GNU Linux-libre 4.9.330-gnu1
[releases.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "sort.h"
7 #include "evlist.h"
8 #include "evsel.h"
9 #include "annotate.h"
10 #include "ui/progress.h"
11 #include <math.h>
12
13 static bool hists__filter_entry_by_dso(struct hists *hists,
14                                        struct hist_entry *he);
15 static bool hists__filter_entry_by_thread(struct hists *hists,
16                                           struct hist_entry *he);
17 static bool hists__filter_entry_by_symbol(struct hists *hists,
18                                           struct hist_entry *he);
19 static bool hists__filter_entry_by_socket(struct hists *hists,
20                                           struct hist_entry *he);
21
22 u16 hists__col_len(struct hists *hists, enum hist_column col)
23 {
24         return hists->col_len[col];
25 }
26
27 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
28 {
29         hists->col_len[col] = len;
30 }
31
32 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34         if (len > hists__col_len(hists, col)) {
35                 hists__set_col_len(hists, col, len);
36                 return true;
37         }
38         return false;
39 }
40
41 void hists__reset_col_len(struct hists *hists)
42 {
43         enum hist_column col;
44
45         for (col = 0; col < HISTC_NR_COLS; ++col)
46                 hists__set_col_len(hists, col, 0);
47 }
48
49 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
50 {
51         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
52
53         if (hists__col_len(hists, dso) < unresolved_col_width &&
54             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
55             !symbol_conf.dso_list)
56                 hists__set_col_len(hists, dso, unresolved_col_width);
57 }
58
59 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
60 {
61         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
62         int symlen;
63         u16 len;
64
65         /*
66          * +4 accounts for '[x] ' priv level info
67          * +2 accounts for 0x prefix on raw addresses
68          * +3 accounts for ' y ' symtab origin info
69          */
70         if (h->ms.sym) {
71                 symlen = h->ms.sym->namelen + 4;
72                 if (verbose)
73                         symlen += BITS_PER_LONG / 4 + 2 + 3;
74                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
75         } else {
76                 symlen = unresolved_col_width + 4 + 2;
77                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
78                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
79         }
80
81         len = thread__comm_len(h->thread);
82         if (hists__new_col_len(hists, HISTC_COMM, len))
83                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
84
85         if (h->ms.map) {
86                 len = dso__name_len(h->ms.map->dso);
87                 hists__new_col_len(hists, HISTC_DSO, len);
88         }
89
90         if (h->parent)
91                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
92
93         if (h->branch_info) {
94                 if (h->branch_info->from.sym) {
95                         symlen = (int)h->branch_info->from.sym->namelen + 4;
96                         if (verbose)
97                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
98                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
99
100                         symlen = dso__name_len(h->branch_info->from.map->dso);
101                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
102                 } else {
103                         symlen = unresolved_col_width + 4 + 2;
104                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
105                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
106                 }
107
108                 if (h->branch_info->to.sym) {
109                         symlen = (int)h->branch_info->to.sym->namelen + 4;
110                         if (verbose)
111                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
112                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
113
114                         symlen = dso__name_len(h->branch_info->to.map->dso);
115                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
116                 } else {
117                         symlen = unresolved_col_width + 4 + 2;
118                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
119                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
120                 }
121
122                 if (h->branch_info->srcline_from)
123                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
124                                         strlen(h->branch_info->srcline_from));
125                 if (h->branch_info->srcline_to)
126                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
127                                         strlen(h->branch_info->srcline_to));
128         }
129
130         if (h->mem_info) {
131                 if (h->mem_info->daddr.sym) {
132                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
133                                + unresolved_col_width + 2;
134                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
135                                            symlen);
136                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
137                                            symlen + 1);
138                 } else {
139                         symlen = unresolved_col_width + 4 + 2;
140                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
141                                            symlen);
142                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
143                                            symlen);
144                 }
145
146                 if (h->mem_info->iaddr.sym) {
147                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
148                                + unresolved_col_width + 2;
149                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
150                                            symlen);
151                 } else {
152                         symlen = unresolved_col_width + 4 + 2;
153                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
154                                            symlen);
155                 }
156
157                 if (h->mem_info->daddr.map) {
158                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
159                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
160                                            symlen);
161                 } else {
162                         symlen = unresolved_col_width + 4 + 2;
163                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
164                 }
165         } else {
166                 symlen = unresolved_col_width + 4 + 2;
167                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
168                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
169                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
170         }
171
172         hists__new_col_len(hists, HISTC_CPU, 3);
173         hists__new_col_len(hists, HISTC_SOCKET, 6);
174         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
175         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
176         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
177         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
178         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
179         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
180
181         if (h->srcline) {
182                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
183                 hists__new_col_len(hists, HISTC_SRCLINE, len);
184         }
185
186         if (h->srcfile)
187                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
188
189         if (h->transaction)
190                 hists__new_col_len(hists, HISTC_TRANSACTION,
191                                    hist_entry__transaction_len());
192
193         if (h->trace_output)
194                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
195 }
196
197 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
198 {
199         struct rb_node *next = rb_first(&hists->entries);
200         struct hist_entry *n;
201         int row = 0;
202
203         hists__reset_col_len(hists);
204
205         while (next && row++ < max_rows) {
206                 n = rb_entry(next, struct hist_entry, rb_node);
207                 if (!n->filtered)
208                         hists__calc_col_len(hists, n);
209                 next = rb_next(&n->rb_node);
210         }
211 }
212
213 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
214                                         unsigned int cpumode, u64 period)
215 {
216         switch (cpumode) {
217         case PERF_RECORD_MISC_KERNEL:
218                 he_stat->period_sys += period;
219                 break;
220         case PERF_RECORD_MISC_USER:
221                 he_stat->period_us += period;
222                 break;
223         case PERF_RECORD_MISC_GUEST_KERNEL:
224                 he_stat->period_guest_sys += period;
225                 break;
226         case PERF_RECORD_MISC_GUEST_USER:
227                 he_stat->period_guest_us += period;
228                 break;
229         default:
230                 break;
231         }
232 }
233
234 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
235                                 u64 weight)
236 {
237
238         he_stat->period         += period;
239         he_stat->weight         += weight;
240         he_stat->nr_events      += 1;
241 }
242
243 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
244 {
245         dest->period            += src->period;
246         dest->period_sys        += src->period_sys;
247         dest->period_us         += src->period_us;
248         dest->period_guest_sys  += src->period_guest_sys;
249         dest->period_guest_us   += src->period_guest_us;
250         dest->nr_events         += src->nr_events;
251         dest->weight            += src->weight;
252 }
253
254 static void he_stat__decay(struct he_stat *he_stat)
255 {
256         he_stat->period = (he_stat->period * 7) / 8;
257         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
258         /* XXX need decay for weight too? */
259 }
260
261 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
262
263 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
264 {
265         u64 prev_period = he->stat.period;
266         u64 diff;
267
268         if (prev_period == 0)
269                 return true;
270
271         he_stat__decay(&he->stat);
272         if (symbol_conf.cumulate_callchain)
273                 he_stat__decay(he->stat_acc);
274         decay_callchain(he->callchain);
275
276         diff = prev_period - he->stat.period;
277
278         if (!he->depth) {
279                 hists->stats.total_period -= diff;
280                 if (!he->filtered)
281                         hists->stats.total_non_filtered_period -= diff;
282         }
283
284         if (!he->leaf) {
285                 struct hist_entry *child;
286                 struct rb_node *node = rb_first(&he->hroot_out);
287                 while (node) {
288                         child = rb_entry(node, struct hist_entry, rb_node);
289                         node = rb_next(node);
290
291                         if (hists__decay_entry(hists, child))
292                                 hists__delete_entry(hists, child);
293                 }
294         }
295
296         return he->stat.period == 0;
297 }
298
299 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
300 {
301         struct rb_root *root_in;
302         struct rb_root *root_out;
303
304         if (he->parent_he) {
305                 root_in  = &he->parent_he->hroot_in;
306                 root_out = &he->parent_he->hroot_out;
307         } else {
308                 if (hists__has(hists, need_collapse))
309                         root_in = &hists->entries_collapsed;
310                 else
311                         root_in = hists->entries_in;
312                 root_out = &hists->entries;
313         }
314
315         rb_erase(&he->rb_node_in, root_in);
316         rb_erase(&he->rb_node, root_out);
317
318         --hists->nr_entries;
319         if (!he->filtered)
320                 --hists->nr_non_filtered_entries;
321
322         hist_entry__delete(he);
323 }
324
325 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
326 {
327         struct rb_node *next = rb_first(&hists->entries);
328         struct hist_entry *n;
329
330         while (next) {
331                 n = rb_entry(next, struct hist_entry, rb_node);
332                 next = rb_next(&n->rb_node);
333                 if (((zap_user && n->level == '.') ||
334                      (zap_kernel && n->level != '.') ||
335                      hists__decay_entry(hists, n))) {
336                         hists__delete_entry(hists, n);
337                 }
338         }
339 }
340
341 void hists__delete_entries(struct hists *hists)
342 {
343         struct rb_node *next = rb_first(&hists->entries);
344         struct hist_entry *n;
345
346         while (next) {
347                 n = rb_entry(next, struct hist_entry, rb_node);
348                 next = rb_next(&n->rb_node);
349
350                 hists__delete_entry(hists, n);
351         }
352 }
353
354 /*
355  * histogram, sorted on item, collects periods
356  */
357
358 static int hist_entry__init(struct hist_entry *he,
359                             struct hist_entry *template,
360                             bool sample_self)
361 {
362         *he = *template;
363
364         if (symbol_conf.cumulate_callchain) {
365                 he->stat_acc = malloc(sizeof(he->stat));
366                 if (he->stat_acc == NULL)
367                         return -ENOMEM;
368                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369                 if (!sample_self)
370                         memset(&he->stat, 0, sizeof(he->stat));
371         }
372
373         map__get(he->ms.map);
374
375         if (he->branch_info) {
376                 /*
377                  * This branch info is (a part of) allocated from
378                  * sample__resolve_bstack() and will be freed after
379                  * adding new entries.  So we need to save a copy.
380                  */
381                 he->branch_info = malloc(sizeof(*he->branch_info));
382                 if (he->branch_info == NULL) {
383                         map__zput(he->ms.map);
384                         free(he->stat_acc);
385                         return -ENOMEM;
386                 }
387
388                 memcpy(he->branch_info, template->branch_info,
389                        sizeof(*he->branch_info));
390
391                 map__get(he->branch_info->from.map);
392                 map__get(he->branch_info->to.map);
393         }
394
395         if (he->mem_info) {
396                 map__get(he->mem_info->iaddr.map);
397                 map__get(he->mem_info->daddr.map);
398         }
399
400         if (symbol_conf.use_callchain)
401                 callchain_init(he->callchain);
402
403         if (he->raw_data) {
404                 he->raw_data = memdup(he->raw_data, he->raw_size);
405
406                 if (he->raw_data == NULL) {
407                         map__put(he->ms.map);
408                         if (he->branch_info) {
409                                 map__put(he->branch_info->from.map);
410                                 map__put(he->branch_info->to.map);
411                                 free(he->branch_info);
412                         }
413                         if (he->mem_info) {
414                                 map__put(he->mem_info->iaddr.map);
415                                 map__put(he->mem_info->daddr.map);
416                         }
417                         free(he->stat_acc);
418                         return -ENOMEM;
419                 }
420         }
421         INIT_LIST_HEAD(&he->pairs.node);
422         thread__get(he->thread);
423         he->hroot_in  = RB_ROOT;
424         he->hroot_out = RB_ROOT;
425
426         if (!symbol_conf.report_hierarchy)
427                 he->leaf = true;
428
429         return 0;
430 }
431
432 static void *hist_entry__zalloc(size_t size)
433 {
434         return zalloc(size + sizeof(struct hist_entry));
435 }
436
437 static void hist_entry__free(void *ptr)
438 {
439         free(ptr);
440 }
441
442 static struct hist_entry_ops default_ops = {
443         .new    = hist_entry__zalloc,
444         .free   = hist_entry__free,
445 };
446
447 static struct hist_entry *hist_entry__new(struct hist_entry *template,
448                                           bool sample_self)
449 {
450         struct hist_entry_ops *ops = template->ops;
451         size_t callchain_size = 0;
452         struct hist_entry *he;
453         int err = 0;
454
455         if (!ops)
456                 ops = template->ops = &default_ops;
457
458         if (symbol_conf.use_callchain)
459                 callchain_size = sizeof(struct callchain_root);
460
461         he = ops->new(callchain_size);
462         if (he) {
463                 err = hist_entry__init(he, template, sample_self);
464                 if (err) {
465                         ops->free(he);
466                         he = NULL;
467                 }
468         }
469
470         return he;
471 }
472
473 static u8 symbol__parent_filter(const struct symbol *parent)
474 {
475         if (symbol_conf.exclude_other && parent == NULL)
476                 return 1 << HIST_FILTER__PARENT;
477         return 0;
478 }
479
480 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
481 {
482         if (!symbol_conf.use_callchain)
483                 return;
484
485         he->hists->callchain_period += period;
486         if (!he->filtered)
487                 he->hists->callchain_non_filtered_period += period;
488 }
489
490 static struct hist_entry *hists__findnew_entry(struct hists *hists,
491                                                struct hist_entry *entry,
492                                                struct addr_location *al,
493                                                bool sample_self)
494 {
495         struct rb_node **p;
496         struct rb_node *parent = NULL;
497         struct hist_entry *he;
498         int64_t cmp;
499         u64 period = entry->stat.period;
500         u64 weight = entry->stat.weight;
501
502         p = &hists->entries_in->rb_node;
503
504         while (*p != NULL) {
505                 parent = *p;
506                 he = rb_entry(parent, struct hist_entry, rb_node_in);
507
508                 /*
509                  * Make sure that it receives arguments in a same order as
510                  * hist_entry__collapse() so that we can use an appropriate
511                  * function when searching an entry regardless which sort
512                  * keys were used.
513                  */
514                 cmp = hist_entry__cmp(he, entry);
515
516                 if (!cmp) {
517                         if (sample_self) {
518                                 he_stat__add_period(&he->stat, period, weight);
519                                 hist_entry__add_callchain_period(he, period);
520                         }
521                         if (symbol_conf.cumulate_callchain)
522                                 he_stat__add_period(he->stat_acc, period, weight);
523
524                         /*
525                          * This mem info was allocated from sample__resolve_mem
526                          * and will not be used anymore.
527                          */
528                         zfree(&entry->mem_info);
529
530                         /* If the map of an existing hist_entry has
531                          * become out-of-date due to an exec() or
532                          * similar, update it.  Otherwise we will
533                          * mis-adjust symbol addresses when computing
534                          * the history counter to increment.
535                          */
536                         if (he->ms.map != entry->ms.map) {
537                                 map__put(he->ms.map);
538                                 he->ms.map = map__get(entry->ms.map);
539                         }
540                         goto out;
541                 }
542
543                 if (cmp < 0)
544                         p = &(*p)->rb_left;
545                 else
546                         p = &(*p)->rb_right;
547         }
548
549         he = hist_entry__new(entry, sample_self);
550         if (!he)
551                 return NULL;
552
553         if (sample_self)
554                 hist_entry__add_callchain_period(he, period);
555         hists->nr_entries++;
556
557         rb_link_node(&he->rb_node_in, parent, p);
558         rb_insert_color(&he->rb_node_in, hists->entries_in);
559 out:
560         if (sample_self)
561                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
562         if (symbol_conf.cumulate_callchain)
563                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
564         return he;
565 }
566
567 static struct hist_entry*
568 __hists__add_entry(struct hists *hists,
569                    struct addr_location *al,
570                    struct symbol *sym_parent,
571                    struct branch_info *bi,
572                    struct mem_info *mi,
573                    struct perf_sample *sample,
574                    bool sample_self,
575                    struct hist_entry_ops *ops)
576 {
577         struct hist_entry entry = {
578                 .thread = al->thread,
579                 .comm = thread__comm(al->thread),
580                 .ms = {
581                         .map    = al->map,
582                         .sym    = al->sym,
583                 },
584                 .socket  = al->socket,
585                 .cpu     = al->cpu,
586                 .cpumode = al->cpumode,
587                 .ip      = al->addr,
588                 .level   = al->level,
589                 .stat = {
590                         .nr_events = 1,
591                         .period = sample->period,
592                         .weight = sample->weight,
593                 },
594                 .parent = sym_parent,
595                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
596                 .hists  = hists,
597                 .branch_info = bi,
598                 .mem_info = mi,
599                 .transaction = sample->transaction,
600                 .raw_data = sample->raw_data,
601                 .raw_size = sample->raw_size,
602                 .ops = ops,
603         };
604
605         return hists__findnew_entry(hists, &entry, al, sample_self);
606 }
607
608 struct hist_entry *hists__add_entry(struct hists *hists,
609                                     struct addr_location *al,
610                                     struct symbol *sym_parent,
611                                     struct branch_info *bi,
612                                     struct mem_info *mi,
613                                     struct perf_sample *sample,
614                                     bool sample_self)
615 {
616         return __hists__add_entry(hists, al, sym_parent, bi, mi,
617                                   sample, sample_self, NULL);
618 }
619
620 struct hist_entry *hists__add_entry_ops(struct hists *hists,
621                                         struct hist_entry_ops *ops,
622                                         struct addr_location *al,
623                                         struct symbol *sym_parent,
624                                         struct branch_info *bi,
625                                         struct mem_info *mi,
626                                         struct perf_sample *sample,
627                                         bool sample_self)
628 {
629         return __hists__add_entry(hists, al, sym_parent, bi, mi,
630                                   sample, sample_self, ops);
631 }
632
633 static int
634 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
635                     struct addr_location *al __maybe_unused)
636 {
637         return 0;
638 }
639
640 static int
641 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
642                         struct addr_location *al __maybe_unused)
643 {
644         return 0;
645 }
646
647 static int
648 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
649 {
650         struct perf_sample *sample = iter->sample;
651         struct mem_info *mi;
652
653         mi = sample__resolve_mem(sample, al);
654         if (mi == NULL)
655                 return -ENOMEM;
656
657         iter->priv = mi;
658         return 0;
659 }
660
661 static int
662 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
663 {
664         u64 cost;
665         struct mem_info *mi = iter->priv;
666         struct hists *hists = evsel__hists(iter->evsel);
667         struct perf_sample *sample = iter->sample;
668         struct hist_entry *he;
669
670         if (mi == NULL)
671                 return -EINVAL;
672
673         cost = sample->weight;
674         if (!cost)
675                 cost = 1;
676
677         /*
678          * must pass period=weight in order to get the correct
679          * sorting from hists__collapse_resort() which is solely
680          * based on periods. We want sorting be done on nr_events * weight
681          * and this is indirectly achieved by passing period=weight here
682          * and the he_stat__add_period() function.
683          */
684         sample->period = cost;
685
686         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
687                               sample, true);
688         if (!he)
689                 return -ENOMEM;
690
691         iter->he = he;
692         return 0;
693 }
694
695 static int
696 iter_finish_mem_entry(struct hist_entry_iter *iter,
697                       struct addr_location *al __maybe_unused)
698 {
699         struct perf_evsel *evsel = iter->evsel;
700         struct hists *hists = evsel__hists(evsel);
701         struct hist_entry *he = iter->he;
702         int err = -EINVAL;
703
704         if (he == NULL)
705                 goto out;
706
707         hists__inc_nr_samples(hists, he->filtered);
708
709         err = hist_entry__append_callchain(he, iter->sample);
710
711 out:
712         /*
713          * We don't need to free iter->priv (mem_info) here since the mem info
714          * was either already freed in hists__findnew_entry() or passed to a
715          * new hist entry by hist_entry__new().
716          */
717         iter->priv = NULL;
718
719         iter->he = NULL;
720         return err;
721 }
722
723 static int
724 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
725 {
726         struct branch_info *bi;
727         struct perf_sample *sample = iter->sample;
728
729         bi = sample__resolve_bstack(sample, al);
730         if (!bi)
731                 return -ENOMEM;
732
733         iter->curr = 0;
734         iter->total = sample->branch_stack->nr;
735
736         iter->priv = bi;
737         return 0;
738 }
739
740 static int
741 iter_add_single_branch_entry(struct hist_entry_iter *iter,
742                              struct addr_location *al __maybe_unused)
743 {
744         /* to avoid calling callback function */
745         iter->he = NULL;
746
747         return 0;
748 }
749
750 static int
751 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
752 {
753         struct branch_info *bi = iter->priv;
754         int i = iter->curr;
755
756         if (bi == NULL)
757                 return 0;
758
759         if (iter->curr >= iter->total)
760                 return 0;
761
762         al->map = bi[i].to.map;
763         al->sym = bi[i].to.sym;
764         al->addr = bi[i].to.addr;
765         return 1;
766 }
767
768 static int
769 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
770 {
771         struct branch_info *bi;
772         struct perf_evsel *evsel = iter->evsel;
773         struct hists *hists = evsel__hists(evsel);
774         struct perf_sample *sample = iter->sample;
775         struct hist_entry *he = NULL;
776         int i = iter->curr;
777         int err = 0;
778
779         bi = iter->priv;
780
781         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
782                 goto out;
783
784         /*
785          * The report shows the percentage of total branches captured
786          * and not events sampled. Thus we use a pseudo period of 1.
787          */
788         sample->period = 1;
789         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
790
791         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
792                               sample, true);
793         if (he == NULL)
794                 return -ENOMEM;
795
796         hists__inc_nr_samples(hists, he->filtered);
797
798 out:
799         iter->he = he;
800         iter->curr++;
801         return err;
802 }
803
804 static int
805 iter_finish_branch_entry(struct hist_entry_iter *iter,
806                          struct addr_location *al __maybe_unused)
807 {
808         zfree(&iter->priv);
809         iter->he = NULL;
810
811         return iter->curr >= iter->total ? 0 : -1;
812 }
813
814 static int
815 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
816                           struct addr_location *al __maybe_unused)
817 {
818         return 0;
819 }
820
821 static int
822 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
823 {
824         struct perf_evsel *evsel = iter->evsel;
825         struct perf_sample *sample = iter->sample;
826         struct hist_entry *he;
827
828         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
829                               sample, true);
830         if (he == NULL)
831                 return -ENOMEM;
832
833         iter->he = he;
834         return 0;
835 }
836
837 static int
838 iter_finish_normal_entry(struct hist_entry_iter *iter,
839                          struct addr_location *al __maybe_unused)
840 {
841         struct hist_entry *he = iter->he;
842         struct perf_evsel *evsel = iter->evsel;
843         struct perf_sample *sample = iter->sample;
844
845         if (he == NULL)
846                 return 0;
847
848         iter->he = NULL;
849
850         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
851
852         return hist_entry__append_callchain(he, sample);
853 }
854
855 static int
856 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
857                               struct addr_location *al __maybe_unused)
858 {
859         struct hist_entry **he_cache;
860
861         callchain_cursor_commit(&callchain_cursor);
862
863         /*
864          * This is for detecting cycles or recursions so that they're
865          * cumulated only one time to prevent entries more than 100%
866          * overhead.
867          */
868         he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
869         if (he_cache == NULL)
870                 return -ENOMEM;
871
872         iter->priv = he_cache;
873         iter->curr = 0;
874
875         return 0;
876 }
877
878 static int
879 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
880                                  struct addr_location *al)
881 {
882         struct perf_evsel *evsel = iter->evsel;
883         struct hists *hists = evsel__hists(evsel);
884         struct perf_sample *sample = iter->sample;
885         struct hist_entry **he_cache = iter->priv;
886         struct hist_entry *he;
887         int err = 0;
888
889         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
890                               sample, true);
891         if (he == NULL)
892                 return -ENOMEM;
893
894         iter->he = he;
895         he_cache[iter->curr++] = he;
896
897         hist_entry__append_callchain(he, sample);
898
899         /*
900          * We need to re-initialize the cursor since callchain_append()
901          * advanced the cursor to the end.
902          */
903         callchain_cursor_commit(&callchain_cursor);
904
905         hists__inc_nr_samples(hists, he->filtered);
906
907         return err;
908 }
909
910 static int
911 iter_next_cumulative_entry(struct hist_entry_iter *iter,
912                            struct addr_location *al)
913 {
914         struct callchain_cursor_node *node;
915
916         node = callchain_cursor_current(&callchain_cursor);
917         if (node == NULL)
918                 return 0;
919
920         return fill_callchain_info(al, node, iter->hide_unresolved);
921 }
922
923 static int
924 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
925                                struct addr_location *al)
926 {
927         struct perf_evsel *evsel = iter->evsel;
928         struct perf_sample *sample = iter->sample;
929         struct hist_entry **he_cache = iter->priv;
930         struct hist_entry *he;
931         struct hist_entry he_tmp = {
932                 .hists = evsel__hists(evsel),
933                 .cpu = al->cpu,
934                 .thread = al->thread,
935                 .comm = thread__comm(al->thread),
936                 .ip = al->addr,
937                 .ms = {
938                         .map = al->map,
939                         .sym = al->sym,
940                 },
941                 .parent = iter->parent,
942                 .raw_data = sample->raw_data,
943                 .raw_size = sample->raw_size,
944         };
945         int i;
946         struct callchain_cursor cursor;
947
948         callchain_cursor_snapshot(&cursor, &callchain_cursor);
949
950         callchain_cursor_advance(&callchain_cursor);
951
952         /*
953          * Check if there's duplicate entries in the callchain.
954          * It's possible that it has cycles or recursive calls.
955          */
956         for (i = 0; i < iter->curr; i++) {
957                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
958                         /* to avoid calling callback function */
959                         iter->he = NULL;
960                         return 0;
961                 }
962         }
963
964         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
965                               sample, false);
966         if (he == NULL)
967                 return -ENOMEM;
968
969         iter->he = he;
970         he_cache[iter->curr++] = he;
971
972         if (symbol_conf.use_callchain)
973                 callchain_append(he->callchain, &cursor, sample->period);
974         return 0;
975 }
976
977 static int
978 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
979                              struct addr_location *al __maybe_unused)
980 {
981         zfree(&iter->priv);
982         iter->he = NULL;
983
984         return 0;
985 }
986
987 const struct hist_iter_ops hist_iter_mem = {
988         .prepare_entry          = iter_prepare_mem_entry,
989         .add_single_entry       = iter_add_single_mem_entry,
990         .next_entry             = iter_next_nop_entry,
991         .add_next_entry         = iter_add_next_nop_entry,
992         .finish_entry           = iter_finish_mem_entry,
993 };
994
995 const struct hist_iter_ops hist_iter_branch = {
996         .prepare_entry          = iter_prepare_branch_entry,
997         .add_single_entry       = iter_add_single_branch_entry,
998         .next_entry             = iter_next_branch_entry,
999         .add_next_entry         = iter_add_next_branch_entry,
1000         .finish_entry           = iter_finish_branch_entry,
1001 };
1002
1003 const struct hist_iter_ops hist_iter_normal = {
1004         .prepare_entry          = iter_prepare_normal_entry,
1005         .add_single_entry       = iter_add_single_normal_entry,
1006         .next_entry             = iter_next_nop_entry,
1007         .add_next_entry         = iter_add_next_nop_entry,
1008         .finish_entry           = iter_finish_normal_entry,
1009 };
1010
1011 const struct hist_iter_ops hist_iter_cumulative = {
1012         .prepare_entry          = iter_prepare_cumulative_entry,
1013         .add_single_entry       = iter_add_single_cumulative_entry,
1014         .next_entry             = iter_next_cumulative_entry,
1015         .add_next_entry         = iter_add_next_cumulative_entry,
1016         .finish_entry           = iter_finish_cumulative_entry,
1017 };
1018
1019 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1020                          int max_stack_depth, void *arg)
1021 {
1022         int err, err2;
1023         struct map *alm = NULL;
1024
1025         if (al && al->map)
1026                 alm = map__get(al->map);
1027
1028         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1029                                         iter->evsel, al, max_stack_depth);
1030         if (err) {
1031                 map__put(alm);
1032                 return err;
1033         }
1034
1035         err = iter->ops->prepare_entry(iter, al);
1036         if (err)
1037                 goto out;
1038
1039         err = iter->ops->add_single_entry(iter, al);
1040         if (err)
1041                 goto out;
1042
1043         if (iter->he && iter->add_entry_cb) {
1044                 err = iter->add_entry_cb(iter, al, true, arg);
1045                 if (err)
1046                         goto out;
1047         }
1048
1049         while (iter->ops->next_entry(iter, al)) {
1050                 err = iter->ops->add_next_entry(iter, al);
1051                 if (err)
1052                         break;
1053
1054                 if (iter->he && iter->add_entry_cb) {
1055                         err = iter->add_entry_cb(iter, al, false, arg);
1056                         if (err)
1057                                 goto out;
1058                 }
1059         }
1060
1061 out:
1062         err2 = iter->ops->finish_entry(iter, al);
1063         if (!err)
1064                 err = err2;
1065
1066         map__put(alm);
1067
1068         return err;
1069 }
1070
1071 int64_t
1072 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1073 {
1074         struct hists *hists = left->hists;
1075         struct perf_hpp_fmt *fmt;
1076         int64_t cmp = 0;
1077
1078         hists__for_each_sort_list(hists, fmt) {
1079                 if (perf_hpp__is_dynamic_entry(fmt) &&
1080                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1081                         continue;
1082
1083                 cmp = fmt->cmp(fmt, left, right);
1084                 if (cmp)
1085                         break;
1086         }
1087
1088         return cmp;
1089 }
1090
1091 int64_t
1092 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1093 {
1094         struct hists *hists = left->hists;
1095         struct perf_hpp_fmt *fmt;
1096         int64_t cmp = 0;
1097
1098         hists__for_each_sort_list(hists, fmt) {
1099                 if (perf_hpp__is_dynamic_entry(fmt) &&
1100                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1101                         continue;
1102
1103                 cmp = fmt->collapse(fmt, left, right);
1104                 if (cmp)
1105                         break;
1106         }
1107
1108         return cmp;
1109 }
1110
1111 void hist_entry__delete(struct hist_entry *he)
1112 {
1113         struct hist_entry_ops *ops = he->ops;
1114
1115         thread__zput(he->thread);
1116         map__zput(he->ms.map);
1117
1118         if (he->branch_info) {
1119                 map__zput(he->branch_info->from.map);
1120                 map__zput(he->branch_info->to.map);
1121                 free_srcline(he->branch_info->srcline_from);
1122                 free_srcline(he->branch_info->srcline_to);
1123                 zfree(&he->branch_info);
1124         }
1125
1126         if (he->mem_info) {
1127                 map__zput(he->mem_info->iaddr.map);
1128                 map__zput(he->mem_info->daddr.map);
1129                 zfree(&he->mem_info);
1130         }
1131
1132         zfree(&he->stat_acc);
1133         free_srcline(he->srcline);
1134         if (he->srcfile && he->srcfile[0])
1135                 free(he->srcfile);
1136         free_callchain(he->callchain);
1137         free(he->trace_output);
1138         free(he->raw_data);
1139         ops->free(he);
1140 }
1141
1142 /*
1143  * If this is not the last column, then we need to pad it according to the
1144  * pre-calculated max lenght for this column, otherwise don't bother adding
1145  * spaces because that would break viewing this with, for instance, 'less',
1146  * that would show tons of trailing spaces when a long C++ demangled method
1147  * names is sampled.
1148 */
1149 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1150                                    struct perf_hpp_fmt *fmt, int printed)
1151 {
1152         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1153                 const int width = fmt->width(fmt, hpp, he->hists);
1154                 if (printed < width) {
1155                         advance_hpp(hpp, printed);
1156                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1157                 }
1158         }
1159
1160         return printed;
1161 }
1162
1163 /*
1164  * collapse the histogram
1165  */
1166
1167 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1168 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1169                                        enum hist_filter type);
1170
1171 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1172
1173 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1174 {
1175         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1176 }
1177
1178 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1179                                                 enum hist_filter type,
1180                                                 fmt_chk_fn check)
1181 {
1182         struct perf_hpp_fmt *fmt;
1183         bool type_match = false;
1184         struct hist_entry *parent = he->parent_he;
1185
1186         switch (type) {
1187         case HIST_FILTER__THREAD:
1188                 if (symbol_conf.comm_list == NULL &&
1189                     symbol_conf.pid_list == NULL &&
1190                     symbol_conf.tid_list == NULL)
1191                         return;
1192                 break;
1193         case HIST_FILTER__DSO:
1194                 if (symbol_conf.dso_list == NULL)
1195                         return;
1196                 break;
1197         case HIST_FILTER__SYMBOL:
1198                 if (symbol_conf.sym_list == NULL)
1199                         return;
1200                 break;
1201         case HIST_FILTER__PARENT:
1202         case HIST_FILTER__GUEST:
1203         case HIST_FILTER__HOST:
1204         case HIST_FILTER__SOCKET:
1205         default:
1206                 return;
1207         }
1208
1209         /* if it's filtered by own fmt, it has to have filter bits */
1210         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1211                 if (check(fmt)) {
1212                         type_match = true;
1213                         break;
1214                 }
1215         }
1216
1217         if (type_match) {
1218                 /*
1219                  * If the filter is for current level entry, propagate
1220                  * filter marker to parents.  The marker bit was
1221                  * already set by default so it only needs to clear
1222                  * non-filtered entries.
1223                  */
1224                 if (!(he->filtered & (1 << type))) {
1225                         while (parent) {
1226                                 parent->filtered &= ~(1 << type);
1227                                 parent = parent->parent_he;
1228                         }
1229                 }
1230         } else {
1231                 /*
1232                  * If current entry doesn't have matching formats, set
1233                  * filter marker for upper level entries.  it will be
1234                  * cleared if its lower level entries is not filtered.
1235                  *
1236                  * For lower-level entries, it inherits parent's
1237                  * filter bit so that lower level entries of a
1238                  * non-filtered entry won't set the filter marker.
1239                  */
1240                 if (parent == NULL)
1241                         he->filtered |= (1 << type);
1242                 else
1243                         he->filtered |= (parent->filtered & (1 << type));
1244         }
1245 }
1246
1247 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1248 {
1249         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1250                                             check_thread_entry);
1251
1252         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1253                                             perf_hpp__is_dso_entry);
1254
1255         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1256                                             perf_hpp__is_sym_entry);
1257
1258         hists__apply_filters(he->hists, he);
1259 }
1260
1261 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1262                                                  struct rb_root *root,
1263                                                  struct hist_entry *he,
1264                                                  struct hist_entry *parent_he,
1265                                                  struct perf_hpp_list *hpp_list)
1266 {
1267         struct rb_node **p = &root->rb_node;
1268         struct rb_node *parent = NULL;
1269         struct hist_entry *iter, *new;
1270         struct perf_hpp_fmt *fmt;
1271         int64_t cmp;
1272
1273         while (*p != NULL) {
1274                 parent = *p;
1275                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1276
1277                 cmp = 0;
1278                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1279                         cmp = fmt->collapse(fmt, iter, he);
1280                         if (cmp)
1281                                 break;
1282                 }
1283
1284                 if (!cmp) {
1285                         he_stat__add_stat(&iter->stat, &he->stat);
1286                         return iter;
1287                 }
1288
1289                 if (cmp < 0)
1290                         p = &parent->rb_left;
1291                 else
1292                         p = &parent->rb_right;
1293         }
1294
1295         new = hist_entry__new(he, true);
1296         if (new == NULL)
1297                 return NULL;
1298
1299         hists->nr_entries++;
1300
1301         /* save related format list for output */
1302         new->hpp_list = hpp_list;
1303         new->parent_he = parent_he;
1304
1305         hist_entry__apply_hierarchy_filters(new);
1306
1307         /* some fields are now passed to 'new' */
1308         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1309                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1310                         he->trace_output = NULL;
1311                 else
1312                         new->trace_output = NULL;
1313
1314                 if (perf_hpp__is_srcline_entry(fmt))
1315                         he->srcline = NULL;
1316                 else
1317                         new->srcline = NULL;
1318
1319                 if (perf_hpp__is_srcfile_entry(fmt))
1320                         he->srcfile = NULL;
1321                 else
1322                         new->srcfile = NULL;
1323         }
1324
1325         rb_link_node(&new->rb_node_in, parent, p);
1326         rb_insert_color(&new->rb_node_in, root);
1327         return new;
1328 }
1329
1330 static int hists__hierarchy_insert_entry(struct hists *hists,
1331                                          struct rb_root *root,
1332                                          struct hist_entry *he)
1333 {
1334         struct perf_hpp_list_node *node;
1335         struct hist_entry *new_he = NULL;
1336         struct hist_entry *parent = NULL;
1337         int depth = 0;
1338         int ret = 0;
1339
1340         list_for_each_entry(node, &hists->hpp_formats, list) {
1341                 /* skip period (overhead) and elided columns */
1342                 if (node->level == 0 || node->skip)
1343                         continue;
1344
1345                 /* insert copy of 'he' for each fmt into the hierarchy */
1346                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1347                 if (new_he == NULL) {
1348                         ret = -1;
1349                         break;
1350                 }
1351
1352                 root = &new_he->hroot_in;
1353                 new_he->depth = depth++;
1354                 parent = new_he;
1355         }
1356
1357         if (new_he) {
1358                 new_he->leaf = true;
1359
1360                 if (symbol_conf.use_callchain) {
1361                         callchain_cursor_reset(&callchain_cursor);
1362                         if (callchain_merge(&callchain_cursor,
1363                                             new_he->callchain,
1364                                             he->callchain) < 0)
1365                                 ret = -1;
1366                 }
1367         }
1368
1369         /* 'he' is no longer used */
1370         hist_entry__delete(he);
1371
1372         /* return 0 (or -1) since it already applied filters */
1373         return ret;
1374 }
1375
1376 static int hists__collapse_insert_entry(struct hists *hists,
1377                                         struct rb_root *root,
1378                                         struct hist_entry *he)
1379 {
1380         struct rb_node **p = &root->rb_node;
1381         struct rb_node *parent = NULL;
1382         struct hist_entry *iter;
1383         int64_t cmp;
1384
1385         if (symbol_conf.report_hierarchy)
1386                 return hists__hierarchy_insert_entry(hists, root, he);
1387
1388         while (*p != NULL) {
1389                 parent = *p;
1390                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1391
1392                 cmp = hist_entry__collapse(iter, he);
1393
1394                 if (!cmp) {
1395                         int ret = 0;
1396
1397                         he_stat__add_stat(&iter->stat, &he->stat);
1398                         if (symbol_conf.cumulate_callchain)
1399                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1400
1401                         if (symbol_conf.use_callchain) {
1402                                 callchain_cursor_reset(&callchain_cursor);
1403                                 if (callchain_merge(&callchain_cursor,
1404                                                     iter->callchain,
1405                                                     he->callchain) < 0)
1406                                         ret = -1;
1407                         }
1408                         hist_entry__delete(he);
1409                         return ret;
1410                 }
1411
1412                 if (cmp < 0)
1413                         p = &(*p)->rb_left;
1414                 else
1415                         p = &(*p)->rb_right;
1416         }
1417         hists->nr_entries++;
1418
1419         rb_link_node(&he->rb_node_in, parent, p);
1420         rb_insert_color(&he->rb_node_in, root);
1421         return 1;
1422 }
1423
1424 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1425 {
1426         struct rb_root *root;
1427
1428         pthread_mutex_lock(&hists->lock);
1429
1430         root = hists->entries_in;
1431         if (++hists->entries_in > &hists->entries_in_array[1])
1432                 hists->entries_in = &hists->entries_in_array[0];
1433
1434         pthread_mutex_unlock(&hists->lock);
1435
1436         return root;
1437 }
1438
1439 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1440 {
1441         hists__filter_entry_by_dso(hists, he);
1442         hists__filter_entry_by_thread(hists, he);
1443         hists__filter_entry_by_symbol(hists, he);
1444         hists__filter_entry_by_socket(hists, he);
1445 }
1446
1447 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1448 {
1449         struct rb_root *root;
1450         struct rb_node *next;
1451         struct hist_entry *n;
1452         int ret;
1453
1454         if (!hists__has(hists, need_collapse))
1455                 return 0;
1456
1457         hists->nr_entries = 0;
1458
1459         root = hists__get_rotate_entries_in(hists);
1460
1461         next = rb_first(root);
1462
1463         while (next) {
1464                 if (session_done())
1465                         break;
1466                 n = rb_entry(next, struct hist_entry, rb_node_in);
1467                 next = rb_next(&n->rb_node_in);
1468
1469                 rb_erase(&n->rb_node_in, root);
1470                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1471                 if (ret < 0)
1472                         return -1;
1473
1474                 if (ret) {
1475                         /*
1476                          * If it wasn't combined with one of the entries already
1477                          * collapsed, we need to apply the filters that may have
1478                          * been set by, say, the hist_browser.
1479                          */
1480                         hists__apply_filters(hists, n);
1481                 }
1482                 if (prog)
1483                         ui_progress__update(prog, 1);
1484         }
1485         return 0;
1486 }
1487
1488 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1489 {
1490         struct hists *hists = a->hists;
1491         struct perf_hpp_fmt *fmt;
1492         int64_t cmp = 0;
1493
1494         hists__for_each_sort_list(hists, fmt) {
1495                 if (perf_hpp__should_skip(fmt, a->hists))
1496                         continue;
1497
1498                 cmp = fmt->sort(fmt, a, b);
1499                 if (cmp)
1500                         break;
1501         }
1502
1503         return cmp;
1504 }
1505
1506 static void hists__reset_filter_stats(struct hists *hists)
1507 {
1508         hists->nr_non_filtered_entries = 0;
1509         hists->stats.total_non_filtered_period = 0;
1510 }
1511
1512 void hists__reset_stats(struct hists *hists)
1513 {
1514         hists->nr_entries = 0;
1515         hists->stats.total_period = 0;
1516
1517         hists__reset_filter_stats(hists);
1518 }
1519
1520 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1521 {
1522         hists->nr_non_filtered_entries++;
1523         hists->stats.total_non_filtered_period += h->stat.period;
1524 }
1525
1526 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1527 {
1528         if (!h->filtered)
1529                 hists__inc_filter_stats(hists, h);
1530
1531         hists->nr_entries++;
1532         hists->stats.total_period += h->stat.period;
1533 }
1534
1535 static void hierarchy_recalc_total_periods(struct hists *hists)
1536 {
1537         struct rb_node *node;
1538         struct hist_entry *he;
1539
1540         node = rb_first(&hists->entries);
1541
1542         hists->stats.total_period = 0;
1543         hists->stats.total_non_filtered_period = 0;
1544
1545         /*
1546          * recalculate total period using top-level entries only
1547          * since lower level entries only see non-filtered entries
1548          * but upper level entries have sum of both entries.
1549          */
1550         while (node) {
1551                 he = rb_entry(node, struct hist_entry, rb_node);
1552                 node = rb_next(node);
1553
1554                 hists->stats.total_period += he->stat.period;
1555                 if (!he->filtered)
1556                         hists->stats.total_non_filtered_period += he->stat.period;
1557         }
1558 }
1559
1560 static void hierarchy_insert_output_entry(struct rb_root *root,
1561                                           struct hist_entry *he)
1562 {
1563         struct rb_node **p = &root->rb_node;
1564         struct rb_node *parent = NULL;
1565         struct hist_entry *iter;
1566         struct perf_hpp_fmt *fmt;
1567
1568         while (*p != NULL) {
1569                 parent = *p;
1570                 iter = rb_entry(parent, struct hist_entry, rb_node);
1571
1572                 if (hist_entry__sort(he, iter) > 0)
1573                         p = &parent->rb_left;
1574                 else
1575                         p = &parent->rb_right;
1576         }
1577
1578         rb_link_node(&he->rb_node, parent, p);
1579         rb_insert_color(&he->rb_node, root);
1580
1581         /* update column width of dynamic entry */
1582         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1583                 if (perf_hpp__is_dynamic_entry(fmt))
1584                         fmt->sort(fmt, he, NULL);
1585         }
1586 }
1587
1588 static void hists__hierarchy_output_resort(struct hists *hists,
1589                                            struct ui_progress *prog,
1590                                            struct rb_root *root_in,
1591                                            struct rb_root *root_out,
1592                                            u64 min_callchain_hits,
1593                                            bool use_callchain)
1594 {
1595         struct rb_node *node;
1596         struct hist_entry *he;
1597
1598         *root_out = RB_ROOT;
1599         node = rb_first(root_in);
1600
1601         while (node) {
1602                 he = rb_entry(node, struct hist_entry, rb_node_in);
1603                 node = rb_next(node);
1604
1605                 hierarchy_insert_output_entry(root_out, he);
1606
1607                 if (prog)
1608                         ui_progress__update(prog, 1);
1609
1610                 hists->nr_entries++;
1611                 if (!he->filtered) {
1612                         hists->nr_non_filtered_entries++;
1613                         hists__calc_col_len(hists, he);
1614                 }
1615
1616                 if (!he->leaf) {
1617                         hists__hierarchy_output_resort(hists, prog,
1618                                                        &he->hroot_in,
1619                                                        &he->hroot_out,
1620                                                        min_callchain_hits,
1621                                                        use_callchain);
1622                         continue;
1623                 }
1624
1625                 if (!use_callchain)
1626                         continue;
1627
1628                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1629                         u64 total = he->stat.period;
1630
1631                         if (symbol_conf.cumulate_callchain)
1632                                 total = he->stat_acc->period;
1633
1634                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1635                 }
1636
1637                 callchain_param.sort(&he->sorted_chain, he->callchain,
1638                                      min_callchain_hits, &callchain_param);
1639         }
1640 }
1641
1642 static void __hists__insert_output_entry(struct rb_root *entries,
1643                                          struct hist_entry *he,
1644                                          u64 min_callchain_hits,
1645                                          bool use_callchain)
1646 {
1647         struct rb_node **p = &entries->rb_node;
1648         struct rb_node *parent = NULL;
1649         struct hist_entry *iter;
1650         struct perf_hpp_fmt *fmt;
1651
1652         if (use_callchain) {
1653                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1654                         u64 total = he->stat.period;
1655
1656                         if (symbol_conf.cumulate_callchain)
1657                                 total = he->stat_acc->period;
1658
1659                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1660                 }
1661                 callchain_param.sort(&he->sorted_chain, he->callchain,
1662                                       min_callchain_hits, &callchain_param);
1663         }
1664
1665         while (*p != NULL) {
1666                 parent = *p;
1667                 iter = rb_entry(parent, struct hist_entry, rb_node);
1668
1669                 if (hist_entry__sort(he, iter) > 0)
1670                         p = &(*p)->rb_left;
1671                 else
1672                         p = &(*p)->rb_right;
1673         }
1674
1675         rb_link_node(&he->rb_node, parent, p);
1676         rb_insert_color(&he->rb_node, entries);
1677
1678         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1679                 if (perf_hpp__is_dynamic_entry(fmt) &&
1680                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1681                         fmt->sort(fmt, he, NULL);  /* update column width */
1682         }
1683 }
1684
1685 static void output_resort(struct hists *hists, struct ui_progress *prog,
1686                           bool use_callchain, hists__resort_cb_t cb)
1687 {
1688         struct rb_root *root;
1689         struct rb_node *next;
1690         struct hist_entry *n;
1691         u64 callchain_total;
1692         u64 min_callchain_hits;
1693
1694         callchain_total = hists->callchain_period;
1695         if (symbol_conf.filter_relative)
1696                 callchain_total = hists->callchain_non_filtered_period;
1697
1698         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1699
1700         hists__reset_stats(hists);
1701         hists__reset_col_len(hists);
1702
1703         if (symbol_conf.report_hierarchy) {
1704                 hists__hierarchy_output_resort(hists, prog,
1705                                                &hists->entries_collapsed,
1706                                                &hists->entries,
1707                                                min_callchain_hits,
1708                                                use_callchain);
1709                 hierarchy_recalc_total_periods(hists);
1710                 return;
1711         }
1712
1713         if (hists__has(hists, need_collapse))
1714                 root = &hists->entries_collapsed;
1715         else
1716                 root = hists->entries_in;
1717
1718         next = rb_first(root);
1719         hists->entries = RB_ROOT;
1720
1721         while (next) {
1722                 n = rb_entry(next, struct hist_entry, rb_node_in);
1723                 next = rb_next(&n->rb_node_in);
1724
1725                 if (cb && cb(n))
1726                         continue;
1727
1728                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1729                 hists__inc_stats(hists, n);
1730
1731                 if (!n->filtered)
1732                         hists__calc_col_len(hists, n);
1733
1734                 if (prog)
1735                         ui_progress__update(prog, 1);
1736         }
1737 }
1738
1739 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1740 {
1741         bool use_callchain;
1742
1743         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1744                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1745         else
1746                 use_callchain = symbol_conf.use_callchain;
1747
1748         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1749 }
1750
1751 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1752 {
1753         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1754 }
1755
1756 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1757                              hists__resort_cb_t cb)
1758 {
1759         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1760 }
1761
1762 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1763 {
1764         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1765                 return false;
1766
1767         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1768                 return true;
1769
1770         return false;
1771 }
1772
1773 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1774 {
1775         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1776
1777         while (can_goto_child(he, HMD_NORMAL)) {
1778                 node = rb_last(&he->hroot_out);
1779                 he = rb_entry(node, struct hist_entry, rb_node);
1780         }
1781         return node;
1782 }
1783
1784 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1785 {
1786         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1787
1788         if (can_goto_child(he, hmd))
1789                 node = rb_first(&he->hroot_out);
1790         else
1791                 node = rb_next(node);
1792
1793         while (node == NULL) {
1794                 he = he->parent_he;
1795                 if (he == NULL)
1796                         break;
1797
1798                 node = rb_next(&he->rb_node);
1799         }
1800         return node;
1801 }
1802
1803 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1804 {
1805         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1806
1807         node = rb_prev(node);
1808         if (node)
1809                 return rb_hierarchy_last(node);
1810
1811         he = he->parent_he;
1812         if (he == NULL)
1813                 return NULL;
1814
1815         return &he->rb_node;
1816 }
1817
1818 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1819 {
1820         struct rb_node *node;
1821         struct hist_entry *child;
1822         float percent;
1823
1824         if (he->leaf)
1825                 return false;
1826
1827         node = rb_first(&he->hroot_out);
1828         child = rb_entry(node, struct hist_entry, rb_node);
1829
1830         while (node && child->filtered) {
1831                 node = rb_next(node);
1832                 child = rb_entry(node, struct hist_entry, rb_node);
1833         }
1834
1835         if (node)
1836                 percent = hist_entry__get_percent_limit(child);
1837         else
1838                 percent = 0;
1839
1840         return node && percent >= limit;
1841 }
1842
1843 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1844                                        enum hist_filter filter)
1845 {
1846         h->filtered &= ~(1 << filter);
1847
1848         if (symbol_conf.report_hierarchy) {
1849                 struct hist_entry *parent = h->parent_he;
1850
1851                 while (parent) {
1852                         he_stat__add_stat(&parent->stat, &h->stat);
1853
1854                         parent->filtered &= ~(1 << filter);
1855
1856                         if (parent->filtered)
1857                                 goto next;
1858
1859                         /* force fold unfiltered entry for simplicity */
1860                         parent->unfolded = false;
1861                         parent->has_no_entry = false;
1862                         parent->row_offset = 0;
1863                         parent->nr_rows = 0;
1864 next:
1865                         parent = parent->parent_he;
1866                 }
1867         }
1868
1869         if (h->filtered)
1870                 return;
1871
1872         /* force fold unfiltered entry for simplicity */
1873         h->unfolded = false;
1874         h->has_no_entry = false;
1875         h->row_offset = 0;
1876         h->nr_rows = 0;
1877
1878         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1879
1880         hists__inc_filter_stats(hists, h);
1881         hists__calc_col_len(hists, h);
1882 }
1883
1884
1885 static bool hists__filter_entry_by_dso(struct hists *hists,
1886                                        struct hist_entry *he)
1887 {
1888         if (hists->dso_filter != NULL &&
1889             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1890                 he->filtered |= (1 << HIST_FILTER__DSO);
1891                 return true;
1892         }
1893
1894         return false;
1895 }
1896
1897 static bool hists__filter_entry_by_thread(struct hists *hists,
1898                                           struct hist_entry *he)
1899 {
1900         if (hists->thread_filter != NULL &&
1901             he->thread != hists->thread_filter) {
1902                 he->filtered |= (1 << HIST_FILTER__THREAD);
1903                 return true;
1904         }
1905
1906         return false;
1907 }
1908
1909 static bool hists__filter_entry_by_symbol(struct hists *hists,
1910                                           struct hist_entry *he)
1911 {
1912         if (hists->symbol_filter_str != NULL &&
1913             (!he->ms.sym || strstr(he->ms.sym->name,
1914                                    hists->symbol_filter_str) == NULL)) {
1915                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1916                 return true;
1917         }
1918
1919         return false;
1920 }
1921
1922 static bool hists__filter_entry_by_socket(struct hists *hists,
1923                                           struct hist_entry *he)
1924 {
1925         if ((hists->socket_filter > -1) &&
1926             (he->socket != hists->socket_filter)) {
1927                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1928                 return true;
1929         }
1930
1931         return false;
1932 }
1933
1934 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1935
1936 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1937 {
1938         struct rb_node *nd;
1939
1940         hists->stats.nr_non_filtered_samples = 0;
1941
1942         hists__reset_filter_stats(hists);
1943         hists__reset_col_len(hists);
1944
1945         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1946                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1947
1948                 if (filter(hists, h))
1949                         continue;
1950
1951                 hists__remove_entry_filter(hists, h, type);
1952         }
1953 }
1954
1955 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1956 {
1957         struct rb_node **p = &root->rb_node;
1958         struct rb_node *parent = NULL;
1959         struct hist_entry *iter;
1960         struct rb_root new_root = RB_ROOT;
1961         struct rb_node *nd;
1962
1963         while (*p != NULL) {
1964                 parent = *p;
1965                 iter = rb_entry(parent, struct hist_entry, rb_node);
1966
1967                 if (hist_entry__sort(he, iter) > 0)
1968                         p = &(*p)->rb_left;
1969                 else
1970                         p = &(*p)->rb_right;
1971         }
1972
1973         rb_link_node(&he->rb_node, parent, p);
1974         rb_insert_color(&he->rb_node, root);
1975
1976         if (he->leaf || he->filtered)
1977                 return;
1978
1979         nd = rb_first(&he->hroot_out);
1980         while (nd) {
1981                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1982
1983                 nd = rb_next(nd);
1984                 rb_erase(&h->rb_node, &he->hroot_out);
1985
1986                 resort_filtered_entry(&new_root, h);
1987         }
1988
1989         he->hroot_out = new_root;
1990 }
1991
1992 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1993 {
1994         struct rb_node *nd;
1995         struct rb_root new_root = RB_ROOT;
1996
1997         hists->stats.nr_non_filtered_samples = 0;
1998
1999         hists__reset_filter_stats(hists);
2000         hists__reset_col_len(hists);
2001
2002         nd = rb_first(&hists->entries);
2003         while (nd) {
2004                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2005                 int ret;
2006
2007                 ret = hist_entry__filter(h, type, arg);
2008
2009                 /*
2010                  * case 1. non-matching type
2011                  * zero out the period, set filter marker and move to child
2012                  */
2013                 if (ret < 0) {
2014                         memset(&h->stat, 0, sizeof(h->stat));
2015                         h->filtered |= (1 << type);
2016
2017                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2018                 }
2019                 /*
2020                  * case 2. matched type (filter out)
2021                  * set filter marker and move to next
2022                  */
2023                 else if (ret == 1) {
2024                         h->filtered |= (1 << type);
2025
2026                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2027                 }
2028                 /*
2029                  * case 3. ok (not filtered)
2030                  * add period to hists and parents, erase the filter marker
2031                  * and move to next sibling
2032                  */
2033                 else {
2034                         hists__remove_entry_filter(hists, h, type);
2035
2036                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2037                 }
2038         }
2039
2040         hierarchy_recalc_total_periods(hists);
2041
2042         /*
2043          * resort output after applying a new filter since filter in a lower
2044          * hierarchy can change periods in a upper hierarchy.
2045          */
2046         nd = rb_first(&hists->entries);
2047         while (nd) {
2048                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2049
2050                 nd = rb_next(nd);
2051                 rb_erase(&h->rb_node, &hists->entries);
2052
2053                 resort_filtered_entry(&new_root, h);
2054         }
2055
2056         hists->entries = new_root;
2057 }
2058
2059 void hists__filter_by_thread(struct hists *hists)
2060 {
2061         if (symbol_conf.report_hierarchy)
2062                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2063                                         hists->thread_filter);
2064         else
2065                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2066                                       hists__filter_entry_by_thread);
2067 }
2068
2069 void hists__filter_by_dso(struct hists *hists)
2070 {
2071         if (symbol_conf.report_hierarchy)
2072                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2073                                         hists->dso_filter);
2074         else
2075                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2076                                       hists__filter_entry_by_dso);
2077 }
2078
2079 void hists__filter_by_symbol(struct hists *hists)
2080 {
2081         if (symbol_conf.report_hierarchy)
2082                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2083                                         hists->symbol_filter_str);
2084         else
2085                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2086                                       hists__filter_entry_by_symbol);
2087 }
2088
2089 void hists__filter_by_socket(struct hists *hists)
2090 {
2091         if (symbol_conf.report_hierarchy)
2092                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2093                                         &hists->socket_filter);
2094         else
2095                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2096                                       hists__filter_entry_by_socket);
2097 }
2098
2099 void events_stats__inc(struct events_stats *stats, u32 type)
2100 {
2101         ++stats->nr_events[0];
2102         ++stats->nr_events[type];
2103 }
2104
2105 void hists__inc_nr_events(struct hists *hists, u32 type)
2106 {
2107         events_stats__inc(&hists->stats, type);
2108 }
2109
2110 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2111 {
2112         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2113         if (!filtered)
2114                 hists->stats.nr_non_filtered_samples++;
2115 }
2116
2117 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2118                                                  struct hist_entry *pair)
2119 {
2120         struct rb_root *root;
2121         struct rb_node **p;
2122         struct rb_node *parent = NULL;
2123         struct hist_entry *he;
2124         int64_t cmp;
2125
2126         if (hists__has(hists, need_collapse))
2127                 root = &hists->entries_collapsed;
2128         else
2129                 root = hists->entries_in;
2130
2131         p = &root->rb_node;
2132
2133         while (*p != NULL) {
2134                 parent = *p;
2135                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2136
2137                 cmp = hist_entry__collapse(he, pair);
2138
2139                 if (!cmp)
2140                         goto out;
2141
2142                 if (cmp < 0)
2143                         p = &(*p)->rb_left;
2144                 else
2145                         p = &(*p)->rb_right;
2146         }
2147
2148         he = hist_entry__new(pair, true);
2149         if (he) {
2150                 memset(&he->stat, 0, sizeof(he->stat));
2151                 he->hists = hists;
2152                 if (symbol_conf.cumulate_callchain)
2153                         memset(he->stat_acc, 0, sizeof(he->stat));
2154                 rb_link_node(&he->rb_node_in, parent, p);
2155                 rb_insert_color(&he->rb_node_in, root);
2156                 hists__inc_stats(hists, he);
2157                 he->dummy = true;
2158         }
2159 out:
2160         return he;
2161 }
2162
2163 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2164                                                     struct rb_root *root,
2165                                                     struct hist_entry *pair)
2166 {
2167         struct rb_node **p;
2168         struct rb_node *parent = NULL;
2169         struct hist_entry *he;
2170         struct perf_hpp_fmt *fmt;
2171
2172         p = &root->rb_node;
2173         while (*p != NULL) {
2174                 int64_t cmp = 0;
2175
2176                 parent = *p;
2177                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2178
2179                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2180                         cmp = fmt->collapse(fmt, he, pair);
2181                         if (cmp)
2182                                 break;
2183                 }
2184                 if (!cmp)
2185                         goto out;
2186
2187                 if (cmp < 0)
2188                         p = &parent->rb_left;
2189                 else
2190                         p = &parent->rb_right;
2191         }
2192
2193         he = hist_entry__new(pair, true);
2194         if (he) {
2195                 rb_link_node(&he->rb_node_in, parent, p);
2196                 rb_insert_color(&he->rb_node_in, root);
2197
2198                 he->dummy = true;
2199                 he->hists = hists;
2200                 memset(&he->stat, 0, sizeof(he->stat));
2201                 hists__inc_stats(hists, he);
2202         }
2203 out:
2204         return he;
2205 }
2206
2207 static struct hist_entry *hists__find_entry(struct hists *hists,
2208                                             struct hist_entry *he)
2209 {
2210         struct rb_node *n;
2211
2212         if (hists__has(hists, need_collapse))
2213                 n = hists->entries_collapsed.rb_node;
2214         else
2215                 n = hists->entries_in->rb_node;
2216
2217         while (n) {
2218                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2219                 int64_t cmp = hist_entry__collapse(iter, he);
2220
2221                 if (cmp < 0)
2222                         n = n->rb_left;
2223                 else if (cmp > 0)
2224                         n = n->rb_right;
2225                 else
2226                         return iter;
2227         }
2228
2229         return NULL;
2230 }
2231
2232 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2233                                                       struct hist_entry *he)
2234 {
2235         struct rb_node *n = root->rb_node;
2236
2237         while (n) {
2238                 struct hist_entry *iter;
2239                 struct perf_hpp_fmt *fmt;
2240                 int64_t cmp = 0;
2241
2242                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2243                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2244                         cmp = fmt->collapse(fmt, iter, he);
2245                         if (cmp)
2246                                 break;
2247                 }
2248
2249                 if (cmp < 0)
2250                         n = n->rb_left;
2251                 else if (cmp > 0)
2252                         n = n->rb_right;
2253                 else
2254                         return iter;
2255         }
2256
2257         return NULL;
2258 }
2259
2260 static void hists__match_hierarchy(struct rb_root *leader_root,
2261                                    struct rb_root *other_root)
2262 {
2263         struct rb_node *nd;
2264         struct hist_entry *pos, *pair;
2265
2266         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2267                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2268                 pair = hists__find_hierarchy_entry(other_root, pos);
2269
2270                 if (pair) {
2271                         hist_entry__add_pair(pair, pos);
2272                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2273                 }
2274         }
2275 }
2276
2277 /*
2278  * Look for pairs to link to the leader buckets (hist_entries):
2279  */
2280 void hists__match(struct hists *leader, struct hists *other)
2281 {
2282         struct rb_root *root;
2283         struct rb_node *nd;
2284         struct hist_entry *pos, *pair;
2285
2286         if (symbol_conf.report_hierarchy) {
2287                 /* hierarchy report always collapses entries */
2288                 return hists__match_hierarchy(&leader->entries_collapsed,
2289                                               &other->entries_collapsed);
2290         }
2291
2292         if (hists__has(leader, need_collapse))
2293                 root = &leader->entries_collapsed;
2294         else
2295                 root = leader->entries_in;
2296
2297         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2298                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2299                 pair = hists__find_entry(other, pos);
2300
2301                 if (pair)
2302                         hist_entry__add_pair(pair, pos);
2303         }
2304 }
2305
2306 static int hists__link_hierarchy(struct hists *leader_hists,
2307                                  struct hist_entry *parent,
2308                                  struct rb_root *leader_root,
2309                                  struct rb_root *other_root)
2310 {
2311         struct rb_node *nd;
2312         struct hist_entry *pos, *leader;
2313
2314         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2315                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2316
2317                 if (hist_entry__has_pairs(pos)) {
2318                         bool found = false;
2319
2320                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2321                                 if (leader->hists == leader_hists) {
2322                                         found = true;
2323                                         break;
2324                                 }
2325                         }
2326                         if (!found)
2327                                 return -1;
2328                 } else {
2329                         leader = add_dummy_hierarchy_entry(leader_hists,
2330                                                            leader_root, pos);
2331                         if (leader == NULL)
2332                                 return -1;
2333
2334                         /* do not point parent in the pos */
2335                         leader->parent_he = parent;
2336
2337                         hist_entry__add_pair(pos, leader);
2338                 }
2339
2340                 if (!pos->leaf) {
2341                         if (hists__link_hierarchy(leader_hists, leader,
2342                                                   &leader->hroot_in,
2343                                                   &pos->hroot_in) < 0)
2344                                 return -1;
2345                 }
2346         }
2347         return 0;
2348 }
2349
2350 /*
2351  * Look for entries in the other hists that are not present in the leader, if
2352  * we find them, just add a dummy entry on the leader hists, with period=0,
2353  * nr_events=0, to serve as the list header.
2354  */
2355 int hists__link(struct hists *leader, struct hists *other)
2356 {
2357         struct rb_root *root;
2358         struct rb_node *nd;
2359         struct hist_entry *pos, *pair;
2360
2361         if (symbol_conf.report_hierarchy) {
2362                 /* hierarchy report always collapses entries */
2363                 return hists__link_hierarchy(leader, NULL,
2364                                              &leader->entries_collapsed,
2365                                              &other->entries_collapsed);
2366         }
2367
2368         if (hists__has(other, need_collapse))
2369                 root = &other->entries_collapsed;
2370         else
2371                 root = other->entries_in;
2372
2373         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2374                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2375
2376                 if (!hist_entry__has_pairs(pos)) {
2377                         pair = hists__add_dummy_entry(leader, pos);
2378                         if (pair == NULL)
2379                                 return -1;
2380                         hist_entry__add_pair(pos, pair);
2381                 }
2382         }
2383
2384         return 0;
2385 }
2386
2387 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2388                           struct perf_sample *sample, bool nonany_branch_mode)
2389 {
2390         struct branch_info *bi;
2391
2392         /* If we have branch cycles always annotate them. */
2393         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2394                 int i;
2395
2396                 bi = sample__resolve_bstack(sample, al);
2397                 if (bi) {
2398                         struct addr_map_symbol *prev = NULL;
2399
2400                         /*
2401                          * Ignore errors, still want to process the
2402                          * other entries.
2403                          *
2404                          * For non standard branch modes always
2405                          * force no IPC (prev == NULL)
2406                          *
2407                          * Note that perf stores branches reversed from
2408                          * program order!
2409                          */
2410                         for (i = bs->nr - 1; i >= 0; i--) {
2411                                 addr_map_symbol__account_cycles(&bi[i].from,
2412                                         nonany_branch_mode ? NULL : prev,
2413                                         bi[i].flags.cycles);
2414                                 prev = &bi[i].to;
2415                         }
2416                         free(bi);
2417                 }
2418         }
2419 }
2420
2421 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2422 {
2423         struct perf_evsel *pos;
2424         size_t ret = 0;
2425
2426         evlist__for_each_entry(evlist, pos) {
2427                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2428                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2429         }
2430
2431         return ret;
2432 }
2433
2434
2435 u64 hists__total_period(struct hists *hists)
2436 {
2437         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2438                 hists->stats.total_period;
2439 }
2440
2441 int parse_filter_percentage(const struct option *opt __maybe_unused,
2442                             const char *arg, int unset __maybe_unused)
2443 {
2444         if (!strcmp(arg, "relative"))
2445                 symbol_conf.filter_relative = true;
2446         else if (!strcmp(arg, "absolute"))
2447                 symbol_conf.filter_relative = false;
2448         else
2449                 return -1;
2450
2451         return 0;
2452 }
2453
2454 int perf_hist_config(const char *var, const char *value)
2455 {
2456         if (!strcmp(var, "hist.percentage"))
2457                 return parse_filter_percentage(NULL, value, 0);
2458
2459         return 0;
2460 }
2461
2462 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2463 {
2464         memset(hists, 0, sizeof(*hists));
2465         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2466         hists->entries_in = &hists->entries_in_array[0];
2467         hists->entries_collapsed = RB_ROOT;
2468         hists->entries = RB_ROOT;
2469         pthread_mutex_init(&hists->lock, NULL);
2470         hists->socket_filter = -1;
2471         hists->hpp_list = hpp_list;
2472         INIT_LIST_HEAD(&hists->hpp_formats);
2473         return 0;
2474 }
2475
2476 static void hists__delete_remaining_entries(struct rb_root *root)
2477 {
2478         struct rb_node *node;
2479         struct hist_entry *he;
2480
2481         while (!RB_EMPTY_ROOT(root)) {
2482                 node = rb_first(root);
2483                 rb_erase(node, root);
2484
2485                 he = rb_entry(node, struct hist_entry, rb_node_in);
2486                 hist_entry__delete(he);
2487         }
2488 }
2489
2490 static void hists__delete_all_entries(struct hists *hists)
2491 {
2492         hists__delete_entries(hists);
2493         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2494         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2495         hists__delete_remaining_entries(&hists->entries_collapsed);
2496 }
2497
2498 static void hists_evsel__exit(struct perf_evsel *evsel)
2499 {
2500         struct hists *hists = evsel__hists(evsel);
2501         struct perf_hpp_fmt *fmt, *pos;
2502         struct perf_hpp_list_node *node, *tmp;
2503
2504         hists__delete_all_entries(hists);
2505
2506         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2507                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2508                         list_del(&fmt->list);
2509                         free(fmt);
2510                 }
2511                 list_del(&node->list);
2512                 free(node);
2513         }
2514 }
2515
2516 static int hists_evsel__init(struct perf_evsel *evsel)
2517 {
2518         struct hists *hists = evsel__hists(evsel);
2519
2520         __hists__init(hists, &perf_hpp_list);
2521         return 0;
2522 }
2523
2524 /*
2525  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2526  * stored in the rbtree...
2527  */
2528
2529 int hists__init(void)
2530 {
2531         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2532                                             hists_evsel__init,
2533                                             hists_evsel__exit);
2534         if (err)
2535                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2536
2537         return err;
2538 }
2539
2540 void perf_hpp_list__init(struct perf_hpp_list *list)
2541 {
2542         INIT_LIST_HEAD(&list->fields);
2543         INIT_LIST_HEAD(&list->sorts);
2544 }