GNU Linux-libre 4.19.304-gnu1
[releases.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42
43 #include "sane_ctype.h"
44
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57
58 #define PERF_MAGIC      __perf_magic2
59
60 const char perf_version_string[] = PERF_VERSION;
61
62 struct perf_file_attr {
63         struct perf_event_attr  attr;
64         struct perf_file_section        ids;
65 };
66
67 struct feat_fd {
68         struct perf_header      *ph;
69         int                     fd;
70         void                    *buf;   /* Either buf != NULL or fd >= 0 */
71         ssize_t                 offset;
72         size_t                  size;
73         struct perf_evsel       *events;
74 };
75
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78         set_bit(feat, header->adds_features);
79 }
80
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83         clear_bit(feat, header->adds_features);
84 }
85
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88         return test_bit(feat, header->adds_features);
89 }
90
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93         ssize_t ret = writen(ff->fd, buf, size);
94
95         if (ret != (ssize_t)size)
96                 return ret < 0 ? (int)ret : -1;
97         return 0;
98 }
99
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102         /* struct perf_event_header::size is u16 */
103         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104         size_t new_size = ff->size;
105         void *addr;
106
107         if (size + ff->offset > max_size)
108                 return -E2BIG;
109
110         while (size > (new_size - ff->offset))
111                 new_size <<= 1;
112         new_size = min(max_size, new_size);
113
114         if (ff->size < new_size) {
115                 addr = realloc(ff->buf, new_size);
116                 if (!addr)
117                         return -ENOMEM;
118                 ff->buf = addr;
119                 ff->size = new_size;
120         }
121
122         memcpy(ff->buf + ff->offset, buf, size);
123         ff->offset += size;
124
125         return 0;
126 }
127
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131         if (!ff->buf)
132                 return __do_write_fd(ff, buf, size);
133         return __do_write_buf(ff, buf, size);
134 }
135
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139         u64 *p = (u64 *) set;
140         int i, ret;
141
142         ret = do_write(ff, &size, sizeof(size));
143         if (ret < 0)
144                 return ret;
145
146         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147                 ret = do_write(ff, p + i, sizeof(*p));
148                 if (ret < 0)
149                         return ret;
150         }
151
152         return 0;
153 }
154
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157                  size_t count, size_t count_aligned)
158 {
159         static const char zero_buf[NAME_ALIGN];
160         int err = do_write(ff, bf, count);
161
162         if (!err)
163                 err = do_write(ff, zero_buf, count_aligned - count);
164
165         return err;
166 }
167
168 #define string_size(str)                                                \
169         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174         u32 len, olen;
175         int ret;
176
177         olen = strlen(str) + 1;
178         len = PERF_ALIGN(olen, NAME_ALIGN);
179
180         /* write len, incl. \0 */
181         ret = do_write(ff, &len, sizeof(len));
182         if (ret < 0)
183                 return ret;
184
185         return write_padded(ff, str, olen, len);
186 }
187
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190         ssize_t ret = readn(ff->fd, addr, size);
191
192         if (ret != size)
193                 return ret < 0 ? (int)ret : -1;
194         return 0;
195 }
196
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199         if (size > (ssize_t)ff->size - ff->offset)
200                 return -1;
201
202         memcpy(addr, ff->buf + ff->offset, size);
203         ff->offset += size;
204
205         return 0;
206
207 }
208
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211         if (!ff->buf)
212                 return __do_read_fd(ff, addr, size);
213         return __do_read_buf(ff, addr, size);
214 }
215
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218         int ret;
219
220         ret = __do_read(ff, addr, sizeof(*addr));
221         if (ret)
222                 return ret;
223
224         if (ff->ph->needs_swap)
225                 *addr = bswap_32(*addr);
226         return 0;
227 }
228
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231         int ret;
232
233         ret = __do_read(ff, addr, sizeof(*addr));
234         if (ret)
235                 return ret;
236
237         if (ff->ph->needs_swap)
238                 *addr = bswap_64(*addr);
239         return 0;
240 }
241
242 static char *do_read_string(struct feat_fd *ff)
243 {
244         u32 len;
245         char *buf;
246
247         if (do_read_u32(ff, &len))
248                 return NULL;
249
250         buf = malloc(len);
251         if (!buf)
252                 return NULL;
253
254         if (!__do_read(ff, buf, len)) {
255                 /*
256                  * strings are padded by zeroes
257                  * thus the actual strlen of buf
258                  * may be less than len
259                  */
260                 return buf;
261         }
262
263         free(buf);
264         return NULL;
265 }
266
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270         unsigned long *set;
271         u64 size, *p;
272         int i, ret;
273
274         ret = do_read_u64(ff, &size);
275         if (ret)
276                 return ret;
277
278         set = bitmap_alloc(size);
279         if (!set)
280                 return -ENOMEM;
281
282         p = (u64 *) set;
283
284         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285                 ret = do_read_u64(ff, p + i);
286                 if (ret < 0) {
287                         free(set);
288                         return ret;
289                 }
290         }
291
292         *pset  = set;
293         *psize = size;
294         return 0;
295 }
296
297 static int write_tracing_data(struct feat_fd *ff,
298                               struct perf_evlist *evlist)
299 {
300         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301                 return -1;
302
303         return read_tracing_data(ff->fd, &evlist->entries);
304 }
305
306 static int write_build_id(struct feat_fd *ff,
307                           struct perf_evlist *evlist __maybe_unused)
308 {
309         struct perf_session *session;
310         int err;
311
312         session = container_of(ff->ph, struct perf_session, header);
313
314         if (!perf_session__read_build_ids(session, true))
315                 return -1;
316
317         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318                 return -1;
319
320         err = perf_session__write_buildid_table(session, ff);
321         if (err < 0) {
322                 pr_debug("failed to write buildid table\n");
323                 return err;
324         }
325         perf_session__cache_build_ids(session);
326
327         return 0;
328 }
329
330 static int write_hostname(struct feat_fd *ff,
331                           struct perf_evlist *evlist __maybe_unused)
332 {
333         struct utsname uts;
334         int ret;
335
336         ret = uname(&uts);
337         if (ret < 0)
338                 return -1;
339
340         return do_write_string(ff, uts.nodename);
341 }
342
343 static int write_osrelease(struct feat_fd *ff,
344                            struct perf_evlist *evlist __maybe_unused)
345 {
346         struct utsname uts;
347         int ret;
348
349         ret = uname(&uts);
350         if (ret < 0)
351                 return -1;
352
353         return do_write_string(ff, uts.release);
354 }
355
356 static int write_arch(struct feat_fd *ff,
357                       struct perf_evlist *evlist __maybe_unused)
358 {
359         struct utsname uts;
360         int ret;
361
362         ret = uname(&uts);
363         if (ret < 0)
364                 return -1;
365
366         return do_write_string(ff, uts.machine);
367 }
368
369 static int write_version(struct feat_fd *ff,
370                          struct perf_evlist *evlist __maybe_unused)
371 {
372         return do_write_string(ff, perf_version_string);
373 }
374
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377         FILE *file;
378         char *buf = NULL;
379         char *s, *p;
380         const char *search = cpuinfo_proc;
381         size_t len = 0;
382         int ret = -1;
383
384         if (!search)
385                 return -1;
386
387         file = fopen("/proc/cpuinfo", "r");
388         if (!file)
389                 return -1;
390
391         while (getline(&buf, &len, file) > 0) {
392                 ret = strncmp(buf, search, strlen(search));
393                 if (!ret)
394                         break;
395         }
396
397         if (ret) {
398                 ret = -1;
399                 goto done;
400         }
401
402         s = buf;
403
404         p = strchr(buf, ':');
405         if (p && *(p+1) == ' ' && *(p+2))
406                 s = p + 2;
407         p = strchr(s, '\n');
408         if (p)
409                 *p = '\0';
410
411         /* squash extra space characters (branding string) */
412         p = s;
413         while (*p) {
414                 if (isspace(*p)) {
415                         char *r = p + 1;
416                         char *q = r;
417                         *p = ' ';
418                         while (*q && isspace(*q))
419                                 q++;
420                         if (q != (p+1))
421                                 while ((*r++ = *q++));
422                 }
423                 p++;
424         }
425         ret = do_write_string(ff, s);
426 done:
427         free(buf);
428         fclose(file);
429         return ret;
430 }
431
432 static int write_cpudesc(struct feat_fd *ff,
433                        struct perf_evlist *evlist __maybe_unused)
434 {
435         const char *cpuinfo_procs[] = CPUINFO_PROC;
436         unsigned int i;
437
438         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
439                 int ret;
440                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
441                 if (ret >= 0)
442                         return ret;
443         }
444         return -1;
445 }
446
447
448 static int write_nrcpus(struct feat_fd *ff,
449                         struct perf_evlist *evlist __maybe_unused)
450 {
451         long nr;
452         u32 nrc, nra;
453         int ret;
454
455         nrc = cpu__max_present_cpu();
456
457         nr = sysconf(_SC_NPROCESSORS_ONLN);
458         if (nr < 0)
459                 return -1;
460
461         nra = (u32)(nr & UINT_MAX);
462
463         ret = do_write(ff, &nrc, sizeof(nrc));
464         if (ret < 0)
465                 return ret;
466
467         return do_write(ff, &nra, sizeof(nra));
468 }
469
470 static int write_event_desc(struct feat_fd *ff,
471                             struct perf_evlist *evlist)
472 {
473         struct perf_evsel *evsel;
474         u32 nre, nri, sz;
475         int ret;
476
477         nre = evlist->nr_entries;
478
479         /*
480          * write number of events
481          */
482         ret = do_write(ff, &nre, sizeof(nre));
483         if (ret < 0)
484                 return ret;
485
486         /*
487          * size of perf_event_attr struct
488          */
489         sz = (u32)sizeof(evsel->attr);
490         ret = do_write(ff, &sz, sizeof(sz));
491         if (ret < 0)
492                 return ret;
493
494         evlist__for_each_entry(evlist, evsel) {
495                 ret = do_write(ff, &evsel->attr, sz);
496                 if (ret < 0)
497                         return ret;
498                 /*
499                  * write number of unique id per event
500                  * there is one id per instance of an event
501                  *
502                  * copy into an nri to be independent of the
503                  * type of ids,
504                  */
505                 nri = evsel->ids;
506                 ret = do_write(ff, &nri, sizeof(nri));
507                 if (ret < 0)
508                         return ret;
509
510                 /*
511                  * write event string as passed on cmdline
512                  */
513                 ret = do_write_string(ff, perf_evsel__name(evsel));
514                 if (ret < 0)
515                         return ret;
516                 /*
517                  * write unique ids for this event
518                  */
519                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
520                 if (ret < 0)
521                         return ret;
522         }
523         return 0;
524 }
525
526 static int write_cmdline(struct feat_fd *ff,
527                          struct perf_evlist *evlist __maybe_unused)
528 {
529         char buf[MAXPATHLEN];
530         u32 n;
531         int i, ret;
532
533         /* actual path to perf binary */
534         ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
535         if (ret <= 0)
536                 return -1;
537
538         /* readlink() does not add null termination */
539         buf[ret] = '\0';
540
541         /* account for binary path */
542         n = perf_env.nr_cmdline + 1;
543
544         ret = do_write(ff, &n, sizeof(n));
545         if (ret < 0)
546                 return ret;
547
548         ret = do_write_string(ff, buf);
549         if (ret < 0)
550                 return ret;
551
552         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
553                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
554                 if (ret < 0)
555                         return ret;
556         }
557         return 0;
558 }
559
560 #define CORE_SIB_FMT \
561         "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
562 #define THRD_SIB_FMT \
563         "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
564
565 struct cpu_topo {
566         u32 cpu_nr;
567         u32 core_sib;
568         u32 thread_sib;
569         char **core_siblings;
570         char **thread_siblings;
571 };
572
573 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
574 {
575         FILE *fp;
576         char filename[MAXPATHLEN];
577         char *buf = NULL, *p;
578         size_t len = 0;
579         ssize_t sret;
580         u32 i = 0;
581         int ret = -1;
582
583         sprintf(filename, CORE_SIB_FMT, cpu);
584         fp = fopen(filename, "r");
585         if (!fp)
586                 goto try_threads;
587
588         sret = getline(&buf, &len, fp);
589         fclose(fp);
590         if (sret <= 0)
591                 goto try_threads;
592
593         p = strchr(buf, '\n');
594         if (p)
595                 *p = '\0';
596
597         for (i = 0; i < tp->core_sib; i++) {
598                 if (!strcmp(buf, tp->core_siblings[i]))
599                         break;
600         }
601         if (i == tp->core_sib) {
602                 tp->core_siblings[i] = buf;
603                 tp->core_sib++;
604                 buf = NULL;
605                 len = 0;
606         }
607         ret = 0;
608
609 try_threads:
610         sprintf(filename, THRD_SIB_FMT, cpu);
611         fp = fopen(filename, "r");
612         if (!fp)
613                 goto done;
614
615         if (getline(&buf, &len, fp) <= 0)
616                 goto done;
617
618         p = strchr(buf, '\n');
619         if (p)
620                 *p = '\0';
621
622         for (i = 0; i < tp->thread_sib; i++) {
623                 if (!strcmp(buf, tp->thread_siblings[i]))
624                         break;
625         }
626         if (i == tp->thread_sib) {
627                 tp->thread_siblings[i] = buf;
628                 tp->thread_sib++;
629                 buf = NULL;
630         }
631         ret = 0;
632 done:
633         if(fp)
634                 fclose(fp);
635         free(buf);
636         return ret;
637 }
638
639 static void free_cpu_topo(struct cpu_topo *tp)
640 {
641         u32 i;
642
643         if (!tp)
644                 return;
645
646         for (i = 0 ; i < tp->core_sib; i++)
647                 zfree(&tp->core_siblings[i]);
648
649         for (i = 0 ; i < tp->thread_sib; i++)
650                 zfree(&tp->thread_siblings[i]);
651
652         free(tp);
653 }
654
655 static struct cpu_topo *build_cpu_topology(void)
656 {
657         struct cpu_topo *tp = NULL;
658         void *addr;
659         u32 nr, i;
660         size_t sz;
661         long ncpus;
662         int ret = -1;
663         struct cpu_map *map;
664
665         ncpus = cpu__max_present_cpu();
666
667         /* build online CPU map */
668         map = cpu_map__new(NULL);
669         if (map == NULL) {
670                 pr_debug("failed to get system cpumap\n");
671                 return NULL;
672         }
673
674         nr = (u32)(ncpus & UINT_MAX);
675
676         sz = nr * sizeof(char *);
677         addr = calloc(1, sizeof(*tp) + 2 * sz);
678         if (!addr)
679                 goto out_free;
680
681         tp = addr;
682         tp->cpu_nr = nr;
683         addr += sizeof(*tp);
684         tp->core_siblings = addr;
685         addr += sz;
686         tp->thread_siblings = addr;
687
688         for (i = 0; i < nr; i++) {
689                 if (!cpu_map__has(map, i))
690                         continue;
691
692                 ret = build_cpu_topo(tp, i);
693                 if (ret < 0)
694                         break;
695         }
696
697 out_free:
698         cpu_map__put(map);
699         if (ret) {
700                 free_cpu_topo(tp);
701                 tp = NULL;
702         }
703         return tp;
704 }
705
706 static int write_cpu_topology(struct feat_fd *ff,
707                               struct perf_evlist *evlist __maybe_unused)
708 {
709         struct cpu_topo *tp;
710         u32 i;
711         int ret, j;
712
713         tp = build_cpu_topology();
714         if (!tp)
715                 return -1;
716
717         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
718         if (ret < 0)
719                 goto done;
720
721         for (i = 0; i < tp->core_sib; i++) {
722                 ret = do_write_string(ff, tp->core_siblings[i]);
723                 if (ret < 0)
724                         goto done;
725         }
726         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
727         if (ret < 0)
728                 goto done;
729
730         for (i = 0; i < tp->thread_sib; i++) {
731                 ret = do_write_string(ff, tp->thread_siblings[i]);
732                 if (ret < 0)
733                         break;
734         }
735
736         ret = perf_env__read_cpu_topology_map(&perf_env);
737         if (ret < 0)
738                 goto done;
739
740         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
741                 ret = do_write(ff, &perf_env.cpu[j].core_id,
742                                sizeof(perf_env.cpu[j].core_id));
743                 if (ret < 0)
744                         return ret;
745                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
746                                sizeof(perf_env.cpu[j].socket_id));
747                 if (ret < 0)
748                         return ret;
749         }
750 done:
751         free_cpu_topo(tp);
752         return ret;
753 }
754
755
756
757 static int write_total_mem(struct feat_fd *ff,
758                            struct perf_evlist *evlist __maybe_unused)
759 {
760         char *buf = NULL;
761         FILE *fp;
762         size_t len = 0;
763         int ret = -1, n;
764         uint64_t mem;
765
766         fp = fopen("/proc/meminfo", "r");
767         if (!fp)
768                 return -1;
769
770         while (getline(&buf, &len, fp) > 0) {
771                 ret = strncmp(buf, "MemTotal:", 9);
772                 if (!ret)
773                         break;
774         }
775         if (!ret) {
776                 n = sscanf(buf, "%*s %"PRIu64, &mem);
777                 if (n == 1)
778                         ret = do_write(ff, &mem, sizeof(mem));
779         } else
780                 ret = -1;
781         free(buf);
782         fclose(fp);
783         return ret;
784 }
785
786 static int write_topo_node(struct feat_fd *ff, int node)
787 {
788         char str[MAXPATHLEN];
789         char field[32];
790         char *buf = NULL, *p;
791         size_t len = 0;
792         FILE *fp;
793         u64 mem_total, mem_free, mem;
794         int ret = -1;
795
796         sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
797         fp = fopen(str, "r");
798         if (!fp)
799                 return -1;
800
801         while (getline(&buf, &len, fp) > 0) {
802                 /* skip over invalid lines */
803                 if (!strchr(buf, ':'))
804                         continue;
805                 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
806                         goto done;
807                 if (!strcmp(field, "MemTotal:"))
808                         mem_total = mem;
809                 if (!strcmp(field, "MemFree:"))
810                         mem_free = mem;
811         }
812
813         fclose(fp);
814         fp = NULL;
815
816         ret = do_write(ff, &mem_total, sizeof(u64));
817         if (ret)
818                 goto done;
819
820         ret = do_write(ff, &mem_free, sizeof(u64));
821         if (ret)
822                 goto done;
823
824         ret = -1;
825         sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
826
827         fp = fopen(str, "r");
828         if (!fp)
829                 goto done;
830
831         if (getline(&buf, &len, fp) <= 0)
832                 goto done;
833
834         p = strchr(buf, '\n');
835         if (p)
836                 *p = '\0';
837
838         ret = do_write_string(ff, buf);
839 done:
840         free(buf);
841         if (fp)
842                 fclose(fp);
843         return ret;
844 }
845
846 static int write_numa_topology(struct feat_fd *ff,
847                                struct perf_evlist *evlist __maybe_unused)
848 {
849         char *buf = NULL;
850         size_t len = 0;
851         FILE *fp;
852         struct cpu_map *node_map = NULL;
853         char *c;
854         u32 nr, i, j;
855         int ret = -1;
856
857         fp = fopen("/sys/devices/system/node/online", "r");
858         if (!fp)
859                 return -1;
860
861         if (getline(&buf, &len, fp) <= 0)
862                 goto done;
863
864         c = strchr(buf, '\n');
865         if (c)
866                 *c = '\0';
867
868         node_map = cpu_map__new(buf);
869         if (!node_map)
870                 goto done;
871
872         nr = (u32)node_map->nr;
873
874         ret = do_write(ff, &nr, sizeof(nr));
875         if (ret < 0)
876                 goto done;
877
878         for (i = 0; i < nr; i++) {
879                 j = (u32)node_map->map[i];
880                 ret = do_write(ff, &j, sizeof(j));
881                 if (ret < 0)
882                         break;
883
884                 ret = write_topo_node(ff, i);
885                 if (ret < 0)
886                         break;
887         }
888 done:
889         free(buf);
890         fclose(fp);
891         cpu_map__put(node_map);
892         return ret;
893 }
894
895 /*
896  * File format:
897  *
898  * struct pmu_mappings {
899  *      u32     pmu_num;
900  *      struct pmu_map {
901  *              u32     type;
902  *              char    name[];
903  *      }[pmu_num];
904  * };
905  */
906
907 static int write_pmu_mappings(struct feat_fd *ff,
908                               struct perf_evlist *evlist __maybe_unused)
909 {
910         struct perf_pmu *pmu = NULL;
911         u32 pmu_num = 0;
912         int ret;
913
914         /*
915          * Do a first pass to count number of pmu to avoid lseek so this
916          * works in pipe mode as well.
917          */
918         while ((pmu = perf_pmu__scan(pmu))) {
919                 if (!pmu->name)
920                         continue;
921                 pmu_num++;
922         }
923
924         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
925         if (ret < 0)
926                 return ret;
927
928         while ((pmu = perf_pmu__scan(pmu))) {
929                 if (!pmu->name)
930                         continue;
931
932                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
933                 if (ret < 0)
934                         return ret;
935
936                 ret = do_write_string(ff, pmu->name);
937                 if (ret < 0)
938                         return ret;
939         }
940
941         return 0;
942 }
943
944 /*
945  * File format:
946  *
947  * struct group_descs {
948  *      u32     nr_groups;
949  *      struct group_desc {
950  *              char    name[];
951  *              u32     leader_idx;
952  *              u32     nr_members;
953  *      }[nr_groups];
954  * };
955  */
956 static int write_group_desc(struct feat_fd *ff,
957                             struct perf_evlist *evlist)
958 {
959         u32 nr_groups = evlist->nr_groups;
960         struct perf_evsel *evsel;
961         int ret;
962
963         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
964         if (ret < 0)
965                 return ret;
966
967         evlist__for_each_entry(evlist, evsel) {
968                 if (perf_evsel__is_group_leader(evsel) &&
969                     evsel->nr_members > 1) {
970                         const char *name = evsel->group_name ?: "{anon_group}";
971                         u32 leader_idx = evsel->idx;
972                         u32 nr_members = evsel->nr_members;
973
974                         ret = do_write_string(ff, name);
975                         if (ret < 0)
976                                 return ret;
977
978                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
979                         if (ret < 0)
980                                 return ret;
981
982                         ret = do_write(ff, &nr_members, sizeof(nr_members));
983                         if (ret < 0)
984                                 return ret;
985                 }
986         }
987         return 0;
988 }
989
990 /*
991  * default get_cpuid(): nothing gets recorded
992  * actual implementation must be in arch/$(SRCARCH)/util/header.c
993  */
994 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
995 {
996         return -1;
997 }
998
999 static int write_cpuid(struct feat_fd *ff,
1000                        struct perf_evlist *evlist __maybe_unused)
1001 {
1002         char buffer[64];
1003         int ret;
1004
1005         ret = get_cpuid(buffer, sizeof(buffer));
1006         if (!ret)
1007                 goto write_it;
1008
1009         return -1;
1010 write_it:
1011         return do_write_string(ff, buffer);
1012 }
1013
1014 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1015                               struct perf_evlist *evlist __maybe_unused)
1016 {
1017         return 0;
1018 }
1019
1020 static int write_auxtrace(struct feat_fd *ff,
1021                           struct perf_evlist *evlist __maybe_unused)
1022 {
1023         struct perf_session *session;
1024         int err;
1025
1026         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1027                 return -1;
1028
1029         session = container_of(ff->ph, struct perf_session, header);
1030
1031         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1032         if (err < 0)
1033                 pr_err("Failed to write auxtrace index\n");
1034         return err;
1035 }
1036
1037 static int cpu_cache_level__sort(const void *a, const void *b)
1038 {
1039         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1040         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1041
1042         return cache_a->level - cache_b->level;
1043 }
1044
1045 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1046 {
1047         if (a->level != b->level)
1048                 return false;
1049
1050         if (a->line_size != b->line_size)
1051                 return false;
1052
1053         if (a->sets != b->sets)
1054                 return false;
1055
1056         if (a->ways != b->ways)
1057                 return false;
1058
1059         if (strcmp(a->type, b->type))
1060                 return false;
1061
1062         if (strcmp(a->size, b->size))
1063                 return false;
1064
1065         if (strcmp(a->map, b->map))
1066                 return false;
1067
1068         return true;
1069 }
1070
1071 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1072 {
1073         char path[PATH_MAX], file[PATH_MAX];
1074         struct stat st;
1075         size_t len;
1076
1077         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1078         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1079
1080         if (stat(file, &st))
1081                 return 1;
1082
1083         scnprintf(file, PATH_MAX, "%s/level", path);
1084         if (sysfs__read_int(file, (int *) &cache->level))
1085                 return -1;
1086
1087         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1088         if (sysfs__read_int(file, (int *) &cache->line_size))
1089                 return -1;
1090
1091         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1092         if (sysfs__read_int(file, (int *) &cache->sets))
1093                 return -1;
1094
1095         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1096         if (sysfs__read_int(file, (int *) &cache->ways))
1097                 return -1;
1098
1099         scnprintf(file, PATH_MAX, "%s/type", path);
1100         if (sysfs__read_str(file, &cache->type, &len))
1101                 return -1;
1102
1103         cache->type[len] = 0;
1104         cache->type = rtrim(cache->type);
1105
1106         scnprintf(file, PATH_MAX, "%s/size", path);
1107         if (sysfs__read_str(file, &cache->size, &len)) {
1108                 free(cache->type);
1109                 return -1;
1110         }
1111
1112         cache->size[len] = 0;
1113         cache->size = rtrim(cache->size);
1114
1115         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1116         if (sysfs__read_str(file, &cache->map, &len)) {
1117                 free(cache->size);
1118                 free(cache->type);
1119                 return -1;
1120         }
1121
1122         cache->map[len] = 0;
1123         cache->map = rtrim(cache->map);
1124         return 0;
1125 }
1126
1127 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1128 {
1129         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1130 }
1131
1132 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1133 {
1134         u32 i, cnt = 0;
1135         long ncpus;
1136         u32 nr, cpu;
1137         u16 level;
1138
1139         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1140         if (ncpus < 0)
1141                 return -1;
1142
1143         nr = (u32)(ncpus & UINT_MAX);
1144
1145         for (cpu = 0; cpu < nr; cpu++) {
1146                 for (level = 0; level < 10; level++) {
1147                         struct cpu_cache_level c;
1148                         int err;
1149
1150                         err = cpu_cache_level__read(&c, cpu, level);
1151                         if (err < 0)
1152                                 return err;
1153
1154                         if (err == 1)
1155                                 break;
1156
1157                         for (i = 0; i < cnt; i++) {
1158                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1159                                         break;
1160                         }
1161
1162                         if (i == cnt)
1163                                 caches[cnt++] = c;
1164                         else
1165                                 cpu_cache_level__free(&c);
1166
1167                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1168                                 goto out;
1169                 }
1170         }
1171  out:
1172         *cntp = cnt;
1173         return 0;
1174 }
1175
1176 #define MAX_CACHES (MAX_NR_CPUS * 4)
1177
1178 static int write_cache(struct feat_fd *ff,
1179                        struct perf_evlist *evlist __maybe_unused)
1180 {
1181         struct cpu_cache_level caches[MAX_CACHES];
1182         u32 cnt = 0, i, version = 1;
1183         int ret;
1184
1185         ret = build_caches(caches, MAX_CACHES, &cnt);
1186         if (ret)
1187                 goto out;
1188
1189         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1190
1191         ret = do_write(ff, &version, sizeof(u32));
1192         if (ret < 0)
1193                 goto out;
1194
1195         ret = do_write(ff, &cnt, sizeof(u32));
1196         if (ret < 0)
1197                 goto out;
1198
1199         for (i = 0; i < cnt; i++) {
1200                 struct cpu_cache_level *c = &caches[i];
1201
1202                 #define _W(v)                                   \
1203                         ret = do_write(ff, &c->v, sizeof(u32)); \
1204                         if (ret < 0)                            \
1205                                 goto out;
1206
1207                 _W(level)
1208                 _W(line_size)
1209                 _W(sets)
1210                 _W(ways)
1211                 #undef _W
1212
1213                 #define _W(v)                                           \
1214                         ret = do_write_string(ff, (const char *) c->v); \
1215                         if (ret < 0)                                    \
1216                                 goto out;
1217
1218                 _W(type)
1219                 _W(size)
1220                 _W(map)
1221                 #undef _W
1222         }
1223
1224 out:
1225         for (i = 0; i < cnt; i++)
1226                 cpu_cache_level__free(&caches[i]);
1227         return ret;
1228 }
1229
1230 static int write_stat(struct feat_fd *ff __maybe_unused,
1231                       struct perf_evlist *evlist __maybe_unused)
1232 {
1233         return 0;
1234 }
1235
1236 static int write_sample_time(struct feat_fd *ff,
1237                              struct perf_evlist *evlist)
1238 {
1239         int ret;
1240
1241         ret = do_write(ff, &evlist->first_sample_time,
1242                        sizeof(evlist->first_sample_time));
1243         if (ret < 0)
1244                 return ret;
1245
1246         return do_write(ff, &evlist->last_sample_time,
1247                         sizeof(evlist->last_sample_time));
1248 }
1249
1250
1251 static int memory_node__read(struct memory_node *n, unsigned long idx)
1252 {
1253         unsigned int phys, size = 0;
1254         char path[PATH_MAX];
1255         struct dirent *ent;
1256         DIR *dir;
1257
1258 #define for_each_memory(mem, dir)                                       \
1259         while ((ent = readdir(dir)))                                    \
1260                 if (strcmp(ent->d_name, ".") &&                         \
1261                     strcmp(ent->d_name, "..") &&                        \
1262                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1263
1264         scnprintf(path, PATH_MAX,
1265                   "%s/devices/system/node/node%lu",
1266                   sysfs__mountpoint(), idx);
1267
1268         dir = opendir(path);
1269         if (!dir) {
1270                 pr_warning("failed: cant' open memory sysfs data\n");
1271                 return -1;
1272         }
1273
1274         for_each_memory(phys, dir) {
1275                 size = max(phys, size);
1276         }
1277
1278         size++;
1279
1280         n->set = bitmap_alloc(size);
1281         if (!n->set) {
1282                 closedir(dir);
1283                 return -ENOMEM;
1284         }
1285
1286         n->node = idx;
1287         n->size = size;
1288
1289         rewinddir(dir);
1290
1291         for_each_memory(phys, dir) {
1292                 set_bit(phys, n->set);
1293         }
1294
1295         closedir(dir);
1296         return 0;
1297 }
1298
1299 static int memory_node__sort(const void *a, const void *b)
1300 {
1301         const struct memory_node *na = a;
1302         const struct memory_node *nb = b;
1303
1304         return na->node - nb->node;
1305 }
1306
1307 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1308 {
1309         char path[PATH_MAX];
1310         struct dirent *ent;
1311         DIR *dir;
1312         u64 cnt = 0;
1313         int ret = 0;
1314
1315         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1316                   sysfs__mountpoint());
1317
1318         dir = opendir(path);
1319         if (!dir) {
1320                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1321                           __func__, path);
1322                 return -1;
1323         }
1324
1325         while (!ret && (ent = readdir(dir))) {
1326                 unsigned int idx;
1327                 int r;
1328
1329                 if (!strcmp(ent->d_name, ".") ||
1330                     !strcmp(ent->d_name, ".."))
1331                         continue;
1332
1333                 r = sscanf(ent->d_name, "node%u", &idx);
1334                 if (r != 1)
1335                         continue;
1336
1337                 if (WARN_ONCE(cnt >= size,
1338                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1339                         return -1;
1340
1341                 ret = memory_node__read(&nodes[cnt++], idx);
1342         }
1343
1344         *cntp = cnt;
1345         closedir(dir);
1346
1347         if (!ret)
1348                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1349
1350         return ret;
1351 }
1352
1353 #define MAX_MEMORY_NODES 2000
1354
1355 /*
1356  * The MEM_TOPOLOGY holds physical memory map for every
1357  * node in system. The format of data is as follows:
1358  *
1359  *  0 - version          | for future changes
1360  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1361  * 16 - count            | number of nodes
1362  *
1363  * For each node we store map of physical indexes for
1364  * each node:
1365  *
1366  * 32 - node id          | node index
1367  * 40 - size             | size of bitmap
1368  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1369  */
1370 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1371                               struct perf_evlist *evlist __maybe_unused)
1372 {
1373         static struct memory_node nodes[MAX_MEMORY_NODES];
1374         u64 bsize, version = 1, i, nr;
1375         int ret;
1376
1377         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1378                               (unsigned long long *) &bsize);
1379         if (ret)
1380                 return ret;
1381
1382         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1383         if (ret)
1384                 return ret;
1385
1386         ret = do_write(ff, &version, sizeof(version));
1387         if (ret < 0)
1388                 goto out;
1389
1390         ret = do_write(ff, &bsize, sizeof(bsize));
1391         if (ret < 0)
1392                 goto out;
1393
1394         ret = do_write(ff, &nr, sizeof(nr));
1395         if (ret < 0)
1396                 goto out;
1397
1398         for (i = 0; i < nr; i++) {
1399                 struct memory_node *n = &nodes[i];
1400
1401                 #define _W(v)                                           \
1402                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1403                         if (ret < 0)                                    \
1404                                 goto out;
1405
1406                 _W(node)
1407                 _W(size)
1408
1409                 #undef _W
1410
1411                 ret = do_write_bitmap(ff, n->set, n->size);
1412                 if (ret < 0)
1413                         goto out;
1414         }
1415
1416 out:
1417         return ret;
1418 }
1419
1420 static void print_hostname(struct feat_fd *ff, FILE *fp)
1421 {
1422         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1423 }
1424
1425 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1426 {
1427         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1428 }
1429
1430 static void print_arch(struct feat_fd *ff, FILE *fp)
1431 {
1432         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1433 }
1434
1435 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1436 {
1437         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1438 }
1439
1440 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1441 {
1442         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1443         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1444 }
1445
1446 static void print_version(struct feat_fd *ff, FILE *fp)
1447 {
1448         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1449 }
1450
1451 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1452 {
1453         int nr, i;
1454
1455         nr = ff->ph->env.nr_cmdline;
1456
1457         fprintf(fp, "# cmdline : ");
1458
1459         for (i = 0; i < nr; i++) {
1460                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1461                 if (!argv_i) {
1462                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1463                 } else {
1464                         char *mem = argv_i;
1465                         do {
1466                                 char *quote = strchr(argv_i, '\'');
1467                                 if (!quote)
1468                                         break;
1469                                 *quote++ = '\0';
1470                                 fprintf(fp, "%s\\\'", argv_i);
1471                                 argv_i = quote;
1472                         } while (1);
1473                         fprintf(fp, "%s ", argv_i);
1474                         free(mem);
1475                 }
1476         }
1477         fputc('\n', fp);
1478 }
1479
1480 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1481 {
1482         struct perf_header *ph = ff->ph;
1483         int cpu_nr = ph->env.nr_cpus_avail;
1484         int nr, i;
1485         char *str;
1486
1487         nr = ph->env.nr_sibling_cores;
1488         str = ph->env.sibling_cores;
1489
1490         for (i = 0; i < nr; i++) {
1491                 fprintf(fp, "# sibling cores   : %s\n", str);
1492                 str += strlen(str) + 1;
1493         }
1494
1495         nr = ph->env.nr_sibling_threads;
1496         str = ph->env.sibling_threads;
1497
1498         for (i = 0; i < nr; i++) {
1499                 fprintf(fp, "# sibling threads : %s\n", str);
1500                 str += strlen(str) + 1;
1501         }
1502
1503         if (ph->env.cpu != NULL) {
1504                 for (i = 0; i < cpu_nr; i++)
1505                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1506                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1507         } else
1508                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1509 }
1510
1511 static void free_event_desc(struct perf_evsel *events)
1512 {
1513         struct perf_evsel *evsel;
1514
1515         if (!events)
1516                 return;
1517
1518         for (evsel = events; evsel->attr.size; evsel++) {
1519                 zfree(&evsel->name);
1520                 zfree(&evsel->id);
1521         }
1522
1523         free(events);
1524 }
1525
1526 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1527 {
1528         struct perf_evsel *evsel, *events = NULL;
1529         u64 *id;
1530         void *buf = NULL;
1531         u32 nre, sz, nr, i, j;
1532         size_t msz;
1533
1534         /* number of events */
1535         if (do_read_u32(ff, &nre))
1536                 goto error;
1537
1538         if (do_read_u32(ff, &sz))
1539                 goto error;
1540
1541         /* buffer to hold on file attr struct */
1542         buf = malloc(sz);
1543         if (!buf)
1544                 goto error;
1545
1546         /* the last event terminates with evsel->attr.size == 0: */
1547         events = calloc(nre + 1, sizeof(*events));
1548         if (!events)
1549                 goto error;
1550
1551         msz = sizeof(evsel->attr);
1552         if (sz < msz)
1553                 msz = sz;
1554
1555         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1556                 evsel->idx = i;
1557
1558                 /*
1559                  * must read entire on-file attr struct to
1560                  * sync up with layout.
1561                  */
1562                 if (__do_read(ff, buf, sz))
1563                         goto error;
1564
1565                 if (ff->ph->needs_swap)
1566                         perf_event__attr_swap(buf);
1567
1568                 memcpy(&evsel->attr, buf, msz);
1569
1570                 if (do_read_u32(ff, &nr))
1571                         goto error;
1572
1573                 if (ff->ph->needs_swap)
1574                         evsel->needs_swap = true;
1575
1576                 evsel->name = do_read_string(ff);
1577                 if (!evsel->name)
1578                         goto error;
1579
1580                 if (!nr)
1581                         continue;
1582
1583                 id = calloc(nr, sizeof(*id));
1584                 if (!id)
1585                         goto error;
1586                 evsel->ids = nr;
1587                 evsel->id = id;
1588
1589                 for (j = 0 ; j < nr; j++) {
1590                         if (do_read_u64(ff, id))
1591                                 goto error;
1592                         id++;
1593                 }
1594         }
1595 out:
1596         free(buf);
1597         return events;
1598 error:
1599         free_event_desc(events);
1600         events = NULL;
1601         goto out;
1602 }
1603
1604 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1605                                 void *priv __maybe_unused)
1606 {
1607         return fprintf(fp, ", %s = %s", name, val);
1608 }
1609
1610 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1611 {
1612         struct perf_evsel *evsel, *events;
1613         u32 j;
1614         u64 *id;
1615
1616         if (ff->events)
1617                 events = ff->events;
1618         else
1619                 events = read_event_desc(ff);
1620
1621         if (!events) {
1622                 fprintf(fp, "# event desc: not available or unable to read\n");
1623                 return;
1624         }
1625
1626         for (evsel = events; evsel->attr.size; evsel++) {
1627                 fprintf(fp, "# event : name = %s, ", evsel->name);
1628
1629                 if (evsel->ids) {
1630                         fprintf(fp, ", id = {");
1631                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1632                                 if (j)
1633                                         fputc(',', fp);
1634                                 fprintf(fp, " %"PRIu64, *id);
1635                         }
1636                         fprintf(fp, " }");
1637                 }
1638
1639                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1640
1641                 fputc('\n', fp);
1642         }
1643
1644         free_event_desc(events);
1645         ff->events = NULL;
1646 }
1647
1648 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1649 {
1650         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1651 }
1652
1653 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1654 {
1655         int i;
1656         struct numa_node *n;
1657
1658         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1659                 n = &ff->ph->env.numa_nodes[i];
1660
1661                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1662                             " free = %"PRIu64" kB\n",
1663                         n->node, n->mem_total, n->mem_free);
1664
1665                 fprintf(fp, "# node%u cpu list : ", n->node);
1666                 cpu_map__fprintf(n->map, fp);
1667         }
1668 }
1669
1670 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1671 {
1672         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1673 }
1674
1675 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1676 {
1677         fprintf(fp, "# contains samples with branch stack\n");
1678 }
1679
1680 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1681 {
1682         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1683 }
1684
1685 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1686 {
1687         fprintf(fp, "# contains stat data\n");
1688 }
1689
1690 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1691 {
1692         int i;
1693
1694         fprintf(fp, "# CPU cache info:\n");
1695         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1696                 fprintf(fp, "#  ");
1697                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1698         }
1699 }
1700
1701 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1702 {
1703         const char *delimiter = "# pmu mappings: ";
1704         char *str, *tmp;
1705         u32 pmu_num;
1706         u32 type;
1707
1708         pmu_num = ff->ph->env.nr_pmu_mappings;
1709         if (!pmu_num) {
1710                 fprintf(fp, "# pmu mappings: not available\n");
1711                 return;
1712         }
1713
1714         str = ff->ph->env.pmu_mappings;
1715
1716         while (pmu_num) {
1717                 type = strtoul(str, &tmp, 0);
1718                 if (*tmp != ':')
1719                         goto error;
1720
1721                 str = tmp + 1;
1722                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1723
1724                 delimiter = ", ";
1725                 str += strlen(str) + 1;
1726                 pmu_num--;
1727         }
1728
1729         fprintf(fp, "\n");
1730
1731         if (!pmu_num)
1732                 return;
1733 error:
1734         fprintf(fp, "# pmu mappings: unable to read\n");
1735 }
1736
1737 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1738 {
1739         struct perf_session *session;
1740         struct perf_evsel *evsel;
1741         u32 nr = 0;
1742
1743         session = container_of(ff->ph, struct perf_session, header);
1744
1745         evlist__for_each_entry(session->evlist, evsel) {
1746                 if (perf_evsel__is_group_leader(evsel) &&
1747                     evsel->nr_members > 1) {
1748                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1749                                 perf_evsel__name(evsel));
1750
1751                         nr = evsel->nr_members - 1;
1752                 } else if (nr) {
1753                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1754
1755                         if (--nr == 0)
1756                                 fprintf(fp, "}\n");
1757                 }
1758         }
1759 }
1760
1761 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1762 {
1763         struct perf_session *session;
1764         char time_buf[32];
1765         double d;
1766
1767         session = container_of(ff->ph, struct perf_session, header);
1768
1769         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1770                                   time_buf, sizeof(time_buf));
1771         fprintf(fp, "# time of first sample : %s\n", time_buf);
1772
1773         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1774                                   time_buf, sizeof(time_buf));
1775         fprintf(fp, "# time of last sample : %s\n", time_buf);
1776
1777         d = (double)(session->evlist->last_sample_time -
1778                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1779
1780         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1781 }
1782
1783 static void memory_node__fprintf(struct memory_node *n,
1784                                  unsigned long long bsize, FILE *fp)
1785 {
1786         char buf_map[100], buf_size[50];
1787         unsigned long long size;
1788
1789         size = bsize * bitmap_weight(n->set, n->size);
1790         unit_number__scnprintf(buf_size, 50, size);
1791
1792         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1793         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1794 }
1795
1796 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1797 {
1798         struct memory_node *nodes;
1799         int i, nr;
1800
1801         nodes = ff->ph->env.memory_nodes;
1802         nr    = ff->ph->env.nr_memory_nodes;
1803
1804         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1805                 nr, ff->ph->env.memory_bsize);
1806
1807         for (i = 0; i < nr; i++) {
1808                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1809         }
1810 }
1811
1812 static int __event_process_build_id(struct build_id_event *bev,
1813                                     char *filename,
1814                                     struct perf_session *session)
1815 {
1816         int err = -1;
1817         struct machine *machine;
1818         u16 cpumode;
1819         struct dso *dso;
1820         enum dso_kernel_type dso_type;
1821
1822         machine = perf_session__findnew_machine(session, bev->pid);
1823         if (!machine)
1824                 goto out;
1825
1826         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1827
1828         switch (cpumode) {
1829         case PERF_RECORD_MISC_KERNEL:
1830                 dso_type = DSO_TYPE_KERNEL;
1831                 break;
1832         case PERF_RECORD_MISC_GUEST_KERNEL:
1833                 dso_type = DSO_TYPE_GUEST_KERNEL;
1834                 break;
1835         case PERF_RECORD_MISC_USER:
1836         case PERF_RECORD_MISC_GUEST_USER:
1837                 dso_type = DSO_TYPE_USER;
1838                 break;
1839         default:
1840                 goto out;
1841         }
1842
1843         dso = machine__findnew_dso(machine, filename);
1844         if (dso != NULL) {
1845                 char sbuild_id[SBUILD_ID_SIZE];
1846
1847                 dso__set_build_id(dso, &bev->build_id);
1848
1849                 if (dso_type != DSO_TYPE_USER) {
1850                         struct kmod_path m = { .name = NULL, };
1851
1852                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1853                                 dso__set_module_info(dso, &m, machine);
1854                         else
1855                                 dso->kernel = dso_type;
1856
1857                         free(m.name);
1858                 }
1859
1860                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1861                                   sbuild_id);
1862                 pr_debug("build id event received for %s: %s\n",
1863                          dso->long_name, sbuild_id);
1864                 dso__put(dso);
1865         }
1866
1867         err = 0;
1868 out:
1869         return err;
1870 }
1871
1872 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1873                                                  int input, u64 offset, u64 size)
1874 {
1875         struct perf_session *session = container_of(header, struct perf_session, header);
1876         struct {
1877                 struct perf_event_header   header;
1878                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1879                 char                       filename[0];
1880         } old_bev;
1881         struct build_id_event bev;
1882         char filename[PATH_MAX];
1883         u64 limit = offset + size;
1884
1885         while (offset < limit) {
1886                 ssize_t len;
1887
1888                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1889                         return -1;
1890
1891                 if (header->needs_swap)
1892                         perf_event_header__bswap(&old_bev.header);
1893
1894                 len = old_bev.header.size - sizeof(old_bev);
1895                 if (readn(input, filename, len) != len)
1896                         return -1;
1897
1898                 bev.header = old_bev.header;
1899
1900                 /*
1901                  * As the pid is the missing value, we need to fill
1902                  * it properly. The header.misc value give us nice hint.
1903                  */
1904                 bev.pid = HOST_KERNEL_ID;
1905                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1906                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1907                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1908
1909                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1910                 __event_process_build_id(&bev, filename, session);
1911
1912                 offset += bev.header.size;
1913         }
1914
1915         return 0;
1916 }
1917
1918 static int perf_header__read_build_ids(struct perf_header *header,
1919                                        int input, u64 offset, u64 size)
1920 {
1921         struct perf_session *session = container_of(header, struct perf_session, header);
1922         struct build_id_event bev;
1923         char filename[PATH_MAX];
1924         u64 limit = offset + size, orig_offset = offset;
1925         int err = -1;
1926
1927         while (offset < limit) {
1928                 ssize_t len;
1929
1930                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1931                         goto out;
1932
1933                 if (header->needs_swap)
1934                         perf_event_header__bswap(&bev.header);
1935
1936                 len = bev.header.size - sizeof(bev);
1937                 if (readn(input, filename, len) != len)
1938                         goto out;
1939                 /*
1940                  * The a1645ce1 changeset:
1941                  *
1942                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1943                  *
1944                  * Added a field to struct build_id_event that broke the file
1945                  * format.
1946                  *
1947                  * Since the kernel build-id is the first entry, process the
1948                  * table using the old format if the well known
1949                  * '[kernel.kallsyms]' string for the kernel build-id has the
1950                  * first 4 characters chopped off (where the pid_t sits).
1951                  */
1952                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1953                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1954                                 return -1;
1955                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1956                 }
1957
1958                 __event_process_build_id(&bev, filename, session);
1959
1960                 offset += bev.header.size;
1961         }
1962         err = 0;
1963 out:
1964         return err;
1965 }
1966
1967 /* Macro for features that simply need to read and store a string. */
1968 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1969 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1970 {\
1971         ff->ph->env.__feat_env = do_read_string(ff); \
1972         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1973 }
1974
1975 FEAT_PROCESS_STR_FUN(hostname, hostname);
1976 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1977 FEAT_PROCESS_STR_FUN(version, version);
1978 FEAT_PROCESS_STR_FUN(arch, arch);
1979 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1980 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1981
1982 static int process_tracing_data(struct feat_fd *ff, void *data)
1983 {
1984         ssize_t ret = trace_report(ff->fd, data, false);
1985
1986         return ret < 0 ? -1 : 0;
1987 }
1988
1989 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1990 {
1991         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1992                 pr_debug("Failed to read buildids, continuing...\n");
1993         return 0;
1994 }
1995
1996 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1997 {
1998         int ret;
1999         u32 nr_cpus_avail, nr_cpus_online;
2000
2001         ret = do_read_u32(ff, &nr_cpus_avail);
2002         if (ret)
2003                 return ret;
2004
2005         ret = do_read_u32(ff, &nr_cpus_online);
2006         if (ret)
2007                 return ret;
2008         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2009         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2010         return 0;
2011 }
2012
2013 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2014 {
2015         u64 total_mem;
2016         int ret;
2017
2018         ret = do_read_u64(ff, &total_mem);
2019         if (ret)
2020                 return -1;
2021         ff->ph->env.total_mem = (unsigned long long)total_mem;
2022         return 0;
2023 }
2024
2025 static struct perf_evsel *
2026 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2027 {
2028         struct perf_evsel *evsel;
2029
2030         evlist__for_each_entry(evlist, evsel) {
2031                 if (evsel->idx == idx)
2032                         return evsel;
2033         }
2034
2035         return NULL;
2036 }
2037
2038 static void
2039 perf_evlist__set_event_name(struct perf_evlist *evlist,
2040                             struct perf_evsel *event)
2041 {
2042         struct perf_evsel *evsel;
2043
2044         if (!event->name)
2045                 return;
2046
2047         evsel = perf_evlist__find_by_index(evlist, event->idx);
2048         if (!evsel)
2049                 return;
2050
2051         if (evsel->name)
2052                 return;
2053
2054         evsel->name = strdup(event->name);
2055 }
2056
2057 static int
2058 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2059 {
2060         struct perf_session *session;
2061         struct perf_evsel *evsel, *events = read_event_desc(ff);
2062
2063         if (!events)
2064                 return 0;
2065
2066         session = container_of(ff->ph, struct perf_session, header);
2067
2068         if (session->data->is_pipe) {
2069                 /* Save events for reading later by print_event_desc,
2070                  * since they can't be read again in pipe mode. */
2071                 ff->events = events;
2072         }
2073
2074         for (evsel = events; evsel->attr.size; evsel++)
2075                 perf_evlist__set_event_name(session->evlist, evsel);
2076
2077         if (!session->data->is_pipe)
2078                 free_event_desc(events);
2079
2080         return 0;
2081 }
2082
2083 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2084 {
2085         char *str, *cmdline = NULL, **argv = NULL;
2086         u32 nr, i, len = 0;
2087
2088         if (do_read_u32(ff, &nr))
2089                 return -1;
2090
2091         ff->ph->env.nr_cmdline = nr;
2092
2093         cmdline = zalloc(ff->size + nr + 1);
2094         if (!cmdline)
2095                 return -1;
2096
2097         argv = zalloc(sizeof(char *) * (nr + 1));
2098         if (!argv)
2099                 goto error;
2100
2101         for (i = 0; i < nr; i++) {
2102                 str = do_read_string(ff);
2103                 if (!str)
2104                         goto error;
2105
2106                 argv[i] = cmdline + len;
2107                 memcpy(argv[i], str, strlen(str) + 1);
2108                 len += strlen(str) + 1;
2109                 free(str);
2110         }
2111         ff->ph->env.cmdline = cmdline;
2112         ff->ph->env.cmdline_argv = (const char **) argv;
2113         return 0;
2114
2115 error:
2116         free(argv);
2117         free(cmdline);
2118         return -1;
2119 }
2120
2121 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2122 {
2123         u32 nr, i;
2124         char *str;
2125         struct strbuf sb;
2126         int cpu_nr = ff->ph->env.nr_cpus_avail;
2127         u64 size = 0;
2128         struct perf_header *ph = ff->ph;
2129         bool do_core_id_test = true;
2130
2131         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2132         if (!ph->env.cpu)
2133                 return -1;
2134
2135         if (do_read_u32(ff, &nr))
2136                 goto free_cpu;
2137
2138         ph->env.nr_sibling_cores = nr;
2139         size += sizeof(u32);
2140         if (strbuf_init(&sb, 128) < 0)
2141                 goto free_cpu;
2142
2143         for (i = 0; i < nr; i++) {
2144                 str = do_read_string(ff);
2145                 if (!str)
2146                         goto error;
2147
2148                 /* include a NULL character at the end */
2149                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2150                         goto error;
2151                 size += string_size(str);
2152                 free(str);
2153         }
2154         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2155
2156         if (do_read_u32(ff, &nr))
2157                 return -1;
2158
2159         ph->env.nr_sibling_threads = nr;
2160         size += sizeof(u32);
2161
2162         for (i = 0; i < nr; i++) {
2163                 str = do_read_string(ff);
2164                 if (!str)
2165                         goto error;
2166
2167                 /* include a NULL character at the end */
2168                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2169                         goto error;
2170                 size += string_size(str);
2171                 free(str);
2172         }
2173         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2174
2175         /*
2176          * The header may be from old perf,
2177          * which doesn't include core id and socket id information.
2178          */
2179         if (ff->size <= size) {
2180                 zfree(&ph->env.cpu);
2181                 return 0;
2182         }
2183
2184         /* On s390 the socket_id number is not related to the numbers of cpus.
2185          * The socket_id number might be higher than the numbers of cpus.
2186          * This depends on the configuration.
2187          * AArch64 is the same.
2188          */
2189         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2190                           || !strncmp(ph->env.arch, "aarch64", 7)))
2191                 do_core_id_test = false;
2192
2193         for (i = 0; i < (u32)cpu_nr; i++) {
2194                 if (do_read_u32(ff, &nr))
2195                         goto free_cpu;
2196
2197                 ph->env.cpu[i].core_id = nr;
2198
2199                 if (do_read_u32(ff, &nr))
2200                         goto free_cpu;
2201
2202                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2203                         pr_debug("socket_id number is too big."
2204                                  "You may need to upgrade the perf tool.\n");
2205                         goto free_cpu;
2206                 }
2207
2208                 ph->env.cpu[i].socket_id = nr;
2209         }
2210
2211         return 0;
2212
2213 error:
2214         strbuf_release(&sb);
2215 free_cpu:
2216         zfree(&ph->env.cpu);
2217         return -1;
2218 }
2219
2220 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2221 {
2222         struct numa_node *nodes, *n;
2223         u32 nr, i;
2224         char *str;
2225
2226         /* nr nodes */
2227         if (do_read_u32(ff, &nr))
2228                 return -1;
2229
2230         nodes = zalloc(sizeof(*nodes) * nr);
2231         if (!nodes)
2232                 return -ENOMEM;
2233
2234         for (i = 0; i < nr; i++) {
2235                 n = &nodes[i];
2236
2237                 /* node number */
2238                 if (do_read_u32(ff, &n->node))
2239                         goto error;
2240
2241                 if (do_read_u64(ff, &n->mem_total))
2242                         goto error;
2243
2244                 if (do_read_u64(ff, &n->mem_free))
2245                         goto error;
2246
2247                 str = do_read_string(ff);
2248                 if (!str)
2249                         goto error;
2250
2251                 n->map = cpu_map__new(str);
2252                 if (!n->map)
2253                         goto error;
2254
2255                 free(str);
2256         }
2257         ff->ph->env.nr_numa_nodes = nr;
2258         ff->ph->env.numa_nodes = nodes;
2259         return 0;
2260
2261 error:
2262         free(nodes);
2263         return -1;
2264 }
2265
2266 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2267 {
2268         char *name;
2269         u32 pmu_num;
2270         u32 type;
2271         struct strbuf sb;
2272
2273         if (do_read_u32(ff, &pmu_num))
2274                 return -1;
2275
2276         if (!pmu_num) {
2277                 pr_debug("pmu mappings not available\n");
2278                 return 0;
2279         }
2280
2281         ff->ph->env.nr_pmu_mappings = pmu_num;
2282         if (strbuf_init(&sb, 128) < 0)
2283                 return -1;
2284
2285         while (pmu_num) {
2286                 if (do_read_u32(ff, &type))
2287                         goto error;
2288
2289                 name = do_read_string(ff);
2290                 if (!name)
2291                         goto error;
2292
2293                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2294                         goto error;
2295                 /* include a NULL character at the end */
2296                 if (strbuf_add(&sb, "", 1) < 0)
2297                         goto error;
2298
2299                 if (!strcmp(name, "msr"))
2300                         ff->ph->env.msr_pmu_type = type;
2301
2302                 free(name);
2303                 pmu_num--;
2304         }
2305         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2306         return 0;
2307
2308 error:
2309         strbuf_release(&sb);
2310         return -1;
2311 }
2312
2313 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2314 {
2315         size_t ret = -1;
2316         u32 i, nr, nr_groups;
2317         struct perf_session *session;
2318         struct perf_evsel *evsel, *leader = NULL;
2319         struct group_desc {
2320                 char *name;
2321                 u32 leader_idx;
2322                 u32 nr_members;
2323         } *desc;
2324
2325         if (do_read_u32(ff, &nr_groups))
2326                 return -1;
2327
2328         ff->ph->env.nr_groups = nr_groups;
2329         if (!nr_groups) {
2330                 pr_debug("group desc not available\n");
2331                 return 0;
2332         }
2333
2334         desc = calloc(nr_groups, sizeof(*desc));
2335         if (!desc)
2336                 return -1;
2337
2338         for (i = 0; i < nr_groups; i++) {
2339                 desc[i].name = do_read_string(ff);
2340                 if (!desc[i].name)
2341                         goto out_free;
2342
2343                 if (do_read_u32(ff, &desc[i].leader_idx))
2344                         goto out_free;
2345
2346                 if (do_read_u32(ff, &desc[i].nr_members))
2347                         goto out_free;
2348         }
2349
2350         /*
2351          * Rebuild group relationship based on the group_desc
2352          */
2353         session = container_of(ff->ph, struct perf_session, header);
2354         session->evlist->nr_groups = nr_groups;
2355
2356         i = nr = 0;
2357         evlist__for_each_entry(session->evlist, evsel) {
2358                 if (evsel->idx == (int) desc[i].leader_idx) {
2359                         evsel->leader = evsel;
2360                         /* {anon_group} is a dummy name */
2361                         if (strcmp(desc[i].name, "{anon_group}")) {
2362                                 evsel->group_name = desc[i].name;
2363                                 desc[i].name = NULL;
2364                         }
2365                         evsel->nr_members = desc[i].nr_members;
2366
2367                         if (i >= nr_groups || nr > 0) {
2368                                 pr_debug("invalid group desc\n");
2369                                 goto out_free;
2370                         }
2371
2372                         leader = evsel;
2373                         nr = evsel->nr_members - 1;
2374                         i++;
2375                 } else if (nr) {
2376                         /* This is a group member */
2377                         evsel->leader = leader;
2378
2379                         nr--;
2380                 }
2381         }
2382
2383         if (i != nr_groups || nr != 0) {
2384                 pr_debug("invalid group desc\n");
2385                 goto out_free;
2386         }
2387
2388         ret = 0;
2389 out_free:
2390         for (i = 0; i < nr_groups; i++)
2391                 zfree(&desc[i].name);
2392         free(desc);
2393
2394         return ret;
2395 }
2396
2397 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2398 {
2399         struct perf_session *session;
2400         int err;
2401
2402         session = container_of(ff->ph, struct perf_session, header);
2403
2404         err = auxtrace_index__process(ff->fd, ff->size, session,
2405                                       ff->ph->needs_swap);
2406         if (err < 0)
2407                 pr_err("Failed to process auxtrace index\n");
2408         return err;
2409 }
2410
2411 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2412 {
2413         struct cpu_cache_level *caches;
2414         u32 cnt, i, version;
2415
2416         if (do_read_u32(ff, &version))
2417                 return -1;
2418
2419         if (version != 1)
2420                 return -1;
2421
2422         if (do_read_u32(ff, &cnt))
2423                 return -1;
2424
2425         caches = zalloc(sizeof(*caches) * cnt);
2426         if (!caches)
2427                 return -1;
2428
2429         for (i = 0; i < cnt; i++) {
2430                 struct cpu_cache_level c;
2431
2432                 #define _R(v)                                           \
2433                         if (do_read_u32(ff, &c.v))\
2434                                 goto out_free_caches;                   \
2435
2436                 _R(level)
2437                 _R(line_size)
2438                 _R(sets)
2439                 _R(ways)
2440                 #undef _R
2441
2442                 #define _R(v)                                   \
2443                         c.v = do_read_string(ff);               \
2444                         if (!c.v)                               \
2445                                 goto out_free_caches;
2446
2447                 _R(type)
2448                 _R(size)
2449                 _R(map)
2450                 #undef _R
2451
2452                 caches[i] = c;
2453         }
2454
2455         ff->ph->env.caches = caches;
2456         ff->ph->env.caches_cnt = cnt;
2457         return 0;
2458 out_free_caches:
2459         free(caches);
2460         return -1;
2461 }
2462
2463 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2464 {
2465         struct perf_session *session;
2466         u64 first_sample_time, last_sample_time;
2467         int ret;
2468
2469         session = container_of(ff->ph, struct perf_session, header);
2470
2471         ret = do_read_u64(ff, &first_sample_time);
2472         if (ret)
2473                 return -1;
2474
2475         ret = do_read_u64(ff, &last_sample_time);
2476         if (ret)
2477                 return -1;
2478
2479         session->evlist->first_sample_time = first_sample_time;
2480         session->evlist->last_sample_time = last_sample_time;
2481         return 0;
2482 }
2483
2484 static int process_mem_topology(struct feat_fd *ff,
2485                                 void *data __maybe_unused)
2486 {
2487         struct memory_node *nodes;
2488         u64 version, i, nr, bsize;
2489         int ret = -1;
2490
2491         if (do_read_u64(ff, &version))
2492                 return -1;
2493
2494         if (version != 1)
2495                 return -1;
2496
2497         if (do_read_u64(ff, &bsize))
2498                 return -1;
2499
2500         if (do_read_u64(ff, &nr))
2501                 return -1;
2502
2503         nodes = zalloc(sizeof(*nodes) * nr);
2504         if (!nodes)
2505                 return -1;
2506
2507         for (i = 0; i < nr; i++) {
2508                 struct memory_node n;
2509
2510                 #define _R(v)                           \
2511                         if (do_read_u64(ff, &n.v))      \
2512                                 goto out;               \
2513
2514                 _R(node)
2515                 _R(size)
2516
2517                 #undef _R
2518
2519                 if (do_read_bitmap(ff, &n.set, &n.size))
2520                         goto out;
2521
2522                 nodes[i] = n;
2523         }
2524
2525         ff->ph->env.memory_bsize    = bsize;
2526         ff->ph->env.memory_nodes    = nodes;
2527         ff->ph->env.nr_memory_nodes = nr;
2528         ret = 0;
2529
2530 out:
2531         if (ret)
2532                 free(nodes);
2533         return ret;
2534 }
2535
2536 struct feature_ops {
2537         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2538         void (*print)(struct feat_fd *ff, FILE *fp);
2539         int (*process)(struct feat_fd *ff, void *data);
2540         const char *name;
2541         bool full_only;
2542         bool synthesize;
2543 };
2544
2545 #define FEAT_OPR(n, func, __full_only) \
2546         [HEADER_##n] = {                                        \
2547                 .name       = __stringify(n),                   \
2548                 .write      = write_##func,                     \
2549                 .print      = print_##func,                     \
2550                 .full_only  = __full_only,                      \
2551                 .process    = process_##func,                   \
2552                 .synthesize = true                              \
2553         }
2554
2555 #define FEAT_OPN(n, func, __full_only) \
2556         [HEADER_##n] = {                                        \
2557                 .name       = __stringify(n),                   \
2558                 .write      = write_##func,                     \
2559                 .print      = print_##func,                     \
2560                 .full_only  = __full_only,                      \
2561                 .process    = process_##func                    \
2562         }
2563
2564 /* feature_ops not implemented: */
2565 #define print_tracing_data      NULL
2566 #define print_build_id          NULL
2567
2568 #define process_branch_stack    NULL
2569 #define process_stat            NULL
2570
2571
2572 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2573         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2574         FEAT_OPN(BUILD_ID,      build_id,       false),
2575         FEAT_OPR(HOSTNAME,      hostname,       false),
2576         FEAT_OPR(OSRELEASE,     osrelease,      false),
2577         FEAT_OPR(VERSION,       version,        false),
2578         FEAT_OPR(ARCH,          arch,           false),
2579         FEAT_OPR(NRCPUS,        nrcpus,         false),
2580         FEAT_OPR(CPUDESC,       cpudesc,        false),
2581         FEAT_OPR(CPUID,         cpuid,          false),
2582         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2583         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2584         FEAT_OPR(CMDLINE,       cmdline,        false),
2585         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2586         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2587         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2588         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2589         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2590         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2591         FEAT_OPN(STAT,          stat,           false),
2592         FEAT_OPN(CACHE,         cache,          true),
2593         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2594         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2595 };
2596
2597 struct header_print_data {
2598         FILE *fp;
2599         bool full; /* extended list of headers */
2600 };
2601
2602 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2603                                            struct perf_header *ph,
2604                                            int feat, int fd, void *data)
2605 {
2606         struct header_print_data *hd = data;
2607         struct feat_fd ff;
2608
2609         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2610                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2611                                 "%d, continuing...\n", section->offset, feat);
2612                 return 0;
2613         }
2614         if (feat >= HEADER_LAST_FEATURE) {
2615                 pr_warning("unknown feature %d\n", feat);
2616                 return 0;
2617         }
2618         if (!feat_ops[feat].print)
2619                 return 0;
2620
2621         ff = (struct  feat_fd) {
2622                 .fd = fd,
2623                 .ph = ph,
2624         };
2625
2626         if (!feat_ops[feat].full_only || hd->full)
2627                 feat_ops[feat].print(&ff, hd->fp);
2628         else
2629                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2630                         feat_ops[feat].name);
2631
2632         return 0;
2633 }
2634
2635 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2636 {
2637         struct header_print_data hd;
2638         struct perf_header *header = &session->header;
2639         int fd = perf_data__fd(session->data);
2640         struct stat st;
2641         time_t stctime;
2642         int ret, bit;
2643
2644         hd.fp = fp;
2645         hd.full = full;
2646
2647         ret = fstat(fd, &st);
2648         if (ret == -1)
2649                 return -1;
2650
2651         stctime = st.st_ctime;
2652         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2653
2654         fprintf(fp, "# header version : %u\n", header->version);
2655         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2656         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2657         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2658
2659         perf_header__process_sections(header, fd, &hd,
2660                                       perf_file_section__fprintf_info);
2661
2662         if (session->data->is_pipe)
2663                 return 0;
2664
2665         fprintf(fp, "# missing features: ");
2666         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2667                 if (bit)
2668                         fprintf(fp, "%s ", feat_ops[bit].name);
2669         }
2670
2671         fprintf(fp, "\n");
2672         return 0;
2673 }
2674
2675 static int do_write_feat(struct feat_fd *ff, int type,
2676                          struct perf_file_section **p,
2677                          struct perf_evlist *evlist)
2678 {
2679         int err;
2680         int ret = 0;
2681
2682         if (perf_header__has_feat(ff->ph, type)) {
2683                 if (!feat_ops[type].write)
2684                         return -1;
2685
2686                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2687                         return -1;
2688
2689                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2690
2691                 err = feat_ops[type].write(ff, evlist);
2692                 if (err < 0) {
2693                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2694
2695                         /* undo anything written */
2696                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2697
2698                         return -1;
2699                 }
2700                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2701                 (*p)++;
2702         }
2703         return ret;
2704 }
2705
2706 static int perf_header__adds_write(struct perf_header *header,
2707                                    struct perf_evlist *evlist, int fd)
2708 {
2709         int nr_sections;
2710         struct feat_fd ff;
2711         struct perf_file_section *feat_sec, *p;
2712         int sec_size;
2713         u64 sec_start;
2714         int feat;
2715         int err;
2716
2717         ff = (struct feat_fd){
2718                 .fd  = fd,
2719                 .ph = header,
2720         };
2721
2722         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2723         if (!nr_sections)
2724                 return 0;
2725
2726         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2727         if (feat_sec == NULL)
2728                 return -ENOMEM;
2729
2730         sec_size = sizeof(*feat_sec) * nr_sections;
2731
2732         sec_start = header->feat_offset;
2733         lseek(fd, sec_start + sec_size, SEEK_SET);
2734
2735         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2736                 if (do_write_feat(&ff, feat, &p, evlist))
2737                         perf_header__clear_feat(header, feat);
2738         }
2739
2740         lseek(fd, sec_start, SEEK_SET);
2741         /*
2742          * may write more than needed due to dropped feature, but
2743          * this is okay, reader will skip the mising entries
2744          */
2745         err = do_write(&ff, feat_sec, sec_size);
2746         if (err < 0)
2747                 pr_debug("failed to write feature section\n");
2748         free(feat_sec);
2749         return err;
2750 }
2751
2752 int perf_header__write_pipe(int fd)
2753 {
2754         struct perf_pipe_file_header f_header;
2755         struct feat_fd ff;
2756         int err;
2757
2758         ff = (struct feat_fd){ .fd = fd };
2759
2760         f_header = (struct perf_pipe_file_header){
2761                 .magic     = PERF_MAGIC,
2762                 .size      = sizeof(f_header),
2763         };
2764
2765         err = do_write(&ff, &f_header, sizeof(f_header));
2766         if (err < 0) {
2767                 pr_debug("failed to write perf pipe header\n");
2768                 return err;
2769         }
2770
2771         return 0;
2772 }
2773
2774 int perf_session__write_header(struct perf_session *session,
2775                                struct perf_evlist *evlist,
2776                                int fd, bool at_exit)
2777 {
2778         struct perf_file_header f_header;
2779         struct perf_file_attr   f_attr;
2780         struct perf_header *header = &session->header;
2781         struct perf_evsel *evsel;
2782         struct feat_fd ff;
2783         u64 attr_offset;
2784         int err;
2785
2786         ff = (struct feat_fd){ .fd = fd};
2787         lseek(fd, sizeof(f_header), SEEK_SET);
2788
2789         evlist__for_each_entry(session->evlist, evsel) {
2790                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2791                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2792                 if (err < 0) {
2793                         pr_debug("failed to write perf header\n");
2794                         return err;
2795                 }
2796         }
2797
2798         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2799
2800         evlist__for_each_entry(evlist, evsel) {
2801                 f_attr = (struct perf_file_attr){
2802                         .attr = evsel->attr,
2803                         .ids  = {
2804                                 .offset = evsel->id_offset,
2805                                 .size   = evsel->ids * sizeof(u64),
2806                         }
2807                 };
2808                 err = do_write(&ff, &f_attr, sizeof(f_attr));
2809                 if (err < 0) {
2810                         pr_debug("failed to write perf header attribute\n");
2811                         return err;
2812                 }
2813         }
2814
2815         if (!header->data_offset)
2816                 header->data_offset = lseek(fd, 0, SEEK_CUR);
2817         header->feat_offset = header->data_offset + header->data_size;
2818
2819         if (at_exit) {
2820                 err = perf_header__adds_write(header, evlist, fd);
2821                 if (err < 0)
2822                         return err;
2823         }
2824
2825         f_header = (struct perf_file_header){
2826                 .magic     = PERF_MAGIC,
2827                 .size      = sizeof(f_header),
2828                 .attr_size = sizeof(f_attr),
2829                 .attrs = {
2830                         .offset = attr_offset,
2831                         .size   = evlist->nr_entries * sizeof(f_attr),
2832                 },
2833                 .data = {
2834                         .offset = header->data_offset,
2835                         .size   = header->data_size,
2836                 },
2837                 /* event_types is ignored, store zeros */
2838         };
2839
2840         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2841
2842         lseek(fd, 0, SEEK_SET);
2843         err = do_write(&ff, &f_header, sizeof(f_header));
2844         if (err < 0) {
2845                 pr_debug("failed to write perf header\n");
2846                 return err;
2847         }
2848         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2849
2850         return 0;
2851 }
2852
2853 static int perf_header__getbuffer64(struct perf_header *header,
2854                                     int fd, void *buf, size_t size)
2855 {
2856         if (readn(fd, buf, size) <= 0)
2857                 return -1;
2858
2859         if (header->needs_swap)
2860                 mem_bswap_64(buf, size);
2861
2862         return 0;
2863 }
2864
2865 int perf_header__process_sections(struct perf_header *header, int fd,
2866                                   void *data,
2867                                   int (*process)(struct perf_file_section *section,
2868                                                  struct perf_header *ph,
2869                                                  int feat, int fd, void *data))
2870 {
2871         struct perf_file_section *feat_sec, *sec;
2872         int nr_sections;
2873         int sec_size;
2874         int feat;
2875         int err;
2876
2877         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2878         if (!nr_sections)
2879                 return 0;
2880
2881         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2882         if (!feat_sec)
2883                 return -1;
2884
2885         sec_size = sizeof(*feat_sec) * nr_sections;
2886
2887         lseek(fd, header->feat_offset, SEEK_SET);
2888
2889         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2890         if (err < 0)
2891                 goto out_free;
2892
2893         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2894                 err = process(sec++, header, feat, fd, data);
2895                 if (err < 0)
2896                         goto out_free;
2897         }
2898         err = 0;
2899 out_free:
2900         free(feat_sec);
2901         return err;
2902 }
2903
2904 static const int attr_file_abi_sizes[] = {
2905         [0] = PERF_ATTR_SIZE_VER0,
2906         [1] = PERF_ATTR_SIZE_VER1,
2907         [2] = PERF_ATTR_SIZE_VER2,
2908         [3] = PERF_ATTR_SIZE_VER3,
2909         [4] = PERF_ATTR_SIZE_VER4,
2910         0,
2911 };
2912
2913 /*
2914  * In the legacy file format, the magic number is not used to encode endianness.
2915  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2916  * on ABI revisions, we need to try all combinations for all endianness to
2917  * detect the endianness.
2918  */
2919 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2920 {
2921         uint64_t ref_size, attr_size;
2922         int i;
2923
2924         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2925                 ref_size = attr_file_abi_sizes[i]
2926                          + sizeof(struct perf_file_section);
2927                 if (hdr_sz != ref_size) {
2928                         attr_size = bswap_64(hdr_sz);
2929                         if (attr_size != ref_size)
2930                                 continue;
2931
2932                         ph->needs_swap = true;
2933                 }
2934                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2935                          i,
2936                          ph->needs_swap);
2937                 return 0;
2938         }
2939         /* could not determine endianness */
2940         return -1;
2941 }
2942
2943 #define PERF_PIPE_HDR_VER0      16
2944
2945 static const size_t attr_pipe_abi_sizes[] = {
2946         [0] = PERF_PIPE_HDR_VER0,
2947         0,
2948 };
2949
2950 /*
2951  * In the legacy pipe format, there is an implicit assumption that endiannesss
2952  * between host recording the samples, and host parsing the samples is the
2953  * same. This is not always the case given that the pipe output may always be
2954  * redirected into a file and analyzed on a different machine with possibly a
2955  * different endianness and perf_event ABI revsions in the perf tool itself.
2956  */
2957 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2958 {
2959         u64 attr_size;
2960         int i;
2961
2962         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2963                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
2964                         attr_size = bswap_64(hdr_sz);
2965                         if (attr_size != hdr_sz)
2966                                 continue;
2967
2968                         ph->needs_swap = true;
2969                 }
2970                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
2971                 return 0;
2972         }
2973         return -1;
2974 }
2975
2976 bool is_perf_magic(u64 magic)
2977 {
2978         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2979                 || magic == __perf_magic2
2980                 || magic == __perf_magic2_sw)
2981                 return true;
2982
2983         return false;
2984 }
2985
2986 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2987                               bool is_pipe, struct perf_header *ph)
2988 {
2989         int ret;
2990
2991         /* check for legacy format */
2992         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2993         if (ret == 0) {
2994                 ph->version = PERF_HEADER_VERSION_1;
2995                 pr_debug("legacy perf.data format\n");
2996                 if (is_pipe)
2997                         return try_all_pipe_abis(hdr_sz, ph);
2998
2999                 return try_all_file_abis(hdr_sz, ph);
3000         }
3001         /*
3002          * the new magic number serves two purposes:
3003          * - unique number to identify actual perf.data files
3004          * - encode endianness of file
3005          */
3006         ph->version = PERF_HEADER_VERSION_2;
3007
3008         /* check magic number with one endianness */
3009         if (magic == __perf_magic2)
3010                 return 0;
3011
3012         /* check magic number with opposite endianness */
3013         if (magic != __perf_magic2_sw)
3014                 return -1;
3015
3016         ph->needs_swap = true;
3017
3018         return 0;
3019 }
3020
3021 int perf_file_header__read(struct perf_file_header *header,
3022                            struct perf_header *ph, int fd)
3023 {
3024         ssize_t ret;
3025
3026         lseek(fd, 0, SEEK_SET);
3027
3028         ret = readn(fd, header, sizeof(*header));
3029         if (ret <= 0)
3030                 return -1;
3031
3032         if (check_magic_endian(header->magic,
3033                                header->attr_size, false, ph) < 0) {
3034                 pr_debug("magic/endian check failed\n");
3035                 return -1;
3036         }
3037
3038         if (ph->needs_swap) {
3039                 mem_bswap_64(header, offsetof(struct perf_file_header,
3040                              adds_features));
3041         }
3042
3043         if (header->size != sizeof(*header)) {
3044                 /* Support the previous format */
3045                 if (header->size == offsetof(typeof(*header), adds_features))
3046                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3047                 else
3048                         return -1;
3049         } else if (ph->needs_swap) {
3050                 /*
3051                  * feature bitmap is declared as an array of unsigned longs --
3052                  * not good since its size can differ between the host that
3053                  * generated the data file and the host analyzing the file.
3054                  *
3055                  * We need to handle endianness, but we don't know the size of
3056                  * the unsigned long where the file was generated. Take a best
3057                  * guess at determining it: try 64-bit swap first (ie., file
3058                  * created on a 64-bit host), and check if the hostname feature
3059                  * bit is set (this feature bit is forced on as of fbe96f2).
3060                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3061                  * swap. If the hostname bit is still not set (e.g., older data
3062                  * file), punt and fallback to the original behavior --
3063                  * clearing all feature bits and setting buildid.
3064                  */
3065                 mem_bswap_64(&header->adds_features,
3066                             BITS_TO_U64(HEADER_FEAT_BITS));
3067
3068                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3069                         /* unswap as u64 */
3070                         mem_bswap_64(&header->adds_features,
3071                                     BITS_TO_U64(HEADER_FEAT_BITS));
3072
3073                         /* unswap as u32 */
3074                         mem_bswap_32(&header->adds_features,
3075                                     BITS_TO_U32(HEADER_FEAT_BITS));
3076                 }
3077
3078                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3079                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3080                         set_bit(HEADER_BUILD_ID, header->adds_features);
3081                 }
3082         }
3083
3084         memcpy(&ph->adds_features, &header->adds_features,
3085                sizeof(ph->adds_features));
3086
3087         ph->data_offset  = header->data.offset;
3088         ph->data_size    = header->data.size;
3089         ph->feat_offset  = header->data.offset + header->data.size;
3090         return 0;
3091 }
3092
3093 static int perf_file_section__process(struct perf_file_section *section,
3094                                       struct perf_header *ph,
3095                                       int feat, int fd, void *data)
3096 {
3097         struct feat_fd fdd = {
3098                 .fd     = fd,
3099                 .ph     = ph,
3100                 .size   = section->size,
3101                 .offset = section->offset,
3102         };
3103
3104         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3105                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3106                           "%d, continuing...\n", section->offset, feat);
3107                 return 0;
3108         }
3109
3110         if (feat >= HEADER_LAST_FEATURE) {
3111                 pr_debug("unknown feature %d, continuing...\n", feat);
3112                 return 0;
3113         }
3114
3115         if (!feat_ops[feat].process)
3116                 return 0;
3117
3118         return feat_ops[feat].process(&fdd, data);
3119 }
3120
3121 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3122                                        struct perf_header *ph, int fd,
3123                                        bool repipe)
3124 {
3125         struct feat_fd ff = {
3126                 .fd = STDOUT_FILENO,
3127                 .ph = ph,
3128         };
3129         ssize_t ret;
3130
3131         ret = readn(fd, header, sizeof(*header));
3132         if (ret <= 0)
3133                 return -1;
3134
3135         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3136                 pr_debug("endian/magic failed\n");
3137                 return -1;
3138         }
3139
3140         if (ph->needs_swap)
3141                 header->size = bswap_64(header->size);
3142
3143         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3144                 return -1;
3145
3146         return 0;
3147 }
3148
3149 static int perf_header__read_pipe(struct perf_session *session)
3150 {
3151         struct perf_header *header = &session->header;
3152         struct perf_pipe_file_header f_header;
3153
3154         if (perf_file_header__read_pipe(&f_header, header,
3155                                         perf_data__fd(session->data),
3156                                         session->repipe) < 0) {
3157                 pr_debug("incompatible file format\n");
3158                 return -EINVAL;
3159         }
3160
3161         return 0;
3162 }
3163
3164 static int read_attr(int fd, struct perf_header *ph,
3165                      struct perf_file_attr *f_attr)
3166 {
3167         struct perf_event_attr *attr = &f_attr->attr;
3168         size_t sz, left;
3169         size_t our_sz = sizeof(f_attr->attr);
3170         ssize_t ret;
3171
3172         memset(f_attr, 0, sizeof(*f_attr));
3173
3174         /* read minimal guaranteed structure */
3175         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3176         if (ret <= 0) {
3177                 pr_debug("cannot read %d bytes of header attr\n",
3178                          PERF_ATTR_SIZE_VER0);
3179                 return -1;
3180         }
3181
3182         /* on file perf_event_attr size */
3183         sz = attr->size;
3184
3185         if (ph->needs_swap)
3186                 sz = bswap_32(sz);
3187
3188         if (sz == 0) {
3189                 /* assume ABI0 */
3190                 sz =  PERF_ATTR_SIZE_VER0;
3191         } else if (sz > our_sz) {
3192                 pr_debug("file uses a more recent and unsupported ABI"
3193                          " (%zu bytes extra)\n", sz - our_sz);
3194                 return -1;
3195         }
3196         /* what we have not yet read and that we know about */
3197         left = sz - PERF_ATTR_SIZE_VER0;
3198         if (left) {
3199                 void *ptr = attr;
3200                 ptr += PERF_ATTR_SIZE_VER0;
3201
3202                 ret = readn(fd, ptr, left);
3203         }
3204         /* read perf_file_section, ids are read in caller */
3205         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3206
3207         return ret <= 0 ? -1 : 0;
3208 }
3209
3210 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3211                                                 struct tep_handle *pevent)
3212 {
3213         struct event_format *event;
3214         char bf[128];
3215
3216         /* already prepared */
3217         if (evsel->tp_format)
3218                 return 0;
3219
3220         if (pevent == NULL) {
3221                 pr_debug("broken or missing trace data\n");
3222                 return -1;
3223         }
3224
3225         event = tep_find_event(pevent, evsel->attr.config);
3226         if (event == NULL) {
3227                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3228                 return -1;
3229         }
3230
3231         if (!evsel->name) {
3232                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3233                 evsel->name = strdup(bf);
3234                 if (evsel->name == NULL)
3235                         return -1;
3236         }
3237
3238         evsel->tp_format = event;
3239         return 0;
3240 }
3241
3242 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3243                                                   struct tep_handle *pevent)
3244 {
3245         struct perf_evsel *pos;
3246
3247         evlist__for_each_entry(evlist, pos) {
3248                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3249                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3250                         return -1;
3251         }
3252
3253         return 0;
3254 }
3255
3256 int perf_session__read_header(struct perf_session *session)
3257 {
3258         struct perf_data *data = session->data;
3259         struct perf_header *header = &session->header;
3260         struct perf_file_header f_header;
3261         struct perf_file_attr   f_attr;
3262         u64                     f_id;
3263         int nr_attrs, nr_ids, i, j;
3264         int fd = perf_data__fd(data);
3265
3266         session->evlist = perf_evlist__new();
3267         if (session->evlist == NULL)
3268                 return -ENOMEM;
3269
3270         session->evlist->env = &header->env;
3271         session->machines.host.env = &header->env;
3272         if (perf_data__is_pipe(data))
3273                 return perf_header__read_pipe(session);
3274
3275         if (perf_file_header__read(&f_header, header, fd) < 0)
3276                 return -EINVAL;
3277
3278         /*
3279          * Sanity check that perf.data was written cleanly; data size is
3280          * initialized to 0 and updated only if the on_exit function is run.
3281          * If data size is still 0 then the file contains only partial
3282          * information.  Just warn user and process it as much as it can.
3283          */
3284         if (f_header.data.size == 0) {
3285                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3286                            "Was the 'perf record' command properly terminated?\n",
3287                            data->file.path);
3288         }
3289
3290         if (f_header.attr_size == 0) {
3291                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3292                        "Was the 'perf record' command properly terminated?\n",
3293                        data->file.path);
3294                 return -EINVAL;
3295         }
3296
3297         nr_attrs = f_header.attrs.size / f_header.attr_size;
3298         lseek(fd, f_header.attrs.offset, SEEK_SET);
3299
3300         for (i = 0; i < nr_attrs; i++) {
3301                 struct perf_evsel *evsel;
3302                 off_t tmp;
3303
3304                 if (read_attr(fd, header, &f_attr) < 0)
3305                         goto out_errno;
3306
3307                 if (header->needs_swap) {
3308                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3309                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3310                         perf_event__attr_swap(&f_attr.attr);
3311                 }
3312
3313                 tmp = lseek(fd, 0, SEEK_CUR);
3314                 evsel = perf_evsel__new(&f_attr.attr);
3315
3316                 if (evsel == NULL)
3317                         goto out_delete_evlist;
3318
3319                 evsel->needs_swap = header->needs_swap;
3320                 /*
3321                  * Do it before so that if perf_evsel__alloc_id fails, this
3322                  * entry gets purged too at perf_evlist__delete().
3323                  */
3324                 perf_evlist__add(session->evlist, evsel);
3325
3326                 nr_ids = f_attr.ids.size / sizeof(u64);
3327                 /*
3328                  * We don't have the cpu and thread maps on the header, so
3329                  * for allocating the perf_sample_id table we fake 1 cpu and
3330                  * hattr->ids threads.
3331                  */
3332                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3333                         goto out_delete_evlist;
3334
3335                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3336
3337                 for (j = 0; j < nr_ids; j++) {
3338                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3339                                 goto out_errno;
3340
3341                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3342                 }
3343
3344                 lseek(fd, tmp, SEEK_SET);
3345         }
3346
3347         perf_header__process_sections(header, fd, &session->tevent,
3348                                       perf_file_section__process);
3349
3350         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3351                                                    session->tevent.pevent))
3352                 goto out_delete_evlist;
3353
3354         return 0;
3355 out_errno:
3356         return -errno;
3357
3358 out_delete_evlist:
3359         perf_evlist__delete(session->evlist);
3360         session->evlist = NULL;
3361         return -ENOMEM;
3362 }
3363
3364 int perf_event__synthesize_attr(struct perf_tool *tool,
3365                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3366                                 perf_event__handler_t process)
3367 {
3368         union perf_event *ev;
3369         size_t size;
3370         int err;
3371
3372         size = sizeof(struct perf_event_attr);
3373         size = PERF_ALIGN(size, sizeof(u64));
3374         size += sizeof(struct perf_event_header);
3375         size += ids * sizeof(u64);
3376
3377         ev = zalloc(size);
3378
3379         if (ev == NULL)
3380                 return -ENOMEM;
3381
3382         ev->attr.attr = *attr;
3383         memcpy(ev->attr.id, id, ids * sizeof(u64));
3384
3385         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3386         ev->attr.header.size = (u16)size;
3387
3388         if (ev->attr.header.size == size)
3389                 err = process(tool, ev, NULL, NULL);
3390         else
3391                 err = -E2BIG;
3392
3393         free(ev);
3394
3395         return err;
3396 }
3397
3398 int perf_event__synthesize_features(struct perf_tool *tool,
3399                                     struct perf_session *session,
3400                                     struct perf_evlist *evlist,
3401                                     perf_event__handler_t process)
3402 {
3403         struct perf_header *header = &session->header;
3404         struct feat_fd ff;
3405         struct feature_event *fe;
3406         size_t sz, sz_hdr;
3407         int feat, ret;
3408
3409         sz_hdr = sizeof(fe->header);
3410         sz = sizeof(union perf_event);
3411         /* get a nice alignment */
3412         sz = PERF_ALIGN(sz, page_size);
3413
3414         memset(&ff, 0, sizeof(ff));
3415
3416         ff.buf = malloc(sz);
3417         if (!ff.buf)
3418                 return -ENOMEM;
3419
3420         ff.size = sz - sz_hdr;
3421
3422         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3423                 if (!feat_ops[feat].synthesize) {
3424                         pr_debug("No record header feature for header :%d\n", feat);
3425                         continue;
3426                 }
3427
3428                 ff.offset = sizeof(*fe);
3429
3430                 ret = feat_ops[feat].write(&ff, evlist);
3431                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3432                         pr_debug("Error writing feature\n");
3433                         continue;
3434                 }
3435                 /* ff.buf may have changed due to realloc in do_write() */
3436                 fe = ff.buf;
3437                 memset(fe, 0, sizeof(*fe));
3438
3439                 fe->feat_id = feat;
3440                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3441                 fe->header.size = ff.offset;
3442
3443                 ret = process(tool, ff.buf, NULL, NULL);
3444                 if (ret) {
3445                         free(ff.buf);
3446                         return ret;
3447                 }
3448         }
3449
3450         /* Send HEADER_LAST_FEATURE mark. */
3451         fe = ff.buf;
3452         fe->feat_id     = HEADER_LAST_FEATURE;
3453         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3454         fe->header.size = sizeof(*fe);
3455
3456         ret = process(tool, ff.buf, NULL, NULL);
3457
3458         free(ff.buf);
3459         return ret;
3460 }
3461
3462 int perf_event__process_feature(struct perf_tool *tool,
3463                                 union perf_event *event,
3464                                 struct perf_session *session __maybe_unused)
3465 {
3466         struct feat_fd ff = { .fd = 0 };
3467         struct feature_event *fe = (struct feature_event *)event;
3468         int type = fe->header.type;
3469         u64 feat = fe->feat_id;
3470
3471         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3472                 pr_warning("invalid record type %d in pipe-mode\n", type);
3473                 return 0;
3474         }
3475         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3476                 pr_warning("invalid record type %d in pipe-mode\n", type);
3477                 return -1;
3478         }
3479
3480         if (!feat_ops[feat].process)
3481                 return 0;
3482
3483         ff.buf  = (void *)fe->data;
3484         ff.size = event->header.size - sizeof(*fe);
3485         ff.ph = &session->header;
3486
3487         if (feat_ops[feat].process(&ff, NULL))
3488                 return -1;
3489
3490         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3491                 return 0;
3492
3493         if (!feat_ops[feat].full_only ||
3494             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3495                 feat_ops[feat].print(&ff, stdout);
3496         } else {
3497                 fprintf(stdout, "# %s info available, use -I to display\n",
3498                         feat_ops[feat].name);
3499         }
3500
3501         return 0;
3502 }
3503
3504 static struct event_update_event *
3505 event_update_event__new(size_t size, u64 type, u64 id)
3506 {
3507         struct event_update_event *ev;
3508
3509         size += sizeof(*ev);
3510         size  = PERF_ALIGN(size, sizeof(u64));
3511
3512         ev = zalloc(size);
3513         if (ev) {
3514                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3515                 ev->header.size = (u16)size;
3516                 ev->type = type;
3517                 ev->id = id;
3518         }
3519         return ev;
3520 }
3521
3522 int
3523 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3524                                          struct perf_evsel *evsel,
3525                                          perf_event__handler_t process)
3526 {
3527         struct event_update_event *ev;
3528         size_t size = strlen(evsel->unit);
3529         int err;
3530
3531         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3532         if (ev == NULL)
3533                 return -ENOMEM;
3534
3535         strlcpy(ev->data, evsel->unit, size + 1);
3536         err = process(tool, (union perf_event *)ev, NULL, NULL);
3537         free(ev);
3538         return err;
3539 }
3540
3541 int
3542 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3543                                           struct perf_evsel *evsel,
3544                                           perf_event__handler_t process)
3545 {
3546         struct event_update_event *ev;
3547         struct event_update_event_scale *ev_data;
3548         int err;
3549
3550         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3551         if (ev == NULL)
3552                 return -ENOMEM;
3553
3554         ev_data = (struct event_update_event_scale *) ev->data;
3555         ev_data->scale = evsel->scale;
3556         err = process(tool, (union perf_event*) ev, NULL, NULL);
3557         free(ev);
3558         return err;
3559 }
3560
3561 int
3562 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3563                                          struct perf_evsel *evsel,
3564                                          perf_event__handler_t process)
3565 {
3566         struct event_update_event *ev;
3567         size_t len = strlen(evsel->name);
3568         int err;
3569
3570         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3571         if (ev == NULL)
3572                 return -ENOMEM;
3573
3574         strlcpy(ev->data, evsel->name, len + 1);
3575         err = process(tool, (union perf_event*) ev, NULL, NULL);
3576         free(ev);
3577         return err;
3578 }
3579
3580 int
3581 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3582                                         struct perf_evsel *evsel,
3583                                         perf_event__handler_t process)
3584 {
3585         size_t size = sizeof(struct event_update_event);
3586         struct event_update_event *ev;
3587         int max, err;
3588         u16 type;
3589
3590         if (!evsel->own_cpus)
3591                 return 0;
3592
3593         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3594         if (!ev)
3595                 return -ENOMEM;
3596
3597         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3598         ev->header.size = (u16)size;
3599         ev->type = PERF_EVENT_UPDATE__CPUS;
3600         ev->id   = evsel->id[0];
3601
3602         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3603                                  evsel->own_cpus,
3604                                  type, max);
3605
3606         err = process(tool, (union perf_event*) ev, NULL, NULL);
3607         free(ev);
3608         return err;
3609 }
3610
3611 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3612 {
3613         struct event_update_event *ev = &event->event_update;
3614         struct event_update_event_scale *ev_scale;
3615         struct event_update_event_cpus *ev_cpus;
3616         struct cpu_map *map;
3617         size_t ret;
3618
3619         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3620
3621         switch (ev->type) {
3622         case PERF_EVENT_UPDATE__SCALE:
3623                 ev_scale = (struct event_update_event_scale *) ev->data;
3624                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3625                 break;
3626         case PERF_EVENT_UPDATE__UNIT:
3627                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3628                 break;
3629         case PERF_EVENT_UPDATE__NAME:
3630                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3631                 break;
3632         case PERF_EVENT_UPDATE__CPUS:
3633                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3634                 ret += fprintf(fp, "... ");
3635
3636                 map = cpu_map__new_data(&ev_cpus->cpus);
3637                 if (map)
3638                         ret += cpu_map__fprintf(map, fp);
3639                 else
3640                         ret += fprintf(fp, "failed to get cpus\n");
3641                 break;
3642         default:
3643                 ret += fprintf(fp, "... unknown type\n");
3644                 break;
3645         }
3646
3647         return ret;
3648 }
3649
3650 int perf_event__synthesize_attrs(struct perf_tool *tool,
3651                                    struct perf_session *session,
3652                                    perf_event__handler_t process)
3653 {
3654         struct perf_evsel *evsel;
3655         int err = 0;
3656
3657         evlist__for_each_entry(session->evlist, evsel) {
3658                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3659                                                   evsel->id, process);
3660                 if (err) {
3661                         pr_debug("failed to create perf header attribute\n");
3662                         return err;
3663                 }
3664         }
3665
3666         return err;
3667 }
3668
3669 static bool has_unit(struct perf_evsel *counter)
3670 {
3671         return counter->unit && *counter->unit;
3672 }
3673
3674 static bool has_scale(struct perf_evsel *counter)
3675 {
3676         return counter->scale != 1;
3677 }
3678
3679 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3680                                       struct perf_evlist *evsel_list,
3681                                       perf_event__handler_t process,
3682                                       bool is_pipe)
3683 {
3684         struct perf_evsel *counter;
3685         int err;
3686
3687         /*
3688          * Synthesize other events stuff not carried within
3689          * attr event - unit, scale, name
3690          */
3691         evlist__for_each_entry(evsel_list, counter) {
3692                 if (!counter->supported)
3693                         continue;
3694
3695                 /*
3696                  * Synthesize unit and scale only if it's defined.
3697                  */
3698                 if (has_unit(counter)) {
3699                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3700                         if (err < 0) {
3701                                 pr_err("Couldn't synthesize evsel unit.\n");
3702                                 return err;
3703                         }
3704                 }
3705
3706                 if (has_scale(counter)) {
3707                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3708                         if (err < 0) {
3709                                 pr_err("Couldn't synthesize evsel counter.\n");
3710                                 return err;
3711                         }
3712                 }
3713
3714                 if (counter->own_cpus) {
3715                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3716                         if (err < 0) {
3717                                 pr_err("Couldn't synthesize evsel cpus.\n");
3718                                 return err;
3719                         }
3720                 }
3721
3722                 /*
3723                  * Name is needed only for pipe output,
3724                  * perf.data carries event names.
3725                  */
3726                 if (is_pipe) {
3727                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3728                         if (err < 0) {
3729                                 pr_err("Couldn't synthesize evsel name.\n");
3730                                 return err;
3731                         }
3732                 }
3733         }
3734         return 0;
3735 }
3736
3737 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3738                              union perf_event *event,
3739                              struct perf_evlist **pevlist)
3740 {
3741         u32 i, ids, n_ids;
3742         struct perf_evsel *evsel;
3743         struct perf_evlist *evlist = *pevlist;
3744
3745         if (evlist == NULL) {
3746                 *pevlist = evlist = perf_evlist__new();
3747                 if (evlist == NULL)
3748                         return -ENOMEM;
3749         }
3750
3751         evsel = perf_evsel__new(&event->attr.attr);
3752         if (evsel == NULL)
3753                 return -ENOMEM;
3754
3755         perf_evlist__add(evlist, evsel);
3756
3757         ids = event->header.size;
3758         ids -= (void *)&event->attr.id - (void *)event;
3759         n_ids = ids / sizeof(u64);
3760         /*
3761          * We don't have the cpu and thread maps on the header, so
3762          * for allocating the perf_sample_id table we fake 1 cpu and
3763          * hattr->ids threads.
3764          */
3765         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3766                 return -ENOMEM;
3767
3768         for (i = 0; i < n_ids; i++) {
3769                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3770         }
3771
3772         return 0;
3773 }
3774
3775 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3776                                      union perf_event *event,
3777                                      struct perf_evlist **pevlist)
3778 {
3779         struct event_update_event *ev = &event->event_update;
3780         struct event_update_event_scale *ev_scale;
3781         struct event_update_event_cpus *ev_cpus;
3782         struct perf_evlist *evlist;
3783         struct perf_evsel *evsel;
3784         struct cpu_map *map;
3785
3786         if (!pevlist || *pevlist == NULL)
3787                 return -EINVAL;
3788
3789         evlist = *pevlist;
3790
3791         evsel = perf_evlist__id2evsel(evlist, ev->id);
3792         if (evsel == NULL)
3793                 return -EINVAL;
3794
3795         switch (ev->type) {
3796         case PERF_EVENT_UPDATE__UNIT:
3797                 evsel->unit = strdup(ev->data);
3798                 break;
3799         case PERF_EVENT_UPDATE__NAME:
3800                 evsel->name = strdup(ev->data);
3801                 break;
3802         case PERF_EVENT_UPDATE__SCALE:
3803                 ev_scale = (struct event_update_event_scale *) ev->data;
3804                 evsel->scale = ev_scale->scale;
3805                 break;
3806         case PERF_EVENT_UPDATE__CPUS:
3807                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3808
3809                 map = cpu_map__new_data(&ev_cpus->cpus);
3810                 if (map)
3811                         evsel->own_cpus = map;
3812                 else
3813                         pr_err("failed to get event_update cpus\n");
3814         default:
3815                 break;
3816         }
3817
3818         return 0;
3819 }
3820
3821 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3822                                         struct perf_evlist *evlist,
3823                                         perf_event__handler_t process)
3824 {
3825         union perf_event ev;
3826         struct tracing_data *tdata;
3827         ssize_t size = 0, aligned_size = 0, padding;
3828         struct feat_fd ff;
3829         int err __maybe_unused = 0;
3830
3831         /*
3832          * We are going to store the size of the data followed
3833          * by the data contents. Since the fd descriptor is a pipe,
3834          * we cannot seek back to store the size of the data once
3835          * we know it. Instead we:
3836          *
3837          * - write the tracing data to the temp file
3838          * - get/write the data size to pipe
3839          * - write the tracing data from the temp file
3840          *   to the pipe
3841          */
3842         tdata = tracing_data_get(&evlist->entries, fd, true);
3843         if (!tdata)
3844                 return -1;
3845
3846         memset(&ev, 0, sizeof(ev));
3847
3848         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3849         size = tdata->size;
3850         aligned_size = PERF_ALIGN(size, sizeof(u64));
3851         padding = aligned_size - size;
3852         ev.tracing_data.header.size = sizeof(ev.tracing_data);
3853         ev.tracing_data.size = aligned_size;
3854
3855         process(tool, &ev, NULL, NULL);
3856
3857         /*
3858          * The put function will copy all the tracing data
3859          * stored in temp file to the pipe.
3860          */
3861         tracing_data_put(tdata);
3862
3863         ff = (struct feat_fd){ .fd = fd };
3864         if (write_padded(&ff, NULL, 0, padding))
3865                 return -1;
3866
3867         return aligned_size;
3868 }
3869
3870 int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3871                                      union perf_event *event,
3872                                      struct perf_session *session)
3873 {
3874         ssize_t size_read, padding, size = event->tracing_data.size;
3875         int fd = perf_data__fd(session->data);
3876         off_t offset = lseek(fd, 0, SEEK_CUR);
3877         char buf[BUFSIZ];
3878
3879         /* setup for reading amidst mmap */
3880         lseek(fd, offset + sizeof(struct tracing_data_event),
3881               SEEK_SET);
3882
3883         size_read = trace_report(fd, &session->tevent,
3884                                  session->repipe);
3885         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3886
3887         if (readn(fd, buf, padding) < 0) {
3888                 pr_err("%s: reading input file", __func__);
3889                 return -1;
3890         }
3891         if (session->repipe) {
3892                 int retw = write(STDOUT_FILENO, buf, padding);
3893                 if (retw <= 0 || retw != padding) {
3894                         pr_err("%s: repiping tracing data padding", __func__);
3895                         return -1;
3896                 }
3897         }
3898
3899         if (size_read + padding != size) {
3900                 pr_err("%s: tracing data size mismatch", __func__);
3901                 return -1;
3902         }
3903
3904         perf_evlist__prepare_tracepoint_events(session->evlist,
3905                                                session->tevent.pevent);
3906
3907         return size_read + padding;
3908 }
3909
3910 int perf_event__synthesize_build_id(struct perf_tool *tool,
3911                                     struct dso *pos, u16 misc,
3912                                     perf_event__handler_t process,
3913                                     struct machine *machine)
3914 {
3915         union perf_event ev;
3916         size_t len;
3917         int err = 0;
3918
3919         if (!pos->hit)
3920                 return err;
3921
3922         memset(&ev, 0, sizeof(ev));
3923
3924         len = pos->long_name_len + 1;
3925         len = PERF_ALIGN(len, NAME_ALIGN);
3926         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3927         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3928         ev.build_id.header.misc = misc;
3929         ev.build_id.pid = machine->pid;
3930         ev.build_id.header.size = sizeof(ev.build_id) + len;
3931         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3932
3933         err = process(tool, &ev, NULL, machine);
3934
3935         return err;
3936 }
3937
3938 int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3939                                  union perf_event *event,
3940                                  struct perf_session *session)
3941 {
3942         __event_process_build_id(&event->build_id,
3943                                  event->build_id.filename,
3944                                  session);
3945         return 0;
3946 }