GNU Linux-libre 4.9.283-gnu1
[releases.git] / tools / perf / util / auxtrace.c
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <sys/types.h>
17 #include <sys/mman.h>
18 #include <stdbool.h>
19 #include <ctype.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "symbol/kallsyms.h"
50 #include "auxtrace.h"
51
52 #include <linux/hash.h>
53
54 #include "event.h"
55 #include "session.h"
56 #include "debug.h"
57 #include <subcmd/parse-options.h>
58
59 #include "intel-pt.h"
60 #include "intel-bts.h"
61
62 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
63                         struct auxtrace_mmap_params *mp,
64                         void *userpg, int fd)
65 {
66         struct perf_event_mmap_page *pc = userpg;
67
68         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
69
70         mm->userpg = userpg;
71         mm->mask = mp->mask;
72         mm->len = mp->len;
73         mm->prev = 0;
74         mm->idx = mp->idx;
75         mm->tid = mp->tid;
76         mm->cpu = mp->cpu;
77
78         if (!mp->len) {
79                 mm->base = NULL;
80                 return 0;
81         }
82
83 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
84         pr_err("Cannot use AUX area tracing mmaps\n");
85         return -1;
86 #endif
87
88         pc->aux_offset = mp->offset;
89         pc->aux_size = mp->len;
90
91         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
92         if (mm->base == MAP_FAILED) {
93                 pr_debug2("failed to mmap AUX area\n");
94                 mm->base = NULL;
95                 return -1;
96         }
97
98         return 0;
99 }
100
101 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
102 {
103         if (mm->base) {
104                 munmap(mm->base, mm->len);
105                 mm->base = NULL;
106         }
107 }
108
109 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
110                                 off_t auxtrace_offset,
111                                 unsigned int auxtrace_pages,
112                                 bool auxtrace_overwrite)
113 {
114         if (auxtrace_pages) {
115                 mp->offset = auxtrace_offset;
116                 mp->len = auxtrace_pages * (size_t)page_size;
117                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
118                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
119                 pr_debug2("AUX area mmap length %zu\n", mp->len);
120         } else {
121                 mp->len = 0;
122         }
123 }
124
125 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
126                                    struct perf_evlist *evlist, int idx,
127                                    bool per_cpu)
128 {
129         mp->idx = idx;
130
131         if (per_cpu) {
132                 mp->cpu = evlist->cpus->map[idx];
133                 if (evlist->threads)
134                         mp->tid = thread_map__pid(evlist->threads, 0);
135                 else
136                         mp->tid = -1;
137         } else {
138                 mp->cpu = -1;
139                 mp->tid = thread_map__pid(evlist->threads, idx);
140         }
141 }
142
143 #define AUXTRACE_INIT_NR_QUEUES 32
144
145 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
146 {
147         struct auxtrace_queue *queue_array;
148         unsigned int max_nr_queues, i;
149
150         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
151         if (nr_queues > max_nr_queues)
152                 return NULL;
153
154         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
155         if (!queue_array)
156                 return NULL;
157
158         for (i = 0; i < nr_queues; i++) {
159                 INIT_LIST_HEAD(&queue_array[i].head);
160                 queue_array[i].priv = NULL;
161         }
162
163         return queue_array;
164 }
165
166 int auxtrace_queues__init(struct auxtrace_queues *queues)
167 {
168         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
169         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
170         if (!queues->queue_array)
171                 return -ENOMEM;
172         return 0;
173 }
174
175 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
176                                  unsigned int new_nr_queues)
177 {
178         unsigned int nr_queues = queues->nr_queues;
179         struct auxtrace_queue *queue_array;
180         unsigned int i;
181
182         if (!nr_queues)
183                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
184
185         while (nr_queues && nr_queues < new_nr_queues)
186                 nr_queues <<= 1;
187
188         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
189                 return -EINVAL;
190
191         queue_array = auxtrace_alloc_queue_array(nr_queues);
192         if (!queue_array)
193                 return -ENOMEM;
194
195         for (i = 0; i < queues->nr_queues; i++) {
196                 list_splice_tail(&queues->queue_array[i].head,
197                                  &queue_array[i].head);
198                 queue_array[i].tid = queues->queue_array[i].tid;
199                 queue_array[i].cpu = queues->queue_array[i].cpu;
200                 queue_array[i].set = queues->queue_array[i].set;
201                 queue_array[i].priv = queues->queue_array[i].priv;
202         }
203
204         queues->nr_queues = nr_queues;
205         queues->queue_array = queue_array;
206
207         return 0;
208 }
209
210 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
211 {
212         int fd = perf_data_file__fd(session->file);
213         void *p;
214         ssize_t ret;
215
216         if (size > SSIZE_MAX)
217                 return NULL;
218
219         p = malloc(size);
220         if (!p)
221                 return NULL;
222
223         ret = readn(fd, p, size);
224         if (ret != (ssize_t)size) {
225                 free(p);
226                 return NULL;
227         }
228
229         return p;
230 }
231
232 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
233                                        unsigned int idx,
234                                        struct auxtrace_buffer *buffer)
235 {
236         struct auxtrace_queue *queue;
237         int err;
238
239         if (idx >= queues->nr_queues) {
240                 err = auxtrace_queues__grow(queues, idx + 1);
241                 if (err)
242                         return err;
243         }
244
245         queue = &queues->queue_array[idx];
246
247         if (!queue->set) {
248                 queue->set = true;
249                 queue->tid = buffer->tid;
250                 queue->cpu = buffer->cpu;
251         }
252
253         buffer->buffer_nr = queues->next_buffer_nr++;
254
255         list_add_tail(&buffer->list, &queue->head);
256
257         queues->new_data = true;
258         queues->populated = true;
259
260         return 0;
261 }
262
263 /* Limit buffers to 32MiB on 32-bit */
264 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
265
266 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
267                                          unsigned int idx,
268                                          struct auxtrace_buffer *buffer)
269 {
270         u64 sz = buffer->size;
271         bool consecutive = false;
272         struct auxtrace_buffer *b;
273         int err;
274
275         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
276                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
277                 if (!b)
278                         return -ENOMEM;
279                 b->size = BUFFER_LIMIT_FOR_32_BIT;
280                 b->consecutive = consecutive;
281                 err = auxtrace_queues__add_buffer(queues, idx, b);
282                 if (err) {
283                         auxtrace_buffer__free(b);
284                         return err;
285                 }
286                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
287                 sz -= BUFFER_LIMIT_FOR_32_BIT;
288                 consecutive = true;
289         }
290
291         buffer->size = sz;
292         buffer->consecutive = consecutive;
293
294         return 0;
295 }
296
297 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
298                                              struct perf_session *session,
299                                              unsigned int idx,
300                                              struct auxtrace_buffer *buffer)
301 {
302         if (session->one_mmap) {
303                 buffer->data = buffer->data_offset - session->one_mmap_offset +
304                                session->one_mmap_addr;
305         } else if (perf_data_file__is_pipe(session->file)) {
306                 buffer->data = auxtrace_copy_data(buffer->size, session);
307                 if (!buffer->data)
308                         return -ENOMEM;
309                 buffer->data_needs_freeing = true;
310         } else if (BITS_PER_LONG == 32 &&
311                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
312                 int err;
313
314                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
315                 if (err)
316                         return err;
317         }
318
319         return auxtrace_queues__add_buffer(queues, idx, buffer);
320 }
321
322 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
323                                struct perf_session *session,
324                                union perf_event *event, off_t data_offset,
325                                struct auxtrace_buffer **buffer_ptr)
326 {
327         struct auxtrace_buffer *buffer;
328         unsigned int idx;
329         int err;
330
331         buffer = zalloc(sizeof(struct auxtrace_buffer));
332         if (!buffer)
333                 return -ENOMEM;
334
335         buffer->pid = -1;
336         buffer->tid = event->auxtrace.tid;
337         buffer->cpu = event->auxtrace.cpu;
338         buffer->data_offset = data_offset;
339         buffer->offset = event->auxtrace.offset;
340         buffer->reference = event->auxtrace.reference;
341         buffer->size = event->auxtrace.size;
342         idx = event->auxtrace.idx;
343
344         err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
345         if (err)
346                 goto out_err;
347
348         if (buffer_ptr)
349                 *buffer_ptr = buffer;
350
351         return 0;
352
353 out_err:
354         auxtrace_buffer__free(buffer);
355         return err;
356 }
357
358 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
359                                               struct perf_session *session,
360                                               off_t file_offset, size_t sz)
361 {
362         union perf_event *event;
363         int err;
364         char buf[PERF_SAMPLE_MAX_SIZE];
365
366         err = perf_session__peek_event(session, file_offset, buf,
367                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
368         if (err)
369                 return err;
370
371         if (event->header.type == PERF_RECORD_AUXTRACE) {
372                 if (event->header.size < sizeof(struct auxtrace_event) ||
373                     event->header.size != sz) {
374                         err = -EINVAL;
375                         goto out;
376                 }
377                 file_offset += event->header.size;
378                 err = auxtrace_queues__add_event(queues, session, event,
379                                                  file_offset, NULL);
380         }
381 out:
382         return err;
383 }
384
385 void auxtrace_queues__free(struct auxtrace_queues *queues)
386 {
387         unsigned int i;
388
389         for (i = 0; i < queues->nr_queues; i++) {
390                 while (!list_empty(&queues->queue_array[i].head)) {
391                         struct auxtrace_buffer *buffer;
392
393                         buffer = list_entry(queues->queue_array[i].head.next,
394                                             struct auxtrace_buffer, list);
395                         list_del(&buffer->list);
396                         auxtrace_buffer__free(buffer);
397                 }
398         }
399
400         zfree(&queues->queue_array);
401         queues->nr_queues = 0;
402 }
403
404 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
405                              unsigned int pos, unsigned int queue_nr,
406                              u64 ordinal)
407 {
408         unsigned int parent;
409
410         while (pos) {
411                 parent = (pos - 1) >> 1;
412                 if (heap_array[parent].ordinal <= ordinal)
413                         break;
414                 heap_array[pos] = heap_array[parent];
415                 pos = parent;
416         }
417         heap_array[pos].queue_nr = queue_nr;
418         heap_array[pos].ordinal = ordinal;
419 }
420
421 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
422                        u64 ordinal)
423 {
424         struct auxtrace_heap_item *heap_array;
425
426         if (queue_nr >= heap->heap_sz) {
427                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
428
429                 while (heap_sz <= queue_nr)
430                         heap_sz <<= 1;
431                 heap_array = realloc(heap->heap_array,
432                                      heap_sz * sizeof(struct auxtrace_heap_item));
433                 if (!heap_array)
434                         return -ENOMEM;
435                 heap->heap_array = heap_array;
436                 heap->heap_sz = heap_sz;
437         }
438
439         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
440
441         return 0;
442 }
443
444 void auxtrace_heap__free(struct auxtrace_heap *heap)
445 {
446         zfree(&heap->heap_array);
447         heap->heap_cnt = 0;
448         heap->heap_sz = 0;
449 }
450
451 void auxtrace_heap__pop(struct auxtrace_heap *heap)
452 {
453         unsigned int pos, last, heap_cnt = heap->heap_cnt;
454         struct auxtrace_heap_item *heap_array;
455
456         if (!heap_cnt)
457                 return;
458
459         heap->heap_cnt -= 1;
460
461         heap_array = heap->heap_array;
462
463         pos = 0;
464         while (1) {
465                 unsigned int left, right;
466
467                 left = (pos << 1) + 1;
468                 if (left >= heap_cnt)
469                         break;
470                 right = left + 1;
471                 if (right >= heap_cnt) {
472                         heap_array[pos] = heap_array[left];
473                         return;
474                 }
475                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
476                         heap_array[pos] = heap_array[left];
477                         pos = left;
478                 } else {
479                         heap_array[pos] = heap_array[right];
480                         pos = right;
481                 }
482         }
483
484         last = heap_cnt - 1;
485         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
486                          heap_array[last].ordinal);
487 }
488
489 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
490                                        struct perf_evlist *evlist)
491 {
492         if (itr)
493                 return itr->info_priv_size(itr, evlist);
494         return 0;
495 }
496
497 static int auxtrace_not_supported(void)
498 {
499         pr_err("AUX area tracing is not supported on this architecture\n");
500         return -EINVAL;
501 }
502
503 int auxtrace_record__info_fill(struct auxtrace_record *itr,
504                                struct perf_session *session,
505                                struct auxtrace_info_event *auxtrace_info,
506                                size_t priv_size)
507 {
508         if (itr)
509                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
510         return auxtrace_not_supported();
511 }
512
513 void auxtrace_record__free(struct auxtrace_record *itr)
514 {
515         if (itr)
516                 itr->free(itr);
517 }
518
519 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
520 {
521         if (itr && itr->snapshot_start)
522                 return itr->snapshot_start(itr);
523         return 0;
524 }
525
526 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
527 {
528         if (itr && itr->snapshot_finish)
529                 return itr->snapshot_finish(itr);
530         return 0;
531 }
532
533 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
534                                    struct auxtrace_mmap *mm,
535                                    unsigned char *data, u64 *head, u64 *old)
536 {
537         if (itr && itr->find_snapshot)
538                 return itr->find_snapshot(itr, idx, mm, data, head, old);
539         return 0;
540 }
541
542 int auxtrace_record__options(struct auxtrace_record *itr,
543                              struct perf_evlist *evlist,
544                              struct record_opts *opts)
545 {
546         if (itr)
547                 return itr->recording_options(itr, evlist, opts);
548         return 0;
549 }
550
551 u64 auxtrace_record__reference(struct auxtrace_record *itr)
552 {
553         if (itr)
554                 return itr->reference(itr);
555         return 0;
556 }
557
558 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
559                                     struct record_opts *opts, const char *str)
560 {
561         if (!str)
562                 return 0;
563
564         if (itr)
565                 return itr->parse_snapshot_options(itr, opts, str);
566
567         pr_err("No AUX area tracing to snapshot\n");
568         return -EINVAL;
569 }
570
571 struct auxtrace_record *__weak
572 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
573 {
574         *err = 0;
575         return NULL;
576 }
577
578 static int auxtrace_index__alloc(struct list_head *head)
579 {
580         struct auxtrace_index *auxtrace_index;
581
582         auxtrace_index = malloc(sizeof(struct auxtrace_index));
583         if (!auxtrace_index)
584                 return -ENOMEM;
585
586         auxtrace_index->nr = 0;
587         INIT_LIST_HEAD(&auxtrace_index->list);
588
589         list_add_tail(&auxtrace_index->list, head);
590
591         return 0;
592 }
593
594 void auxtrace_index__free(struct list_head *head)
595 {
596         struct auxtrace_index *auxtrace_index, *n;
597
598         list_for_each_entry_safe(auxtrace_index, n, head, list) {
599                 list_del(&auxtrace_index->list);
600                 free(auxtrace_index);
601         }
602 }
603
604 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
605 {
606         struct auxtrace_index *auxtrace_index;
607         int err;
608
609         if (list_empty(head)) {
610                 err = auxtrace_index__alloc(head);
611                 if (err)
612                         return NULL;
613         }
614
615         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
616
617         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
618                 err = auxtrace_index__alloc(head);
619                 if (err)
620                         return NULL;
621                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
622                                             list);
623         }
624
625         return auxtrace_index;
626 }
627
628 int auxtrace_index__auxtrace_event(struct list_head *head,
629                                    union perf_event *event, off_t file_offset)
630 {
631         struct auxtrace_index *auxtrace_index;
632         size_t nr;
633
634         auxtrace_index = auxtrace_index__last(head);
635         if (!auxtrace_index)
636                 return -ENOMEM;
637
638         nr = auxtrace_index->nr;
639         auxtrace_index->entries[nr].file_offset = file_offset;
640         auxtrace_index->entries[nr].sz = event->header.size;
641         auxtrace_index->nr += 1;
642
643         return 0;
644 }
645
646 static int auxtrace_index__do_write(int fd,
647                                     struct auxtrace_index *auxtrace_index)
648 {
649         struct auxtrace_index_entry ent;
650         size_t i;
651
652         for (i = 0; i < auxtrace_index->nr; i++) {
653                 ent.file_offset = auxtrace_index->entries[i].file_offset;
654                 ent.sz = auxtrace_index->entries[i].sz;
655                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
656                         return -errno;
657         }
658         return 0;
659 }
660
661 int auxtrace_index__write(int fd, struct list_head *head)
662 {
663         struct auxtrace_index *auxtrace_index;
664         u64 total = 0;
665         int err;
666
667         list_for_each_entry(auxtrace_index, head, list)
668                 total += auxtrace_index->nr;
669
670         if (writen(fd, &total, sizeof(total)) != sizeof(total))
671                 return -errno;
672
673         list_for_each_entry(auxtrace_index, head, list) {
674                 err = auxtrace_index__do_write(fd, auxtrace_index);
675                 if (err)
676                         return err;
677         }
678
679         return 0;
680 }
681
682 static int auxtrace_index__process_entry(int fd, struct list_head *head,
683                                          bool needs_swap)
684 {
685         struct auxtrace_index *auxtrace_index;
686         struct auxtrace_index_entry ent;
687         size_t nr;
688
689         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
690                 return -1;
691
692         auxtrace_index = auxtrace_index__last(head);
693         if (!auxtrace_index)
694                 return -1;
695
696         nr = auxtrace_index->nr;
697         if (needs_swap) {
698                 auxtrace_index->entries[nr].file_offset =
699                                                 bswap_64(ent.file_offset);
700                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
701         } else {
702                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
703                 auxtrace_index->entries[nr].sz = ent.sz;
704         }
705
706         auxtrace_index->nr = nr + 1;
707
708         return 0;
709 }
710
711 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
712                             bool needs_swap)
713 {
714         struct list_head *head = &session->auxtrace_index;
715         u64 nr;
716
717         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
718                 return -1;
719
720         if (needs_swap)
721                 nr = bswap_64(nr);
722
723         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
724                 return -1;
725
726         while (nr--) {
727                 int err;
728
729                 err = auxtrace_index__process_entry(fd, head, needs_swap);
730                 if (err)
731                         return -1;
732         }
733
734         return 0;
735 }
736
737 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
738                                                 struct perf_session *session,
739                                                 struct auxtrace_index_entry *ent)
740 {
741         return auxtrace_queues__add_indexed_event(queues, session,
742                                                   ent->file_offset, ent->sz);
743 }
744
745 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
746                                    struct perf_session *session)
747 {
748         struct auxtrace_index *auxtrace_index;
749         struct auxtrace_index_entry *ent;
750         size_t i;
751         int err;
752
753         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
754                 for (i = 0; i < auxtrace_index->nr; i++) {
755                         ent = &auxtrace_index->entries[i];
756                         err = auxtrace_queues__process_index_entry(queues,
757                                                                    session,
758                                                                    ent);
759                         if (err)
760                                 return err;
761                 }
762         }
763         return 0;
764 }
765
766 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
767                                               struct auxtrace_buffer *buffer)
768 {
769         if (buffer) {
770                 if (list_is_last(&buffer->list, &queue->head))
771                         return NULL;
772                 return list_entry(buffer->list.next, struct auxtrace_buffer,
773                                   list);
774         } else {
775                 if (list_empty(&queue->head))
776                         return NULL;
777                 return list_entry(queue->head.next, struct auxtrace_buffer,
778                                   list);
779         }
780 }
781
782 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
783 {
784         size_t adj = buffer->data_offset & (page_size - 1);
785         size_t size = buffer->size + adj;
786         off_t file_offset = buffer->data_offset - adj;
787         void *addr;
788
789         if (buffer->data)
790                 return buffer->data;
791
792         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
793         if (addr == MAP_FAILED)
794                 return NULL;
795
796         buffer->mmap_addr = addr;
797         buffer->mmap_size = size;
798
799         buffer->data = addr + adj;
800
801         return buffer->data;
802 }
803
804 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
805 {
806         if (!buffer->data || !buffer->mmap_addr)
807                 return;
808         munmap(buffer->mmap_addr, buffer->mmap_size);
809         buffer->mmap_addr = NULL;
810         buffer->mmap_size = 0;
811         buffer->data = NULL;
812         buffer->use_data = NULL;
813 }
814
815 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
816 {
817         auxtrace_buffer__put_data(buffer);
818         if (buffer->data_needs_freeing) {
819                 buffer->data_needs_freeing = false;
820                 zfree(&buffer->data);
821                 buffer->use_data = NULL;
822                 buffer->size = 0;
823         }
824 }
825
826 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
827 {
828         auxtrace_buffer__drop_data(buffer);
829         free(buffer);
830 }
831
832 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
833                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
834                           const char *msg)
835 {
836         size_t size;
837
838         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
839
840         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
841         auxtrace_error->type = type;
842         auxtrace_error->code = code;
843         auxtrace_error->cpu = cpu;
844         auxtrace_error->pid = pid;
845         auxtrace_error->tid = tid;
846         auxtrace_error->ip = ip;
847         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
848
849         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
850                strlen(auxtrace_error->msg) + 1;
851         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
852 }
853
854 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
855                                          struct perf_tool *tool,
856                                          struct perf_session *session,
857                                          perf_event__handler_t process)
858 {
859         union perf_event *ev;
860         size_t priv_size;
861         int err;
862
863         pr_debug2("Synthesizing auxtrace information\n");
864         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
865         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
866         if (!ev)
867                 return -ENOMEM;
868
869         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
870         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
871                                         priv_size;
872         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
873                                          priv_size);
874         if (err)
875                 goto out_free;
876
877         err = process(tool, ev, NULL, NULL);
878 out_free:
879         free(ev);
880         return err;
881 }
882
883 static bool auxtrace__dont_decode(struct perf_session *session)
884 {
885         return !session->itrace_synth_opts ||
886                session->itrace_synth_opts->dont_decode;
887 }
888
889 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
890                                       union perf_event *event,
891                                       struct perf_session *session)
892 {
893         enum auxtrace_type type = event->auxtrace_info.type;
894
895         if (dump_trace)
896                 fprintf(stdout, " type: %u\n", type);
897
898         switch (type) {
899         case PERF_AUXTRACE_INTEL_PT:
900                 return intel_pt_process_auxtrace_info(event, session);
901         case PERF_AUXTRACE_INTEL_BTS:
902                 return intel_bts_process_auxtrace_info(event, session);
903         case PERF_AUXTRACE_CS_ETM:
904         case PERF_AUXTRACE_UNKNOWN:
905         default:
906                 return -EINVAL;
907         }
908 }
909
910 s64 perf_event__process_auxtrace(struct perf_tool *tool,
911                                  union perf_event *event,
912                                  struct perf_session *session)
913 {
914         s64 err;
915
916         if (dump_trace)
917                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
918                         event->auxtrace.size, event->auxtrace.offset,
919                         event->auxtrace.reference, event->auxtrace.idx,
920                         event->auxtrace.tid, event->auxtrace.cpu);
921
922         if (auxtrace__dont_decode(session))
923                 return event->auxtrace.size;
924
925         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
926                 return -EINVAL;
927
928         err = session->auxtrace->process_auxtrace_event(session, event, tool);
929         if (err < 0)
930                 return err;
931
932         return event->auxtrace.size;
933 }
934
935 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
936 #define PERF_ITRACE_DEFAULT_PERIOD              100000
937 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
938 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
939 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
940 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
941
942 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
943 {
944         synth_opts->instructions = true;
945         synth_opts->branches = true;
946         synth_opts->transactions = true;
947         synth_opts->errors = true;
948         synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
949         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
950         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
951         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
952         synth_opts->initial_skip = 0;
953 }
954
955 /*
956  * Please check tools/perf/Documentation/perf-script.txt for information
957  * about the options parsed here, which is introduced after this cset,
958  * when support in 'perf script' for these options is introduced.
959  */
960 int itrace_parse_synth_opts(const struct option *opt, const char *str,
961                             int unset)
962 {
963         struct itrace_synth_opts *synth_opts = opt->value;
964         const char *p;
965         char *endptr;
966         bool period_type_set = false;
967         bool period_set = false;
968
969         synth_opts->set = true;
970
971         if (unset) {
972                 synth_opts->dont_decode = true;
973                 return 0;
974         }
975
976         if (!str) {
977                 itrace_synth_opts__set_default(synth_opts);
978                 return 0;
979         }
980
981         for (p = str; *p;) {
982                 switch (*p++) {
983                 case 'i':
984                         synth_opts->instructions = true;
985                         while (*p == ' ' || *p == ',')
986                                 p += 1;
987                         if (isdigit(*p)) {
988                                 synth_opts->period = strtoull(p, &endptr, 10);
989                                 period_set = true;
990                                 p = endptr;
991                                 while (*p == ' ' || *p == ',')
992                                         p += 1;
993                                 switch (*p++) {
994                                 case 'i':
995                                         synth_opts->period_type =
996                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
997                                         period_type_set = true;
998                                         break;
999                                 case 't':
1000                                         synth_opts->period_type =
1001                                                 PERF_ITRACE_PERIOD_TICKS;
1002                                         period_type_set = true;
1003                                         break;
1004                                 case 'm':
1005                                         synth_opts->period *= 1000;
1006                                         /* Fall through */
1007                                 case 'u':
1008                                         synth_opts->period *= 1000;
1009                                         /* Fall through */
1010                                 case 'n':
1011                                         if (*p++ != 's')
1012                                                 goto out_err;
1013                                         synth_opts->period_type =
1014                                                 PERF_ITRACE_PERIOD_NANOSECS;
1015                                         period_type_set = true;
1016                                         break;
1017                                 case '\0':
1018                                         goto out;
1019                                 default:
1020                                         goto out_err;
1021                                 }
1022                         }
1023                         break;
1024                 case 'b':
1025                         synth_opts->branches = true;
1026                         break;
1027                 case 'x':
1028                         synth_opts->transactions = true;
1029                         break;
1030                 case 'e':
1031                         synth_opts->errors = true;
1032                         break;
1033                 case 'd':
1034                         synth_opts->log = true;
1035                         break;
1036                 case 'c':
1037                         synth_opts->branches = true;
1038                         synth_opts->calls = true;
1039                         break;
1040                 case 'r':
1041                         synth_opts->branches = true;
1042                         synth_opts->returns = true;
1043                         break;
1044                 case 'g':
1045                         synth_opts->callchain = true;
1046                         synth_opts->callchain_sz =
1047                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1048                         while (*p == ' ' || *p == ',')
1049                                 p += 1;
1050                         if (isdigit(*p)) {
1051                                 unsigned int val;
1052
1053                                 val = strtoul(p, &endptr, 10);
1054                                 p = endptr;
1055                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1056                                         goto out_err;
1057                                 synth_opts->callchain_sz = val;
1058                         }
1059                         break;
1060                 case 'l':
1061                         synth_opts->last_branch = true;
1062                         synth_opts->last_branch_sz =
1063                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1064                         while (*p == ' ' || *p == ',')
1065                                 p += 1;
1066                         if (isdigit(*p)) {
1067                                 unsigned int val;
1068
1069                                 val = strtoul(p, &endptr, 10);
1070                                 p = endptr;
1071                                 if (!val ||
1072                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1073                                         goto out_err;
1074                                 synth_opts->last_branch_sz = val;
1075                         }
1076                         break;
1077                 case 's':
1078                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1079                         if (p == endptr)
1080                                 goto out_err;
1081                         p = endptr;
1082                         break;
1083                 case ' ':
1084                 case ',':
1085                         break;
1086                 default:
1087                         goto out_err;
1088                 }
1089         }
1090 out:
1091         if (synth_opts->instructions) {
1092                 if (!period_type_set)
1093                         synth_opts->period_type =
1094                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1095                 if (!period_set)
1096                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1097         }
1098
1099         return 0;
1100
1101 out_err:
1102         pr_err("Bad Instruction Tracing options '%s'\n", str);
1103         return -EINVAL;
1104 }
1105
1106 static const char * const auxtrace_error_type_name[] = {
1107         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1108 };
1109
1110 static const char *auxtrace_error_name(int type)
1111 {
1112         const char *error_type_name = NULL;
1113
1114         if (type < PERF_AUXTRACE_ERROR_MAX)
1115                 error_type_name = auxtrace_error_type_name[type];
1116         if (!error_type_name)
1117                 error_type_name = "unknown AUX";
1118         return error_type_name;
1119 }
1120
1121 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1122 {
1123         struct auxtrace_error_event *e = &event->auxtrace_error;
1124         int ret;
1125
1126         ret = fprintf(fp, " %s error type %u",
1127                       auxtrace_error_name(e->type), e->type);
1128         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1129                        e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1130         return ret;
1131 }
1132
1133 void perf_session__auxtrace_error_inc(struct perf_session *session,
1134                                       union perf_event *event)
1135 {
1136         struct auxtrace_error_event *e = &event->auxtrace_error;
1137
1138         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1139                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1140 }
1141
1142 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1143 {
1144         int i;
1145
1146         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1147                 if (!stats->nr_auxtrace_errors[i])
1148                         continue;
1149                 ui__warning("%u %s errors\n",
1150                             stats->nr_auxtrace_errors[i],
1151                             auxtrace_error_name(i));
1152         }
1153 }
1154
1155 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1156                                        union perf_event *event,
1157                                        struct perf_session *session)
1158 {
1159         if (auxtrace__dont_decode(session))
1160                 return 0;
1161
1162         perf_event__fprintf_auxtrace_error(event, stdout);
1163         return 0;
1164 }
1165
1166 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1167                                  struct auxtrace_record *itr,
1168                                  struct perf_tool *tool, process_auxtrace_t fn,
1169                                  bool snapshot, size_t snapshot_size)
1170 {
1171         u64 head, old = mm->prev, offset, ref;
1172         unsigned char *data = mm->base;
1173         size_t size, head_off, old_off, len1, len2, padding;
1174         union perf_event ev;
1175         void *data1, *data2;
1176
1177         if (snapshot) {
1178                 head = auxtrace_mmap__read_snapshot_head(mm);
1179                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1180                                                    &head, &old))
1181                         return -1;
1182         } else {
1183                 head = auxtrace_mmap__read_head(mm);
1184         }
1185
1186         if (old == head)
1187                 return 0;
1188
1189         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1190                   mm->idx, old, head, head - old);
1191
1192         if (mm->mask) {
1193                 head_off = head & mm->mask;
1194                 old_off = old & mm->mask;
1195         } else {
1196                 head_off = head % mm->len;
1197                 old_off = old % mm->len;
1198         }
1199
1200         if (head_off > old_off)
1201                 size = head_off - old_off;
1202         else
1203                 size = mm->len - (old_off - head_off);
1204
1205         if (snapshot && size > snapshot_size)
1206                 size = snapshot_size;
1207
1208         ref = auxtrace_record__reference(itr);
1209
1210         if (head > old || size <= head || mm->mask) {
1211                 offset = head - size;
1212         } else {
1213                 /*
1214                  * When the buffer size is not a power of 2, 'head' wraps at the
1215                  * highest multiple of the buffer size, so we have to subtract
1216                  * the remainder here.
1217                  */
1218                 u64 rem = (0ULL - mm->len) % mm->len;
1219
1220                 offset = head - size - rem;
1221         }
1222
1223         if (size > head_off) {
1224                 len1 = size - head_off;
1225                 data1 = &data[mm->len - len1];
1226                 len2 = head_off;
1227                 data2 = &data[0];
1228         } else {
1229                 len1 = size;
1230                 data1 = &data[head_off - len1];
1231                 len2 = 0;
1232                 data2 = NULL;
1233         }
1234
1235         if (itr->alignment) {
1236                 unsigned int unwanted = len1 % itr->alignment;
1237
1238                 len1 -= unwanted;
1239                 size -= unwanted;
1240         }
1241
1242         /* padding must be written by fn() e.g. record__process_auxtrace() */
1243         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1244         if (padding)
1245                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1246
1247         memset(&ev, 0, sizeof(ev));
1248         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1249         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1250         ev.auxtrace.size = size + padding;
1251         ev.auxtrace.offset = offset;
1252         ev.auxtrace.reference = ref;
1253         ev.auxtrace.idx = mm->idx;
1254         ev.auxtrace.tid = mm->tid;
1255         ev.auxtrace.cpu = mm->cpu;
1256
1257         if (fn(tool, &ev, data1, len1, data2, len2))
1258                 return -1;
1259
1260         mm->prev = head;
1261
1262         if (!snapshot) {
1263                 auxtrace_mmap__write_tail(mm, head);
1264                 if (itr->read_finish) {
1265                         int err;
1266
1267                         err = itr->read_finish(itr, mm->idx);
1268                         if (err < 0)
1269                                 return err;
1270                 }
1271         }
1272
1273         return 1;
1274 }
1275
1276 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1277                         struct perf_tool *tool, process_auxtrace_t fn)
1278 {
1279         return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1280 }
1281
1282 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1283                                  struct auxtrace_record *itr,
1284                                  struct perf_tool *tool, process_auxtrace_t fn,
1285                                  size_t snapshot_size)
1286 {
1287         return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1288 }
1289
1290 /**
1291  * struct auxtrace_cache - hash table to implement a cache
1292  * @hashtable: the hashtable
1293  * @sz: hashtable size (number of hlists)
1294  * @entry_size: size of an entry
1295  * @limit: limit the number of entries to this maximum, when reached the cache
1296  *         is dropped and caching begins again with an empty cache
1297  * @cnt: current number of entries
1298  * @bits: hashtable size (@sz = 2^@bits)
1299  */
1300 struct auxtrace_cache {
1301         struct hlist_head *hashtable;
1302         size_t sz;
1303         size_t entry_size;
1304         size_t limit;
1305         size_t cnt;
1306         unsigned int bits;
1307 };
1308
1309 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1310                                            unsigned int limit_percent)
1311 {
1312         struct auxtrace_cache *c;
1313         struct hlist_head *ht;
1314         size_t sz, i;
1315
1316         c = zalloc(sizeof(struct auxtrace_cache));
1317         if (!c)
1318                 return NULL;
1319
1320         sz = 1UL << bits;
1321
1322         ht = calloc(sz, sizeof(struct hlist_head));
1323         if (!ht)
1324                 goto out_free;
1325
1326         for (i = 0; i < sz; i++)
1327                 INIT_HLIST_HEAD(&ht[i]);
1328
1329         c->hashtable = ht;
1330         c->sz = sz;
1331         c->entry_size = entry_size;
1332         c->limit = (c->sz * limit_percent) / 100;
1333         c->bits = bits;
1334
1335         return c;
1336
1337 out_free:
1338         free(c);
1339         return NULL;
1340 }
1341
1342 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1343 {
1344         struct auxtrace_cache_entry *entry;
1345         struct hlist_node *tmp;
1346         size_t i;
1347
1348         if (!c)
1349                 return;
1350
1351         for (i = 0; i < c->sz; i++) {
1352                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1353                         hlist_del(&entry->hash);
1354                         auxtrace_cache__free_entry(c, entry);
1355                 }
1356         }
1357
1358         c->cnt = 0;
1359 }
1360
1361 void auxtrace_cache__free(struct auxtrace_cache *c)
1362 {
1363         if (!c)
1364                 return;
1365
1366         auxtrace_cache__drop(c);
1367         free(c->hashtable);
1368         free(c);
1369 }
1370
1371 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1372 {
1373         return malloc(c->entry_size);
1374 }
1375
1376 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1377                                 void *entry)
1378 {
1379         free(entry);
1380 }
1381
1382 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1383                         struct auxtrace_cache_entry *entry)
1384 {
1385         if (c->limit && ++c->cnt > c->limit)
1386                 auxtrace_cache__drop(c);
1387
1388         entry->key = key;
1389         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1390
1391         return 0;
1392 }
1393
1394 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1395 {
1396         struct auxtrace_cache_entry *entry;
1397         struct hlist_head *hlist;
1398
1399         if (!c)
1400                 return NULL;
1401
1402         hlist = &c->hashtable[hash_32(key, c->bits)];
1403         hlist_for_each_entry(entry, hlist, hash) {
1404                 if (entry->key == key)
1405                         return entry;
1406         }
1407
1408         return NULL;
1409 }
1410
1411 static void addr_filter__free_str(struct addr_filter *filt)
1412 {
1413         free(filt->str);
1414         filt->action   = NULL;
1415         filt->sym_from = NULL;
1416         filt->sym_to   = NULL;
1417         filt->filename = NULL;
1418         filt->str      = NULL;
1419 }
1420
1421 static struct addr_filter *addr_filter__new(void)
1422 {
1423         struct addr_filter *filt = zalloc(sizeof(*filt));
1424
1425         if (filt)
1426                 INIT_LIST_HEAD(&filt->list);
1427
1428         return filt;
1429 }
1430
1431 static void addr_filter__free(struct addr_filter *filt)
1432 {
1433         if (filt)
1434                 addr_filter__free_str(filt);
1435         free(filt);
1436 }
1437
1438 static void addr_filters__add(struct addr_filters *filts,
1439                               struct addr_filter *filt)
1440 {
1441         list_add_tail(&filt->list, &filts->head);
1442         filts->cnt += 1;
1443 }
1444
1445 static void addr_filters__del(struct addr_filters *filts,
1446                               struct addr_filter *filt)
1447 {
1448         list_del_init(&filt->list);
1449         filts->cnt -= 1;
1450 }
1451
1452 void addr_filters__init(struct addr_filters *filts)
1453 {
1454         INIT_LIST_HEAD(&filts->head);
1455         filts->cnt = 0;
1456 }
1457
1458 void addr_filters__exit(struct addr_filters *filts)
1459 {
1460         struct addr_filter *filt, *n;
1461
1462         list_for_each_entry_safe(filt, n, &filts->head, list) {
1463                 addr_filters__del(filts, filt);
1464                 addr_filter__free(filt);
1465         }
1466 }
1467
1468 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1469                             const char *str_delim)
1470 {
1471         *inp += strspn(*inp, " ");
1472
1473         if (isdigit(**inp)) {
1474                 char *endptr;
1475
1476                 if (!num)
1477                         return -EINVAL;
1478                 errno = 0;
1479                 *num = strtoull(*inp, &endptr, 0);
1480                 if (errno)
1481                         return -errno;
1482                 if (endptr == *inp)
1483                         return -EINVAL;
1484                 *inp = endptr;
1485         } else {
1486                 size_t n;
1487
1488                 if (!str)
1489                         return -EINVAL;
1490                 *inp += strspn(*inp, " ");
1491                 *str = *inp;
1492                 n = strcspn(*inp, str_delim);
1493                 if (!n)
1494                         return -EINVAL;
1495                 *inp += n;
1496                 if (**inp) {
1497                         **inp = '\0';
1498                         *inp += 1;
1499                 }
1500         }
1501         return 0;
1502 }
1503
1504 static int parse_action(struct addr_filter *filt)
1505 {
1506         if (!strcmp(filt->action, "filter")) {
1507                 filt->start = true;
1508                 filt->range = true;
1509         } else if (!strcmp(filt->action, "start")) {
1510                 filt->start = true;
1511         } else if (!strcmp(filt->action, "stop")) {
1512                 filt->start = false;
1513         } else if (!strcmp(filt->action, "tracestop")) {
1514                 filt->start = false;
1515                 filt->range = true;
1516                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1517         } else {
1518                 return -EINVAL;
1519         }
1520         return 0;
1521 }
1522
1523 static int parse_sym_idx(char **inp, int *idx)
1524 {
1525         *idx = -1;
1526
1527         *inp += strspn(*inp, " ");
1528
1529         if (**inp != '#')
1530                 return 0;
1531
1532         *inp += 1;
1533
1534         if (**inp == 'g' || **inp == 'G') {
1535                 *inp += 1;
1536                 *idx = 0;
1537         } else {
1538                 unsigned long num;
1539                 char *endptr;
1540
1541                 errno = 0;
1542                 num = strtoul(*inp, &endptr, 0);
1543                 if (errno)
1544                         return -errno;
1545                 if (endptr == *inp || num > INT_MAX)
1546                         return -EINVAL;
1547                 *inp = endptr;
1548                 *idx = num;
1549         }
1550
1551         return 0;
1552 }
1553
1554 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1555 {
1556         int err = parse_num_or_str(inp, num, str, " ");
1557
1558         if (!err && *str)
1559                 err = parse_sym_idx(inp, idx);
1560
1561         return err;
1562 }
1563
1564 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1565 {
1566         char *fstr;
1567         int err;
1568
1569         filt->str = fstr = strdup(*filter_inp);
1570         if (!fstr)
1571                 return -ENOMEM;
1572
1573         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1574         if (err)
1575                 goto out_err;
1576
1577         err = parse_action(filt);
1578         if (err)
1579                 goto out_err;
1580
1581         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1582                               &filt->sym_from_idx);
1583         if (err)
1584                 goto out_err;
1585
1586         fstr += strspn(fstr, " ");
1587
1588         if (*fstr == '/') {
1589                 fstr += 1;
1590                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1591                                       &filt->sym_to_idx);
1592                 if (err)
1593                         goto out_err;
1594                 filt->range = true;
1595         }
1596
1597         fstr += strspn(fstr, " ");
1598
1599         if (*fstr == '@') {
1600                 fstr += 1;
1601                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1602                 if (err)
1603                         goto out_err;
1604         }
1605
1606         fstr += strspn(fstr, " ,");
1607
1608         *filter_inp += fstr - filt->str;
1609
1610         return 0;
1611
1612 out_err:
1613         addr_filter__free_str(filt);
1614
1615         return err;
1616 }
1617
1618 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1619                                     const char *filter)
1620 {
1621         struct addr_filter *filt;
1622         const char *fstr = filter;
1623         int err;
1624
1625         while (*fstr) {
1626                 filt = addr_filter__new();
1627                 err = parse_one_filter(filt, &fstr);
1628                 if (err) {
1629                         addr_filter__free(filt);
1630                         addr_filters__exit(filts);
1631                         return err;
1632                 }
1633                 addr_filters__add(filts, filt);
1634         }
1635
1636         return 0;
1637 }
1638
1639 struct sym_args {
1640         const char      *name;
1641         u64             start;
1642         u64             size;
1643         int             idx;
1644         int             cnt;
1645         bool            started;
1646         bool            global;
1647         bool            selected;
1648         bool            duplicate;
1649         bool            near;
1650 };
1651
1652 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1653 {
1654         /* A function with the same name, and global or the n'th found or any */
1655         return symbol_type__is_a(type, MAP__FUNCTION) &&
1656                !strcmp(name, args->name) &&
1657                ((args->global && isupper(type)) ||
1658                 (args->selected && ++(args->cnt) == args->idx) ||
1659                 (!args->global && !args->selected));
1660 }
1661
1662 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1663 {
1664         struct sym_args *args = arg;
1665
1666         if (args->started) {
1667                 if (!args->size)
1668                         args->size = start - args->start;
1669                 if (args->selected) {
1670                         if (args->size)
1671                                 return 1;
1672                 } else if (kern_sym_match(args, name, type)) {
1673                         args->duplicate = true;
1674                         return 1;
1675                 }
1676         } else if (kern_sym_match(args, name, type)) {
1677                 args->started = true;
1678                 args->start = start;
1679         }
1680
1681         return 0;
1682 }
1683
1684 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1685 {
1686         struct sym_args *args = arg;
1687
1688         if (kern_sym_match(args, name, type)) {
1689                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1690                        ++args->cnt, start, type, name);
1691                 args->near = true;
1692         } else if (args->near) {
1693                 args->near = false;
1694                 pr_err("\t\twhich is near\t\t%s\n", name);
1695         }
1696
1697         return 0;
1698 }
1699
1700 static int sym_not_found_error(const char *sym_name, int idx)
1701 {
1702         if (idx > 0) {
1703                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1704                        idx, sym_name);
1705         } else if (!idx) {
1706                 pr_err("Global symbol '%s' not found.\n", sym_name);
1707         } else {
1708                 pr_err("Symbol '%s' not found.\n", sym_name);
1709         }
1710         pr_err("Note that symbols must be functions.\n");
1711
1712         return -EINVAL;
1713 }
1714
1715 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1716 {
1717         struct sym_args args = {
1718                 .name = sym_name,
1719                 .idx = idx,
1720                 .global = !idx,
1721                 .selected = idx > 0,
1722         };
1723         int err;
1724
1725         *start = 0;
1726         *size = 0;
1727
1728         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1729         if (err < 0) {
1730                 pr_err("Failed to parse /proc/kallsyms\n");
1731                 return err;
1732         }
1733
1734         if (args.duplicate) {
1735                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1736                 args.cnt = 0;
1737                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1738                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1739                        sym_name);
1740                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1741                 return -EINVAL;
1742         }
1743
1744         if (!args.started) {
1745                 pr_err("Kernel symbol lookup: ");
1746                 return sym_not_found_error(sym_name, idx);
1747         }
1748
1749         *start = args.start;
1750         *size = args.size;
1751
1752         return 0;
1753 }
1754
1755 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1756                                char type, u64 start)
1757 {
1758         struct sym_args *args = arg;
1759
1760         if (!symbol_type__is_a(type, MAP__FUNCTION))
1761                 return 0;
1762
1763         if (!args->started) {
1764                 args->started = true;
1765                 args->start = start;
1766         }
1767         /* Don't know exactly where the kernel ends, so we add a page */
1768         args->size = round_up(start, page_size) + page_size - args->start;
1769
1770         return 0;
1771 }
1772
1773 static int addr_filter__entire_kernel(struct addr_filter *filt)
1774 {
1775         struct sym_args args = { .started = false };
1776         int err;
1777
1778         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1779         if (err < 0 || !args.started) {
1780                 pr_err("Failed to parse /proc/kallsyms\n");
1781                 return err;
1782         }
1783
1784         filt->addr = args.start;
1785         filt->size = args.size;
1786
1787         return 0;
1788 }
1789
1790 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1791 {
1792         if (start + size >= filt->addr)
1793                 return 0;
1794
1795         if (filt->sym_from) {
1796                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1797                        filt->sym_to, start, filt->sym_from, filt->addr);
1798         } else {
1799                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1800                        filt->sym_to, start, filt->addr);
1801         }
1802
1803         return -EINVAL;
1804 }
1805
1806 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1807 {
1808         bool no_size = false;
1809         u64 start, size;
1810         int err;
1811
1812         if (symbol_conf.kptr_restrict) {
1813                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1814                 return -EINVAL;
1815         }
1816
1817         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1818                 return addr_filter__entire_kernel(filt);
1819
1820         if (filt->sym_from) {
1821                 err = find_kern_sym(filt->sym_from, &start, &size,
1822                                     filt->sym_from_idx);
1823                 if (err)
1824                         return err;
1825                 filt->addr = start;
1826                 if (filt->range && !filt->size && !filt->sym_to) {
1827                         filt->size = size;
1828                         no_size = !size;
1829                 }
1830         }
1831
1832         if (filt->sym_to) {
1833                 err = find_kern_sym(filt->sym_to, &start, &size,
1834                                     filt->sym_to_idx);
1835                 if (err)
1836                         return err;
1837
1838                 err = check_end_after_start(filt, start, size);
1839                 if (err)
1840                         return err;
1841                 filt->size = start + size - filt->addr;
1842                 no_size = !size;
1843         }
1844
1845         /* The very last symbol in kallsyms does not imply a particular size */
1846         if (no_size) {
1847                 pr_err("Cannot determine size of symbol '%s'\n",
1848                        filt->sym_to ? filt->sym_to : filt->sym_from);
1849                 return -EINVAL;
1850         }
1851
1852         return 0;
1853 }
1854
1855 static struct dso *load_dso(const char *name)
1856 {
1857         struct map *map;
1858         struct dso *dso;
1859
1860         map = dso__new_map(name);
1861         if (!map)
1862                 return NULL;
1863
1864         map__load(map);
1865
1866         dso = dso__get(map->dso);
1867
1868         map__put(map);
1869
1870         return dso;
1871 }
1872
1873 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1874                           int idx)
1875 {
1876         /* Same name, and global or the n'th found or any */
1877         return !arch__compare_symbol_names(name, sym->name) &&
1878                ((!idx && sym->binding == STB_GLOBAL) ||
1879                 (idx > 0 && ++*cnt == idx) ||
1880                 idx < 0);
1881 }
1882
1883 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1884 {
1885         struct symbol *sym;
1886         bool near = false;
1887         int cnt = 0;
1888
1889         pr_err("Multiple symbols with name '%s'\n", sym_name);
1890
1891         sym = dso__first_symbol(dso, MAP__FUNCTION);
1892         while (sym) {
1893                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1894                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1895                                ++cnt, sym->start,
1896                                sym->binding == STB_GLOBAL ? 'g' :
1897                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1898                                sym->name);
1899                         near = true;
1900                 } else if (near) {
1901                         near = false;
1902                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1903                 }
1904                 sym = dso__next_symbol(sym);
1905         }
1906
1907         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1908                sym_name);
1909         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1910 }
1911
1912 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1913                         u64 *size, int idx)
1914 {
1915         struct symbol *sym;
1916         int cnt = 0;
1917
1918         *start = 0;
1919         *size = 0;
1920
1921         sym = dso__first_symbol(dso, MAP__FUNCTION);
1922         while (sym) {
1923                 if (*start) {
1924                         if (!*size)
1925                                 *size = sym->start - *start;
1926                         if (idx > 0) {
1927                                 if (*size)
1928                                         return 1;
1929                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1930                                 print_duplicate_syms(dso, sym_name);
1931                                 return -EINVAL;
1932                         }
1933                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1934                         *start = sym->start;
1935                         *size = sym->end - sym->start;
1936                 }
1937                 sym = dso__next_symbol(sym);
1938         }
1939
1940         if (!*start)
1941                 return sym_not_found_error(sym_name, idx);
1942
1943         return 0;
1944 }
1945
1946 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1947 {
1948         struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1949         struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1950
1951         if (!first_sym || !last_sym) {
1952                 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1953                        filt->filename);
1954                 return -EINVAL;
1955         }
1956
1957         filt->addr = first_sym->start;
1958         filt->size = last_sym->end - first_sym->start;
1959
1960         return 0;
1961 }
1962
1963 static int addr_filter__resolve_syms(struct addr_filter *filt)
1964 {
1965         u64 start, size;
1966         struct dso *dso;
1967         int err = 0;
1968
1969         if (!filt->sym_from && !filt->sym_to)
1970                 return 0;
1971
1972         if (!filt->filename)
1973                 return addr_filter__resolve_kernel_syms(filt);
1974
1975         dso = load_dso(filt->filename);
1976         if (!dso) {
1977                 pr_err("Failed to load symbols from: %s\n", filt->filename);
1978                 return -EINVAL;
1979         }
1980
1981         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
1982                 err = addr_filter__entire_dso(filt, dso);
1983                 goto put_dso;
1984         }
1985
1986         if (filt->sym_from) {
1987                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
1988                                    filt->sym_from_idx);
1989                 if (err)
1990                         goto put_dso;
1991                 filt->addr = start;
1992                 if (filt->range && !filt->size && !filt->sym_to)
1993                         filt->size = size;
1994         }
1995
1996         if (filt->sym_to) {
1997                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
1998                                    filt->sym_to_idx);
1999                 if (err)
2000                         goto put_dso;
2001
2002                 err = check_end_after_start(filt, start, size);
2003                 if (err)
2004                         return err;
2005
2006                 filt->size = start + size - filt->addr;
2007         }
2008
2009 put_dso:
2010         dso__put(dso);
2011
2012         return err;
2013 }
2014
2015 static char *addr_filter__to_str(struct addr_filter *filt)
2016 {
2017         char filename_buf[PATH_MAX];
2018         const char *at = "";
2019         const char *fn = "";
2020         char *filter;
2021         int err;
2022
2023         if (filt->filename) {
2024                 at = "@";
2025                 fn = realpath(filt->filename, filename_buf);
2026                 if (!fn)
2027                         return NULL;
2028         }
2029
2030         if (filt->range) {
2031                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2032                                filt->action, filt->addr, filt->size, at, fn);
2033         } else {
2034                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2035                                filt->action, filt->addr, at, fn);
2036         }
2037
2038         return err < 0 ? NULL : filter;
2039 }
2040
2041 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2042                              int max_nr)
2043 {
2044         struct addr_filters filts;
2045         struct addr_filter *filt;
2046         int err;
2047
2048         addr_filters__init(&filts);
2049
2050         err = addr_filters__parse_bare_filter(&filts, filter);
2051         if (err)
2052                 goto out_exit;
2053
2054         if (filts.cnt > max_nr) {
2055                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2056                        filts.cnt, max_nr);
2057                 err = -EINVAL;
2058                 goto out_exit;
2059         }
2060
2061         list_for_each_entry(filt, &filts.head, list) {
2062                 char *new_filter;
2063
2064                 err = addr_filter__resolve_syms(filt);
2065                 if (err)
2066                         goto out_exit;
2067
2068                 new_filter = addr_filter__to_str(filt);
2069                 if (!new_filter) {
2070                         err = -ENOMEM;
2071                         goto out_exit;
2072                 }
2073
2074                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2075                         err = -ENOMEM;
2076                         goto out_exit;
2077                 }
2078         }
2079
2080 out_exit:
2081         addr_filters__exit(&filts);
2082
2083         if (err) {
2084                 pr_err("Failed to parse address filter: '%s'\n", filter);
2085                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2086                 pr_err("Where multiple filters are separated by space or comma.\n");
2087         }
2088
2089         return err;
2090 }
2091
2092 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2093 {
2094         struct perf_pmu *pmu = NULL;
2095
2096         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2097                 if (pmu->type == evsel->attr.type)
2098                         break;
2099         }
2100
2101         return pmu;
2102 }
2103
2104 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2105 {
2106         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2107         int nr_addr_filters = 0;
2108
2109         if (!pmu)
2110                 return 0;
2111
2112         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2113
2114         return nr_addr_filters;
2115 }
2116
2117 int auxtrace_parse_filters(struct perf_evlist *evlist)
2118 {
2119         struct perf_evsel *evsel;
2120         char *filter;
2121         int err, max_nr;
2122
2123         evlist__for_each_entry(evlist, evsel) {
2124                 filter = evsel->filter;
2125                 max_nr = perf_evsel__nr_addr_filter(evsel);
2126                 if (!filter || !max_nr)
2127                         continue;
2128                 evsel->filter = NULL;
2129                 err = parse_addr_filter(evsel, filter, max_nr);
2130                 free(filter);
2131                 if (err)
2132                         return err;
2133                 pr_debug("Address filter: %s\n", evsel->filter);
2134         }
2135
2136         return 0;
2137 }