq,
1318                                              IRQCHIP_STATE_PENDING, false);
1319
1320         return 0;
1321 }
1322
1323 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1324 {
1325         return update_lpi_config(kvm, irq, NULL, true);
1326 }
1327
1328 /*
1329  * The INV command syncs the configuration bits from the memory table.
1330  * Must be called with the its_lock mutex held.
1331  */
1332 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1333                                    u64 *its_cmd)
1334 {
1335         u32 device_id = its_cmd_get_deviceid(its_cmd);
1336         u32 event_id = its_cmd_get_id(its_cmd);
1337         struct its_ite *ite;
1338
1339
1340         ite = find_ite(its, device_id, event_id);
1341         if (!ite)
1342                 return E_ITS_INV_UNMAPPED_INTERRUPT;
1343
1344         return vgic_its_inv_lpi(kvm, ite->irq);
1345 }
1346
1347 /**
1348  * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1349  * @vcpu: the vcpu for which the RD is targetted by an invalidation
1350  *
1351  * Contrary to the INVALL command, this targets a RD instead of a
1352  * collection, and we don't need to hold the its_lock, since no ITS is
1353  * involved here.
1354  */
1355 int vgic_its_invall(struct kvm_vcpu *vcpu)
1356 {
1357         struct kvm *kvm = vcpu->kvm;
1358         int irq_count, i = 0;
1359         u32 *intids;
1360
1361         irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1362         if (irq_count < 0)
1363                 return irq_count;
1364
1365         for (i = 0; i < irq_count; i++) {
1366                 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1367                 if (!irq)
1368                         continue;
1369                 update_lpi_config(kvm, irq, vcpu, false);
1370                 vgic_put_irq(kvm, irq);
1371         }
1372
1373         kfree(intids);
1374
1375         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1376                 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1377
1378         return 0;
1379 }
1380
1381 /*
1382  * The INVALL command requests flushing of all IRQ data in this collection.
1383  * Find the VCPU mapped to that collection, then iterate over the VM's list
1384  * of mapped LPIs and update the configuration for each IRQ which targets
1385  * the specified vcpu. The configuration will be read from the in-memory
1386  * configuration table.
1387  * Must be called with the its_lock mutex held.
1388  */
1389 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1390                                       u64 *its_cmd)
1391 {
1392         u32 coll_id = its_cmd_get_collection(its_cmd);
1393         struct its_collection *collection;
1394         struct kvm_vcpu *vcpu;
1395
1396         collection = find_collection(its, coll_id);
1397         if (!its_is_collection_mapped(collection))
1398                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1399
1400         vcpu = collection_to_vcpu(kvm, collection);
1401         vgic_its_invall(vcpu);
1402
1403         return 0;
1404 }
1405
1406 /*
1407  * The MOVALL command moves the pending state of all IRQs targeting one
1408  * redistributor to another. We don't hold the pending state in the VCPUs,
1409  * but in the IRQs instead, so there is really not much to do for us here.
1410  * However the spec says that no IRQ must target the old redistributor
1411  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1412  * This command affects all LPIs in the system that target that redistributor.
1413  */
1414 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1415                                       u64 *its_cmd)
1416 {
1417         struct kvm_vcpu *vcpu1, *vcpu2;
1418         struct vgic_irq *irq;
1419         u32 *intids;
1420         int irq_count, i;
1421
1422         /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1423         vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1424         vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1425
1426         if (!vcpu1 || !vcpu2)
1427                 return E_ITS_MOVALL_PROCNUM_OOR;
1428
1429         if (vcpu1 == vcpu2)
1430                 return 0;
1431
1432         irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1433         if (irq_count < 0)
1434                 return irq_count;
1435
1436         for (i = 0; i < irq_count; i++) {
1437                 irq = vgic_get_irq(kvm, NULL, intids[i]);
1438                 if (!irq)
1439                         continue;
1440
1441                 update_affinity(irq, vcpu2);
1442
1443                 vgic_put_irq(kvm, irq);
1444         }
1445
1446         vgic_its_invalidate_cache(kvm);
1447
1448         kfree(intids);
1449         return 0;
1450 }
1451
1452 /*
1453  * The INT command injects the LPI associated with that DevID/EvID pair.
1454  * Must be called with the its_lock mutex held.
1455  */
1456 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1457                                    u64 *its_cmd)
1458 {
1459         u32 msi_data = its_cmd_get_id(its_cmd);
1460         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1461
1462         return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1463 }
1464
1465 /*
1466  * This function is called with the its_cmd lock held, but the ITS data
1467  * structure lock dropped.
1468  */
1469 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1470                                    u64 *its_cmd)
1471 {
1472         int ret = -ENODEV;
1473
1474         mutex_lock(&its->its_lock);
1475         switch (its_cmd_get_command(its_cmd)) {
1476         case GITS_CMD_MAPD:
1477                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1478                 break;
1479         case GITS_CMD_MAPC:
1480                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1481                 break;
1482         case GITS_CMD_MAPI:
1483                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1484                 break;
1485         case GITS_CMD_MAPTI:
1486                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1487                 break;
1488         case GITS_CMD_MOVI:
1489                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1490                 break;
1491         case GITS_CMD_DISCARD:
1492                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1493                 break;
1494         case GITS_CMD_CLEAR:
1495                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1496                 break;
1497         case GITS_CMD_MOVALL:
1498                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1499                 break;
1500         case GITS_CMD_INT:
1501                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1502                 break;
1503         case GITS_CMD_INV:
1504                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1505                 break;
1506         case GITS_CMD_INVALL:
1507                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1508                 break;
1509         case GITS_CMD_SYNC:
1510                 /* we ignore this command: we are in sync all of the time */
1511                 ret = 0;
1512                 break;
1513         }
1514         mutex_unlock(&its->its_lock);
1515
1516         return ret;
1517 }
1518
1519 static u64 vgic_sanitise_its_baser(u64 reg)
1520 {
1521         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1522                                   GITS_BASER_SHAREABILITY_SHIFT,
1523                                   vgic_sanitise_shareability);
1524         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1525                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1526                                   vgic_sanitise_inner_cacheability);
1527         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1528                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1529                                   vgic_sanitise_outer_cacheability);
1530
1531         /* We support only one (ITS) page size: 64K */
1532         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1533
1534         return reg;
1535 }
1536
1537 static u64 vgic_sanitise_its_cbaser(u64 reg)
1538 {
1539         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1540                                   GITS_CBASER_SHAREABILITY_SHIFT,
1541                                   vgic_sanitise_shareability);
1542         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1543                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1544                                   vgic_sanitise_inner_cacheability);
1545         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1546                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1547                                   vgic_sanitise_outer_cacheability);
1548
1549         /* Sanitise the physical address to be 64k aligned. */
1550         reg &= ~GENMASK_ULL(15, 12);
1551
1552         return reg;
1553 }
1554
1555 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1556                                                struct vgic_its *its,
1557                                                gpa_t addr, unsigned int len)
1558 {
1559         return extract_bytes(its->cbaser, addr & 7, len);
1560 }
1561
1562 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1563                                        gpa_t addr, unsigned int len,
1564                                        unsigned long val)
1565 {
1566         /* When GITS_CTLR.Enable is 1, this register is RO. */
1567         if (its->enabled)
1568                 return;
1569
1570         mutex_lock(&its->cmd_lock);
1571         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1572         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1573         its->creadr = 0;
1574         /*
1575          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1576          * it to CREADR to make sure we start with an empty command buffer.
1577          */
1578         its->cwriter = its->creadr;
1579         mutex_unlock(&its->cmd_lock);
1580 }
1581
1582 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1583 #define ITS_CMD_SIZE                    32
1584 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1585
1586 /* Must be called with the cmd_lock held. */
1587 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1588 {
1589         gpa_t cbaser;
1590         u64 cmd_buf[4];
1591
1592         /* Commands are only processed when the ITS is enabled. */
1593         if (!its->enabled)
1594                 return;
1595
1596         cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1597
1598         while (its->cwriter != its->creadr) {
1599                 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1600                                               cmd_buf, ITS_CMD_SIZE);
1601                 /*
1602                  * If kvm_read_guest() fails, this could be due to the guest
1603                  * programming a bogus value in CBASER or something else going
1604                  * wrong from which we cannot easily recover.
1605                  * According to section 6.3.2 in the GICv3 spec we can just
1606                  * ignore that command then.
1607                  */
1608                 if (!ret)
1609                         vgic_its_handle_command(kvm, its, cmd_buf);
1610
1611                 its->creadr += ITS_CMD_SIZE;
1612                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1613                         its->creadr = 0;
1614         }
1615 }
1616
1617 /*
1618  * By writing to CWRITER the guest announces new commands to be processed.
1619  * To avoid any races in the first place, we take the its_cmd lock, which
1620  * protects our ring buffer variables, so that there is only one user
1621  * per ITS handling commands at a given time.
1622  */
1623 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1624                                         gpa_t addr, unsigned int len,
1625                                         unsigned long val)
1626 {
1627         u64 reg;
1628
1629         if (!its)
1630                 return;
1631
1632         mutex_lock(&its->cmd_lock);
1633
1634         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1635         reg = ITS_CMD_OFFSET(reg);
1636         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1637                 mutex_unlock(&its->cmd_lock);
1638                 return;
1639         }
1640         its->cwriter = reg;
1641
1642         vgic_its_process_commands(kvm, its);
1643
1644         mutex_unlock(&its->cmd_lock);
1645 }
1646
1647 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1648                                                 struct vgic_its *its,
1649                                                 gpa_t addr, unsigned int len)
1650 {
1651         return extract_bytes(its->cwriter, addr & 0x7, len);
1652 }
1653
1654 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1655                                                struct vgic_its *its,
1656                                                gpa_t addr, unsigned int len)
1657 {
1658         return extract_bytes(its->creadr, addr & 0x7, len);
1659 }
1660
1661 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1662                                               struct vgic_its *its,
1663                                               gpa_t addr, unsigned int len,
1664                                               unsigned long val)
1665 {
1666         u32 cmd_offset;
1667         int ret = 0;
1668
1669         mutex_lock(&its->cmd_lock);
1670
1671         if (its->enabled) {
1672                 ret = -EBUSY;
1673                 goto out;
1674         }
1675
1676         cmd_offset = ITS_CMD_OFFSET(val);
1677         if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1678                 ret = -EINVAL;
1679                 goto out;
1680         }
1681
1682         its->creadr = cmd_offset;
1683 out:
1684         mutex_unlock(&its->cmd_lock);
1685         return ret;
1686 }
1687
1688 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1689 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1690                                               struct vgic_its *its,
1691                                               gpa_t addr, unsigned int len)
1692 {
1693         u64 reg;
1694
1695         switch (BASER_INDEX(addr)) {
1696         case 0:
1697                 reg = its->baser_device_table;
1698                 break;
1699         case 1:
1700                 reg = its->baser_coll_table;
1701                 break;
1702         default:
1703                 reg = 0;
1704                 break;
1705         }
1706
1707         return extract_bytes(reg, addr & 7, len);
1708 }
1709
1710 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1711 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1712                                       struct vgic_its *its,
1713                                       gpa_t addr, unsigned int len,
1714                                       unsigned long val)
1715 {
1716         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1717         u64 entry_size, table_type;
1718         u64 reg, *regptr, clearbits = 0;
1719
1720         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1721         if (its->enabled)
1722                 return;
1723
1724         switch (BASER_INDEX(addr)) {
1725         case 0:
1726                 regptr = &its->baser_device_table;
1727                 entry_size = abi->dte_esz;
1728                 table_type = GITS_BASER_TYPE_DEVICE;
1729                 break;
1730         case 1:
1731                 regptr = &its->baser_coll_table;
1732                 entry_size = abi->cte_esz;
1733                 table_type = GITS_BASER_TYPE_COLLECTION;
1734                 clearbits = GITS_BASER_INDIRECT;
1735                 break;
1736         default:
1737                 return;
1738         }
1739
1740         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1741         reg &= ~GITS_BASER_RO_MASK;
1742         reg &= ~clearbits;
1743
1744         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1745         reg |= table_type << GITS_BASER_TYPE_SHIFT;
1746         reg = vgic_sanitise_its_baser(reg);
1747
1748         *regptr = reg;
1749
1750         if (!(reg & GITS_BASER_VALID)) {
1751                 /* Take the its_lock to prevent a race with a save/restore */
1752                 mutex_lock(&its->its_lock);
1753                 switch (table_type) {
1754                 case GITS_BASER_TYPE_DEVICE:
1755                         vgic_its_free_device_list(kvm, its);
1756                         break;
1757                 case GITS_BASER_TYPE_COLLECTION:
1758                         vgic_its_free_collection_list(kvm, its);
1759                         break;
1760                 }
1761                 mutex_unlock(&its->its_lock);
1762         }
1763 }
1764
1765 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1766                                              struct vgic_its *its,
1767                                              gpa_t addr, unsigned int len)
1768 {
1769         u32 reg = 0;
1770
1771         mutex_lock(&its->cmd_lock);
1772         if (its->creadr == its->cwriter)
1773                 reg |= GITS_CTLR_QUIESCENT;
1774         if (its->enabled)
1775                 reg |= GITS_CTLR_ENABLE;
1776         mutex_unlock(&its->cmd_lock);
1777
1778         return reg;
1779 }
1780
1781 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1782                                      gpa_t addr, unsigned int len,
1783                                      unsigned long val)
1784 {
1785         mutex_lock(&its->cmd_lock);
1786
1787         /*
1788          * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1789          * device/collection BASER are invalid
1790          */
1791         if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1792                 (!(its->baser_device_table & GITS_BASER_VALID) ||
1793                  !(its->baser_coll_table & GITS_BASER_VALID) ||
1794                  !(its->cbaser & GITS_CBASER_VALID)))
1795                 goto out;
1796
1797         its->enabled = !!(val & GITS_CTLR_ENABLE);
1798         if (!its->enabled)
1799                 vgic_its_invalidate_cache(kvm);
1800
1801         /*
1802          * Try to process any pending commands. This function bails out early
1803          * if the ITS is disabled or no commands have been queued.
1804          */
1805         vgic_its_process_commands(kvm, its);
1806
1807 out:
1808         mutex_unlock(&its->cmd_lock);
1809 }
1810
1811 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1812 {                                                               \
1813         .reg_offset = off,                                      \
1814         .len = length,                                          \
1815         .access_flags = acc,                                    \
1816         .its_read = rd,                                         \
1817         .its_write = wr,                                        \
1818 }
1819
1820 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1821 {                                                               \
1822         .reg_offset = off,                                      \
1823         .len = length,                                          \
1824         .access_flags = acc,                                    \
1825         .its_read = rd,                                         \
1826         .its_write = wr,                                        \
1827         .uaccess_its_write = uwr,                               \
1828 }
1829
1830 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1831                               gpa_t addr, unsigned int len, unsigned long val)
1832 {
1833         /* Ignore */
1834 }
1835
1836 static struct vgic_register_region its_registers[] = {
1837         REGISTER_ITS_DESC(GITS_CTLR,
1838                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1839                 VGIC_ACCESS_32bit),
1840         REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1841                 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1842                 vgic_mmio_uaccess_write_its_iidr, 4,
1843                 VGIC_ACCESS_32bit),
1844         REGISTER_ITS_DESC(GITS_TYPER,
1845                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1846                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1847         REGISTER_ITS_DESC(GITS_CBASER,
1848                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1849                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1850         REGISTER_ITS_DESC(GITS_CWRITER,
1851                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1852                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1853         REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1854                 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1855                 vgic_mmio_uaccess_write_its_creadr, 8,
1856                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1857         REGISTER_ITS_DESC(GITS_BASER,
1858                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1859                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1860         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1861                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1862                 VGIC_ACCESS_32bit),
1863 };
1864
1865 /* This is called on setting the LPI enable bit in the redistributor. */
1866 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1867 {
1868         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1869                 its_sync_lpi_pending_table(vcpu);
1870 }
1871
1872 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1873                                    u64 addr)
1874 {
1875         struct vgic_io_device *iodev = &its->iodev;
1876         int ret;
1877
1878         mutex_lock(&kvm->slots_lock);
1879         if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1880                 ret = -EBUSY;
1881                 goto out;
1882         }
1883
1884         its->vgic_its_base = addr;
1885         iodev->regions = its_registers;
1886         iodev->nr_regions = ARRAY_SIZE(its_registers);
1887         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1888
1889         iodev->base_addr = its->vgic_its_base;
1890         iodev->iodev_type = IODEV_ITS;
1891         iodev->its = its;
1892         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1893                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1894 out:
1895         mutex_unlock(&kvm->slots_lock);
1896
1897         return ret;
1898 }
1899
1900 /* Default is 16 cached LPIs per vcpu */
1901 #define LPI_DEFAULT_PCPU_CACHE_SIZE     16
1902
1903 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1904 {
1905         struct vgic_dist *dist = &kvm->arch.vgic;
1906         unsigned int sz;
1907         int i;
1908
1909         if (!list_empty(&dist->lpi_translation_cache))
1910                 return;
1911
1912         sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1913
1914         for (i = 0; i < sz; i++) {
1915                 struct vgic_translation_cache_entry *cte;
1916
1917                 /* An allocation failure is not fatal */
1918                 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1919                 if (WARN_ON(!cte))
1920                         break;
1921
1922                 INIT_LIST_HEAD(&cte->entry);
1923                 list_add(&cte->entry, &dist->lpi_translation_cache);
1924         }
1925 }
1926
1927 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1928 {
1929         struct vgic_dist *dist = &kvm->arch.vgic;
1930         struct vgic_translation_cache_entry *cte, *tmp;
1931
1932         vgic_its_invalidate_cache(kvm);
1933
1934         list_for_each_entry_safe(cte, tmp,
1935                                  &dist->lpi_translation_cache, entry) {
1936                 list_del(&cte->entry);
1937                 kfree(cte);
1938         }
1939 }
1940
1941 #define INITIAL_BASER_VALUE                                               \
1942         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1943          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1944          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1945          GITS_BASER_PAGE_SIZE_64K)
1946
1947 #define INITIAL_PROPBASER_VALUE                                           \
1948         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1949          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1950          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1951
1952 static int vgic_its_create(struct kvm_device *dev, u32 type)
1953 {
1954         int ret;
1955         struct vgic_its *its;
1956
1957         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1958                 return -ENODEV;
1959
1960         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1961         if (!its)
1962                 return -ENOMEM;
1963
1964         mutex_lock(&dev->kvm->arch.config_lock);
1965
1966         if (vgic_initialized(dev->kvm)) {
1967                 ret = vgic_v4_init(dev->kvm);
1968                 if (ret < 0) {
1969                         mutex_unlock(&dev->kvm->arch.config_lock);
1970                         kfree(its);
1971                         return ret;
1972                 }
1973
1974                 vgic_lpi_translation_cache_init(dev->kvm);
1975         }
1976
1977         mutex_init(&its->its_lock);
1978         mutex_init(&its->cmd_lock);
1979
1980         /* Yep, even more trickery for lock ordering... */
1981 #ifdef CONFIG_LOCKDEP
1982         mutex_lock(&its->cmd_lock);
1983         mutex_lock(&its->its_lock);
1984         mutex_unlock(&its->its_lock);
1985         mutex_unlock(&its->cmd_lock);
1986 #endif
1987
1988         its->vgic_its_base = VGIC_ADDR_UNDEF;
1989
1990         INIT_LIST_HEAD(&its->device_list);
1991         INIT_LIST_HEAD(&its->collection_list);
1992
1993         dev->kvm->arch.vgic.msis_require_devid = true;
1994         dev->kvm->arch.vgic.has_its = true;
1995         its->enabled = false;
1996         its->dev = dev;
1997
1998         its->baser_device_table = INITIAL_BASER_VALUE                   |
1999                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
2000         its->baser_coll_table = INITIAL_BASER_VALUE |
2001                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
2002         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
2003
2004         dev->private = its;
2005
2006         ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2007
2008         mutex_unlock(&dev->kvm->arch.config_lock);
2009
2010         return ret;
2011 }
2012
2013 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2014 {
2015         struct kvm *kvm = kvm_dev->kvm;
2016         struct vgic_its *its = kvm_dev->private;
2017
2018         mutex_lock(&its->its_lock);
2019
2020         vgic_its_free_device_list(kvm, its);
2021         vgic_its_free_collection_list(kvm, its);
2022
2023         mutex_unlock(&its->its_lock);
2024         kfree(its);
2025         kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2026 }
2027
2028 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2029                                   struct kvm_device_attr *attr)
2030 {
2031         const struct vgic_register_region *region;
2032         gpa_t offset = attr->attr;
2033         int align;
2034
2035         align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2036
2037         if (offset & align)
2038                 return -EINVAL;
2039
2040         region = vgic_find_mmio_region(its_registers,
2041                                        ARRAY_SIZE(its_registers),
2042                                        offset);
2043         if (!region)
2044                 return -ENXIO;
2045
2046         return 0;
2047 }
2048
2049 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2050                                      struct kvm_device_attr *attr,
2051                                      u64 *reg, bool is_write)
2052 {
2053         const struct vgic_register_region *region;
2054         struct vgic_its *its;
2055         gpa_t addr, offset;
2056         unsigned int len;
2057         int align, ret = 0;
2058
2059         its = dev->private;
2060         offset = attr->attr;
2061
2062         /*
2063          * Although the spec supports upper/lower 32-bit accesses to
2064          * 64-bit ITS registers, the userspace ABI requires 64-bit
2065          * accesses to all 64-bit wide registers. We therefore only
2066          * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2067          * registers
2068          */
2069         if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2070                 align = 0x3;
2071         else
2072                 align = 0x7;
2073
2074         if (offset & align)
2075                 return -EINVAL;
2076
2077         mutex_lock(&dev->kvm->lock);
2078
2079         if (!lock_all_vcpus(dev->kvm)) {
2080                 mutex_unlock(&dev->kvm->lock);
2081                 return -EBUSY;
2082         }
2083
2084         mutex_lock(&dev->kvm->arch.config_lock);
2085
2086         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2087                 ret = -ENXIO;
2088                 goto out;
2089         }
2090
2091         region = vgic_find_mmio_region(its_registers,
2092                                        ARRAY_SIZE(its_registers),
2093                                        offset);
2094         if (!region) {
2095                 ret = -ENXIO;
2096                 goto out;
2097         }
2098
2099         addr = its->vgic_its_base + offset;
2100
2101         len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2102
2103         if (is_write) {
2104                 if (region->uaccess_its_write)
2105                         ret = region->uaccess_its_write(dev->kvm, its, addr,
2106                                                         len, *reg);
2107                 else
2108                         region->its_write(dev->kvm, its, addr, len, *reg);
2109         } else {
2110                 *reg = region->its_read(dev->kvm, its, addr, len);
2111         }
2112 out:
2113         mutex_unlock(&dev->kvm->arch.config_lock);
2114         unlock_all_vcpus(dev->kvm);
2115         mutex_unlock(&dev->kvm->lock);
2116         return ret;
2117 }
2118
2119 static u32 compute_next_devid_offset(struct list_head *h,
2120                                      struct its_device *dev)
2121 {
2122         struct its_device *next;
2123         u32 next_offset;
2124
2125         if (list_is_last(&dev->dev_list, h))
2126                 return 0;
2127         next = list_next_entry(dev, dev_list);
2128         next_offset = next->device_id - dev->device_id;
2129
2130         return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2131 }
2132
2133 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2134 {
2135         struct its_ite *next;
2136         u32 next_offset;
2137
2138         if (list_is_last(&ite->ite_list, h))
2139                 return 0;
2140         next = list_next_entry(ite, ite_list);
2141         next_offset = next->event_id - ite->event_id;
2142
2143         return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2144 }
2145
2146 /**
2147  * entry_fn_t - Callback called on a table entry restore path
2148  * @its: its handle
2149  * @id: id of the entry
2150  * @entry: pointer to the entry
2151  * @opaque: pointer to an opaque data
2152  *
2153  * Return: < 0 on error, 0 if last element was identified, id offset to next
2154  * element otherwise
2155  */
2156 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2157                           void *opaque);
2158
2159 /**
2160  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2161  * to each entry
2162  *
2163  * @its: its handle
2164  * @base: base gpa of the table
2165  * @size: size of the table in bytes
2166  * @esz: entry size in bytes
2167  * @start_id: the ID of the first entry in the table
2168  * (non zero for 2d level tables)
2169  * @fn: function to apply on each entry
2170  *
2171  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2172  * (the last element may not be found on second level tables)
2173  */
2174 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2175                           int start_id, entry_fn_t fn, void *opaque)
2176 {
2177         struct kvm *kvm = its->dev->kvm;
2178         unsigned long len = size;
2179         int id = start_id;
2180         gpa_t gpa = base;
2181         char entry[ESZ_MAX];
2182         int ret;
2183
2184         memset(entry, 0, esz);
2185
2186         while (true) {
2187                 int next_offset;
2188                 size_t byte_offset;
2189
2190                 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2191                 if (ret)
2192                         return ret;
2193
2194                 next_offset = fn(its, id, entry, opaque);
2195                 if (next_offset <= 0)
2196                         return next_offset;
2197
2198                 byte_offset = next_offset * esz;
2199                 if (byte_offset >= len)
2200                         break;
2201
2202                 id += next_offset;
2203                 gpa += byte_offset;
2204                 len -= byte_offset;
2205         }
2206         return 1;
2207 }
2208
2209 /**
2210  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2211  */
2212 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2213                               struct its_ite *ite, gpa_t gpa, int ite_esz)
2214 {
2215         struct kvm *kvm = its->dev->kvm;
2216         u32 next_offset;
2217         u64 val;
2218
2219         next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2220         val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2221                ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2222                 ite->collection->collection_id;
2223         val = cpu_to_le64(val);
2224         return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2225 }
2226
2227 /**
2228  * vgic_its_restore_ite - restore an interrupt translation entry
2229  * @event_id: id used for indexing
2230  * @ptr: pointer to the ITE entry
2231  * @opaque: pointer to the its_device
2232  */
2233 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2234                                 void *ptr, void *opaque)
2235 {
2236         struct its_device *dev = opaque;
2237         struct its_collection *collection;
2238         struct kvm *kvm = its->dev->kvm;
2239         struct kvm_vcpu *vcpu = NULL;
2240         u64 val;
2241         u64 *p = (u64 *)ptr;
2242         struct vgic_irq *irq;
2243         u32 coll_id, lpi_id;
2244         struct its_ite *ite;
2245         u32 offset;
2246
2247         val = *p;
2248
2249         val = le64_to_cpu(val);
2250
2251         coll_id = val & KVM_ITS_ITE_ICID_MASK;
2252         lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2253
2254         if (!lpi_id)
2255                 return 1; /* invalid entry, no choice but to scan next entry */
2256
2257         if (lpi_id < VGIC_MIN_LPI)
2258                 return -EINVAL;
2259
2260         offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2261         if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2262                 return -EINVAL;
2263
2264         collection = find_collection(its, coll_id);
2265         if (!collection)
2266                 return -EINVAL;
2267
2268         if (!vgic_its_check_event_id(its, dev, event_id))
2269                 return -EINVAL;
2270
2271         ite = vgic_its_alloc_ite(dev, collection, event_id);
2272         if (IS_ERR(ite))
2273                 return PTR_ERR(ite);
2274
2275         if (its_is_collection_mapped(collection))
2276                 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2277
2278         irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2279         if (IS_ERR(irq)) {
2280                 its_free_ite(kvm, ite);
2281                 return PTR_ERR(irq);
2282         }
2283         ite->irq = irq;
2284
2285         return offset;
2286 }
2287
2288 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2289                             const struct list_head *b)
2290 {
2291         struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2292         struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2293
2294         if (itea->event_id < iteb->event_id)
2295                 return -1;
2296         else
2297                 return 1;
2298 }
2299
2300 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2301 {
2302         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2303         gpa_t base = device->itt_addr;
2304         struct its_ite *ite;
2305         int ret;
2306         int ite_esz = abi->ite_esz;
2307
2308         list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2309
2310         list_for_each_entry(ite, &device->itt_head, ite_list) {
2311                 gpa_t gpa = base + ite->event_id * ite_esz;
2312
2313                 /*
2314                  * If an LPI carries the HW bit, this means that this
2315                  * interrupt is controlled by GICv4, and we do not
2316                  * have direct access to that state without GICv4.1.
2317                  * Let's simply fail the save operation...
2318                  */
2319                 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2320                         return -EACCES;
2321
2322                 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2323                 if (ret)
2324                         return ret;
2325         }
2326         return 0;
2327 }
2328
2329 /**
2330  * vgic_its_restore_itt - restore the ITT of a device
2331  *
2332  * @its: its handle
2333  * @dev: device handle
2334  *
2335  * Return 0 on success, < 0 on error
2336  */
2337 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2338 {
2339         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2340         gpa_t base = dev->itt_addr;
2341         int ret;
2342         int ite_esz = abi->ite_esz;
2343         size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2344
2345         ret = scan_its_table(its, base, max_size, ite_esz, 0,
2346                              vgic_its_restore_ite, dev);
2347
2348         /* scan_its_table returns +1 if all ITEs are invalid */
2349         if (ret > 0)
2350                 ret = 0;
2351
2352         return ret;
2353 }
2354
2355 /**
2356  * vgic_its_save_dte - Save a device table entry at a given GPA
2357  *
2358  * @its: ITS handle
2359  * @dev: ITS device
2360  * @ptr: GPA
2361  */
2362 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2363                              gpa_t ptr, int dte_esz)
2364 {
2365         struct kvm *kvm = its->dev->kvm;
2366         u64 val, itt_addr_field;
2367         u32 next_offset;
2368
2369         itt_addr_field = dev->itt_addr >> 8;
2370         next_offset = compute_next_devid_offset(&its->device_list, dev);
2371         val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2372                ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2373                (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2374                 (dev->num_eventid_bits - 1));
2375         val = cpu_to_le64(val);
2376         return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2377 }
2378
2379 /**
2380  * vgic_its_restore_dte - restore a device table entry
2381  *
2382  * @its: its handle
2383  * @id: device id the DTE corresponds to
2384  * @ptr: kernel VA where the 8 byte DTE is located
2385  * @opaque: unused
2386  *
2387  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2388  * next dte otherwise
2389  */
2390 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2391                                 void *ptr, void *opaque)
2392 {
2393         struct its_device *dev;
2394         u64 baser = its->baser_device_table;
2395         gpa_t itt_addr;
2396         u8 num_eventid_bits;
2397         u64 entry = *(u64 *)ptr;
2398         bool valid;
2399         u32 offset;
2400         int ret;
2401
2402         entry = le64_to_cpu(entry);
2403
2404         valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2405         num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2406         itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2407                         >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2408
2409         if (!valid)
2410                 return 1;
2411
2412         /* dte entry is valid */
2413         offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2414
2415         if (!vgic_its_check_id(its, baser, id, NULL))
2416                 return -EINVAL;
2417
2418         dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2419         if (IS_ERR(dev))
2420                 return PTR_ERR(dev);
2421
2422         ret = vgic_its_restore_itt(its, dev);
2423         if (ret) {
2424                 vgic_its_free_device(its->dev->kvm, dev);
2425                 return ret;
2426         }
2427
2428         return offset;
2429 }
2430
2431 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2432                                const struct list_head *b)
2433 {
2434         struct its_device *deva = container_of(a, struct its_device, dev_list);
2435         struct its_device *devb = container_of(b, struct its_device, dev_list);
2436
2437         if (deva->device_id < devb->device_id)
2438                 return -1;
2439         else
2440                 return 1;
2441 }
2442
2443 /**
2444  * vgic_its_save_device_tables - Save the device table and all ITT
2445  * into guest RAM
2446  *
2447  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2448  * returns the GPA of the device entry
2449  */
2450 static int vgic_its_save_device_tables(struct vgic_its *its)
2451 {
2452         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2453         u64 baser = its->baser_device_table;
2454         struct its_device *dev;
2455         int dte_esz = abi->dte_esz;
2456
2457         if (!(baser & GITS_BASER_VALID))
2458                 return 0;
2459
2460         list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2461
2462         list_for_each_entry(dev, &its->device_list, dev_list) {
2463                 int ret;
2464                 gpa_t eaddr;
2465
2466                 if (!vgic_its_check_id(its, baser,
2467                                        dev->device_id, &eaddr))
2468                         return -EINVAL;
2469
2470                 ret = vgic_its_save_itt(its, dev);
2471                 if (ret)
2472                         return ret;
2473
2474                 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2475                 if (ret)
2476                         return ret;
2477         }
2478         return 0;
2479 }
2480
2481 /**
2482  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2483  *
2484  * @its: its handle
2485  * @id: index of the entry in the L1 table
2486  * @addr: kernel VA
2487  * @opaque: unused
2488  *
2489  * L1 table entries are scanned by steps of 1 entry
2490  * Return < 0 if error, 0 if last dte was found when scanning the L2
2491  * table, +1 otherwise (meaning next L1 entry must be scanned)
2492  */
2493 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2494                          void *opaque)
2495 {
2496         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2497         int l2_start_id = id * (SZ_64K / abi->dte_esz);
2498         u64 entry = *(u64 *)addr;
2499         int dte_esz = abi->dte_esz;
2500         gpa_t gpa;
2501         int ret;
2502
2503         entry = le64_to_cpu(entry);
2504
2505         if (!(entry & KVM_ITS_L1E_VALID_MASK))
2506                 return 1;
2507
2508         gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2509
2510         ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2511                              l2_start_id, vgic_its_restore_dte, NULL);
2512
2513         return ret;
2514 }
2515
2516 /**
2517  * vgic_its_restore_device_tables - Restore the device table and all ITT
2518  * from guest RAM to internal data structs
2519  */
2520 static int vgic_its_restore_device_tables(struct vgic_its *its)
2521 {
2522         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2523         u64 baser = its->baser_device_table;
2524         int l1_esz, ret;
2525         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2526         gpa_t l1_gpa;
2527
2528         if (!(baser & GITS_BASER_VALID))
2529                 return 0;
2530
2531         l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2532
2533         if (baser & GITS_BASER_INDIRECT) {
2534                 l1_esz = GITS_LVL1_ENTRY_SIZE;
2535                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2536                                      handle_l1_dte, NULL);
2537         } else {
2538                 l1_esz = abi->dte_esz;
2539                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2540                                      vgic_its_restore_dte, NULL);
2541         }
2542
2543         /* scan_its_table returns +1 if all entries are invalid */
2544         if (ret > 0)
2545                 ret = 0;
2546
2547         if (ret < 0)
2548                 vgic_its_free_device_list(its->dev->kvm, its);
2549
2550         return ret;
2551 }
2552
2553 static int vgic_its_save_cte(struct vgic_its *its,
2554                              struct its_collection *collection,
2555                              gpa_t gpa, int esz)
2556 {
2557         u64 val;
2558
2559         val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2560                ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2561                collection->collection_id);
2562         val = cpu_to_le64(val);
2563         return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2564 }
2565
2566 /*
2567  * Restore a collection entry into the ITS collection table.
2568  * Return +1 on success, 0 if the entry was invalid (which should be
2569  * interpreted as end-of-table), and a negative error value for generic errors.
2570  */
2571 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2572 {
2573         struct its_collection *collection;
2574         struct kvm *kvm = its->dev->kvm;
2575         u32 target_addr, coll_id;
2576         u64 val;
2577         int ret;
2578
2579         BUG_ON(esz > sizeof(val));
2580         ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2581         if (ret)
2582                 return ret;
2583         val = le64_to_cpu(val);
2584         if (!(val & KVM_ITS_CTE_VALID_MASK))
2585                 return 0;
2586
2587         target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2588         coll_id = val & KVM_ITS_CTE_ICID_MASK;
2589
2590         if (target_addr != COLLECTION_NOT_MAPPED &&
2591             !kvm_get_vcpu_by_id(kvm, target_addr))
2592                 return -EINVAL;
2593
2594         collection = find_collection(its, coll_id);
2595         if (collection)
2596                 return -EEXIST;
2597
2598         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2599                 return -EINVAL;
2600
2601         ret = vgic_its_alloc_collection(its, &collection, coll_id);
2602         if (ret)
2603                 return ret;
2604         collection->target_addr = target_addr;
2605         return 1;
2606 }
2607
2608 /**
2609  * vgic_its_save_collection_table - Save the collection table into
2610  * guest RAM
2611  */
2612 static int vgic_its_save_collection_table(struct vgic_its *its)
2613 {
2614         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2615         u64 baser = its->baser_coll_table;
2616         gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2617         struct its_collection *collection;
2618         u64 val;
2619         size_t max_size, filled = 0;
2620         int ret, cte_esz = abi->cte_esz;
2621
2622         if (!(baser & GITS_BASER_VALID))
2623                 return 0;
2624
2625         max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2626
2627         list_for_each_entry(collection, &its->collection_list, coll_list) {
2628                 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2629                 if (ret)
2630                         return ret;
2631                 gpa += cte_esz;
2632                 filled += cte_esz;
2633         }
2634
2635         if (filled == max_size)
2636                 return 0;
2637
2638         /*
2639          * table is not fully filled, add a last dummy element
2640          * with valid bit unset
2641          */
2642         val = 0;
2643         BUG_ON(cte_esz > sizeof(val));
2644         ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2645         return ret;
2646 }
2647
2648 /**
2649  * vgic_its_restore_collection_table - reads the collection table
2650  * in guest memory and restores the ITS internal state. Requires the
2651  * BASER registers to be restored before.
2652  */
2653 static int vgic_its_restore_collection_table(struct vgic_its *its)
2654 {
2655         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2656         u64 baser = its->baser_coll_table;
2657         int cte_esz = abi->cte_esz;
2658         size_t max_size, read = 0;
2659         gpa_t gpa;
2660         int ret;
2661
2662         if (!(baser & GITS_BASER_VALID))
2663                 return 0;
2664
2665         gpa = GITS_BASER_ADDR_48_to_52(baser);
2666
2667         max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2668
2669         while (read < max_size) {
2670                 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2671                 if (ret <= 0)
2672                         break;
2673                 gpa += cte_esz;
2674                 read += cte_esz;
2675         }
2676
2677         if (ret > 0)
2678                 return 0;
2679
2680         if (ret < 0)
2681                 vgic_its_free_collection_list(its->dev->kvm, its);
2682
2683         return ret;
2684 }
2685
2686 /**
2687  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2688  * according to v0 ABI
2689  */
2690 static int vgic_its_save_tables_v0(struct vgic_its *its)
2691 {
2692         int ret;
2693
2694         ret = vgic_its_save_device_tables(its);
2695         if (ret)
2696                 return ret;
2697
2698         return vgic_its_save_collection_table(its);
2699 }
2700
2701 /**
2702  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2703  * to internal data structs according to V0 ABI
2704  *
2705  */
2706 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2707 {
2708         int ret;
2709
2710         ret = vgic_its_restore_collection_table(its);
2711         if (ret)
2712                 return ret;
2713
2714         ret = vgic_its_restore_device_tables(its);
2715         if (ret)
2716                 vgic_its_free_collection_list(its->dev->kvm, its);
2717         return ret;
2718 }
2719
2720 static int vgic_its_commit_v0(struct vgic_its *its)
2721 {
2722         const struct vgic_its_abi *abi;
2723
2724         abi = vgic_its_get_abi(its);
2725         its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2726         its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2727
2728         its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2729                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2730
2731         its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2732                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2733         return 0;
2734 }
2735
2736 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2737 {
2738         /* We need to keep the ABI specific field values */
2739         its->baser_coll_table &= ~GITS_BASER_VALID;
2740         its->baser_device_table &= ~GITS_BASER_VALID;
2741         its->cbaser = 0;
2742         its->creadr = 0;
2743         its->cwriter = 0;
2744         its->enabled = 0;
2745         vgic_its_free_device_list(kvm, its);
2746         vgic_its_free_collection_list(kvm, its);
2747 }
2748
2749 static int vgic_its_has_attr(struct kvm_device *dev,
2750                              struct kvm_device_attr *attr)
2751 {
2752         switch (attr->group) {
2753         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2754                 switch (attr->attr) {
2755                 case KVM_VGIC_ITS_ADDR_TYPE:
2756                         return 0;
2757                 }
2758                 break;
2759         case KVM_DEV_ARM_VGIC_GRP_CTRL:
2760                 switch (attr->attr) {
2761                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2762                         return 0;
2763                 case KVM_DEV_ARM_ITS_CTRL_RESET:
2764                         return 0;
2765                 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2766                         return 0;
2767                 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2768                         return 0;
2769                 }
2770                 break;
2771         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2772                 return vgic_its_has_attr_regs(dev, attr);
2773         }
2774         return -ENXIO;
2775 }
2776
2777 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2778 {
2779         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2780         int ret = 0;
2781
2782         if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2783                 return 0;
2784
2785         mutex_lock(&kvm->lock);
2786
2787         if (!lock_all_vcpus(kvm)) {
2788                 mutex_unlock(&kvm->lock);
2789                 return -EBUSY;
2790         }
2791
2792         mutex_lock(&kvm->arch.config_lock);
2793         mutex_lock(&its->its_lock);
2794
2795         switch (attr) {
2796         case KVM_DEV_ARM_ITS_CTRL_RESET:
2797                 vgic_its_reset(kvm, its);
2798                 break;
2799         case KVM_DEV_ARM_ITS_SAVE_TABLES:
2800                 ret = abi->save_tables(its);
2801                 break;
2802         case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2803                 ret = abi->restore_tables(its);
2804                 break;
2805         }
2806
2807         mutex_unlock(&its->its_lock);
2808         mutex_unlock(&kvm->arch.config_lock);
2809         unlock_all_vcpus(kvm);
2810         mutex_unlock(&kvm->lock);
2811         return ret;
2812 }
2813
2814 /*
2815  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2816  * without the running VCPU when dirty ring is enabled.
2817  *
2818  * The running VCPU is required to track dirty guest pages when dirty ring
2819  * is enabled. Otherwise, the backup bitmap should be used to track the
2820  * dirty guest pages. When vgic/its tables are being saved, the backup
2821  * bitmap is used to track the dirty guest pages due to the missed running
2822  * VCPU in the period.
2823  */
2824 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2825 {
2826         struct vgic_dist *dist = &kvm->arch.vgic;
2827
2828         return dist->table_write_in_progress;
2829 }
2830
2831 static int vgic_its_set_attr(struct kvm_device *dev,
2832                              struct kvm_device_attr *attr)
2833 {
2834         struct vgic_its *its = dev->private;
2835         int ret;
2836
2837         switch (attr->group) {
2838         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2839                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2840                 unsigned long type = (unsigned long)attr->attr;
2841                 u64 addr;
2842
2843                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2844                         return -ENODEV;
2845
2846                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2847                         return -EFAULT;
2848
2849                 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2850                                          addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2851                 if (ret)
2852                         return ret;
2853
2854                 return vgic_register_its_iodev(dev->kvm, its, addr);
2855         }
2856         case KVM_DEV_ARM_VGIC_GRP_CTRL:
2857                 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2858         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2859                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2860                 u64 reg;
2861
2862                 if (get_user(reg, uaddr))
2863                         return -EFAULT;
2864
2865                 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2866         }
2867         }
2868         return -ENXIO;
2869 }
2870
2871 static int vgic_its_get_attr(struct kvm_device *dev,
2872                              struct kvm_device_attr *attr)
2873 {
2874         switch (attr->group) {
2875         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2876                 struct vgic_its *its = dev->private;
2877                 u64 addr = its->vgic_its_base;
2878                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2879                 unsigned long type = (unsigned long)attr->attr;
2880
2881                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2882                         return -ENODEV;
2883
2884                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2885                         return -EFAULT;
2886                 break;
2887         }
2888         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2889                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2890                 u64 reg;
2891                 int ret;
2892
2893                 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2894                 if (ret)
2895                         return ret;
2896                 return put_user(reg, uaddr);
2897         }
2898         default:
2899                 return -ENXIO;
2900         }
2901
2902         return 0;
2903 }
2904
2905 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2906         .name = "kvm-arm-vgic-its",
2907         .create = vgic_its_create,
2908         .destroy = vgic_its_destroy,
2909         .set_attr = vgic_its_set_attr,
2910         .get_attr = vgic_its_get_attr,
2911         .has_attr = vgic_its_has_attr,
2912 };
2913
2914 int kvm_vgic_register_its_device(void)
2915 {
2916         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2917                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
2918 }