GNU Linux-libre 4.9.297-gnu1
[releases.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21         INIT_LIST_HEAD(&dsos->head);
22         dsos->root = RB_ROOT;
23         pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28         memset(machine, 0, sizeof(*machine));
29         map_groups__init(&machine->kmaps, machine);
30         RB_CLEAR_NODE(&machine->rb_node);
31         dsos__init(&machine->dsos);
32
33         machine->threads = RB_ROOT;
34         pthread_rwlock_init(&machine->threads_lock, NULL);
35         machine->nr_threads = 0;
36         INIT_LIST_HEAD(&machine->dead_threads);
37         machine->last_match = NULL;
38
39         machine->vdso_info = NULL;
40         machine->env = NULL;
41
42         machine->pid = pid;
43
44         machine->id_hdr_size = 0;
45         machine->kptr_restrict_warned = false;
46         machine->comm_exec = false;
47         machine->kernel_start = 0;
48
49         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50
51         machine->root_dir = strdup(root_dir);
52         if (machine->root_dir == NULL)
53                 return -ENOMEM;
54
55         if (pid != HOST_KERNEL_ID) {
56                 struct thread *thread = machine__findnew_thread(machine, -1,
57                                                                 pid);
58                 char comm[64];
59
60                 if (thread == NULL)
61                         return -ENOMEM;
62
63                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64                 thread__set_comm(thread, comm, 0);
65                 thread__put(thread);
66         }
67
68         machine->current_tid = NULL;
69
70         return 0;
71 }
72
73 struct machine *machine__new_host(void)
74 {
75         struct machine *machine = malloc(sizeof(*machine));
76
77         if (machine != NULL) {
78                 machine__init(machine, "", HOST_KERNEL_ID);
79
80                 if (machine__create_kernel_maps(machine) < 0)
81                         goto out_delete;
82         }
83
84         return machine;
85 out_delete:
86         free(machine);
87         return NULL;
88 }
89
90 static void dsos__purge(struct dsos *dsos)
91 {
92         struct dso *pos, *n;
93
94         pthread_rwlock_wrlock(&dsos->lock);
95
96         list_for_each_entry_safe(pos, n, &dsos->head, node) {
97                 RB_CLEAR_NODE(&pos->rb_node);
98                 pos->root = NULL;
99                 list_del_init(&pos->node);
100                 dso__put(pos);
101         }
102
103         pthread_rwlock_unlock(&dsos->lock);
104 }
105
106 static void dsos__exit(struct dsos *dsos)
107 {
108         dsos__purge(dsos);
109         pthread_rwlock_destroy(&dsos->lock);
110 }
111
112 void machine__delete_threads(struct machine *machine)
113 {
114         struct rb_node *nd;
115
116         pthread_rwlock_wrlock(&machine->threads_lock);
117         nd = rb_first(&machine->threads);
118         while (nd) {
119                 struct thread *t = rb_entry(nd, struct thread, rb_node);
120
121                 nd = rb_next(nd);
122                 __machine__remove_thread(machine, t, false);
123         }
124         pthread_rwlock_unlock(&machine->threads_lock);
125 }
126
127 void machine__exit(struct machine *machine)
128 {
129         machine__destroy_kernel_maps(machine);
130         map_groups__exit(&machine->kmaps);
131         dsos__exit(&machine->dsos);
132         machine__exit_vdso(machine);
133         zfree(&machine->root_dir);
134         zfree(&machine->current_tid);
135         pthread_rwlock_destroy(&machine->threads_lock);
136 }
137
138 void machine__delete(struct machine *machine)
139 {
140         if (machine) {
141                 machine__exit(machine);
142                 free(machine);
143         }
144 }
145
146 void machines__init(struct machines *machines)
147 {
148         machine__init(&machines->host, "", HOST_KERNEL_ID);
149         machines->guests = RB_ROOT;
150 }
151
152 void machines__exit(struct machines *machines)
153 {
154         machine__exit(&machines->host);
155         /* XXX exit guest */
156 }
157
158 struct machine *machines__add(struct machines *machines, pid_t pid,
159                               const char *root_dir)
160 {
161         struct rb_node **p = &machines->guests.rb_node;
162         struct rb_node *parent = NULL;
163         struct machine *pos, *machine = malloc(sizeof(*machine));
164
165         if (machine == NULL)
166                 return NULL;
167
168         if (machine__init(machine, root_dir, pid) != 0) {
169                 free(machine);
170                 return NULL;
171         }
172
173         while (*p != NULL) {
174                 parent = *p;
175                 pos = rb_entry(parent, struct machine, rb_node);
176                 if (pid < pos->pid)
177                         p = &(*p)->rb_left;
178                 else
179                         p = &(*p)->rb_right;
180         }
181
182         rb_link_node(&machine->rb_node, parent, p);
183         rb_insert_color(&machine->rb_node, &machines->guests);
184
185         return machine;
186 }
187
188 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
189 {
190         struct rb_node *nd;
191
192         machines->host.comm_exec = comm_exec;
193
194         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
195                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
196
197                 machine->comm_exec = comm_exec;
198         }
199 }
200
201 struct machine *machines__find(struct machines *machines, pid_t pid)
202 {
203         struct rb_node **p = &machines->guests.rb_node;
204         struct rb_node *parent = NULL;
205         struct machine *machine;
206         struct machine *default_machine = NULL;
207
208         if (pid == HOST_KERNEL_ID)
209                 return &machines->host;
210
211         while (*p != NULL) {
212                 parent = *p;
213                 machine = rb_entry(parent, struct machine, rb_node);
214                 if (pid < machine->pid)
215                         p = &(*p)->rb_left;
216                 else if (pid > machine->pid)
217                         p = &(*p)->rb_right;
218                 else
219                         return machine;
220                 if (!machine->pid)
221                         default_machine = machine;
222         }
223
224         return default_machine;
225 }
226
227 struct machine *machines__findnew(struct machines *machines, pid_t pid)
228 {
229         char path[PATH_MAX];
230         const char *root_dir = "";
231         struct machine *machine = machines__find(machines, pid);
232
233         if (machine && (machine->pid == pid))
234                 goto out;
235
236         if ((pid != HOST_KERNEL_ID) &&
237             (pid != DEFAULT_GUEST_KERNEL_ID) &&
238             (symbol_conf.guestmount)) {
239                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
240                 if (access(path, R_OK)) {
241                         static struct strlist *seen;
242
243                         if (!seen)
244                                 seen = strlist__new(NULL, NULL);
245
246                         if (!strlist__has_entry(seen, path)) {
247                                 pr_err("Can't access file %s\n", path);
248                                 strlist__add(seen, path);
249                         }
250                         machine = NULL;
251                         goto out;
252                 }
253                 root_dir = path;
254         }
255
256         machine = machines__add(machines, pid, root_dir);
257 out:
258         return machine;
259 }
260
261 void machines__process_guests(struct machines *machines,
262                               machine__process_t process, void *data)
263 {
264         struct rb_node *nd;
265
266         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
267                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
268                 process(pos, data);
269         }
270 }
271
272 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
273 {
274         if (machine__is_host(machine))
275                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
276         else if (machine__is_default_guest(machine))
277                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
278         else {
279                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
280                          machine->pid);
281         }
282
283         return bf;
284 }
285
286 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
287 {
288         struct rb_node *node;
289         struct machine *machine;
290
291         machines->host.id_hdr_size = id_hdr_size;
292
293         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
294                 machine = rb_entry(node, struct machine, rb_node);
295                 machine->id_hdr_size = id_hdr_size;
296         }
297
298         return;
299 }
300
301 static void machine__update_thread_pid(struct machine *machine,
302                                        struct thread *th, pid_t pid)
303 {
304         struct thread *leader;
305
306         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
307                 return;
308
309         th->pid_ = pid;
310
311         if (th->pid_ == th->tid)
312                 return;
313
314         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
315         if (!leader)
316                 goto out_err;
317
318         if (!leader->mg)
319                 leader->mg = map_groups__new(machine);
320
321         if (!leader->mg)
322                 goto out_err;
323
324         if (th->mg == leader->mg)
325                 return;
326
327         if (th->mg) {
328                 /*
329                  * Maps are created from MMAP events which provide the pid and
330                  * tid.  Consequently there never should be any maps on a thread
331                  * with an unknown pid.  Just print an error if there are.
332                  */
333                 if (!map_groups__empty(th->mg))
334                         pr_err("Discarding thread maps for %d:%d\n",
335                                th->pid_, th->tid);
336                 map_groups__put(th->mg);
337         }
338
339         th->mg = map_groups__get(leader->mg);
340 out_put:
341         thread__put(leader);
342         return;
343 out_err:
344         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
345         goto out_put;
346 }
347
348 /*
349  * Caller must eventually drop thread->refcnt returned with a successful
350  * lookup/new thread inserted.
351  */
352 static struct thread *____machine__findnew_thread(struct machine *machine,
353                                                   pid_t pid, pid_t tid,
354                                                   bool create)
355 {
356         struct rb_node **p = &machine->threads.rb_node;
357         struct rb_node *parent = NULL;
358         struct thread *th;
359
360         /*
361          * Front-end cache - TID lookups come in blocks,
362          * so most of the time we dont have to look up
363          * the full rbtree:
364          */
365         th = machine->last_match;
366         if (th != NULL) {
367                 if (th->tid == tid) {
368                         machine__update_thread_pid(machine, th, pid);
369                         return thread__get(th);
370                 }
371
372                 machine->last_match = NULL;
373         }
374
375         while (*p != NULL) {
376                 parent = *p;
377                 th = rb_entry(parent, struct thread, rb_node);
378
379                 if (th->tid == tid) {
380                         machine->last_match = th;
381                         machine__update_thread_pid(machine, th, pid);
382                         return thread__get(th);
383                 }
384
385                 if (tid < th->tid)
386                         p = &(*p)->rb_left;
387                 else
388                         p = &(*p)->rb_right;
389         }
390
391         if (!create)
392                 return NULL;
393
394         th = thread__new(pid, tid);
395         if (th != NULL) {
396                 rb_link_node(&th->rb_node, parent, p);
397                 rb_insert_color(&th->rb_node, &machine->threads);
398
399                 /*
400                  * We have to initialize map_groups separately
401                  * after rb tree is updated.
402                  *
403                  * The reason is that we call machine__findnew_thread
404                  * within thread__init_map_groups to find the thread
405                  * leader and that would screwed the rb tree.
406                  */
407                 if (thread__init_map_groups(th, machine)) {
408                         rb_erase_init(&th->rb_node, &machine->threads);
409                         RB_CLEAR_NODE(&th->rb_node);
410                         thread__put(th);
411                         return NULL;
412                 }
413                 /*
414                  * It is now in the rbtree, get a ref
415                  */
416                 thread__get(th);
417                 machine->last_match = th;
418                 ++machine->nr_threads;
419         }
420
421         return th;
422 }
423
424 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
425 {
426         return ____machine__findnew_thread(machine, pid, tid, true);
427 }
428
429 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
430                                        pid_t tid)
431 {
432         struct thread *th;
433
434         pthread_rwlock_wrlock(&machine->threads_lock);
435         th = __machine__findnew_thread(machine, pid, tid);
436         pthread_rwlock_unlock(&machine->threads_lock);
437         return th;
438 }
439
440 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
441                                     pid_t tid)
442 {
443         struct thread *th;
444         pthread_rwlock_rdlock(&machine->threads_lock);
445         th =  ____machine__findnew_thread(machine, pid, tid, false);
446         pthread_rwlock_unlock(&machine->threads_lock);
447         return th;
448 }
449
450 struct comm *machine__thread_exec_comm(struct machine *machine,
451                                        struct thread *thread)
452 {
453         if (machine->comm_exec)
454                 return thread__exec_comm(thread);
455         else
456                 return thread__comm(thread);
457 }
458
459 int machine__process_comm_event(struct machine *machine, union perf_event *event,
460                                 struct perf_sample *sample)
461 {
462         struct thread *thread = machine__findnew_thread(machine,
463                                                         event->comm.pid,
464                                                         event->comm.tid);
465         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
466         int err = 0;
467
468         if (exec)
469                 machine->comm_exec = true;
470
471         if (dump_trace)
472                 perf_event__fprintf_comm(event, stdout);
473
474         if (thread == NULL ||
475             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
476                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
477                 err = -1;
478         }
479
480         thread__put(thread);
481
482         return err;
483 }
484
485 int machine__process_lost_event(struct machine *machine __maybe_unused,
486                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
487 {
488         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
489                     event->lost.id, event->lost.lost);
490         return 0;
491 }
492
493 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
494                                         union perf_event *event, struct perf_sample *sample)
495 {
496         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
497                     sample->id, event->lost_samples.lost);
498         return 0;
499 }
500
501 static struct dso *machine__findnew_module_dso(struct machine *machine,
502                                                struct kmod_path *m,
503                                                const char *filename)
504 {
505         struct dso *dso;
506
507         pthread_rwlock_wrlock(&machine->dsos.lock);
508
509         dso = __dsos__find(&machine->dsos, m->name, true);
510         if (!dso) {
511                 dso = __dsos__addnew(&machine->dsos, m->name);
512                 if (dso == NULL)
513                         goto out_unlock;
514
515                 if (machine__is_host(machine))
516                         dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
517                 else
518                         dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
519
520                 /* _KMODULE_COMP should be next to _KMODULE */
521                 if (m->kmod && m->comp)
522                         dso->symtab_type++;
523
524                 dso__set_short_name(dso, strdup(m->name), true);
525                 dso__set_long_name(dso, strdup(filename), true);
526         }
527
528         dso__get(dso);
529 out_unlock:
530         pthread_rwlock_unlock(&machine->dsos.lock);
531         return dso;
532 }
533
534 int machine__process_aux_event(struct machine *machine __maybe_unused,
535                                union perf_event *event)
536 {
537         if (dump_trace)
538                 perf_event__fprintf_aux(event, stdout);
539         return 0;
540 }
541
542 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
543                                         union perf_event *event)
544 {
545         if (dump_trace)
546                 perf_event__fprintf_itrace_start(event, stdout);
547         return 0;
548 }
549
550 int machine__process_switch_event(struct machine *machine __maybe_unused,
551                                   union perf_event *event)
552 {
553         if (dump_trace)
554                 perf_event__fprintf_switch(event, stdout);
555         return 0;
556 }
557
558 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
559 {
560         const char *dup_filename;
561
562         if (!filename || !dso || !dso->long_name)
563                 return;
564         if (dso->long_name[0] != '[')
565                 return;
566         if (!strchr(filename, '/'))
567                 return;
568
569         dup_filename = strdup(filename);
570         if (!dup_filename)
571                 return;
572
573         dso__set_long_name(dso, dup_filename, true);
574 }
575
576 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
577                                         const char *filename)
578 {
579         struct map *map = NULL;
580         struct dso *dso = NULL;
581         struct kmod_path m;
582
583         if (kmod_path__parse_name(&m, filename))
584                 return NULL;
585
586         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
587                                        m.name);
588         if (map) {
589                 /*
590                  * If the map's dso is an offline module, give dso__load()
591                  * a chance to find the file path of that module by fixing
592                  * long_name.
593                  */
594                 dso__adjust_kmod_long_name(map->dso, filename);
595                 goto out;
596         }
597
598         dso = machine__findnew_module_dso(machine, &m, filename);
599         if (dso == NULL)
600                 goto out;
601
602         map = map__new2(start, dso, MAP__FUNCTION);
603         if (map == NULL)
604                 goto out;
605
606         map_groups__insert(&machine->kmaps, map);
607
608         /* Put the map here because map_groups__insert alread got it */
609         map__put(map);
610 out:
611         /* put the dso here, corresponding to  machine__findnew_module_dso */
612         dso__put(dso);
613         free(m.name);
614         return map;
615 }
616
617 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
618 {
619         struct rb_node *nd;
620         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
621
622         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
623                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
624                 ret += __dsos__fprintf(&pos->dsos.head, fp);
625         }
626
627         return ret;
628 }
629
630 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
631                                      bool (skip)(struct dso *dso, int parm), int parm)
632 {
633         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
634 }
635
636 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
637                                      bool (skip)(struct dso *dso, int parm), int parm)
638 {
639         struct rb_node *nd;
640         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
641
642         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
643                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
644                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
645         }
646         return ret;
647 }
648
649 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
650 {
651         int i;
652         size_t printed = 0;
653         struct dso *kdso = machine__kernel_map(machine)->dso;
654
655         if (kdso->has_build_id) {
656                 char filename[PATH_MAX];
657                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
658                         printed += fprintf(fp, "[0] %s\n", filename);
659         }
660
661         for (i = 0; i < vmlinux_path__nr_entries; ++i)
662                 printed += fprintf(fp, "[%d] %s\n",
663                                    i + kdso->has_build_id, vmlinux_path[i]);
664
665         return printed;
666 }
667
668 size_t machine__fprintf(struct machine *machine, FILE *fp)
669 {
670         size_t ret;
671         struct rb_node *nd;
672
673         pthread_rwlock_rdlock(&machine->threads_lock);
674
675         ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
676
677         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
678                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
679
680                 ret += thread__fprintf(pos, fp);
681         }
682
683         pthread_rwlock_unlock(&machine->threads_lock);
684
685         return ret;
686 }
687
688 static struct dso *machine__get_kernel(struct machine *machine)
689 {
690         const char *vmlinux_name = NULL;
691         struct dso *kernel;
692
693         if (machine__is_host(machine)) {
694                 vmlinux_name = symbol_conf.vmlinux_name;
695                 if (!vmlinux_name)
696                         vmlinux_name = DSO__NAME_KALLSYMS;
697
698                 kernel = machine__findnew_kernel(machine, vmlinux_name,
699                                                  "[kernel]", DSO_TYPE_KERNEL);
700         } else {
701                 char bf[PATH_MAX];
702
703                 if (machine__is_default_guest(machine))
704                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
705                 if (!vmlinux_name)
706                         vmlinux_name = machine__mmap_name(machine, bf,
707                                                           sizeof(bf));
708
709                 kernel = machine__findnew_kernel(machine, vmlinux_name,
710                                                  "[guest.kernel]",
711                                                  DSO_TYPE_GUEST_KERNEL);
712         }
713
714         if (kernel != NULL && (!kernel->has_build_id))
715                 dso__read_running_kernel_build_id(kernel, machine);
716
717         return kernel;
718 }
719
720 struct process_args {
721         u64 start;
722 };
723
724 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
725                                            size_t bufsz)
726 {
727         if (machine__is_default_guest(machine))
728                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
729         else
730                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
731 }
732
733 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
734
735 /* Figure out the start address of kernel map from /proc/kallsyms.
736  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
737  * symbol_name if it's not that important.
738  */
739 static u64 machine__get_running_kernel_start(struct machine *machine,
740                                              const char **symbol_name)
741 {
742         char filename[PATH_MAX];
743         int i;
744         const char *name;
745         u64 addr = 0;
746
747         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
748
749         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
750                 return 0;
751
752         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
753                 addr = kallsyms__get_function_start(filename, name);
754                 if (addr)
755                         break;
756         }
757
758         if (symbol_name)
759                 *symbol_name = name;
760
761         return addr;
762 }
763
764 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
765 {
766         enum map_type type;
767         u64 start = machine__get_running_kernel_start(machine, NULL);
768
769         /* In case of renewal the kernel map, destroy previous one */
770         machine__destroy_kernel_maps(machine);
771
772         for (type = 0; type < MAP__NR_TYPES; ++type) {
773                 struct kmap *kmap;
774                 struct map *map;
775
776                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
777                 if (machine->vmlinux_maps[type] == NULL)
778                         return -1;
779
780                 machine->vmlinux_maps[type]->map_ip =
781                         machine->vmlinux_maps[type]->unmap_ip =
782                                 identity__map_ip;
783                 map = __machine__kernel_map(machine, type);
784                 kmap = map__kmap(map);
785                 if (!kmap)
786                         return -1;
787
788                 kmap->kmaps = &machine->kmaps;
789                 map_groups__insert(&machine->kmaps, map);
790         }
791
792         return 0;
793 }
794
795 void machine__destroy_kernel_maps(struct machine *machine)
796 {
797         enum map_type type;
798
799         for (type = 0; type < MAP__NR_TYPES; ++type) {
800                 struct kmap *kmap;
801                 struct map *map = __machine__kernel_map(machine, type);
802
803                 if (map == NULL)
804                         continue;
805
806                 kmap = map__kmap(map);
807                 map_groups__remove(&machine->kmaps, map);
808                 if (kmap && kmap->ref_reloc_sym) {
809                         /*
810                          * ref_reloc_sym is shared among all maps, so free just
811                          * on one of them.
812                          */
813                         if (type == MAP__FUNCTION) {
814                                 zfree((char **)&kmap->ref_reloc_sym->name);
815                                 zfree(&kmap->ref_reloc_sym);
816                         } else
817                                 kmap->ref_reloc_sym = NULL;
818                 }
819
820                 map__put(machine->vmlinux_maps[type]);
821                 machine->vmlinux_maps[type] = NULL;
822         }
823 }
824
825 int machines__create_guest_kernel_maps(struct machines *machines)
826 {
827         int ret = 0;
828         struct dirent **namelist = NULL;
829         int i, items = 0;
830         char path[PATH_MAX];
831         pid_t pid;
832         char *endp;
833
834         if (symbol_conf.default_guest_vmlinux_name ||
835             symbol_conf.default_guest_modules ||
836             symbol_conf.default_guest_kallsyms) {
837                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
838         }
839
840         if (symbol_conf.guestmount) {
841                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
842                 if (items <= 0)
843                         return -ENOENT;
844                 for (i = 0; i < items; i++) {
845                         if (!isdigit(namelist[i]->d_name[0])) {
846                                 /* Filter out . and .. */
847                                 continue;
848                         }
849                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
850                         if ((*endp != '\0') ||
851                             (endp == namelist[i]->d_name) ||
852                             (errno == ERANGE)) {
853                                 pr_debug("invalid directory (%s). Skipping.\n",
854                                          namelist[i]->d_name);
855                                 continue;
856                         }
857                         sprintf(path, "%s/%s/proc/kallsyms",
858                                 symbol_conf.guestmount,
859                                 namelist[i]->d_name);
860                         ret = access(path, R_OK);
861                         if (ret) {
862                                 pr_debug("Can't access file %s\n", path);
863                                 goto failure;
864                         }
865                         machines__create_kernel_maps(machines, pid);
866                 }
867 failure:
868                 free(namelist);
869         }
870
871         return ret;
872 }
873
874 void machines__destroy_kernel_maps(struct machines *machines)
875 {
876         struct rb_node *next = rb_first(&machines->guests);
877
878         machine__destroy_kernel_maps(&machines->host);
879
880         while (next) {
881                 struct machine *pos = rb_entry(next, struct machine, rb_node);
882
883                 next = rb_next(&pos->rb_node);
884                 rb_erase(&pos->rb_node, &machines->guests);
885                 machine__delete(pos);
886         }
887 }
888
889 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
890 {
891         struct machine *machine = machines__findnew(machines, pid);
892
893         if (machine == NULL)
894                 return -1;
895
896         return machine__create_kernel_maps(machine);
897 }
898
899 int __machine__load_kallsyms(struct machine *machine, const char *filename,
900                              enum map_type type, bool no_kcore)
901 {
902         struct map *map = machine__kernel_map(machine);
903         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
904
905         if (ret > 0) {
906                 dso__set_loaded(map->dso, type);
907                 /*
908                  * Since /proc/kallsyms will have multiple sessions for the
909                  * kernel, with modules between them, fixup the end of all
910                  * sections.
911                  */
912                 __map_groups__fixup_end(&machine->kmaps, type);
913         }
914
915         return ret;
916 }
917
918 int machine__load_kallsyms(struct machine *machine, const char *filename,
919                            enum map_type type)
920 {
921         return __machine__load_kallsyms(machine, filename, type, false);
922 }
923
924 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
925 {
926         struct map *map = machine__kernel_map(machine);
927         int ret = dso__load_vmlinux_path(map->dso, map);
928
929         if (ret > 0)
930                 dso__set_loaded(map->dso, type);
931
932         return ret;
933 }
934
935 static void map_groups__fixup_end(struct map_groups *mg)
936 {
937         int i;
938         for (i = 0; i < MAP__NR_TYPES; ++i)
939                 __map_groups__fixup_end(mg, i);
940 }
941
942 static char *get_kernel_version(const char *root_dir)
943 {
944         char version[PATH_MAX];
945         FILE *file;
946         char *name, *tmp;
947         const char *prefix = "Linux version ";
948
949         sprintf(version, "%s/proc/version", root_dir);
950         file = fopen(version, "r");
951         if (!file)
952                 return NULL;
953
954         version[0] = '\0';
955         tmp = fgets(version, sizeof(version), file);
956         fclose(file);
957
958         name = strstr(version, prefix);
959         if (!name)
960                 return NULL;
961         name += strlen(prefix);
962         tmp = strchr(name, ' ');
963         if (tmp)
964                 *tmp = '\0';
965
966         return strdup(name);
967 }
968
969 static bool is_kmod_dso(struct dso *dso)
970 {
971         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
972                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
973 }
974
975 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
976                                        struct kmod_path *m)
977 {
978         struct map *map;
979         char *long_name;
980
981         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
982         if (map == NULL)
983                 return 0;
984
985         long_name = strdup(path);
986         if (long_name == NULL)
987                 return -ENOMEM;
988
989         dso__set_long_name(map->dso, long_name, true);
990         dso__kernel_module_get_build_id(map->dso, "");
991
992         /*
993          * Full name could reveal us kmod compression, so
994          * we need to update the symtab_type if needed.
995          */
996         if (m->comp && is_kmod_dso(map->dso))
997                 map->dso->symtab_type++;
998
999         return 0;
1000 }
1001
1002 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1003                                 const char *dir_name, int depth)
1004 {
1005         struct dirent *dent;
1006         DIR *dir = opendir(dir_name);
1007         int ret = 0;
1008
1009         if (!dir) {
1010                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1011                 return -1;
1012         }
1013
1014         while ((dent = readdir(dir)) != NULL) {
1015                 char path[PATH_MAX];
1016                 struct stat st;
1017
1018                 /*sshfs might return bad dent->d_type, so we have to stat*/
1019                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1020                 if (stat(path, &st))
1021                         continue;
1022
1023                 if (S_ISDIR(st.st_mode)) {
1024                         if (!strcmp(dent->d_name, ".") ||
1025                             !strcmp(dent->d_name, ".."))
1026                                 continue;
1027
1028                         /* Do not follow top-level source and build symlinks */
1029                         if (depth == 0) {
1030                                 if (!strcmp(dent->d_name, "source") ||
1031                                     !strcmp(dent->d_name, "build"))
1032                                         continue;
1033                         }
1034
1035                         ret = map_groups__set_modules_path_dir(mg, path,
1036                                                                depth + 1);
1037                         if (ret < 0)
1038                                 goto out;
1039                 } else {
1040                         struct kmod_path m;
1041
1042                         ret = kmod_path__parse_name(&m, dent->d_name);
1043                         if (ret)
1044                                 goto out;
1045
1046                         if (m.kmod)
1047                                 ret = map_groups__set_module_path(mg, path, &m);
1048
1049                         free(m.name);
1050
1051                         if (ret)
1052                                 goto out;
1053                 }
1054         }
1055
1056 out:
1057         closedir(dir);
1058         return ret;
1059 }
1060
1061 static int machine__set_modules_path(struct machine *machine)
1062 {
1063         char *version;
1064         char modules_path[PATH_MAX];
1065
1066         version = get_kernel_version(machine->root_dir);
1067         if (!version)
1068                 return -1;
1069
1070         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1071                  machine->root_dir, version);
1072         free(version);
1073
1074         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1075 }
1076 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1077                                 u64 *size __maybe_unused,
1078                                 const char *name __maybe_unused)
1079 {
1080         return 0;
1081 }
1082
1083 static int machine__create_module(void *arg, const char *name, u64 start,
1084                                   u64 size)
1085 {
1086         struct machine *machine = arg;
1087         struct map *map;
1088
1089         if (arch__fix_module_text_start(&start, &size, name) < 0)
1090                 return -1;
1091
1092         map = machine__findnew_module_map(machine, start, name);
1093         if (map == NULL)
1094                 return -1;
1095         map->end = start + size;
1096
1097         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1098
1099         return 0;
1100 }
1101
1102 static int machine__create_modules(struct machine *machine)
1103 {
1104         const char *modules;
1105         char path[PATH_MAX];
1106
1107         if (machine__is_default_guest(machine)) {
1108                 modules = symbol_conf.default_guest_modules;
1109         } else {
1110                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1111                 modules = path;
1112         }
1113
1114         if (symbol__restricted_filename(modules, "/proc/modules"))
1115                 return -1;
1116
1117         if (modules__parse(modules, machine, machine__create_module))
1118                 return -1;
1119
1120         if (!machine__set_modules_path(machine))
1121                 return 0;
1122
1123         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1124
1125         return 0;
1126 }
1127
1128 int machine__create_kernel_maps(struct machine *machine)
1129 {
1130         struct dso *kernel = machine__get_kernel(machine);
1131         const char *name;
1132         u64 addr;
1133         int ret;
1134
1135         if (kernel == NULL)
1136                 return -1;
1137
1138         ret = __machine__create_kernel_maps(machine, kernel);
1139         dso__put(kernel);
1140         if (ret < 0)
1141                 return -1;
1142
1143         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1144                 if (machine__is_host(machine))
1145                         pr_debug("Problems creating module maps, "
1146                                  "continuing anyway...\n");
1147                 else
1148                         pr_debug("Problems creating module maps for guest %d, "
1149                                  "continuing anyway...\n", machine->pid);
1150         }
1151
1152         /*
1153          * Now that we have all the maps created, just set the ->end of them:
1154          */
1155         map_groups__fixup_end(&machine->kmaps);
1156
1157         addr = machine__get_running_kernel_start(machine, &name);
1158         if (!addr) {
1159         } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1160                 machine__destroy_kernel_maps(machine);
1161                 return -1;
1162         }
1163
1164         return 0;
1165 }
1166
1167 static void machine__set_kernel_mmap_len(struct machine *machine,
1168                                          union perf_event *event)
1169 {
1170         int i;
1171
1172         for (i = 0; i < MAP__NR_TYPES; i++) {
1173                 machine->vmlinux_maps[i]->start = event->mmap.start;
1174                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1175                                                    event->mmap.len);
1176                 /*
1177                  * Be a bit paranoid here, some perf.data file came with
1178                  * a zero sized synthesized MMAP event for the kernel.
1179                  */
1180                 if (machine->vmlinux_maps[i]->end == 0)
1181                         machine->vmlinux_maps[i]->end = ~0ULL;
1182         }
1183 }
1184
1185 static bool machine__uses_kcore(struct machine *machine)
1186 {
1187         struct dso *dso;
1188
1189         list_for_each_entry(dso, &machine->dsos.head, node) {
1190                 if (dso__is_kcore(dso))
1191                         return true;
1192         }
1193
1194         return false;
1195 }
1196
1197 static int machine__process_kernel_mmap_event(struct machine *machine,
1198                                               union perf_event *event)
1199 {
1200         struct map *map;
1201         char kmmap_prefix[PATH_MAX];
1202         enum dso_kernel_type kernel_type;
1203         bool is_kernel_mmap;
1204
1205         /* If we have maps from kcore then we do not need or want any others */
1206         if (machine__uses_kcore(machine))
1207                 return 0;
1208
1209         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1210         if (machine__is_host(machine))
1211                 kernel_type = DSO_TYPE_KERNEL;
1212         else
1213                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1214
1215         is_kernel_mmap = memcmp(event->mmap.filename,
1216                                 kmmap_prefix,
1217                                 strlen(kmmap_prefix) - 1) == 0;
1218         if (event->mmap.filename[0] == '/' ||
1219             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1220                 map = machine__findnew_module_map(machine, event->mmap.start,
1221                                                   event->mmap.filename);
1222                 if (map == NULL)
1223                         goto out_problem;
1224
1225                 map->end = map->start + event->mmap.len;
1226         } else if (is_kernel_mmap) {
1227                 const char *symbol_name = (event->mmap.filename +
1228                                 strlen(kmmap_prefix));
1229                 /*
1230                  * Should be there already, from the build-id table in
1231                  * the header.
1232                  */
1233                 struct dso *kernel = NULL;
1234                 struct dso *dso;
1235
1236                 pthread_rwlock_rdlock(&machine->dsos.lock);
1237
1238                 list_for_each_entry(dso, &machine->dsos.head, node) {
1239
1240                         /*
1241                          * The cpumode passed to is_kernel_module is not the
1242                          * cpumode of *this* event. If we insist on passing
1243                          * correct cpumode to is_kernel_module, we should
1244                          * record the cpumode when we adding this dso to the
1245                          * linked list.
1246                          *
1247                          * However we don't really need passing correct
1248                          * cpumode.  We know the correct cpumode must be kernel
1249                          * mode (if not, we should not link it onto kernel_dsos
1250                          * list).
1251                          *
1252                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1253                          * is_kernel_module() treats it as a kernel cpumode.
1254                          */
1255
1256                         if (!dso->kernel ||
1257                             is_kernel_module(dso->long_name,
1258                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1259                                 continue;
1260
1261
1262                         kernel = dso;
1263                         break;
1264                 }
1265
1266                 pthread_rwlock_unlock(&machine->dsos.lock);
1267
1268                 if (kernel == NULL)
1269                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1270                 if (kernel == NULL)
1271                         goto out_problem;
1272
1273                 kernel->kernel = kernel_type;
1274                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1275                         dso__put(kernel);
1276                         goto out_problem;
1277                 }
1278
1279                 if (strstr(kernel->long_name, "vmlinux"))
1280                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1281
1282                 machine__set_kernel_mmap_len(machine, event);
1283
1284                 /*
1285                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1286                  * symbol. Effectively having zero here means that at record
1287                  * time /proc/sys/kernel/kptr_restrict was non zero.
1288                  */
1289                 if (event->mmap.pgoff != 0) {
1290                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1291                                                          symbol_name,
1292                                                          event->mmap.pgoff);
1293                 }
1294
1295                 if (machine__is_default_guest(machine)) {
1296                         /*
1297                          * preload dso of guest kernel and modules
1298                          */
1299                         dso__load(kernel, machine__kernel_map(machine));
1300                 }
1301         }
1302         return 0;
1303 out_problem:
1304         return -1;
1305 }
1306
1307 int machine__process_mmap2_event(struct machine *machine,
1308                                  union perf_event *event,
1309                                  struct perf_sample *sample)
1310 {
1311         struct thread *thread;
1312         struct map *map;
1313         enum map_type type;
1314         int ret = 0;
1315
1316         if (dump_trace)
1317                 perf_event__fprintf_mmap2(event, stdout);
1318
1319         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1320             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1321                 ret = machine__process_kernel_mmap_event(machine, event);
1322                 if (ret < 0)
1323                         goto out_problem;
1324                 return 0;
1325         }
1326
1327         thread = machine__findnew_thread(machine, event->mmap2.pid,
1328                                         event->mmap2.tid);
1329         if (thread == NULL)
1330                 goto out_problem;
1331
1332         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1333                 type = MAP__VARIABLE;
1334         else
1335                 type = MAP__FUNCTION;
1336
1337         map = map__new(machine, event->mmap2.start,
1338                         event->mmap2.len, event->mmap2.pgoff,
1339                         event->mmap2.pid, event->mmap2.maj,
1340                         event->mmap2.min, event->mmap2.ino,
1341                         event->mmap2.ino_generation,
1342                         event->mmap2.prot,
1343                         event->mmap2.flags,
1344                         event->mmap2.filename, type, thread);
1345
1346         if (map == NULL)
1347                 goto out_problem_map;
1348
1349         ret = thread__insert_map(thread, map);
1350         if (ret)
1351                 goto out_problem_insert;
1352
1353         thread__put(thread);
1354         map__put(map);
1355         return 0;
1356
1357 out_problem_insert:
1358         map__put(map);
1359 out_problem_map:
1360         thread__put(thread);
1361 out_problem:
1362         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1363         return 0;
1364 }
1365
1366 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1367                                 struct perf_sample *sample)
1368 {
1369         struct thread *thread;
1370         struct map *map;
1371         enum map_type type;
1372         int ret = 0;
1373
1374         if (dump_trace)
1375                 perf_event__fprintf_mmap(event, stdout);
1376
1377         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1378             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1379                 ret = machine__process_kernel_mmap_event(machine, event);
1380                 if (ret < 0)
1381                         goto out_problem;
1382                 return 0;
1383         }
1384
1385         thread = machine__findnew_thread(machine, event->mmap.pid,
1386                                          event->mmap.tid);
1387         if (thread == NULL)
1388                 goto out_problem;
1389
1390         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1391                 type = MAP__VARIABLE;
1392         else
1393                 type = MAP__FUNCTION;
1394
1395         map = map__new(machine, event->mmap.start,
1396                         event->mmap.len, event->mmap.pgoff,
1397                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1398                         event->mmap.filename,
1399                         type, thread);
1400
1401         if (map == NULL)
1402                 goto out_problem_map;
1403
1404         ret = thread__insert_map(thread, map);
1405         if (ret)
1406                 goto out_problem_insert;
1407
1408         thread__put(thread);
1409         map__put(map);
1410         return 0;
1411
1412 out_problem_insert:
1413         map__put(map);
1414 out_problem_map:
1415         thread__put(thread);
1416 out_problem:
1417         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1418         return 0;
1419 }
1420
1421 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1422 {
1423         if (machine->last_match == th)
1424                 machine->last_match = NULL;
1425
1426         BUG_ON(atomic_read(&th->refcnt) == 0);
1427         if (lock)
1428                 pthread_rwlock_wrlock(&machine->threads_lock);
1429         rb_erase_init(&th->rb_node, &machine->threads);
1430         RB_CLEAR_NODE(&th->rb_node);
1431         --machine->nr_threads;
1432         /*
1433          * Move it first to the dead_threads list, then drop the reference,
1434          * if this is the last reference, then the thread__delete destructor
1435          * will be called and we will remove it from the dead_threads list.
1436          */
1437         list_add_tail(&th->node, &machine->dead_threads);
1438         if (lock)
1439                 pthread_rwlock_unlock(&machine->threads_lock);
1440         thread__put(th);
1441 }
1442
1443 void machine__remove_thread(struct machine *machine, struct thread *th)
1444 {
1445         return __machine__remove_thread(machine, th, true);
1446 }
1447
1448 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1449                                 struct perf_sample *sample)
1450 {
1451         struct thread *thread = machine__find_thread(machine,
1452                                                      event->fork.pid,
1453                                                      event->fork.tid);
1454         struct thread *parent = machine__findnew_thread(machine,
1455                                                         event->fork.ppid,
1456                                                         event->fork.ptid);
1457         int err = 0;
1458
1459         if (dump_trace)
1460                 perf_event__fprintf_task(event, stdout);
1461
1462         /*
1463          * There may be an existing thread that is not actually the parent,
1464          * either because we are processing events out of order, or because the
1465          * (fork) event that would have removed the thread was lost. Assume the
1466          * latter case and continue on as best we can.
1467          */
1468         if (parent->pid_ != (pid_t)event->fork.ppid) {
1469                 dump_printf("removing erroneous parent thread %d/%d\n",
1470                             parent->pid_, parent->tid);
1471                 machine__remove_thread(machine, parent);
1472                 thread__put(parent);
1473                 parent = machine__findnew_thread(machine, event->fork.ppid,
1474                                                  event->fork.ptid);
1475         }
1476
1477         /* if a thread currently exists for the thread id remove it */
1478         if (thread != NULL) {
1479                 machine__remove_thread(machine, thread);
1480                 thread__put(thread);
1481         }
1482
1483         thread = machine__findnew_thread(machine, event->fork.pid,
1484                                          event->fork.tid);
1485
1486         if (thread == NULL || parent == NULL ||
1487             thread__fork(thread, parent, sample->time) < 0) {
1488                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1489                 err = -1;
1490         }
1491         thread__put(thread);
1492         thread__put(parent);
1493
1494         return err;
1495 }
1496
1497 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1498                                 struct perf_sample *sample __maybe_unused)
1499 {
1500         struct thread *thread = machine__find_thread(machine,
1501                                                      event->fork.pid,
1502                                                      event->fork.tid);
1503
1504         if (dump_trace)
1505                 perf_event__fprintf_task(event, stdout);
1506
1507         if (thread != NULL) {
1508                 thread__exited(thread);
1509                 thread__put(thread);
1510         }
1511
1512         return 0;
1513 }
1514
1515 int machine__process_event(struct machine *machine, union perf_event *event,
1516                            struct perf_sample *sample)
1517 {
1518         int ret;
1519
1520         switch (event->header.type) {
1521         case PERF_RECORD_COMM:
1522                 ret = machine__process_comm_event(machine, event, sample); break;
1523         case PERF_RECORD_MMAP:
1524                 ret = machine__process_mmap_event(machine, event, sample); break;
1525         case PERF_RECORD_MMAP2:
1526                 ret = machine__process_mmap2_event(machine, event, sample); break;
1527         case PERF_RECORD_FORK:
1528                 ret = machine__process_fork_event(machine, event, sample); break;
1529         case PERF_RECORD_EXIT:
1530                 ret = machine__process_exit_event(machine, event, sample); break;
1531         case PERF_RECORD_LOST:
1532                 ret = machine__process_lost_event(machine, event, sample); break;
1533         case PERF_RECORD_AUX:
1534                 ret = machine__process_aux_event(machine, event); break;
1535         case PERF_RECORD_ITRACE_START:
1536                 ret = machine__process_itrace_start_event(machine, event); break;
1537         case PERF_RECORD_LOST_SAMPLES:
1538                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1539         case PERF_RECORD_SWITCH:
1540         case PERF_RECORD_SWITCH_CPU_WIDE:
1541                 ret = machine__process_switch_event(machine, event); break;
1542         default:
1543                 ret = -1;
1544                 break;
1545         }
1546
1547         return ret;
1548 }
1549
1550 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1551 {
1552         if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1553                 return 1;
1554         return 0;
1555 }
1556
1557 static void ip__resolve_ams(struct thread *thread,
1558                             struct addr_map_symbol *ams,
1559                             u64 ip)
1560 {
1561         struct addr_location al;
1562
1563         memset(&al, 0, sizeof(al));
1564         /*
1565          * We cannot use the header.misc hint to determine whether a
1566          * branch stack address is user, kernel, guest, hypervisor.
1567          * Branches may straddle the kernel/user/hypervisor boundaries.
1568          * Thus, we have to try consecutively until we find a match
1569          * or else, the symbol is unknown
1570          */
1571         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1572
1573         ams->addr = ip;
1574         ams->al_addr = al.addr;
1575         ams->sym = al.sym;
1576         ams->map = al.map;
1577 }
1578
1579 static void ip__resolve_data(struct thread *thread,
1580                              u8 m, struct addr_map_symbol *ams, u64 addr)
1581 {
1582         struct addr_location al;
1583
1584         memset(&al, 0, sizeof(al));
1585
1586         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1587         if (al.map == NULL) {
1588                 /*
1589                  * some shared data regions have execute bit set which puts
1590                  * their mapping in the MAP__FUNCTION type array.
1591                  * Check there as a fallback option before dropping the sample.
1592                  */
1593                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1594         }
1595
1596         ams->addr = addr;
1597         ams->al_addr = al.addr;
1598         ams->sym = al.sym;
1599         ams->map = al.map;
1600 }
1601
1602 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1603                                      struct addr_location *al)
1604 {
1605         struct mem_info *mi = zalloc(sizeof(*mi));
1606
1607         if (!mi)
1608                 return NULL;
1609
1610         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1611         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1612         mi->data_src.val = sample->data_src;
1613
1614         return mi;
1615 }
1616
1617 static int add_callchain_ip(struct thread *thread,
1618                             struct callchain_cursor *cursor,
1619                             struct symbol **parent,
1620                             struct addr_location *root_al,
1621                             u8 *cpumode,
1622                             u64 ip)
1623 {
1624         struct addr_location al;
1625
1626         al.filtered = 0;
1627         al.sym = NULL;
1628         if (!cpumode) {
1629                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1630                                                    ip, &al);
1631         } else {
1632                 if (ip >= PERF_CONTEXT_MAX) {
1633                         switch (ip) {
1634                         case PERF_CONTEXT_HV:
1635                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1636                                 break;
1637                         case PERF_CONTEXT_KERNEL:
1638                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1639                                 break;
1640                         case PERF_CONTEXT_USER:
1641                                 *cpumode = PERF_RECORD_MISC_USER;
1642                                 break;
1643                         default:
1644                                 pr_debug("invalid callchain context: "
1645                                          "%"PRId64"\n", (s64) ip);
1646                                 /*
1647                                  * It seems the callchain is corrupted.
1648                                  * Discard all.
1649                                  */
1650                                 callchain_cursor_reset(cursor);
1651                                 return 1;
1652                         }
1653                         return 0;
1654                 }
1655                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1656                                            ip, &al);
1657         }
1658
1659         if (al.sym != NULL) {
1660                 if (perf_hpp_list.parent && !*parent &&
1661                     symbol__match_regex(al.sym, &parent_regex))
1662                         *parent = al.sym;
1663                 else if (have_ignore_callees && root_al &&
1664                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1665                         /* Treat this symbol as the root,
1666                            forgetting its callees. */
1667                         *root_al = al;
1668                         callchain_cursor_reset(cursor);
1669                 }
1670         }
1671
1672         if (symbol_conf.hide_unresolved && al.sym == NULL)
1673                 return 0;
1674         return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1675 }
1676
1677 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1678                                            struct addr_location *al)
1679 {
1680         unsigned int i;
1681         const struct branch_stack *bs = sample->branch_stack;
1682         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1683
1684         if (!bi)
1685                 return NULL;
1686
1687         for (i = 0; i < bs->nr; i++) {
1688                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1689                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1690                 bi[i].flags = bs->entries[i].flags;
1691         }
1692         return bi;
1693 }
1694
1695 #define CHASHSZ 127
1696 #define CHASHBITS 7
1697 #define NO_ENTRY 0xff
1698
1699 #define PERF_MAX_BRANCH_DEPTH 127
1700
1701 /* Remove loops. */
1702 static int remove_loops(struct branch_entry *l, int nr)
1703 {
1704         int i, j, off;
1705         unsigned char chash[CHASHSZ];
1706
1707         memset(chash, NO_ENTRY, sizeof(chash));
1708
1709         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1710
1711         for (i = 0; i < nr; i++) {
1712                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1713
1714                 /* no collision handling for now */
1715                 if (chash[h] == NO_ENTRY) {
1716                         chash[h] = i;
1717                 } else if (l[chash[h]].from == l[i].from) {
1718                         bool is_loop = true;
1719                         /* check if it is a real loop */
1720                         off = 0;
1721                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1722                                 if (l[j].from != l[i + off].from) {
1723                                         is_loop = false;
1724                                         break;
1725                                 }
1726                         if (is_loop) {
1727                                 memmove(l + i, l + i + off,
1728                                         (nr - (i + off)) * sizeof(*l));
1729                                 nr -= off;
1730                         }
1731                 }
1732         }
1733         return nr;
1734 }
1735
1736 /*
1737  * Recolve LBR callstack chain sample
1738  * Return:
1739  * 1 on success get LBR callchain information
1740  * 0 no available LBR callchain information, should try fp
1741  * negative error code on other errors.
1742  */
1743 static int resolve_lbr_callchain_sample(struct thread *thread,
1744                                         struct callchain_cursor *cursor,
1745                                         struct perf_sample *sample,
1746                                         struct symbol **parent,
1747                                         struct addr_location *root_al,
1748                                         int max_stack)
1749 {
1750         struct ip_callchain *chain = sample->callchain;
1751         int chain_nr = min(max_stack, (int)chain->nr), i;
1752         u8 cpumode = PERF_RECORD_MISC_USER;
1753         u64 ip;
1754
1755         for (i = 0; i < chain_nr; i++) {
1756                 if (chain->ips[i] == PERF_CONTEXT_USER)
1757                         break;
1758         }
1759
1760         /* LBR only affects the user callchain */
1761         if (i != chain_nr) {
1762                 struct branch_stack *lbr_stack = sample->branch_stack;
1763                 int lbr_nr = lbr_stack->nr, j;
1764                 /*
1765                  * LBR callstack can only get user call chain.
1766                  * The mix_chain_nr is kernel call chain
1767                  * number plus LBR user call chain number.
1768                  * i is kernel call chain number,
1769                  * 1 is PERF_CONTEXT_USER,
1770                  * lbr_nr + 1 is the user call chain number.
1771                  * For details, please refer to the comments
1772                  * in callchain__printf
1773                  */
1774                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1775
1776                 for (j = 0; j < mix_chain_nr; j++) {
1777                         int err;
1778                         if (callchain_param.order == ORDER_CALLEE) {
1779                                 if (j < i + 1)
1780                                         ip = chain->ips[j];
1781                                 else if (j > i + 1)
1782                                         ip = lbr_stack->entries[j - i - 2].from;
1783                                 else
1784                                         ip = lbr_stack->entries[0].to;
1785                         } else {
1786                                 if (j < lbr_nr)
1787                                         ip = lbr_stack->entries[lbr_nr - j - 1].from;
1788                                 else if (j > lbr_nr)
1789                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1790                                 else
1791                                         ip = lbr_stack->entries[0].to;
1792                         }
1793
1794                         err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1795                         if (err)
1796                                 return (err < 0) ? err : 0;
1797                 }
1798                 return 1;
1799         }
1800
1801         return 0;
1802 }
1803
1804 static int thread__resolve_callchain_sample(struct thread *thread,
1805                                             struct callchain_cursor *cursor,
1806                                             struct perf_evsel *evsel,
1807                                             struct perf_sample *sample,
1808                                             struct symbol **parent,
1809                                             struct addr_location *root_al,
1810                                             int max_stack)
1811 {
1812         struct branch_stack *branch = sample->branch_stack;
1813         struct ip_callchain *chain = sample->callchain;
1814         int chain_nr = chain->nr;
1815         u8 cpumode = PERF_RECORD_MISC_USER;
1816         int i, j, err, nr_entries;
1817         int skip_idx = -1;
1818         int first_call = 0;
1819
1820         if (perf_evsel__has_branch_callstack(evsel)) {
1821                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1822                                                    root_al, max_stack);
1823                 if (err)
1824                         return (err < 0) ? err : 0;
1825         }
1826
1827         /*
1828          * Based on DWARF debug information, some architectures skip
1829          * a callchain entry saved by the kernel.
1830          */
1831         skip_idx = arch_skip_callchain_idx(thread, chain);
1832
1833         /*
1834          * Add branches to call stack for easier browsing. This gives
1835          * more context for a sample than just the callers.
1836          *
1837          * This uses individual histograms of paths compared to the
1838          * aggregated histograms the normal LBR mode uses.
1839          *
1840          * Limitations for now:
1841          * - No extra filters
1842          * - No annotations (should annotate somehow)
1843          */
1844
1845         if (branch && callchain_param.branch_callstack) {
1846                 int nr = min(max_stack, (int)branch->nr);
1847                 struct branch_entry be[nr];
1848
1849                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1850                         pr_warning("corrupted branch chain. skipping...\n");
1851                         goto check_calls;
1852                 }
1853
1854                 for (i = 0; i < nr; i++) {
1855                         if (callchain_param.order == ORDER_CALLEE) {
1856                                 be[i] = branch->entries[i];
1857                                 /*
1858                                  * Check for overlap into the callchain.
1859                                  * The return address is one off compared to
1860                                  * the branch entry. To adjust for this
1861                                  * assume the calling instruction is not longer
1862                                  * than 8 bytes.
1863                                  */
1864                                 if (i == skip_idx ||
1865                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1866                                         first_call++;
1867                                 else if (be[i].from < chain->ips[first_call] &&
1868                                     be[i].from >= chain->ips[first_call] - 8)
1869                                         first_call++;
1870                         } else
1871                                 be[i] = branch->entries[branch->nr - i - 1];
1872                 }
1873
1874                 nr = remove_loops(be, nr);
1875
1876                 for (i = 0; i < nr; i++) {
1877                         err = add_callchain_ip(thread, cursor, parent, root_al,
1878                                                NULL, be[i].to);
1879                         if (!err)
1880                                 err = add_callchain_ip(thread, cursor, parent, root_al,
1881                                                        NULL, be[i].from);
1882                         if (err == -EINVAL)
1883                                 break;
1884                         if (err)
1885                                 return err;
1886                 }
1887                 chain_nr -= nr;
1888         }
1889
1890 check_calls:
1891         for (i = first_call, nr_entries = 0;
1892              i < chain_nr && nr_entries < max_stack; i++) {
1893                 u64 ip;
1894
1895                 if (callchain_param.order == ORDER_CALLEE)
1896                         j = i;
1897                 else
1898                         j = chain->nr - i - 1;
1899
1900 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1901                 if (j == skip_idx)
1902                         continue;
1903 #endif
1904                 ip = chain->ips[j];
1905
1906                 if (ip < PERF_CONTEXT_MAX)
1907                        ++nr_entries;
1908
1909                 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1910
1911                 if (err)
1912                         return (err < 0) ? err : 0;
1913         }
1914
1915         return 0;
1916 }
1917
1918 static int unwind_entry(struct unwind_entry *entry, void *arg)
1919 {
1920         struct callchain_cursor *cursor = arg;
1921
1922         if (symbol_conf.hide_unresolved && entry->sym == NULL)
1923                 return 0;
1924         return callchain_cursor_append(cursor, entry->ip,
1925                                        entry->map, entry->sym);
1926 }
1927
1928 static int thread__resolve_callchain_unwind(struct thread *thread,
1929                                             struct callchain_cursor *cursor,
1930                                             struct perf_evsel *evsel,
1931                                             struct perf_sample *sample,
1932                                             int max_stack)
1933 {
1934         /* Can we do dwarf post unwind? */
1935         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1936               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1937                 return 0;
1938
1939         /* Bail out if nothing was captured. */
1940         if ((!sample->user_regs.regs) ||
1941             (!sample->user_stack.size))
1942                 return 0;
1943
1944         return unwind__get_entries(unwind_entry, cursor,
1945                                    thread, sample, max_stack);
1946 }
1947
1948 int thread__resolve_callchain(struct thread *thread,
1949                               struct callchain_cursor *cursor,
1950                               struct perf_evsel *evsel,
1951                               struct perf_sample *sample,
1952                               struct symbol **parent,
1953                               struct addr_location *root_al,
1954                               int max_stack)
1955 {
1956         int ret = 0;
1957
1958         callchain_cursor_reset(&callchain_cursor);
1959
1960         if (callchain_param.order == ORDER_CALLEE) {
1961                 ret = thread__resolve_callchain_sample(thread, cursor,
1962                                                        evsel, sample,
1963                                                        parent, root_al,
1964                                                        max_stack);
1965                 if (ret)
1966                         return ret;
1967                 ret = thread__resolve_callchain_unwind(thread, cursor,
1968                                                        evsel, sample,
1969                                                        max_stack);
1970         } else {
1971                 ret = thread__resolve_callchain_unwind(thread, cursor,
1972                                                        evsel, sample,
1973                                                        max_stack);
1974                 if (ret)
1975                         return ret;
1976                 ret = thread__resolve_callchain_sample(thread, cursor,
1977                                                        evsel, sample,
1978                                                        parent, root_al,
1979                                                        max_stack);
1980         }
1981
1982         return ret;
1983 }
1984
1985 int machine__for_each_thread(struct machine *machine,
1986                              int (*fn)(struct thread *thread, void *p),
1987                              void *priv)
1988 {
1989         struct rb_node *nd;
1990         struct thread *thread;
1991         int rc = 0;
1992
1993         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1994                 thread = rb_entry(nd, struct thread, rb_node);
1995                 rc = fn(thread, priv);
1996                 if (rc != 0)
1997                         return rc;
1998         }
1999
2000         list_for_each_entry(thread, &machine->dead_threads, node) {
2001                 rc = fn(thread, priv);
2002                 if (rc != 0)
2003                         return rc;
2004         }
2005         return rc;
2006 }
2007
2008 int machines__for_each_thread(struct machines *machines,
2009                               int (*fn)(struct thread *thread, void *p),
2010                               void *priv)
2011 {
2012         struct rb_node *nd;
2013         int rc = 0;
2014
2015         rc = machine__for_each_thread(&machines->host, fn, priv);
2016         if (rc != 0)
2017                 return rc;
2018
2019         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2020                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2021
2022                 rc = machine__for_each_thread(machine, fn, priv);
2023                 if (rc != 0)
2024                         return rc;
2025         }
2026         return rc;
2027 }
2028
2029 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2030                                   struct target *target, struct thread_map *threads,
2031                                   perf_event__handler_t process, bool data_mmap,
2032                                   unsigned int proc_map_timeout)
2033 {
2034         if (target__has_task(target))
2035                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2036         else if (target__has_cpu(target))
2037                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2038         /* command specified */
2039         return 0;
2040 }
2041
2042 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2043 {
2044         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2045                 return -1;
2046
2047         return machine->current_tid[cpu];
2048 }
2049
2050 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2051                              pid_t tid)
2052 {
2053         struct thread *thread;
2054
2055         if (cpu < 0)
2056                 return -EINVAL;
2057
2058         if (!machine->current_tid) {
2059                 int i;
2060
2061                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2062                 if (!machine->current_tid)
2063                         return -ENOMEM;
2064                 for (i = 0; i < MAX_NR_CPUS; i++)
2065                         machine->current_tid[i] = -1;
2066         }
2067
2068         if (cpu >= MAX_NR_CPUS) {
2069                 pr_err("Requested CPU %d too large. ", cpu);
2070                 pr_err("Consider raising MAX_NR_CPUS\n");
2071                 return -EINVAL;
2072         }
2073
2074         machine->current_tid[cpu] = tid;
2075
2076         thread = machine__findnew_thread(machine, pid, tid);
2077         if (!thread)
2078                 return -ENOMEM;
2079
2080         thread->cpu = cpu;
2081         thread__put(thread);
2082
2083         return 0;
2084 }
2085
2086 int machine__get_kernel_start(struct machine *machine)
2087 {
2088         struct map *map = machine__kernel_map(machine);
2089         int err = 0;
2090
2091         /*
2092          * The only addresses above 2^63 are kernel addresses of a 64-bit
2093          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2094          * all addresses including kernel addresses are less than 2^32.  In
2095          * that case (32-bit system), if the kernel mapping is unknown, all
2096          * addresses will be assumed to be in user space - see
2097          * machine__kernel_ip().
2098          */
2099         machine->kernel_start = 1ULL << 63;
2100         if (map) {
2101                 err = map__load(map);
2102                 if (map->start)
2103                         machine->kernel_start = map->start;
2104         }
2105         return err;
2106 }
2107
2108 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2109 {
2110         return dsos__findnew(&machine->dsos, filename);
2111 }
2112
2113 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2114 {
2115         struct machine *machine = vmachine;
2116         struct map *map;
2117         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2118
2119         if (sym == NULL)
2120                 return NULL;
2121
2122         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2123         *addrp = map->unmap_ip(map, sym->start);
2124         return sym->name;
2125 }