GNU Linux-libre 5.10.217-gnu1
[releases.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41
42 #include <linux/hash.h>
43
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int perf_evlist__regroup(struct evlist *evlist,
66                                 struct evsel *leader,
67                                 struct evsel *last)
68 {
69         struct evsel *evsel;
70         bool grp;
71
72         if (!evsel__is_group_leader(leader))
73                 return -EINVAL;
74
75         grp = false;
76         evlist__for_each_entry(evlist, evsel) {
77                 if (grp) {
78                         if (!(evsel->leader == leader ||
79                              (evsel->leader == evsel &&
80                               evsel->core.nr_members <= 1)))
81                                 return -EINVAL;
82                 } else if (evsel == leader) {
83                         grp = true;
84                 }
85                 if (evsel == last)
86                         break;
87         }
88
89         grp = false;
90         evlist__for_each_entry(evlist, evsel) {
91                 if (grp) {
92                         if (evsel->leader != leader) {
93                                 evsel->leader = leader;
94                                 if (leader->core.nr_members < 1)
95                                         leader->core.nr_members = 1;
96                                 leader->core.nr_members += 1;
97                         }
98                 } else if (evsel == leader) {
99                         grp = true;
100                 }
101                 if (evsel == last)
102                         break;
103         }
104
105         return 0;
106 }
107
108 static bool auxtrace__dont_decode(struct perf_session *session)
109 {
110         return !session->itrace_synth_opts ||
111                session->itrace_synth_opts->dont_decode;
112 }
113
114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
115                         struct auxtrace_mmap_params *mp,
116                         void *userpg, int fd)
117 {
118         struct perf_event_mmap_page *pc = userpg;
119
120         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
121
122         mm->userpg = userpg;
123         mm->mask = mp->mask;
124         mm->len = mp->len;
125         mm->prev = 0;
126         mm->idx = mp->idx;
127         mm->tid = mp->tid;
128         mm->cpu = mp->cpu;
129
130         if (!mp->len) {
131                 mm->base = NULL;
132                 return 0;
133         }
134
135 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
136         pr_err("Cannot use AUX area tracing mmaps\n");
137         return -1;
138 #endif
139
140         pc->aux_offset = mp->offset;
141         pc->aux_size = mp->len;
142
143         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
144         if (mm->base == MAP_FAILED) {
145                 pr_debug2("failed to mmap AUX area\n");
146                 mm->base = NULL;
147                 return -1;
148         }
149
150         return 0;
151 }
152
153 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
154 {
155         if (mm->base) {
156                 munmap(mm->base, mm->len);
157                 mm->base = NULL;
158         }
159 }
160
161 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
162                                 off_t auxtrace_offset,
163                                 unsigned int auxtrace_pages,
164                                 bool auxtrace_overwrite)
165 {
166         if (auxtrace_pages) {
167                 mp->offset = auxtrace_offset;
168                 mp->len = auxtrace_pages * (size_t)page_size;
169                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
170                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
171                 pr_debug2("AUX area mmap length %zu\n", mp->len);
172         } else {
173                 mp->len = 0;
174         }
175 }
176
177 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
178                                    struct evlist *evlist, int idx,
179                                    bool per_cpu)
180 {
181         mp->idx = idx;
182
183         if (per_cpu) {
184                 mp->cpu = evlist->core.cpus->map[idx];
185                 if (evlist->core.threads)
186                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
187                 else
188                         mp->tid = -1;
189         } else {
190                 mp->cpu = -1;
191                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
192         }
193 }
194
195 #define AUXTRACE_INIT_NR_QUEUES 32
196
197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
198 {
199         struct auxtrace_queue *queue_array;
200         unsigned int max_nr_queues, i;
201
202         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
203         if (nr_queues > max_nr_queues)
204                 return NULL;
205
206         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
207         if (!queue_array)
208                 return NULL;
209
210         for (i = 0; i < nr_queues; i++) {
211                 INIT_LIST_HEAD(&queue_array[i].head);
212                 queue_array[i].priv = NULL;
213         }
214
215         return queue_array;
216 }
217
218 int auxtrace_queues__init(struct auxtrace_queues *queues)
219 {
220         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
221         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
222         if (!queues->queue_array)
223                 return -ENOMEM;
224         return 0;
225 }
226
227 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
228                                  unsigned int new_nr_queues)
229 {
230         unsigned int nr_queues = queues->nr_queues;
231         struct auxtrace_queue *queue_array;
232         unsigned int i;
233
234         if (!nr_queues)
235                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
236
237         while (nr_queues && nr_queues < new_nr_queues)
238                 nr_queues <<= 1;
239
240         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
241                 return -EINVAL;
242
243         queue_array = auxtrace_alloc_queue_array(nr_queues);
244         if (!queue_array)
245                 return -ENOMEM;
246
247         for (i = 0; i < queues->nr_queues; i++) {
248                 list_splice_tail(&queues->queue_array[i].head,
249                                  &queue_array[i].head);
250                 queue_array[i].tid = queues->queue_array[i].tid;
251                 queue_array[i].cpu = queues->queue_array[i].cpu;
252                 queue_array[i].set = queues->queue_array[i].set;
253                 queue_array[i].priv = queues->queue_array[i].priv;
254         }
255
256         queues->nr_queues = nr_queues;
257         queues->queue_array = queue_array;
258
259         return 0;
260 }
261
262 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
263 {
264         int fd = perf_data__fd(session->data);
265         void *p;
266         ssize_t ret;
267
268         if (size > SSIZE_MAX)
269                 return NULL;
270
271         p = malloc(size);
272         if (!p)
273                 return NULL;
274
275         ret = readn(fd, p, size);
276         if (ret != (ssize_t)size) {
277                 free(p);
278                 return NULL;
279         }
280
281         return p;
282 }
283
284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
285                                          unsigned int idx,
286                                          struct auxtrace_buffer *buffer)
287 {
288         struct auxtrace_queue *queue;
289         int err;
290
291         if (idx >= queues->nr_queues) {
292                 err = auxtrace_queues__grow(queues, idx + 1);
293                 if (err)
294                         return err;
295         }
296
297         queue = &queues->queue_array[idx];
298
299         if (!queue->set) {
300                 queue->set = true;
301                 queue->tid = buffer->tid;
302                 queue->cpu = buffer->cpu;
303         }
304
305         buffer->buffer_nr = queues->next_buffer_nr++;
306
307         list_add_tail(&buffer->list, &queue->head);
308
309         queues->new_data = true;
310         queues->populated = true;
311
312         return 0;
313 }
314
315 /* Limit buffers to 32MiB on 32-bit */
316 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
317
318 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
319                                          unsigned int idx,
320                                          struct auxtrace_buffer *buffer)
321 {
322         u64 sz = buffer->size;
323         bool consecutive = false;
324         struct auxtrace_buffer *b;
325         int err;
326
327         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
328                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
329                 if (!b)
330                         return -ENOMEM;
331                 b->size = BUFFER_LIMIT_FOR_32_BIT;
332                 b->consecutive = consecutive;
333                 err = auxtrace_queues__queue_buffer(queues, idx, b);
334                 if (err) {
335                         auxtrace_buffer__free(b);
336                         return err;
337                 }
338                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
339                 sz -= BUFFER_LIMIT_FOR_32_BIT;
340                 consecutive = true;
341         }
342
343         buffer->size = sz;
344         buffer->consecutive = consecutive;
345
346         return 0;
347 }
348
349 static bool filter_cpu(struct perf_session *session, int cpu)
350 {
351         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
352
353         return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
354 }
355
356 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
357                                        struct perf_session *session,
358                                        unsigned int idx,
359                                        struct auxtrace_buffer *buffer,
360                                        struct auxtrace_buffer **buffer_ptr)
361 {
362         int err = -ENOMEM;
363
364         if (filter_cpu(session, buffer->cpu))
365                 return 0;
366
367         buffer = memdup(buffer, sizeof(*buffer));
368         if (!buffer)
369                 return -ENOMEM;
370
371         if (session->one_mmap) {
372                 buffer->data = buffer->data_offset - session->one_mmap_offset +
373                                session->one_mmap_addr;
374         } else if (perf_data__is_pipe(session->data)) {
375                 buffer->data = auxtrace_copy_data(buffer->size, session);
376                 if (!buffer->data)
377                         goto out_free;
378                 buffer->data_needs_freeing = true;
379         } else if (BITS_PER_LONG == 32 &&
380                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
381                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
382                 if (err)
383                         goto out_free;
384         }
385
386         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
387         if (err)
388                 goto out_free;
389
390         /* FIXME: Doesn't work for split buffer */
391         if (buffer_ptr)
392                 *buffer_ptr = buffer;
393
394         return 0;
395
396 out_free:
397         auxtrace_buffer__free(buffer);
398         return err;
399 }
400
401 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
402                                struct perf_session *session,
403                                union perf_event *event, off_t data_offset,
404                                struct auxtrace_buffer **buffer_ptr)
405 {
406         struct auxtrace_buffer buffer = {
407                 .pid = -1,
408                 .tid = event->auxtrace.tid,
409                 .cpu = event->auxtrace.cpu,
410                 .data_offset = data_offset,
411                 .offset = event->auxtrace.offset,
412                 .reference = event->auxtrace.reference,
413                 .size = event->auxtrace.size,
414         };
415         unsigned int idx = event->auxtrace.idx;
416
417         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
418                                            buffer_ptr);
419 }
420
421 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
422                                               struct perf_session *session,
423                                               off_t file_offset, size_t sz)
424 {
425         union perf_event *event;
426         int err;
427         char buf[PERF_SAMPLE_MAX_SIZE];
428
429         err = perf_session__peek_event(session, file_offset, buf,
430                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
431         if (err)
432                 return err;
433
434         if (event->header.type == PERF_RECORD_AUXTRACE) {
435                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
436                     event->header.size != sz) {
437                         err = -EINVAL;
438                         goto out;
439                 }
440                 file_offset += event->header.size;
441                 err = auxtrace_queues__add_event(queues, session, event,
442                                                  file_offset, NULL);
443         }
444 out:
445         return err;
446 }
447
448 void auxtrace_queues__free(struct auxtrace_queues *queues)
449 {
450         unsigned int i;
451
452         for (i = 0; i < queues->nr_queues; i++) {
453                 while (!list_empty(&queues->queue_array[i].head)) {
454                         struct auxtrace_buffer *buffer;
455
456                         buffer = list_entry(queues->queue_array[i].head.next,
457                                             struct auxtrace_buffer, list);
458                         list_del_init(&buffer->list);
459                         auxtrace_buffer__free(buffer);
460                 }
461         }
462
463         zfree(&queues->queue_array);
464         queues->nr_queues = 0;
465 }
466
467 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
468                              unsigned int pos, unsigned int queue_nr,
469                              u64 ordinal)
470 {
471         unsigned int parent;
472
473         while (pos) {
474                 parent = (pos - 1) >> 1;
475                 if (heap_array[parent].ordinal <= ordinal)
476                         break;
477                 heap_array[pos] = heap_array[parent];
478                 pos = parent;
479         }
480         heap_array[pos].queue_nr = queue_nr;
481         heap_array[pos].ordinal = ordinal;
482 }
483
484 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
485                        u64 ordinal)
486 {
487         struct auxtrace_heap_item *heap_array;
488
489         if (queue_nr >= heap->heap_sz) {
490                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
491
492                 while (heap_sz <= queue_nr)
493                         heap_sz <<= 1;
494                 heap_array = realloc(heap->heap_array,
495                                      heap_sz * sizeof(struct auxtrace_heap_item));
496                 if (!heap_array)
497                         return -ENOMEM;
498                 heap->heap_array = heap_array;
499                 heap->heap_sz = heap_sz;
500         }
501
502         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
503
504         return 0;
505 }
506
507 void auxtrace_heap__free(struct auxtrace_heap *heap)
508 {
509         zfree(&heap->heap_array);
510         heap->heap_cnt = 0;
511         heap->heap_sz = 0;
512 }
513
514 void auxtrace_heap__pop(struct auxtrace_heap *heap)
515 {
516         unsigned int pos, last, heap_cnt = heap->heap_cnt;
517         struct auxtrace_heap_item *heap_array;
518
519         if (!heap_cnt)
520                 return;
521
522         heap->heap_cnt -= 1;
523
524         heap_array = heap->heap_array;
525
526         pos = 0;
527         while (1) {
528                 unsigned int left, right;
529
530                 left = (pos << 1) + 1;
531                 if (left >= heap_cnt)
532                         break;
533                 right = left + 1;
534                 if (right >= heap_cnt) {
535                         heap_array[pos] = heap_array[left];
536                         return;
537                 }
538                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
539                         heap_array[pos] = heap_array[left];
540                         pos = left;
541                 } else {
542                         heap_array[pos] = heap_array[right];
543                         pos = right;
544                 }
545         }
546
547         last = heap_cnt - 1;
548         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
549                          heap_array[last].ordinal);
550 }
551
552 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
553                                        struct evlist *evlist)
554 {
555         if (itr)
556                 return itr->info_priv_size(itr, evlist);
557         return 0;
558 }
559
560 static int auxtrace_not_supported(void)
561 {
562         pr_err("AUX area tracing is not supported on this architecture\n");
563         return -EINVAL;
564 }
565
566 int auxtrace_record__info_fill(struct auxtrace_record *itr,
567                                struct perf_session *session,
568                                struct perf_record_auxtrace_info *auxtrace_info,
569                                size_t priv_size)
570 {
571         if (itr)
572                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
573         return auxtrace_not_supported();
574 }
575
576 void auxtrace_record__free(struct auxtrace_record *itr)
577 {
578         if (itr)
579                 itr->free(itr);
580 }
581
582 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
583 {
584         if (itr && itr->snapshot_start)
585                 return itr->snapshot_start(itr);
586         return 0;
587 }
588
589 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
590 {
591         if (!on_exit && itr && itr->snapshot_finish)
592                 return itr->snapshot_finish(itr);
593         return 0;
594 }
595
596 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
597                                    struct auxtrace_mmap *mm,
598                                    unsigned char *data, u64 *head, u64 *old)
599 {
600         if (itr && itr->find_snapshot)
601                 return itr->find_snapshot(itr, idx, mm, data, head, old);
602         return 0;
603 }
604
605 int auxtrace_record__options(struct auxtrace_record *itr,
606                              struct evlist *evlist,
607                              struct record_opts *opts)
608 {
609         if (itr) {
610                 itr->evlist = evlist;
611                 return itr->recording_options(itr, evlist, opts);
612         }
613         return 0;
614 }
615
616 u64 auxtrace_record__reference(struct auxtrace_record *itr)
617 {
618         if (itr)
619                 return itr->reference(itr);
620         return 0;
621 }
622
623 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
624                                     struct record_opts *opts, const char *str)
625 {
626         if (!str)
627                 return 0;
628
629         /* PMU-agnostic options */
630         switch (*str) {
631         case 'e':
632                 opts->auxtrace_snapshot_on_exit = true;
633                 str++;
634                 break;
635         default:
636                 break;
637         }
638
639         if (itr && itr->parse_snapshot_options)
640                 return itr->parse_snapshot_options(itr, opts, str);
641
642         pr_err("No AUX area tracing to snapshot\n");
643         return -EINVAL;
644 }
645
646 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
647 {
648         struct evsel *evsel;
649
650         if (!itr->evlist || !itr->pmu)
651                 return -EINVAL;
652
653         evlist__for_each_entry(itr->evlist, evsel) {
654                 if (evsel->core.attr.type == itr->pmu->type) {
655                         if (evsel->disabled)
656                                 return 0;
657                         return perf_evlist__enable_event_idx(itr->evlist, evsel,
658                                                              idx);
659                 }
660         }
661         return -EINVAL;
662 }
663
664 /*
665  * Event record size is 16-bit which results in a maximum size of about 64KiB.
666  * Allow about 4KiB for the rest of the sample record, to give a maximum
667  * AUX area sample size of 60KiB.
668  */
669 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
670
671 /* Arbitrary default size if no other default provided */
672 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
673
674 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
675                                              struct record_opts *opts)
676 {
677         struct evsel *evsel;
678         bool has_aux_leader = false;
679         u32 sz;
680
681         evlist__for_each_entry(evlist, evsel) {
682                 sz = evsel->core.attr.aux_sample_size;
683                 if (evsel__is_group_leader(evsel)) {
684                         has_aux_leader = evsel__is_aux_event(evsel);
685                         if (sz) {
686                                 if (has_aux_leader)
687                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
688                                 else
689                                         pr_err("Cannot add AUX area sampling to a group leader\n");
690                                 return -EINVAL;
691                         }
692                 }
693                 if (sz > MAX_AUX_SAMPLE_SIZE) {
694                         pr_err("AUX area sample size %u too big, max. %d\n",
695                                sz, MAX_AUX_SAMPLE_SIZE);
696                         return -EINVAL;
697                 }
698                 if (sz) {
699                         if (!has_aux_leader) {
700                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
701                                 return -EINVAL;
702                         }
703                         evsel__set_sample_bit(evsel, AUX);
704                         opts->auxtrace_sample_mode = true;
705                 } else {
706                         evsel__reset_sample_bit(evsel, AUX);
707                 }
708         }
709
710         if (!opts->auxtrace_sample_mode) {
711                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
712                 return -EINVAL;
713         }
714
715         if (!perf_can_aux_sample()) {
716                 pr_err("AUX area sampling is not supported by kernel\n");
717                 return -EINVAL;
718         }
719
720         return 0;
721 }
722
723 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
724                                   struct evlist *evlist,
725                                   struct record_opts *opts, const char *str)
726 {
727         struct evsel_config_term *term;
728         struct evsel *aux_evsel;
729         bool has_aux_sample_size = false;
730         bool has_aux_leader = false;
731         struct evsel *evsel;
732         char *endptr;
733         unsigned long sz;
734
735         if (!str)
736                 goto no_opt;
737
738         if (!itr) {
739                 pr_err("No AUX area event to sample\n");
740                 return -EINVAL;
741         }
742
743         sz = strtoul(str, &endptr, 0);
744         if (*endptr || sz > UINT_MAX) {
745                 pr_err("Bad AUX area sampling option: '%s'\n", str);
746                 return -EINVAL;
747         }
748
749         if (!sz)
750                 sz = itr->default_aux_sample_size;
751
752         if (!sz)
753                 sz = DEFAULT_AUX_SAMPLE_SIZE;
754
755         /* Set aux_sample_size based on --aux-sample option */
756         evlist__for_each_entry(evlist, evsel) {
757                 if (evsel__is_group_leader(evsel)) {
758                         has_aux_leader = evsel__is_aux_event(evsel);
759                 } else if (has_aux_leader) {
760                         evsel->core.attr.aux_sample_size = sz;
761                 }
762         }
763 no_opt:
764         aux_evsel = NULL;
765         /* Override with aux_sample_size from config term */
766         evlist__for_each_entry(evlist, evsel) {
767                 if (evsel__is_aux_event(evsel))
768                         aux_evsel = evsel;
769                 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
770                 if (term) {
771                         has_aux_sample_size = true;
772                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
773                         /* If possible, group with the AUX event */
774                         if (aux_evsel && evsel->core.attr.aux_sample_size)
775                                 perf_evlist__regroup(evlist, aux_evsel, evsel);
776                 }
777         }
778
779         if (!str && !has_aux_sample_size)
780                 return 0;
781
782         if (!itr) {
783                 pr_err("No AUX area event to sample\n");
784                 return -EINVAL;
785         }
786
787         return auxtrace_validate_aux_sample_size(evlist, opts);
788 }
789
790 struct auxtrace_record *__weak
791 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
792 {
793         *err = 0;
794         return NULL;
795 }
796
797 static int auxtrace_index__alloc(struct list_head *head)
798 {
799         struct auxtrace_index *auxtrace_index;
800
801         auxtrace_index = malloc(sizeof(struct auxtrace_index));
802         if (!auxtrace_index)
803                 return -ENOMEM;
804
805         auxtrace_index->nr = 0;
806         INIT_LIST_HEAD(&auxtrace_index->list);
807
808         list_add_tail(&auxtrace_index->list, head);
809
810         return 0;
811 }
812
813 void auxtrace_index__free(struct list_head *head)
814 {
815         struct auxtrace_index *auxtrace_index, *n;
816
817         list_for_each_entry_safe(auxtrace_index, n, head, list) {
818                 list_del_init(&auxtrace_index->list);
819                 free(auxtrace_index);
820         }
821 }
822
823 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
824 {
825         struct auxtrace_index *auxtrace_index;
826         int err;
827
828         if (list_empty(head)) {
829                 err = auxtrace_index__alloc(head);
830                 if (err)
831                         return NULL;
832         }
833
834         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
835
836         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
837                 err = auxtrace_index__alloc(head);
838                 if (err)
839                         return NULL;
840                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
841                                             list);
842         }
843
844         return auxtrace_index;
845 }
846
847 int auxtrace_index__auxtrace_event(struct list_head *head,
848                                    union perf_event *event, off_t file_offset)
849 {
850         struct auxtrace_index *auxtrace_index;
851         size_t nr;
852
853         auxtrace_index = auxtrace_index__last(head);
854         if (!auxtrace_index)
855                 return -ENOMEM;
856
857         nr = auxtrace_index->nr;
858         auxtrace_index->entries[nr].file_offset = file_offset;
859         auxtrace_index->entries[nr].sz = event->header.size;
860         auxtrace_index->nr += 1;
861
862         return 0;
863 }
864
865 static int auxtrace_index__do_write(int fd,
866                                     struct auxtrace_index *auxtrace_index)
867 {
868         struct auxtrace_index_entry ent;
869         size_t i;
870
871         for (i = 0; i < auxtrace_index->nr; i++) {
872                 ent.file_offset = auxtrace_index->entries[i].file_offset;
873                 ent.sz = auxtrace_index->entries[i].sz;
874                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
875                         return -errno;
876         }
877         return 0;
878 }
879
880 int auxtrace_index__write(int fd, struct list_head *head)
881 {
882         struct auxtrace_index *auxtrace_index;
883         u64 total = 0;
884         int err;
885
886         list_for_each_entry(auxtrace_index, head, list)
887                 total += auxtrace_index->nr;
888
889         if (writen(fd, &total, sizeof(total)) != sizeof(total))
890                 return -errno;
891
892         list_for_each_entry(auxtrace_index, head, list) {
893                 err = auxtrace_index__do_write(fd, auxtrace_index);
894                 if (err)
895                         return err;
896         }
897
898         return 0;
899 }
900
901 static int auxtrace_index__process_entry(int fd, struct list_head *head,
902                                          bool needs_swap)
903 {
904         struct auxtrace_index *auxtrace_index;
905         struct auxtrace_index_entry ent;
906         size_t nr;
907
908         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
909                 return -1;
910
911         auxtrace_index = auxtrace_index__last(head);
912         if (!auxtrace_index)
913                 return -1;
914
915         nr = auxtrace_index->nr;
916         if (needs_swap) {
917                 auxtrace_index->entries[nr].file_offset =
918                                                 bswap_64(ent.file_offset);
919                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
920         } else {
921                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
922                 auxtrace_index->entries[nr].sz = ent.sz;
923         }
924
925         auxtrace_index->nr = nr + 1;
926
927         return 0;
928 }
929
930 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
931                             bool needs_swap)
932 {
933         struct list_head *head = &session->auxtrace_index;
934         u64 nr;
935
936         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
937                 return -1;
938
939         if (needs_swap)
940                 nr = bswap_64(nr);
941
942         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
943                 return -1;
944
945         while (nr--) {
946                 int err;
947
948                 err = auxtrace_index__process_entry(fd, head, needs_swap);
949                 if (err)
950                         return -1;
951         }
952
953         return 0;
954 }
955
956 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
957                                                 struct perf_session *session,
958                                                 struct auxtrace_index_entry *ent)
959 {
960         return auxtrace_queues__add_indexed_event(queues, session,
961                                                   ent->file_offset, ent->sz);
962 }
963
964 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
965                                    struct perf_session *session)
966 {
967         struct auxtrace_index *auxtrace_index;
968         struct auxtrace_index_entry *ent;
969         size_t i;
970         int err;
971
972         if (auxtrace__dont_decode(session))
973                 return 0;
974
975         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
976                 for (i = 0; i < auxtrace_index->nr; i++) {
977                         ent = &auxtrace_index->entries[i];
978                         err = auxtrace_queues__process_index_entry(queues,
979                                                                    session,
980                                                                    ent);
981                         if (err)
982                                 return err;
983                 }
984         }
985         return 0;
986 }
987
988 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
989                                               struct auxtrace_buffer *buffer)
990 {
991         if (buffer) {
992                 if (list_is_last(&buffer->list, &queue->head))
993                         return NULL;
994                 return list_entry(buffer->list.next, struct auxtrace_buffer,
995                                   list);
996         } else {
997                 if (list_empty(&queue->head))
998                         return NULL;
999                 return list_entry(queue->head.next, struct auxtrace_buffer,
1000                                   list);
1001         }
1002 }
1003
1004 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1005                                                      struct perf_sample *sample,
1006                                                      struct perf_session *session)
1007 {
1008         struct perf_sample_id *sid;
1009         unsigned int idx;
1010         u64 id;
1011
1012         id = sample->id;
1013         if (!id)
1014                 return NULL;
1015
1016         sid = perf_evlist__id2sid(session->evlist, id);
1017         if (!sid)
1018                 return NULL;
1019
1020         idx = sid->idx;
1021
1022         if (idx >= queues->nr_queues)
1023                 return NULL;
1024
1025         return &queues->queue_array[idx];
1026 }
1027
1028 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1029                                 struct perf_session *session,
1030                                 struct perf_sample *sample, u64 data_offset,
1031                                 u64 reference)
1032 {
1033         struct auxtrace_buffer buffer = {
1034                 .pid = -1,
1035                 .data_offset = data_offset,
1036                 .reference = reference,
1037                 .size = sample->aux_sample.size,
1038         };
1039         struct perf_sample_id *sid;
1040         u64 id = sample->id;
1041         unsigned int idx;
1042
1043         if (!id)
1044                 return -EINVAL;
1045
1046         sid = perf_evlist__id2sid(session->evlist, id);
1047         if (!sid)
1048                 return -ENOENT;
1049
1050         idx = sid->idx;
1051         buffer.tid = sid->tid;
1052         buffer.cpu = sid->cpu;
1053
1054         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1055 }
1056
1057 struct queue_data {
1058         bool samples;
1059         bool events;
1060 };
1061
1062 static int auxtrace_queue_data_cb(struct perf_session *session,
1063                                   union perf_event *event, u64 offset,
1064                                   void *data)
1065 {
1066         struct queue_data *qd = data;
1067         struct perf_sample sample;
1068         int err;
1069
1070         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1071                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1072                         return -EINVAL;
1073                 offset += event->header.size;
1074                 return session->auxtrace->queue_data(session, NULL, event,
1075                                                      offset);
1076         }
1077
1078         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1079                 return 0;
1080
1081         err = perf_evlist__parse_sample(session->evlist, event, &sample);
1082         if (err)
1083                 return err;
1084
1085         if (!sample.aux_sample.size)
1086                 return 0;
1087
1088         offset += sample.aux_sample.data - (void *)event;
1089
1090         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1091 }
1092
1093 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1094 {
1095         struct queue_data qd = {
1096                 .samples = samples,
1097                 .events = events,
1098         };
1099
1100         if (auxtrace__dont_decode(session))
1101                 return 0;
1102
1103         if (!session->auxtrace || !session->auxtrace->queue_data)
1104                 return -EINVAL;
1105
1106         return perf_session__peek_events(session, session->header.data_offset,
1107                                          session->header.data_size,
1108                                          auxtrace_queue_data_cb, &qd);
1109 }
1110
1111 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1112 {
1113         size_t adj = buffer->data_offset & (page_size - 1);
1114         size_t size = buffer->size + adj;
1115         off_t file_offset = buffer->data_offset - adj;
1116         void *addr;
1117
1118         if (buffer->data)
1119                 return buffer->data;
1120
1121         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1122         if (addr == MAP_FAILED)
1123                 return NULL;
1124
1125         buffer->mmap_addr = addr;
1126         buffer->mmap_size = size;
1127
1128         buffer->data = addr + adj;
1129
1130         return buffer->data;
1131 }
1132
1133 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1134 {
1135         if (!buffer->data || !buffer->mmap_addr)
1136                 return;
1137         munmap(buffer->mmap_addr, buffer->mmap_size);
1138         buffer->mmap_addr = NULL;
1139         buffer->mmap_size = 0;
1140         buffer->data = NULL;
1141         buffer->use_data = NULL;
1142 }
1143
1144 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1145 {
1146         auxtrace_buffer__put_data(buffer);
1147         if (buffer->data_needs_freeing) {
1148                 buffer->data_needs_freeing = false;
1149                 zfree(&buffer->data);
1150                 buffer->use_data = NULL;
1151                 buffer->size = 0;
1152         }
1153 }
1154
1155 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1156 {
1157         auxtrace_buffer__drop_data(buffer);
1158         free(buffer);
1159 }
1160
1161 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1162                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1163                           const char *msg, u64 timestamp)
1164 {
1165         size_t size;
1166
1167         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1168
1169         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1170         auxtrace_error->type = type;
1171         auxtrace_error->code = code;
1172         auxtrace_error->cpu = cpu;
1173         auxtrace_error->pid = pid;
1174         auxtrace_error->tid = tid;
1175         auxtrace_error->fmt = 1;
1176         auxtrace_error->ip = ip;
1177         auxtrace_error->time = timestamp;
1178         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1179
1180         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1181                strlen(auxtrace_error->msg) + 1;
1182         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1183 }
1184
1185 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1186                                          struct perf_tool *tool,
1187                                          struct perf_session *session,
1188                                          perf_event__handler_t process)
1189 {
1190         union perf_event *ev;
1191         size_t priv_size;
1192         int err;
1193
1194         pr_debug2("Synthesizing auxtrace information\n");
1195         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1196         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1197         if (!ev)
1198                 return -ENOMEM;
1199
1200         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1201         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1202                                         priv_size;
1203         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1204                                          priv_size);
1205         if (err)
1206                 goto out_free;
1207
1208         err = process(tool, ev, NULL, NULL);
1209 out_free:
1210         free(ev);
1211         return err;
1212 }
1213
1214 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1215 {
1216         struct evsel *new_leader = NULL;
1217         struct evsel *evsel;
1218
1219         /* Find new leader for the group */
1220         evlist__for_each_entry(evlist, evsel) {
1221                 if (evsel->leader != leader || evsel == leader)
1222                         continue;
1223                 if (!new_leader)
1224                         new_leader = evsel;
1225                 evsel->leader = new_leader;
1226         }
1227
1228         /* Update group information */
1229         if (new_leader) {
1230                 zfree(&new_leader->group_name);
1231                 new_leader->group_name = leader->group_name;
1232                 leader->group_name = NULL;
1233
1234                 new_leader->core.nr_members = leader->core.nr_members - 1;
1235                 leader->core.nr_members = 1;
1236         }
1237 }
1238
1239 static void unleader_auxtrace(struct perf_session *session)
1240 {
1241         struct evsel *evsel;
1242
1243         evlist__for_each_entry(session->evlist, evsel) {
1244                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1245                     evsel__is_group_leader(evsel)) {
1246                         unleader_evsel(session->evlist, evsel);
1247                 }
1248         }
1249 }
1250
1251 int perf_event__process_auxtrace_info(struct perf_session *session,
1252                                       union perf_event *event)
1253 {
1254         enum auxtrace_type type = event->auxtrace_info.type;
1255         int err;
1256
1257         if (dump_trace)
1258                 fprintf(stdout, " type: %u\n", type);
1259
1260         switch (type) {
1261         case PERF_AUXTRACE_INTEL_PT:
1262                 err = intel_pt_process_auxtrace_info(event, session);
1263                 break;
1264         case PERF_AUXTRACE_INTEL_BTS:
1265                 err = intel_bts_process_auxtrace_info(event, session);
1266                 break;
1267         case PERF_AUXTRACE_ARM_SPE:
1268                 err = arm_spe_process_auxtrace_info(event, session);
1269                 break;
1270         case PERF_AUXTRACE_CS_ETM:
1271                 err = cs_etm__process_auxtrace_info(event, session);
1272                 break;
1273         case PERF_AUXTRACE_S390_CPUMSF:
1274                 err = s390_cpumsf_process_auxtrace_info(event, session);
1275                 break;
1276         case PERF_AUXTRACE_UNKNOWN:
1277         default:
1278                 return -EINVAL;
1279         }
1280
1281         if (err)
1282                 return err;
1283
1284         unleader_auxtrace(session);
1285
1286         return 0;
1287 }
1288
1289 s64 perf_event__process_auxtrace(struct perf_session *session,
1290                                  union perf_event *event)
1291 {
1292         s64 err;
1293
1294         if (dump_trace)
1295                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1296                         event->auxtrace.size, event->auxtrace.offset,
1297                         event->auxtrace.reference, event->auxtrace.idx,
1298                         event->auxtrace.tid, event->auxtrace.cpu);
1299
1300         if (auxtrace__dont_decode(session))
1301                 return event->auxtrace.size;
1302
1303         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1304                 return -EINVAL;
1305
1306         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1307         if (err < 0)
1308                 return err;
1309
1310         return event->auxtrace.size;
1311 }
1312
1313 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1314 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1315 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1316 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1317 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1318 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1319
1320 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1321                                     bool no_sample)
1322 {
1323         synth_opts->branches = true;
1324         synth_opts->transactions = true;
1325         synth_opts->ptwrites = true;
1326         synth_opts->pwr_events = true;
1327         synth_opts->other_events = true;
1328         synth_opts->errors = true;
1329         synth_opts->flc = true;
1330         synth_opts->llc = true;
1331         synth_opts->tlb = true;
1332         synth_opts->remote_access = true;
1333
1334         if (no_sample) {
1335                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1336                 synth_opts->period = 1;
1337                 synth_opts->calls = true;
1338         } else {
1339                 synth_opts->instructions = true;
1340                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1341                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1342         }
1343         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1344         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1345         synth_opts->initial_skip = 0;
1346 }
1347
1348 static int get_flag(const char **ptr, unsigned int *flags)
1349 {
1350         while (1) {
1351                 char c = **ptr;
1352
1353                 if (c >= 'a' && c <= 'z') {
1354                         *flags |= 1 << (c - 'a');
1355                         ++*ptr;
1356                         return 0;
1357                 } else if (c == ' ') {
1358                         ++*ptr;
1359                         continue;
1360                 } else {
1361                         return -1;
1362                 }
1363         }
1364 }
1365
1366 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1367 {
1368         while (1) {
1369                 switch (**ptr) {
1370                 case '+':
1371                         ++*ptr;
1372                         if (get_flag(ptr, plus_flags))
1373                                 return -1;
1374                         break;
1375                 case '-':
1376                         ++*ptr;
1377                         if (get_flag(ptr, minus_flags))
1378                                 return -1;
1379                         break;
1380                 case ' ':
1381                         ++*ptr;
1382                         break;
1383                 default:
1384                         return 0;
1385                 }
1386         }
1387 }
1388
1389 /*
1390  * Please check tools/perf/Documentation/perf-script.txt for information
1391  * about the options parsed here, which is introduced after this cset,
1392  * when support in 'perf script' for these options is introduced.
1393  */
1394 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1395                             int unset)
1396 {
1397         struct itrace_synth_opts *synth_opts = opt->value;
1398         const char *p;
1399         char *endptr;
1400         bool period_type_set = false;
1401         bool period_set = false;
1402
1403         synth_opts->set = true;
1404
1405         if (unset) {
1406                 synth_opts->dont_decode = true;
1407                 return 0;
1408         }
1409
1410         if (!str) {
1411                 itrace_synth_opts__set_default(synth_opts,
1412                                                synth_opts->default_no_sample);
1413                 return 0;
1414         }
1415
1416         for (p = str; *p;) {
1417                 switch (*p++) {
1418                 case 'i':
1419                         synth_opts->instructions = true;
1420                         while (*p == ' ' || *p == ',')
1421                                 p += 1;
1422                         if (isdigit(*p)) {
1423                                 synth_opts->period = strtoull(p, &endptr, 10);
1424                                 period_set = true;
1425                                 p = endptr;
1426                                 while (*p == ' ' || *p == ',')
1427                                         p += 1;
1428                                 switch (*p++) {
1429                                 case 'i':
1430                                         synth_opts->period_type =
1431                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1432                                         period_type_set = true;
1433                                         break;
1434                                 case 't':
1435                                         synth_opts->period_type =
1436                                                 PERF_ITRACE_PERIOD_TICKS;
1437                                         period_type_set = true;
1438                                         break;
1439                                 case 'm':
1440                                         synth_opts->period *= 1000;
1441                                         /* Fall through */
1442                                 case 'u':
1443                                         synth_opts->period *= 1000;
1444                                         /* Fall through */
1445                                 case 'n':
1446                                         if (*p++ != 's')
1447                                                 goto out_err;
1448                                         synth_opts->period_type =
1449                                                 PERF_ITRACE_PERIOD_NANOSECS;
1450                                         period_type_set = true;
1451                                         break;
1452                                 case '\0':
1453                                         goto out;
1454                                 default:
1455                                         goto out_err;
1456                                 }
1457                         }
1458                         break;
1459                 case 'b':
1460                         synth_opts->branches = true;
1461                         break;
1462                 case 'x':
1463                         synth_opts->transactions = true;
1464                         break;
1465                 case 'w':
1466                         synth_opts->ptwrites = true;
1467                         break;
1468                 case 'p':
1469                         synth_opts->pwr_events = true;
1470                         break;
1471                 case 'o':
1472                         synth_opts->other_events = true;
1473                         break;
1474                 case 'e':
1475                         synth_opts->errors = true;
1476                         if (get_flags(&p, &synth_opts->error_plus_flags,
1477                                       &synth_opts->error_minus_flags))
1478                                 goto out_err;
1479                         break;
1480                 case 'd':
1481                         synth_opts->log = true;
1482                         if (get_flags(&p, &synth_opts->log_plus_flags,
1483                                       &synth_opts->log_minus_flags))
1484                                 goto out_err;
1485                         break;
1486                 case 'c':
1487                         synth_opts->branches = true;
1488                         synth_opts->calls = true;
1489                         break;
1490                 case 'r':
1491                         synth_opts->branches = true;
1492                         synth_opts->returns = true;
1493                         break;
1494                 case 'G':
1495                 case 'g':
1496                         if (p[-1] == 'G')
1497                                 synth_opts->add_callchain = true;
1498                         else
1499                                 synth_opts->callchain = true;
1500                         synth_opts->callchain_sz =
1501                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1502                         while (*p == ' ' || *p == ',')
1503                                 p += 1;
1504                         if (isdigit(*p)) {
1505                                 unsigned int val;
1506
1507                                 val = strtoul(p, &endptr, 10);
1508                                 p = endptr;
1509                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1510                                         goto out_err;
1511                                 synth_opts->callchain_sz = val;
1512                         }
1513                         break;
1514                 case 'L':
1515                 case 'l':
1516                         if (p[-1] == 'L')
1517                                 synth_opts->add_last_branch = true;
1518                         else
1519                                 synth_opts->last_branch = true;
1520                         synth_opts->last_branch_sz =
1521                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1522                         while (*p == ' ' || *p == ',')
1523                                 p += 1;
1524                         if (isdigit(*p)) {
1525                                 unsigned int val;
1526
1527                                 val = strtoul(p, &endptr, 10);
1528                                 p = endptr;
1529                                 if (!val ||
1530                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1531                                         goto out_err;
1532                                 synth_opts->last_branch_sz = val;
1533                         }
1534                         break;
1535                 case 's':
1536                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1537                         if (p == endptr)
1538                                 goto out_err;
1539                         p = endptr;
1540                         break;
1541                 case 'f':
1542                         synth_opts->flc = true;
1543                         break;
1544                 case 'm':
1545                         synth_opts->llc = true;
1546                         break;
1547                 case 't':
1548                         synth_opts->tlb = true;
1549                         break;
1550                 case 'a':
1551                         synth_opts->remote_access = true;
1552                         break;
1553                 case 'q':
1554                         synth_opts->quick += 1;
1555                         break;
1556                 case ' ':
1557                 case ',':
1558                         break;
1559                 default:
1560                         goto out_err;
1561                 }
1562         }
1563 out:
1564         if (synth_opts->instructions) {
1565                 if (!period_type_set)
1566                         synth_opts->period_type =
1567                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1568                 if (!period_set)
1569                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1570         }
1571
1572         return 0;
1573
1574 out_err:
1575         pr_err("Bad Instruction Tracing options '%s'\n", str);
1576         return -EINVAL;
1577 }
1578
1579 static const char * const auxtrace_error_type_name[] = {
1580         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1581 };
1582
1583 static const char *auxtrace_error_name(int type)
1584 {
1585         const char *error_type_name = NULL;
1586
1587         if (type < PERF_AUXTRACE_ERROR_MAX)
1588                 error_type_name = auxtrace_error_type_name[type];
1589         if (!error_type_name)
1590                 error_type_name = "unknown AUX";
1591         return error_type_name;
1592 }
1593
1594 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1595 {
1596         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1597         unsigned long long nsecs = e->time;
1598         const char *msg = e->msg;
1599         int ret;
1600
1601         ret = fprintf(fp, " %s error type %u",
1602                       auxtrace_error_name(e->type), e->type);
1603
1604         if (e->fmt && nsecs) {
1605                 unsigned long secs = nsecs / NSEC_PER_SEC;
1606
1607                 nsecs -= secs * NSEC_PER_SEC;
1608                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1609         } else {
1610                 ret += fprintf(fp, " time 0");
1611         }
1612
1613         if (!e->fmt)
1614                 msg = (const char *)&e->time;
1615
1616         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1617                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1618         return ret;
1619 }
1620
1621 void perf_session__auxtrace_error_inc(struct perf_session *session,
1622                                       union perf_event *event)
1623 {
1624         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1625
1626         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1627                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1628 }
1629
1630 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1631 {
1632         int i;
1633
1634         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1635                 if (!stats->nr_auxtrace_errors[i])
1636                         continue;
1637                 ui__warning("%u %s errors\n",
1638                             stats->nr_auxtrace_errors[i],
1639                             auxtrace_error_name(i));
1640         }
1641 }
1642
1643 int perf_event__process_auxtrace_error(struct perf_session *session,
1644                                        union perf_event *event)
1645 {
1646         if (auxtrace__dont_decode(session))
1647                 return 0;
1648
1649         perf_event__fprintf_auxtrace_error(event, stdout);
1650         return 0;
1651 }
1652
1653 static int __auxtrace_mmap__read(struct mmap *map,
1654                                  struct auxtrace_record *itr,
1655                                  struct perf_tool *tool, process_auxtrace_t fn,
1656                                  bool snapshot, size_t snapshot_size)
1657 {
1658         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1659         u64 head, old = mm->prev, offset, ref;
1660         unsigned char *data = mm->base;
1661         size_t size, head_off, old_off, len1, len2, padding;
1662         union perf_event ev;
1663         void *data1, *data2;
1664
1665         if (snapshot) {
1666                 head = auxtrace_mmap__read_snapshot_head(mm);
1667                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1668                                                    &head, &old))
1669                         return -1;
1670         } else {
1671                 head = auxtrace_mmap__read_head(mm);
1672         }
1673
1674         if (old == head)
1675                 return 0;
1676
1677         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1678                   mm->idx, old, head, head - old);
1679
1680         if (mm->mask) {
1681                 head_off = head & mm->mask;
1682                 old_off = old & mm->mask;
1683         } else {
1684                 head_off = head % mm->len;
1685                 old_off = old % mm->len;
1686         }
1687
1688         if (head_off > old_off)
1689                 size = head_off - old_off;
1690         else
1691                 size = mm->len - (old_off - head_off);
1692
1693         if (snapshot && size > snapshot_size)
1694                 size = snapshot_size;
1695
1696         ref = auxtrace_record__reference(itr);
1697
1698         if (head > old || size <= head || mm->mask) {
1699                 offset = head - size;
1700         } else {
1701                 /*
1702                  * When the buffer size is not a power of 2, 'head' wraps at the
1703                  * highest multiple of the buffer size, so we have to subtract
1704                  * the remainder here.
1705                  */
1706                 u64 rem = (0ULL - mm->len) % mm->len;
1707
1708                 offset = head - size - rem;
1709         }
1710
1711         if (size > head_off) {
1712                 len1 = size - head_off;
1713                 data1 = &data[mm->len - len1];
1714                 len2 = head_off;
1715                 data2 = &data[0];
1716         } else {
1717                 len1 = size;
1718                 data1 = &data[head_off - len1];
1719                 len2 = 0;
1720                 data2 = NULL;
1721         }
1722
1723         if (itr->alignment) {
1724                 unsigned int unwanted = len1 % itr->alignment;
1725
1726                 len1 -= unwanted;
1727                 size -= unwanted;
1728         }
1729
1730         /* padding must be written by fn() e.g. record__process_auxtrace() */
1731         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1732         if (padding)
1733                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1734
1735         memset(&ev, 0, sizeof(ev));
1736         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1737         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1738         ev.auxtrace.size = size + padding;
1739         ev.auxtrace.offset = offset;
1740         ev.auxtrace.reference = ref;
1741         ev.auxtrace.idx = mm->idx;
1742         ev.auxtrace.tid = mm->tid;
1743         ev.auxtrace.cpu = mm->cpu;
1744
1745         if (fn(tool, map, &ev, data1, len1, data2, len2))
1746                 return -1;
1747
1748         mm->prev = head;
1749
1750         if (!snapshot) {
1751                 auxtrace_mmap__write_tail(mm, head);
1752                 if (itr->read_finish) {
1753                         int err;
1754
1755                         err = itr->read_finish(itr, mm->idx);
1756                         if (err < 0)
1757                                 return err;
1758                 }
1759         }
1760
1761         return 1;
1762 }
1763
1764 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1765                         struct perf_tool *tool, process_auxtrace_t fn)
1766 {
1767         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1768 }
1769
1770 int auxtrace_mmap__read_snapshot(struct mmap *map,
1771                                  struct auxtrace_record *itr,
1772                                  struct perf_tool *tool, process_auxtrace_t fn,
1773                                  size_t snapshot_size)
1774 {
1775         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1776 }
1777
1778 /**
1779  * struct auxtrace_cache - hash table to implement a cache
1780  * @hashtable: the hashtable
1781  * @sz: hashtable size (number of hlists)
1782  * @entry_size: size of an entry
1783  * @limit: limit the number of entries to this maximum, when reached the cache
1784  *         is dropped and caching begins again with an empty cache
1785  * @cnt: current number of entries
1786  * @bits: hashtable size (@sz = 2^@bits)
1787  */
1788 struct auxtrace_cache {
1789         struct hlist_head *hashtable;
1790         size_t sz;
1791         size_t entry_size;
1792         size_t limit;
1793         size_t cnt;
1794         unsigned int bits;
1795 };
1796
1797 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1798                                            unsigned int limit_percent)
1799 {
1800         struct auxtrace_cache *c;
1801         struct hlist_head *ht;
1802         size_t sz, i;
1803
1804         c = zalloc(sizeof(struct auxtrace_cache));
1805         if (!c)
1806                 return NULL;
1807
1808         sz = 1UL << bits;
1809
1810         ht = calloc(sz, sizeof(struct hlist_head));
1811         if (!ht)
1812                 goto out_free;
1813
1814         for (i = 0; i < sz; i++)
1815                 INIT_HLIST_HEAD(&ht[i]);
1816
1817         c->hashtable = ht;
1818         c->sz = sz;
1819         c->entry_size = entry_size;
1820         c->limit = (c->sz * limit_percent) / 100;
1821         c->bits = bits;
1822
1823         return c;
1824
1825 out_free:
1826         free(c);
1827         return NULL;
1828 }
1829
1830 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1831 {
1832         struct auxtrace_cache_entry *entry;
1833         struct hlist_node *tmp;
1834         size_t i;
1835
1836         if (!c)
1837                 return;
1838
1839         for (i = 0; i < c->sz; i++) {
1840                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1841                         hlist_del(&entry->hash);
1842                         auxtrace_cache__free_entry(c, entry);
1843                 }
1844         }
1845
1846         c->cnt = 0;
1847 }
1848
1849 void auxtrace_cache__free(struct auxtrace_cache *c)
1850 {
1851         if (!c)
1852                 return;
1853
1854         auxtrace_cache__drop(c);
1855         zfree(&c->hashtable);
1856         free(c);
1857 }
1858
1859 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1860 {
1861         return malloc(c->entry_size);
1862 }
1863
1864 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1865                                 void *entry)
1866 {
1867         free(entry);
1868 }
1869
1870 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1871                         struct auxtrace_cache_entry *entry)
1872 {
1873         if (c->limit && ++c->cnt > c->limit)
1874                 auxtrace_cache__drop(c);
1875
1876         entry->key = key;
1877         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1878
1879         return 0;
1880 }
1881
1882 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1883                                                        u32 key)
1884 {
1885         struct auxtrace_cache_entry *entry;
1886         struct hlist_head *hlist;
1887         struct hlist_node *n;
1888
1889         if (!c)
1890                 return NULL;
1891
1892         hlist = &c->hashtable[hash_32(key, c->bits)];
1893         hlist_for_each_entry_safe(entry, n, hlist, hash) {
1894                 if (entry->key == key) {
1895                         hlist_del(&entry->hash);
1896                         return entry;
1897                 }
1898         }
1899
1900         return NULL;
1901 }
1902
1903 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1904 {
1905         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1906
1907         auxtrace_cache__free_entry(c, entry);
1908 }
1909
1910 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1911 {
1912         struct auxtrace_cache_entry *entry;
1913         struct hlist_head *hlist;
1914
1915         if (!c)
1916                 return NULL;
1917
1918         hlist = &c->hashtable[hash_32(key, c->bits)];
1919         hlist_for_each_entry(entry, hlist, hash) {
1920                 if (entry->key == key)
1921                         return entry;
1922         }
1923
1924         return NULL;
1925 }
1926
1927 static void addr_filter__free_str(struct addr_filter *filt)
1928 {
1929         zfree(&filt->str);
1930         filt->action   = NULL;
1931         filt->sym_from = NULL;
1932         filt->sym_to   = NULL;
1933         filt->filename = NULL;
1934 }
1935
1936 static struct addr_filter *addr_filter__new(void)
1937 {
1938         struct addr_filter *filt = zalloc(sizeof(*filt));
1939
1940         if (filt)
1941                 INIT_LIST_HEAD(&filt->list);
1942
1943         return filt;
1944 }
1945
1946 static void addr_filter__free(struct addr_filter *filt)
1947 {
1948         if (filt)
1949                 addr_filter__free_str(filt);
1950         free(filt);
1951 }
1952
1953 static void addr_filters__add(struct addr_filters *filts,
1954                               struct addr_filter *filt)
1955 {
1956         list_add_tail(&filt->list, &filts->head);
1957         filts->cnt += 1;
1958 }
1959
1960 static void addr_filters__del(struct addr_filters *filts,
1961                               struct addr_filter *filt)
1962 {
1963         list_del_init(&filt->list);
1964         filts->cnt -= 1;
1965 }
1966
1967 void addr_filters__init(struct addr_filters *filts)
1968 {
1969         INIT_LIST_HEAD(&filts->head);
1970         filts->cnt = 0;
1971 }
1972
1973 void addr_filters__exit(struct addr_filters *filts)
1974 {
1975         struct addr_filter *filt, *n;
1976
1977         list_for_each_entry_safe(filt, n, &filts->head, list) {
1978                 addr_filters__del(filts, filt);
1979                 addr_filter__free(filt);
1980         }
1981 }
1982
1983 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1984                             const char *str_delim)
1985 {
1986         *inp += strspn(*inp, " ");
1987
1988         if (isdigit(**inp)) {
1989                 char *endptr;
1990
1991                 if (!num)
1992                         return -EINVAL;
1993                 errno = 0;
1994                 *num = strtoull(*inp, &endptr, 0);
1995                 if (errno)
1996                         return -errno;
1997                 if (endptr == *inp)
1998                         return -EINVAL;
1999                 *inp = endptr;
2000         } else {
2001                 size_t n;
2002
2003                 if (!str)
2004                         return -EINVAL;
2005                 *inp += strspn(*inp, " ");
2006                 *str = *inp;
2007                 n = strcspn(*inp, str_delim);
2008                 if (!n)
2009                         return -EINVAL;
2010                 *inp += n;
2011                 if (**inp) {
2012                         **inp = '\0';
2013                         *inp += 1;
2014                 }
2015         }
2016         return 0;
2017 }
2018
2019 static int parse_action(struct addr_filter *filt)
2020 {
2021         if (!strcmp(filt->action, "filter")) {
2022                 filt->start = true;
2023                 filt->range = true;
2024         } else if (!strcmp(filt->action, "start")) {
2025                 filt->start = true;
2026         } else if (!strcmp(filt->action, "stop")) {
2027                 filt->start = false;
2028         } else if (!strcmp(filt->action, "tracestop")) {
2029                 filt->start = false;
2030                 filt->range = true;
2031                 filt->action += 5; /* Change 'tracestop' to 'stop' */
2032         } else {
2033                 return -EINVAL;
2034         }
2035         return 0;
2036 }
2037
2038 static int parse_sym_idx(char **inp, int *idx)
2039 {
2040         *idx = -1;
2041
2042         *inp += strspn(*inp, " ");
2043
2044         if (**inp != '#')
2045                 return 0;
2046
2047         *inp += 1;
2048
2049         if (**inp == 'g' || **inp == 'G') {
2050                 *inp += 1;
2051                 *idx = 0;
2052         } else {
2053                 unsigned long num;
2054                 char *endptr;
2055
2056                 errno = 0;
2057                 num = strtoul(*inp, &endptr, 0);
2058                 if (errno)
2059                         return -errno;
2060                 if (endptr == *inp || num > INT_MAX)
2061                         return -EINVAL;
2062                 *inp = endptr;
2063                 *idx = num;
2064         }
2065
2066         return 0;
2067 }
2068
2069 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2070 {
2071         int err = parse_num_or_str(inp, num, str, " ");
2072
2073         if (!err && *str)
2074                 err = parse_sym_idx(inp, idx);
2075
2076         return err;
2077 }
2078
2079 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2080 {
2081         char *fstr;
2082         int err;
2083
2084         filt->str = fstr = strdup(*filter_inp);
2085         if (!fstr)
2086                 return -ENOMEM;
2087
2088         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2089         if (err)
2090                 goto out_err;
2091
2092         err = parse_action(filt);
2093         if (err)
2094                 goto out_err;
2095
2096         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2097                               &filt->sym_from_idx);
2098         if (err)
2099                 goto out_err;
2100
2101         fstr += strspn(fstr, " ");
2102
2103         if (*fstr == '/') {
2104                 fstr += 1;
2105                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2106                                       &filt->sym_to_idx);
2107                 if (err)
2108                         goto out_err;
2109                 filt->range = true;
2110         }
2111
2112         fstr += strspn(fstr, " ");
2113
2114         if (*fstr == '@') {
2115                 fstr += 1;
2116                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2117                 if (err)
2118                         goto out_err;
2119         }
2120
2121         fstr += strspn(fstr, " ,");
2122
2123         *filter_inp += fstr - filt->str;
2124
2125         return 0;
2126
2127 out_err:
2128         addr_filter__free_str(filt);
2129
2130         return err;
2131 }
2132
2133 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2134                                     const char *filter)
2135 {
2136         struct addr_filter *filt;
2137         const char *fstr = filter;
2138         int err;
2139
2140         while (*fstr) {
2141                 filt = addr_filter__new();
2142                 err = parse_one_filter(filt, &fstr);
2143                 if (err) {
2144                         addr_filter__free(filt);
2145                         addr_filters__exit(filts);
2146                         return err;
2147                 }
2148                 addr_filters__add(filts, filt);
2149         }
2150
2151         return 0;
2152 }
2153
2154 struct sym_args {
2155         const char      *name;
2156         u64             start;
2157         u64             size;
2158         int             idx;
2159         int             cnt;
2160         bool            started;
2161         bool            global;
2162         bool            selected;
2163         bool            duplicate;
2164         bool            near;
2165 };
2166
2167 static bool kern_sym_name_match(const char *kname, const char *name)
2168 {
2169         size_t n = strlen(name);
2170
2171         return !strcmp(kname, name) ||
2172                (!strncmp(kname, name, n) && kname[n] == '\t');
2173 }
2174
2175 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2176 {
2177         /* A function with the same name, and global or the n'th found or any */
2178         return kallsyms__is_function(type) &&
2179                kern_sym_name_match(name, args->name) &&
2180                ((args->global && isupper(type)) ||
2181                 (args->selected && ++(args->cnt) == args->idx) ||
2182                 (!args->global && !args->selected));
2183 }
2184
2185 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2186 {
2187         struct sym_args *args = arg;
2188
2189         if (args->started) {
2190                 if (!args->size)
2191                         args->size = start - args->start;
2192                 if (args->selected) {
2193                         if (args->size)
2194                                 return 1;
2195                 } else if (kern_sym_match(args, name, type)) {
2196                         args->duplicate = true;
2197                         return 1;
2198                 }
2199         } else if (kern_sym_match(args, name, type)) {
2200                 args->started = true;
2201                 args->start = start;
2202         }
2203
2204         return 0;
2205 }
2206
2207 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2208 {
2209         struct sym_args *args = arg;
2210
2211         if (kern_sym_match(args, name, type)) {
2212                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2213                        ++args->cnt, start, type, name);
2214                 args->near = true;
2215         } else if (args->near) {
2216                 args->near = false;
2217                 pr_err("\t\twhich is near\t\t%s\n", name);
2218         }
2219
2220         return 0;
2221 }
2222
2223 static int sym_not_found_error(const char *sym_name, int idx)
2224 {
2225         if (idx > 0) {
2226                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2227                        idx, sym_name);
2228         } else if (!idx) {
2229                 pr_err("Global symbol '%s' not found.\n", sym_name);
2230         } else {
2231                 pr_err("Symbol '%s' not found.\n", sym_name);
2232         }
2233         pr_err("Note that symbols must be functions.\n");
2234
2235         return -EINVAL;
2236 }
2237
2238 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2239 {
2240         struct sym_args args = {
2241                 .name = sym_name,
2242                 .idx = idx,
2243                 .global = !idx,
2244                 .selected = idx > 0,
2245         };
2246         int err;
2247
2248         *start = 0;
2249         *size = 0;
2250
2251         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2252         if (err < 0) {
2253                 pr_err("Failed to parse /proc/kallsyms\n");
2254                 return err;
2255         }
2256
2257         if (args.duplicate) {
2258                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2259                 args.cnt = 0;
2260                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2261                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2262                        sym_name);
2263                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2264                 return -EINVAL;
2265         }
2266
2267         if (!args.started) {
2268                 pr_err("Kernel symbol lookup: ");
2269                 return sym_not_found_error(sym_name, idx);
2270         }
2271
2272         *start = args.start;
2273         *size = args.size;
2274
2275         return 0;
2276 }
2277
2278 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2279                                char type, u64 start)
2280 {
2281         struct sym_args *args = arg;
2282         u64 size;
2283
2284         if (!kallsyms__is_function(type))
2285                 return 0;
2286
2287         if (!args->started) {
2288                 args->started = true;
2289                 args->start = start;
2290         }
2291         /* Don't know exactly where the kernel ends, so we add a page */
2292         size = round_up(start, page_size) + page_size - args->start;
2293         if (size > args->size)
2294                 args->size = size;
2295
2296         return 0;
2297 }
2298
2299 static int addr_filter__entire_kernel(struct addr_filter *filt)
2300 {
2301         struct sym_args args = { .started = false };
2302         int err;
2303
2304         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2305         if (err < 0 || !args.started) {
2306                 pr_err("Failed to parse /proc/kallsyms\n");
2307                 return err;
2308         }
2309
2310         filt->addr = args.start;
2311         filt->size = args.size;
2312
2313         return 0;
2314 }
2315
2316 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2317 {
2318         if (start + size >= filt->addr)
2319                 return 0;
2320
2321         if (filt->sym_from) {
2322                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2323                        filt->sym_to, start, filt->sym_from, filt->addr);
2324         } else {
2325                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2326                        filt->sym_to, start, filt->addr);
2327         }
2328
2329         return -EINVAL;
2330 }
2331
2332 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2333 {
2334         bool no_size = false;
2335         u64 start, size;
2336         int err;
2337
2338         if (symbol_conf.kptr_restrict) {
2339                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2340                 return -EINVAL;
2341         }
2342
2343         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2344                 return addr_filter__entire_kernel(filt);
2345
2346         if (filt->sym_from) {
2347                 err = find_kern_sym(filt->sym_from, &start, &size,
2348                                     filt->sym_from_idx);
2349                 if (err)
2350                         return err;
2351                 filt->addr = start;
2352                 if (filt->range && !filt->size && !filt->sym_to) {
2353                         filt->size = size;
2354                         no_size = !size;
2355                 }
2356         }
2357
2358         if (filt->sym_to) {
2359                 err = find_kern_sym(filt->sym_to, &start, &size,
2360                                     filt->sym_to_idx);
2361                 if (err)
2362                         return err;
2363
2364                 err = check_end_after_start(filt, start, size);
2365                 if (err)
2366                         return err;
2367                 filt->size = start + size - filt->addr;
2368                 no_size = !size;
2369         }
2370
2371         /* The very last symbol in kallsyms does not imply a particular size */
2372         if (no_size) {
2373                 pr_err("Cannot determine size of symbol '%s'\n",
2374                        filt->sym_to ? filt->sym_to : filt->sym_from);
2375                 return -EINVAL;
2376         }
2377
2378         return 0;
2379 }
2380
2381 static struct dso *load_dso(const char *name)
2382 {
2383         struct map *map;
2384         struct dso *dso;
2385
2386         map = dso__new_map(name);
2387         if (!map)
2388                 return NULL;
2389
2390         if (map__load(map) < 0)
2391                 pr_err("File '%s' not found or has no symbols.\n", name);
2392
2393         dso = dso__get(map->dso);
2394
2395         map__put(map);
2396
2397         return dso;
2398 }
2399
2400 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2401                           int idx)
2402 {
2403         /* Same name, and global or the n'th found or any */
2404         return !arch__compare_symbol_names(name, sym->name) &&
2405                ((!idx && sym->binding == STB_GLOBAL) ||
2406                 (idx > 0 && ++*cnt == idx) ||
2407                 idx < 0);
2408 }
2409
2410 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2411 {
2412         struct symbol *sym;
2413         bool near = false;
2414         int cnt = 0;
2415
2416         pr_err("Multiple symbols with name '%s'\n", sym_name);
2417
2418         sym = dso__first_symbol(dso);
2419         while (sym) {
2420                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2421                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2422                                ++cnt, sym->start,
2423                                sym->binding == STB_GLOBAL ? 'g' :
2424                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2425                                sym->name);
2426                         near = true;
2427                 } else if (near) {
2428                         near = false;
2429                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2430                 }
2431                 sym = dso__next_symbol(sym);
2432         }
2433
2434         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2435                sym_name);
2436         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2437 }
2438
2439 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2440                         u64 *size, int idx)
2441 {
2442         struct symbol *sym;
2443         int cnt = 0;
2444
2445         *start = 0;
2446         *size = 0;
2447
2448         sym = dso__first_symbol(dso);
2449         while (sym) {
2450                 if (*start) {
2451                         if (!*size)
2452                                 *size = sym->start - *start;
2453                         if (idx > 0) {
2454                                 if (*size)
2455                                         return 0;
2456                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2457                                 print_duplicate_syms(dso, sym_name);
2458                                 return -EINVAL;
2459                         }
2460                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2461                         *start = sym->start;
2462                         *size = sym->end - sym->start;
2463                 }
2464                 sym = dso__next_symbol(sym);
2465         }
2466
2467         if (!*start)
2468                 return sym_not_found_error(sym_name, idx);
2469
2470         return 0;
2471 }
2472
2473 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2474 {
2475         if (dso__data_file_size(dso, NULL)) {
2476                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2477                        filt->filename);
2478                 return -EINVAL;
2479         }
2480
2481         filt->addr = 0;
2482         filt->size = dso->data.file_size;
2483
2484         return 0;
2485 }
2486
2487 static int addr_filter__resolve_syms(struct addr_filter *filt)
2488 {
2489         u64 start, size;
2490         struct dso *dso;
2491         int err = 0;
2492
2493         if (!filt->sym_from && !filt->sym_to)
2494                 return 0;
2495
2496         if (!filt->filename)
2497                 return addr_filter__resolve_kernel_syms(filt);
2498
2499         dso = load_dso(filt->filename);
2500         if (!dso) {
2501                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2502                 return -EINVAL;
2503         }
2504
2505         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2506                 err = addr_filter__entire_dso(filt, dso);
2507                 goto put_dso;
2508         }
2509
2510         if (filt->sym_from) {
2511                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2512                                    filt->sym_from_idx);
2513                 if (err)
2514                         goto put_dso;
2515                 filt->addr = start;
2516                 if (filt->range && !filt->size && !filt->sym_to)
2517                         filt->size = size;
2518         }
2519
2520         if (filt->sym_to) {
2521                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2522                                    filt->sym_to_idx);
2523                 if (err)
2524                         goto put_dso;
2525
2526                 err = check_end_after_start(filt, start, size);
2527                 if (err)
2528                         return err;
2529
2530                 filt->size = start + size - filt->addr;
2531         }
2532
2533 put_dso:
2534         dso__put(dso);
2535
2536         return err;
2537 }
2538
2539 static char *addr_filter__to_str(struct addr_filter *filt)
2540 {
2541         char filename_buf[PATH_MAX];
2542         const char *at = "";
2543         const char *fn = "";
2544         char *filter;
2545         int err;
2546
2547         if (filt->filename) {
2548                 at = "@";
2549                 fn = realpath(filt->filename, filename_buf);
2550                 if (!fn)
2551                         return NULL;
2552         }
2553
2554         if (filt->range) {
2555                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2556                                filt->action, filt->addr, filt->size, at, fn);
2557         } else {
2558                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2559                                filt->action, filt->addr, at, fn);
2560         }
2561
2562         return err < 0 ? NULL : filter;
2563 }
2564
2565 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2566                              int max_nr)
2567 {
2568         struct addr_filters filts;
2569         struct addr_filter *filt;
2570         int err;
2571
2572         addr_filters__init(&filts);
2573
2574         err = addr_filters__parse_bare_filter(&filts, filter);
2575         if (err)
2576                 goto out_exit;
2577
2578         if (filts.cnt > max_nr) {
2579                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2580                        filts.cnt, max_nr);
2581                 err = -EINVAL;
2582                 goto out_exit;
2583         }
2584
2585         list_for_each_entry(filt, &filts.head, list) {
2586                 char *new_filter;
2587
2588                 err = addr_filter__resolve_syms(filt);
2589                 if (err)
2590                         goto out_exit;
2591
2592                 new_filter = addr_filter__to_str(filt);
2593                 if (!new_filter) {
2594                         err = -ENOMEM;
2595                         goto out_exit;
2596                 }
2597
2598                 if (evsel__append_addr_filter(evsel, new_filter)) {
2599                         err = -ENOMEM;
2600                         goto out_exit;
2601                 }
2602         }
2603
2604 out_exit:
2605         addr_filters__exit(&filts);
2606
2607         if (err) {
2608                 pr_err("Failed to parse address filter: '%s'\n", filter);
2609                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2610                 pr_err("Where multiple filters are separated by space or comma.\n");
2611         }
2612
2613         return err;
2614 }
2615
2616 static int evsel__nr_addr_filter(struct evsel *evsel)
2617 {
2618         struct perf_pmu *pmu = evsel__find_pmu(evsel);
2619         int nr_addr_filters = 0;
2620
2621         if (!pmu)
2622                 return 0;
2623
2624         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2625
2626         return nr_addr_filters;
2627 }
2628
2629 int auxtrace_parse_filters(struct evlist *evlist)
2630 {
2631         struct evsel *evsel;
2632         char *filter;
2633         int err, max_nr;
2634
2635         evlist__for_each_entry(evlist, evsel) {
2636                 filter = evsel->filter;
2637                 max_nr = evsel__nr_addr_filter(evsel);
2638                 if (!filter || !max_nr)
2639                         continue;
2640                 evsel->filter = NULL;
2641                 err = parse_addr_filter(evsel, filter, max_nr);
2642                 free(filter);
2643                 if (err)
2644                         return err;
2645                 pr_debug("Address filter: %s\n", evsel->filter);
2646         }
2647
2648         return 0;
2649 }
2650
2651 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2652                             struct perf_sample *sample, struct perf_tool *tool)
2653 {
2654         if (!session->auxtrace)
2655                 return 0;
2656
2657         return session->auxtrace->process_event(session, event, sample, tool);
2658 }
2659
2660 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2661                                     struct perf_sample *sample)
2662 {
2663         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2664             auxtrace__dont_decode(session))
2665                 return;
2666
2667         session->auxtrace->dump_auxtrace_sample(session, sample);
2668 }
2669
2670 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2671 {
2672         if (!session->auxtrace)
2673                 return 0;
2674
2675         return session->auxtrace->flush_events(session, tool);
2676 }
2677
2678 void auxtrace__free_events(struct perf_session *session)
2679 {
2680         if (!session->auxtrace)
2681                 return;
2682
2683         return session->auxtrace->free_events(session);
2684 }
2685
2686 void auxtrace__free(struct perf_session *session)
2687 {
2688         if (!session->auxtrace)
2689                 return;
2690
2691         return session->auxtrace->free(session);
2692 }
2693
2694 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2695                                  struct evsel *evsel)
2696 {
2697         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2698                 return false;
2699
2700         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2701 }