GNU Linux-libre 5.10.219-gnu1
[releases.git] / tools / perf / bench / numa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14
15 #include "bench.h"
16
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36
37 #include <numa.h>
38 #include <numaif.h>
39
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43
44 /*
45  * Regular printout to the terminal, supressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55 struct thread_data {
56         int                     curr_cpu;
57         cpu_set_t               bind_cpumask;
58         int                     bind_node;
59         u8                      *process_data;
60         int                     process_nr;
61         int                     thread_nr;
62         int                     task_nr;
63         unsigned int            loops_done;
64         u64                     val;
65         u64                     runtime_ns;
66         u64                     system_time_ns;
67         u64                     user_time_ns;
68         double                  speed_gbs;
69         pthread_mutex_t         *process_lock;
70 };
71
72 /* Parameters set by options: */
73
74 struct params {
75         /* Startup synchronization: */
76         bool                    serialize_startup;
77
78         /* Task hierarchy: */
79         int                     nr_proc;
80         int                     nr_threads;
81
82         /* Working set sizes: */
83         const char              *mb_global_str;
84         const char              *mb_proc_str;
85         const char              *mb_proc_locked_str;
86         const char              *mb_thread_str;
87
88         double                  mb_global;
89         double                  mb_proc;
90         double                  mb_proc_locked;
91         double                  mb_thread;
92
93         /* Access patterns to the working set: */
94         bool                    data_reads;
95         bool                    data_writes;
96         bool                    data_backwards;
97         bool                    data_zero_memset;
98         bool                    data_rand_walk;
99         u32                     nr_loops;
100         u32                     nr_secs;
101         u32                     sleep_usecs;
102
103         /* Working set initialization: */
104         bool                    init_zero;
105         bool                    init_random;
106         bool                    init_cpu0;
107
108         /* Misc options: */
109         int                     show_details;
110         int                     run_all;
111         int                     thp;
112
113         long                    bytes_global;
114         long                    bytes_process;
115         long                    bytes_process_locked;
116         long                    bytes_thread;
117
118         int                     nr_tasks;
119         bool                    show_quiet;
120
121         bool                    show_convergence;
122         bool                    measure_convergence;
123
124         int                     perturb_secs;
125         int                     nr_cpus;
126         int                     nr_nodes;
127
128         /* Affinity options -C and -N: */
129         char                    *cpu_list_str;
130         char                    *node_list_str;
131 };
132
133
134 /* Global, read-writable area, accessible to all processes and threads: */
135
136 struct global_info {
137         u8                      *data;
138
139         pthread_mutex_t         startup_mutex;
140         pthread_cond_t          startup_cond;
141         int                     nr_tasks_started;
142
143         pthread_mutex_t         start_work_mutex;
144         pthread_cond_t          start_work_cond;
145         int                     nr_tasks_working;
146         bool                    start_work;
147
148         pthread_mutex_t         stop_work_mutex;
149         u64                     bytes_done;
150
151         struct thread_data      *threads;
152
153         /* Convergence latency measurement: */
154         bool                    all_converged;
155         bool                    stop_work;
156
157         int                     print_once;
158
159         struct params           p;
160 };
161
162 static struct global_info       *g = NULL;
163
164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167 struct params p0;
168
169 static const struct option options[] = {
170         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
171         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
172
173         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
174         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
175         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
177
178         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
179         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
180         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
181
182         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
183         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
184         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
185         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
187
188
189         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
190         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
191         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
192         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
193
194         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
195         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
196         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
201         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202
203         /* Special option string parsing callbacks: */
204         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205                         "bind the first N tasks to these specific cpus (the rest is unbound)",
206                         parse_cpus_opt),
207         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
209                         parse_nodes_opt),
210         OPT_END()
211 };
212
213 static const char * const bench_numa_usage[] = {
214         "perf bench numa <options>",
215         NULL
216 };
217
218 static const char * const numa_usage[] = {
219         "perf bench numa mem [<options>]",
220         NULL
221 };
222
223 /*
224  * To get number of numa nodes present.
225  */
226 static int nr_numa_nodes(void)
227 {
228         int i, nr_nodes = 0;
229
230         for (i = 0; i < g->p.nr_nodes; i++) {
231                 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232                         nr_nodes++;
233         }
234
235         return nr_nodes;
236 }
237
238 /*
239  * To check if given numa node is present.
240  */
241 static int is_node_present(int node)
242 {
243         return numa_bitmask_isbitset(numa_nodes_ptr, node);
244 }
245
246 /*
247  * To check given numa node has cpus.
248  */
249 static bool node_has_cpus(int node)
250 {
251         struct bitmask *cpumask = numa_allocate_cpumask();
252         bool ret = false; /* fall back to nocpus */
253         int cpu;
254
255         BUG_ON(!cpumask);
256         if (!numa_node_to_cpus(node, cpumask)) {
257                 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258                         if (numa_bitmask_isbitset(cpumask, cpu)) {
259                                 ret = true;
260                                 break;
261                         }
262                 }
263         }
264         numa_free_cpumask(cpumask);
265
266         return ret;
267 }
268
269 static cpu_set_t bind_to_cpu(int target_cpu)
270 {
271         cpu_set_t orig_mask, mask;
272         int ret;
273
274         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
275         BUG_ON(ret);
276
277         CPU_ZERO(&mask);
278
279         if (target_cpu == -1) {
280                 int cpu;
281
282                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
283                         CPU_SET(cpu, &mask);
284         } else {
285                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
286                 CPU_SET(target_cpu, &mask);
287         }
288
289         ret = sched_setaffinity(0, sizeof(mask), &mask);
290         BUG_ON(ret);
291
292         return orig_mask;
293 }
294
295 static cpu_set_t bind_to_node(int target_node)
296 {
297         cpu_set_t orig_mask, mask;
298         int cpu;
299         int ret;
300
301         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302         BUG_ON(ret);
303
304         CPU_ZERO(&mask);
305
306         if (target_node == NUMA_NO_NODE) {
307                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308                         CPU_SET(cpu, &mask);
309         } else {
310                 struct bitmask *cpumask = numa_allocate_cpumask();
311
312                 BUG_ON(!cpumask);
313                 if (!numa_node_to_cpus(target_node, cpumask)) {
314                         for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
315                                 if (numa_bitmask_isbitset(cpumask, cpu))
316                                         CPU_SET(cpu, &mask);
317                         }
318                 }
319                 numa_free_cpumask(cpumask);
320         }
321
322         ret = sched_setaffinity(0, sizeof(mask), &mask);
323         BUG_ON(ret);
324
325         return orig_mask;
326 }
327
328 static void bind_to_cpumask(cpu_set_t mask)
329 {
330         int ret;
331
332         ret = sched_setaffinity(0, sizeof(mask), &mask);
333         BUG_ON(ret);
334 }
335
336 static void mempol_restore(void)
337 {
338         int ret;
339
340         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
341
342         BUG_ON(ret);
343 }
344
345 static void bind_to_memnode(int node)
346 {
347         unsigned long nodemask;
348         int ret;
349
350         if (node == NUMA_NO_NODE)
351                 return;
352
353         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
354         nodemask = 1L << node;
355
356         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
357         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
358
359         BUG_ON(ret);
360 }
361
362 #define HPSIZE (2*1024*1024)
363
364 #define set_taskname(fmt...)                            \
365 do {                                                    \
366         char name[20];                                  \
367                                                         \
368         snprintf(name, 20, fmt);                        \
369         prctl(PR_SET_NAME, name);                       \
370 } while (0)
371
372 static u8 *alloc_data(ssize_t bytes0, int map_flags,
373                       int init_zero, int init_cpu0, int thp, int init_random)
374 {
375         cpu_set_t orig_mask;
376         ssize_t bytes;
377         u8 *buf;
378         int ret;
379
380         if (!bytes0)
381                 return NULL;
382
383         /* Allocate and initialize all memory on CPU#0: */
384         if (init_cpu0) {
385                 int node = numa_node_of_cpu(0);
386
387                 orig_mask = bind_to_node(node);
388                 bind_to_memnode(node);
389         }
390
391         bytes = bytes0 + HPSIZE;
392
393         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
394         BUG_ON(buf == (void *)-1);
395
396         if (map_flags == MAP_PRIVATE) {
397                 if (thp > 0) {
398                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
399                         if (ret && !g->print_once) {
400                                 g->print_once = 1;
401                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
402                         }
403                 }
404                 if (thp < 0) {
405                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
406                         if (ret && !g->print_once) {
407                                 g->print_once = 1;
408                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
409                         }
410                 }
411         }
412
413         if (init_zero) {
414                 bzero(buf, bytes);
415         } else {
416                 /* Initialize random contents, different in each word: */
417                 if (init_random) {
418                         u64 *wbuf = (void *)buf;
419                         long off = rand();
420                         long i;
421
422                         for (i = 0; i < bytes/8; i++)
423                                 wbuf[i] = i + off;
424                 }
425         }
426
427         /* Align to 2MB boundary: */
428         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
429
430         /* Restore affinity: */
431         if (init_cpu0) {
432                 bind_to_cpumask(orig_mask);
433                 mempol_restore();
434         }
435
436         return buf;
437 }
438
439 static void free_data(void *data, ssize_t bytes)
440 {
441         int ret;
442
443         if (!data)
444                 return;
445
446         ret = munmap(data, bytes);
447         BUG_ON(ret);
448 }
449
450 /*
451  * Create a shared memory buffer that can be shared between processes, zeroed:
452  */
453 static void * zalloc_shared_data(ssize_t bytes)
454 {
455         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
456 }
457
458 /*
459  * Create a shared memory buffer that can be shared between processes:
460  */
461 static void * setup_shared_data(ssize_t bytes)
462 {
463         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
464 }
465
466 /*
467  * Allocate process-local memory - this will either be shared between
468  * threads of this process, or only be accessed by this thread:
469  */
470 static void * setup_private_data(ssize_t bytes)
471 {
472         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
473 }
474
475 /*
476  * Return a process-shared (global) mutex:
477  */
478 static void init_global_mutex(pthread_mutex_t *mutex)
479 {
480         pthread_mutexattr_t attr;
481
482         pthread_mutexattr_init(&attr);
483         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
484         pthread_mutex_init(mutex, &attr);
485 }
486
487 /*
488  * Return a process-shared (global) condition variable:
489  */
490 static void init_global_cond(pthread_cond_t *cond)
491 {
492         pthread_condattr_t attr;
493
494         pthread_condattr_init(&attr);
495         pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
496         pthread_cond_init(cond, &attr);
497 }
498
499 static int parse_cpu_list(const char *arg)
500 {
501         p0.cpu_list_str = strdup(arg);
502
503         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
504
505         return 0;
506 }
507
508 static int parse_setup_cpu_list(void)
509 {
510         struct thread_data *td;
511         char *str0, *str;
512         int t;
513
514         if (!g->p.cpu_list_str)
515                 return 0;
516
517         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
518
519         str0 = str = strdup(g->p.cpu_list_str);
520         t = 0;
521
522         BUG_ON(!str);
523
524         tprintf("# binding tasks to CPUs:\n");
525         tprintf("#  ");
526
527         while (true) {
528                 int bind_cpu, bind_cpu_0, bind_cpu_1;
529                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
530                 int bind_len;
531                 int step;
532                 int mul;
533
534                 tok = strsep(&str, ",");
535                 if (!tok)
536                         break;
537
538                 tok_end = strstr(tok, "-");
539
540                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
541                 if (!tok_end) {
542                         /* Single CPU specified: */
543                         bind_cpu_0 = bind_cpu_1 = atol(tok);
544                 } else {
545                         /* CPU range specified (for example: "5-11"): */
546                         bind_cpu_0 = atol(tok);
547                         bind_cpu_1 = atol(tok_end + 1);
548                 }
549
550                 step = 1;
551                 tok_step = strstr(tok, "#");
552                 if (tok_step) {
553                         step = atol(tok_step + 1);
554                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
555                 }
556
557                 /*
558                  * Mask length.
559                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
560                  * where the _4 means the next 4 CPUs are allowed.
561                  */
562                 bind_len = 1;
563                 tok_len = strstr(tok, "_");
564                 if (tok_len) {
565                         bind_len = atol(tok_len + 1);
566                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
567                 }
568
569                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
570                 mul = 1;
571                 tok_mul = strstr(tok, "x");
572                 if (tok_mul) {
573                         mul = atol(tok_mul + 1);
574                         BUG_ON(mul <= 0);
575                 }
576
577                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
578
579                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
580                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
581                         return -1;
582                 }
583
584                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
585                 BUG_ON(bind_cpu_0 > bind_cpu_1);
586
587                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
588                         int i;
589
590                         for (i = 0; i < mul; i++) {
591                                 int cpu;
592
593                                 if (t >= g->p.nr_tasks) {
594                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
595                                         goto out;
596                                 }
597                                 td = g->threads + t;
598
599                                 if (t)
600                                         tprintf(",");
601                                 if (bind_len > 1) {
602                                         tprintf("%2d/%d", bind_cpu, bind_len);
603                                 } else {
604                                         tprintf("%2d", bind_cpu);
605                                 }
606
607                                 CPU_ZERO(&td->bind_cpumask);
608                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
609                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
610                                         CPU_SET(cpu, &td->bind_cpumask);
611                                 }
612                                 t++;
613                         }
614                 }
615         }
616 out:
617
618         tprintf("\n");
619
620         if (t < g->p.nr_tasks)
621                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
622
623         free(str0);
624         return 0;
625 }
626
627 static int parse_cpus_opt(const struct option *opt __maybe_unused,
628                           const char *arg, int unset __maybe_unused)
629 {
630         if (!arg)
631                 return -1;
632
633         return parse_cpu_list(arg);
634 }
635
636 static int parse_node_list(const char *arg)
637 {
638         p0.node_list_str = strdup(arg);
639
640         dprintf("got NODE list: {%s}\n", p0.node_list_str);
641
642         return 0;
643 }
644
645 static int parse_setup_node_list(void)
646 {
647         struct thread_data *td;
648         char *str0, *str;
649         int t;
650
651         if (!g->p.node_list_str)
652                 return 0;
653
654         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
655
656         str0 = str = strdup(g->p.node_list_str);
657         t = 0;
658
659         BUG_ON(!str);
660
661         tprintf("# binding tasks to NODEs:\n");
662         tprintf("# ");
663
664         while (true) {
665                 int bind_node, bind_node_0, bind_node_1;
666                 char *tok, *tok_end, *tok_step, *tok_mul;
667                 int step;
668                 int mul;
669
670                 tok = strsep(&str, ",");
671                 if (!tok)
672                         break;
673
674                 tok_end = strstr(tok, "-");
675
676                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
677                 if (!tok_end) {
678                         /* Single NODE specified: */
679                         bind_node_0 = bind_node_1 = atol(tok);
680                 } else {
681                         /* NODE range specified (for example: "5-11"): */
682                         bind_node_0 = atol(tok);
683                         bind_node_1 = atol(tok_end + 1);
684                 }
685
686                 step = 1;
687                 tok_step = strstr(tok, "#");
688                 if (tok_step) {
689                         step = atol(tok_step + 1);
690                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
691                 }
692
693                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
694                 mul = 1;
695                 tok_mul = strstr(tok, "x");
696                 if (tok_mul) {
697                         mul = atol(tok_mul + 1);
698                         BUG_ON(mul <= 0);
699                 }
700
701                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
702
703                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
704                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
705                         return -1;
706                 }
707
708                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
709                 BUG_ON(bind_node_0 > bind_node_1);
710
711                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
712                         int i;
713
714                         for (i = 0; i < mul; i++) {
715                                 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
716                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
717                                         goto out;
718                                 }
719                                 td = g->threads + t;
720
721                                 if (!t)
722                                         tprintf(" %2d", bind_node);
723                                 else
724                                         tprintf(",%2d", bind_node);
725
726                                 td->bind_node = bind_node;
727                                 t++;
728                         }
729                 }
730         }
731 out:
732
733         tprintf("\n");
734
735         if (t < g->p.nr_tasks)
736                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
737
738         free(str0);
739         return 0;
740 }
741
742 static int parse_nodes_opt(const struct option *opt __maybe_unused,
743                           const char *arg, int unset __maybe_unused)
744 {
745         if (!arg)
746                 return -1;
747
748         return parse_node_list(arg);
749 }
750
751 #define BIT(x) (1ul << x)
752
753 static inline uint32_t lfsr_32(uint32_t lfsr)
754 {
755         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
756         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
757 }
758
759 /*
760  * Make sure there's real data dependency to RAM (when read
761  * accesses are enabled), so the compiler, the CPU and the
762  * kernel (KSM, zero page, etc.) cannot optimize away RAM
763  * accesses:
764  */
765 static inline u64 access_data(u64 *data, u64 val)
766 {
767         if (g->p.data_reads)
768                 val += *data;
769         if (g->p.data_writes)
770                 *data = val + 1;
771         return val;
772 }
773
774 /*
775  * The worker process does two types of work, a forwards going
776  * loop and a backwards going loop.
777  *
778  * We do this so that on multiprocessor systems we do not create
779  * a 'train' of processing, with highly synchronized processes,
780  * skewing the whole benchmark.
781  */
782 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
783 {
784         long words = bytes/sizeof(u64);
785         u64 *data = (void *)__data;
786         long chunk_0, chunk_1;
787         u64 *d0, *d, *d1;
788         long off;
789         long i;
790
791         BUG_ON(!data && words);
792         BUG_ON(data && !words);
793
794         if (!data)
795                 return val;
796
797         /* Very simple memset() work variant: */
798         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
799                 bzero(data, bytes);
800                 return val;
801         }
802
803         /* Spread out by PID/TID nr and by loop nr: */
804         chunk_0 = words/nr_max;
805         chunk_1 = words/g->p.nr_loops;
806         off = nr*chunk_0 + loop*chunk_1;
807
808         while (off >= words)
809                 off -= words;
810
811         if (g->p.data_rand_walk) {
812                 u32 lfsr = nr + loop + val;
813                 int j;
814
815                 for (i = 0; i < words/1024; i++) {
816                         long start, end;
817
818                         lfsr = lfsr_32(lfsr);
819
820                         start = lfsr % words;
821                         end = min(start + 1024, words-1);
822
823                         if (g->p.data_zero_memset) {
824                                 bzero(data + start, (end-start) * sizeof(u64));
825                         } else {
826                                 for (j = start; j < end; j++)
827                                         val = access_data(data + j, val);
828                         }
829                 }
830         } else if (!g->p.data_backwards || (nr + loop) & 1) {
831                 /* Process data forwards: */
832
833                 d0 = data + off;
834                 d  = data + off + 1;
835                 d1 = data + words;
836
837                 for (;;) {
838                         if (unlikely(d >= d1))
839                                 d = data;
840                         if (unlikely(d == d0))
841                                 break;
842
843                         val = access_data(d, val);
844
845                         d++;
846                 }
847         } else {
848                 /* Process data backwards: */
849
850                 d0 = data + off;
851                 d  = data + off - 1;
852                 d1 = data + words;
853
854                 for (;;) {
855                         if (unlikely(d < data))
856                                 d = data + words-1;
857                         if (unlikely(d == d0))
858                                 break;
859
860                         val = access_data(d, val);
861
862                         d--;
863                 }
864         }
865
866         return val;
867 }
868
869 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
870 {
871         unsigned int cpu;
872
873         cpu = sched_getcpu();
874
875         g->threads[task_nr].curr_cpu = cpu;
876         prctl(0, bytes_worked);
877 }
878
879 #define MAX_NR_NODES    64
880
881 /*
882  * Count the number of nodes a process's threads
883  * are spread out on.
884  *
885  * A count of 1 means that the process is compressed
886  * to a single node. A count of g->p.nr_nodes means it's
887  * spread out on the whole system.
888  */
889 static int count_process_nodes(int process_nr)
890 {
891         char node_present[MAX_NR_NODES] = { 0, };
892         int nodes;
893         int n, t;
894
895         for (t = 0; t < g->p.nr_threads; t++) {
896                 struct thread_data *td;
897                 int task_nr;
898                 int node;
899
900                 task_nr = process_nr*g->p.nr_threads + t;
901                 td = g->threads + task_nr;
902
903                 node = numa_node_of_cpu(td->curr_cpu);
904                 if (node < 0) /* curr_cpu was likely still -1 */
905                         return 0;
906
907                 node_present[node] = 1;
908         }
909
910         nodes = 0;
911
912         for (n = 0; n < MAX_NR_NODES; n++)
913                 nodes += node_present[n];
914
915         return nodes;
916 }
917
918 /*
919  * Count the number of distinct process-threads a node contains.
920  *
921  * A count of 1 means that the node contains only a single
922  * process. If all nodes on the system contain at most one
923  * process then we are well-converged.
924  */
925 static int count_node_processes(int node)
926 {
927         int processes = 0;
928         int t, p;
929
930         for (p = 0; p < g->p.nr_proc; p++) {
931                 for (t = 0; t < g->p.nr_threads; t++) {
932                         struct thread_data *td;
933                         int task_nr;
934                         int n;
935
936                         task_nr = p*g->p.nr_threads + t;
937                         td = g->threads + task_nr;
938
939                         n = numa_node_of_cpu(td->curr_cpu);
940                         if (n == node) {
941                                 processes++;
942                                 break;
943                         }
944                 }
945         }
946
947         return processes;
948 }
949
950 static void calc_convergence_compression(int *strong)
951 {
952         unsigned int nodes_min, nodes_max;
953         int p;
954
955         nodes_min = -1;
956         nodes_max =  0;
957
958         for (p = 0; p < g->p.nr_proc; p++) {
959                 unsigned int nodes = count_process_nodes(p);
960
961                 if (!nodes) {
962                         *strong = 0;
963                         return;
964                 }
965
966                 nodes_min = min(nodes, nodes_min);
967                 nodes_max = max(nodes, nodes_max);
968         }
969
970         /* Strong convergence: all threads compress on a single node: */
971         if (nodes_min == 1 && nodes_max == 1) {
972                 *strong = 1;
973         } else {
974                 *strong = 0;
975                 tprintf(" {%d-%d}", nodes_min, nodes_max);
976         }
977 }
978
979 static void calc_convergence(double runtime_ns_max, double *convergence)
980 {
981         unsigned int loops_done_min, loops_done_max;
982         int process_groups;
983         int nodes[MAX_NR_NODES];
984         int distance;
985         int nr_min;
986         int nr_max;
987         int strong;
988         int sum;
989         int nr;
990         int node;
991         int cpu;
992         int t;
993
994         if (!g->p.show_convergence && !g->p.measure_convergence)
995                 return;
996
997         for (node = 0; node < g->p.nr_nodes; node++)
998                 nodes[node] = 0;
999
1000         loops_done_min = -1;
1001         loops_done_max = 0;
1002
1003         for (t = 0; t < g->p.nr_tasks; t++) {
1004                 struct thread_data *td = g->threads + t;
1005                 unsigned int loops_done;
1006
1007                 cpu = td->curr_cpu;
1008
1009                 /* Not all threads have written it yet: */
1010                 if (cpu < 0)
1011                         continue;
1012
1013                 node = numa_node_of_cpu(cpu);
1014
1015                 nodes[node]++;
1016
1017                 loops_done = td->loops_done;
1018                 loops_done_min = min(loops_done, loops_done_min);
1019                 loops_done_max = max(loops_done, loops_done_max);
1020         }
1021
1022         nr_max = 0;
1023         nr_min = g->p.nr_tasks;
1024         sum = 0;
1025
1026         for (node = 0; node < g->p.nr_nodes; node++) {
1027                 if (!is_node_present(node))
1028                         continue;
1029                 nr = nodes[node];
1030                 nr_min = min(nr, nr_min);
1031                 nr_max = max(nr, nr_max);
1032                 sum += nr;
1033         }
1034         BUG_ON(nr_min > nr_max);
1035
1036         BUG_ON(sum > g->p.nr_tasks);
1037
1038         if (0 && (sum < g->p.nr_tasks))
1039                 return;
1040
1041         /*
1042          * Count the number of distinct process groups present
1043          * on nodes - when we are converged this will decrease
1044          * to g->p.nr_proc:
1045          */
1046         process_groups = 0;
1047
1048         for (node = 0; node < g->p.nr_nodes; node++) {
1049                 int processes;
1050
1051                 if (!is_node_present(node))
1052                         continue;
1053                 processes = count_node_processes(node);
1054                 nr = nodes[node];
1055                 tprintf(" %2d/%-2d", nr, processes);
1056
1057                 process_groups += processes;
1058         }
1059
1060         distance = nr_max - nr_min;
1061
1062         tprintf(" [%2d/%-2d]", distance, process_groups);
1063
1064         tprintf(" l:%3d-%-3d (%3d)",
1065                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1066
1067         if (loops_done_min && loops_done_max) {
1068                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1069
1070                 tprintf(" [%4.1f%%]", skew * 100.0);
1071         }
1072
1073         calc_convergence_compression(&strong);
1074
1075         if (strong && process_groups == g->p.nr_proc) {
1076                 if (!*convergence) {
1077                         *convergence = runtime_ns_max;
1078                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1079                         if (g->p.measure_convergence) {
1080                                 g->all_converged = true;
1081                                 g->stop_work = true;
1082                         }
1083                 }
1084         } else {
1085                 if (*convergence) {
1086                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1087                         *convergence = 0;
1088                 }
1089                 tprintf("\n");
1090         }
1091 }
1092
1093 static void show_summary(double runtime_ns_max, int l, double *convergence)
1094 {
1095         tprintf("\r #  %5.1f%%  [%.1f mins]",
1096                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1097
1098         calc_convergence(runtime_ns_max, convergence);
1099
1100         if (g->p.show_details >= 0)
1101                 fflush(stdout);
1102 }
1103
1104 static void *worker_thread(void *__tdata)
1105 {
1106         struct thread_data *td = __tdata;
1107         struct timeval start0, start, stop, diff;
1108         int process_nr = td->process_nr;
1109         int thread_nr = td->thread_nr;
1110         unsigned long last_perturbance;
1111         int task_nr = td->task_nr;
1112         int details = g->p.show_details;
1113         int first_task, last_task;
1114         double convergence = 0;
1115         u64 val = td->val;
1116         double runtime_ns_max;
1117         u8 *global_data;
1118         u8 *process_data;
1119         u8 *thread_data;
1120         u64 bytes_done, secs;
1121         long work_done;
1122         u32 l;
1123         struct rusage rusage;
1124
1125         bind_to_cpumask(td->bind_cpumask);
1126         bind_to_memnode(td->bind_node);
1127
1128         set_taskname("thread %d/%d", process_nr, thread_nr);
1129
1130         global_data = g->data;
1131         process_data = td->process_data;
1132         thread_data = setup_private_data(g->p.bytes_thread);
1133
1134         bytes_done = 0;
1135
1136         last_task = 0;
1137         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1138                 last_task = 1;
1139
1140         first_task = 0;
1141         if (process_nr == 0 && thread_nr == 0)
1142                 first_task = 1;
1143
1144         if (details >= 2) {
1145                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1146                         process_nr, thread_nr, global_data, process_data, thread_data);
1147         }
1148
1149         if (g->p.serialize_startup) {
1150                 pthread_mutex_lock(&g->startup_mutex);
1151                 g->nr_tasks_started++;
1152                 /* The last thread wakes the main process. */
1153                 if (g->nr_tasks_started == g->p.nr_tasks)
1154                         pthread_cond_signal(&g->startup_cond);
1155
1156                 pthread_mutex_unlock(&g->startup_mutex);
1157
1158                 /* Here we will wait for the main process to start us all at once: */
1159                 pthread_mutex_lock(&g->start_work_mutex);
1160                 g->start_work = false;
1161                 g->nr_tasks_working++;
1162                 while (!g->start_work)
1163                         pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1164
1165                 pthread_mutex_unlock(&g->start_work_mutex);
1166         }
1167
1168         gettimeofday(&start0, NULL);
1169
1170         start = stop = start0;
1171         last_perturbance = start.tv_sec;
1172
1173         for (l = 0; l < g->p.nr_loops; l++) {
1174                 start = stop;
1175
1176                 if (g->stop_work)
1177                         break;
1178
1179                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1180                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1181                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1182
1183                 if (g->p.sleep_usecs) {
1184                         pthread_mutex_lock(td->process_lock);
1185                         usleep(g->p.sleep_usecs);
1186                         pthread_mutex_unlock(td->process_lock);
1187                 }
1188                 /*
1189                  * Amount of work to be done under a process-global lock:
1190                  */
1191                 if (g->p.bytes_process_locked) {
1192                         pthread_mutex_lock(td->process_lock);
1193                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1194                         pthread_mutex_unlock(td->process_lock);
1195                 }
1196
1197                 work_done = g->p.bytes_global + g->p.bytes_process +
1198                             g->p.bytes_process_locked + g->p.bytes_thread;
1199
1200                 update_curr_cpu(task_nr, work_done);
1201                 bytes_done += work_done;
1202
1203                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1204                         continue;
1205
1206                 td->loops_done = l;
1207
1208                 gettimeofday(&stop, NULL);
1209
1210                 /* Check whether our max runtime timed out: */
1211                 if (g->p.nr_secs) {
1212                         timersub(&stop, &start0, &diff);
1213                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1214                                 g->stop_work = true;
1215                                 break;
1216                         }
1217                 }
1218
1219                 /* Update the summary at most once per second: */
1220                 if (start.tv_sec == stop.tv_sec)
1221                         continue;
1222
1223                 /*
1224                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1225                  * by migrating to CPU#0:
1226                  */
1227                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1228                         cpu_set_t orig_mask;
1229                         int target_cpu;
1230                         int this_cpu;
1231
1232                         last_perturbance = stop.tv_sec;
1233
1234                         /*
1235                          * Depending on where we are running, move into
1236                          * the other half of the system, to create some
1237                          * real disturbance:
1238                          */
1239                         this_cpu = g->threads[task_nr].curr_cpu;
1240                         if (this_cpu < g->p.nr_cpus/2)
1241                                 target_cpu = g->p.nr_cpus-1;
1242                         else
1243                                 target_cpu = 0;
1244
1245                         orig_mask = bind_to_cpu(target_cpu);
1246
1247                         /* Here we are running on the target CPU already */
1248                         if (details >= 1)
1249                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1250
1251                         bind_to_cpumask(orig_mask);
1252                 }
1253
1254                 if (details >= 3) {
1255                         timersub(&stop, &start, &diff);
1256                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1257                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1258
1259                         if (details >= 0) {
1260                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1261                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1262                         }
1263                         fflush(stdout);
1264                 }
1265                 if (!last_task)
1266                         continue;
1267
1268                 timersub(&stop, &start0, &diff);
1269                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1270                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1271
1272                 show_summary(runtime_ns_max, l, &convergence);
1273         }
1274
1275         gettimeofday(&stop, NULL);
1276         timersub(&stop, &start0, &diff);
1277         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1278         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1279         secs = td->runtime_ns / NSEC_PER_SEC;
1280         td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1281
1282         getrusage(RUSAGE_THREAD, &rusage);
1283         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1284         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1285         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1286         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1287
1288         free_data(thread_data, g->p.bytes_thread);
1289
1290         pthread_mutex_lock(&g->stop_work_mutex);
1291         g->bytes_done += bytes_done;
1292         pthread_mutex_unlock(&g->stop_work_mutex);
1293
1294         return NULL;
1295 }
1296
1297 /*
1298  * A worker process starts a couple of threads:
1299  */
1300 static void worker_process(int process_nr)
1301 {
1302         pthread_mutex_t process_lock;
1303         struct thread_data *td;
1304         pthread_t *pthreads;
1305         u8 *process_data;
1306         int task_nr;
1307         int ret;
1308         int t;
1309
1310         pthread_mutex_init(&process_lock, NULL);
1311         set_taskname("process %d", process_nr);
1312
1313         /*
1314          * Pick up the memory policy and the CPU binding of our first thread,
1315          * so that we initialize memory accordingly:
1316          */
1317         task_nr = process_nr*g->p.nr_threads;
1318         td = g->threads + task_nr;
1319
1320         bind_to_memnode(td->bind_node);
1321         bind_to_cpumask(td->bind_cpumask);
1322
1323         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1324         process_data = setup_private_data(g->p.bytes_process);
1325
1326         if (g->p.show_details >= 3) {
1327                 printf(" # process %2d global mem: %p, process mem: %p\n",
1328                         process_nr, g->data, process_data);
1329         }
1330
1331         for (t = 0; t < g->p.nr_threads; t++) {
1332                 task_nr = process_nr*g->p.nr_threads + t;
1333                 td = g->threads + task_nr;
1334
1335                 td->process_data = process_data;
1336                 td->process_nr   = process_nr;
1337                 td->thread_nr    = t;
1338                 td->task_nr      = task_nr;
1339                 td->val          = rand();
1340                 td->curr_cpu     = -1;
1341                 td->process_lock = &process_lock;
1342
1343                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1344                 BUG_ON(ret);
1345         }
1346
1347         for (t = 0; t < g->p.nr_threads; t++) {
1348                 ret = pthread_join(pthreads[t], NULL);
1349                 BUG_ON(ret);
1350         }
1351
1352         free_data(process_data, g->p.bytes_process);
1353         free(pthreads);
1354 }
1355
1356 static void print_summary(void)
1357 {
1358         if (g->p.show_details < 0)
1359                 return;
1360
1361         printf("\n ###\n");
1362         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1363                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1364         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1365                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1366         printf(" #      %5dx %5ldMB process shared mem operations\n",
1367                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1368         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1369                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1370
1371         printf(" ###\n");
1372
1373         printf("\n ###\n"); fflush(stdout);
1374 }
1375
1376 static void init_thread_data(void)
1377 {
1378         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1379         int t;
1380
1381         g->threads = zalloc_shared_data(size);
1382
1383         for (t = 0; t < g->p.nr_tasks; t++) {
1384                 struct thread_data *td = g->threads + t;
1385                 int cpu;
1386
1387                 /* Allow all nodes by default: */
1388                 td->bind_node = NUMA_NO_NODE;
1389
1390                 /* Allow all CPUs by default: */
1391                 CPU_ZERO(&td->bind_cpumask);
1392                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1393                         CPU_SET(cpu, &td->bind_cpumask);
1394         }
1395 }
1396
1397 static void deinit_thread_data(void)
1398 {
1399         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1400
1401         free_data(g->threads, size);
1402 }
1403
1404 static int init(void)
1405 {
1406         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1407
1408         /* Copy over options: */
1409         g->p = p0;
1410
1411         g->p.nr_cpus = numa_num_configured_cpus();
1412
1413         g->p.nr_nodes = numa_max_node() + 1;
1414
1415         /* char array in count_process_nodes(): */
1416         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1417
1418         if (g->p.show_quiet && !g->p.show_details)
1419                 g->p.show_details = -1;
1420
1421         /* Some memory should be specified: */
1422         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1423                 return -1;
1424
1425         if (g->p.mb_global_str) {
1426                 g->p.mb_global = atof(g->p.mb_global_str);
1427                 BUG_ON(g->p.mb_global < 0);
1428         }
1429
1430         if (g->p.mb_proc_str) {
1431                 g->p.mb_proc = atof(g->p.mb_proc_str);
1432                 BUG_ON(g->p.mb_proc < 0);
1433         }
1434
1435         if (g->p.mb_proc_locked_str) {
1436                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1437                 BUG_ON(g->p.mb_proc_locked < 0);
1438                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1439         }
1440
1441         if (g->p.mb_thread_str) {
1442                 g->p.mb_thread = atof(g->p.mb_thread_str);
1443                 BUG_ON(g->p.mb_thread < 0);
1444         }
1445
1446         BUG_ON(g->p.nr_threads <= 0);
1447         BUG_ON(g->p.nr_proc <= 0);
1448
1449         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1450
1451         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1452         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1453         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1454         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1455
1456         g->data = setup_shared_data(g->p.bytes_global);
1457
1458         /* Startup serialization: */
1459         init_global_mutex(&g->start_work_mutex);
1460         init_global_cond(&g->start_work_cond);
1461         init_global_mutex(&g->startup_mutex);
1462         init_global_cond(&g->startup_cond);
1463         init_global_mutex(&g->stop_work_mutex);
1464
1465         init_thread_data();
1466
1467         tprintf("#\n");
1468         if (parse_setup_cpu_list() || parse_setup_node_list())
1469                 return -1;
1470         tprintf("#\n");
1471
1472         print_summary();
1473
1474         return 0;
1475 }
1476
1477 static void deinit(void)
1478 {
1479         free_data(g->data, g->p.bytes_global);
1480         g->data = NULL;
1481
1482         deinit_thread_data();
1483
1484         free_data(g, sizeof(*g));
1485         g = NULL;
1486 }
1487
1488 /*
1489  * Print a short or long result, depending on the verbosity setting:
1490  */
1491 static void print_res(const char *name, double val,
1492                       const char *txt_unit, const char *txt_short, const char *txt_long)
1493 {
1494         if (!name)
1495                 name = "main,";
1496
1497         if (!g->p.show_quiet)
1498                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1499         else
1500                 printf(" %14.3f %s\n", val, txt_long);
1501 }
1502
1503 static int __bench_numa(const char *name)
1504 {
1505         struct timeval start, stop, diff;
1506         u64 runtime_ns_min, runtime_ns_sum;
1507         pid_t *pids, pid, wpid;
1508         double delta_runtime;
1509         double runtime_avg;
1510         double runtime_sec_max;
1511         double runtime_sec_min;
1512         int wait_stat;
1513         double bytes;
1514         int i, t, p;
1515
1516         if (init())
1517                 return -1;
1518
1519         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1520         pid = -1;
1521
1522         if (g->p.serialize_startup) {
1523                 tprintf(" #\n");
1524                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1525         }
1526
1527         gettimeofday(&start, NULL);
1528
1529         for (i = 0; i < g->p.nr_proc; i++) {
1530                 pid = fork();
1531                 dprintf(" # process %2d: PID %d\n", i, pid);
1532
1533                 BUG_ON(pid < 0);
1534                 if (!pid) {
1535                         /* Child process: */
1536                         worker_process(i);
1537
1538                         exit(0);
1539                 }
1540                 pids[i] = pid;
1541
1542         }
1543
1544         if (g->p.serialize_startup) {
1545                 bool threads_ready = false;
1546                 double startup_sec;
1547
1548                 /*
1549                  * Wait for all the threads to start up. The last thread will
1550                  * signal this process.
1551                  */
1552                 pthread_mutex_lock(&g->startup_mutex);
1553                 while (g->nr_tasks_started != g->p.nr_tasks)
1554                         pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1555
1556                 pthread_mutex_unlock(&g->startup_mutex);
1557
1558                 /* Wait for all threads to be at the start_work_cond. */
1559                 while (!threads_ready) {
1560                         pthread_mutex_lock(&g->start_work_mutex);
1561                         threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1562                         pthread_mutex_unlock(&g->start_work_mutex);
1563                         if (!threads_ready)
1564                                 usleep(1);
1565                 }
1566
1567                 gettimeofday(&stop, NULL);
1568
1569                 timersub(&stop, &start, &diff);
1570
1571                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1572                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1573                 startup_sec /= NSEC_PER_SEC;
1574
1575                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1576                 tprintf(" #\n");
1577
1578                 start = stop;
1579                 /* Start all threads running. */
1580                 pthread_mutex_lock(&g->start_work_mutex);
1581                 g->start_work = true;
1582                 pthread_mutex_unlock(&g->start_work_mutex);
1583                 pthread_cond_broadcast(&g->start_work_cond);
1584         } else {
1585                 gettimeofday(&start, NULL);
1586         }
1587
1588         /* Parent process: */
1589
1590
1591         for (i = 0; i < g->p.nr_proc; i++) {
1592                 wpid = waitpid(pids[i], &wait_stat, 0);
1593                 BUG_ON(wpid < 0);
1594                 BUG_ON(!WIFEXITED(wait_stat));
1595
1596         }
1597
1598         runtime_ns_sum = 0;
1599         runtime_ns_min = -1LL;
1600
1601         for (t = 0; t < g->p.nr_tasks; t++) {
1602                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1603
1604                 runtime_ns_sum += thread_runtime_ns;
1605                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1606         }
1607
1608         gettimeofday(&stop, NULL);
1609         timersub(&stop, &start, &diff);
1610
1611         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1612
1613         tprintf("\n ###\n");
1614         tprintf("\n");
1615
1616         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1617         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1618         runtime_sec_max /= NSEC_PER_SEC;
1619
1620         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1621
1622         bytes = g->bytes_done;
1623         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1624
1625         if (g->p.measure_convergence) {
1626                 print_res(name, runtime_sec_max,
1627                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1628         }
1629
1630         print_res(name, runtime_sec_max,
1631                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1632
1633         print_res(name, runtime_sec_min,
1634                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1635
1636         print_res(name, runtime_avg,
1637                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1638
1639         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1640         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1641                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1642
1643         print_res(name, bytes / g->p.nr_tasks / 1e9,
1644                 "GB,", "data/thread",           "GB data processed, per thread");
1645
1646         print_res(name, bytes / 1e9,
1647                 "GB,", "data-total",            "GB data processed, total");
1648
1649         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1650                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1651
1652         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1653                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1654
1655         print_res(name, bytes / runtime_sec_max / 1e9,
1656                 "GB/sec,", "total-speed",       "GB/sec total speed");
1657
1658         if (g->p.show_details >= 2) {
1659                 char tname[14 + 2 * 11 + 1];
1660                 struct thread_data *td;
1661                 for (p = 0; p < g->p.nr_proc; p++) {
1662                         for (t = 0; t < g->p.nr_threads; t++) {
1663                                 memset(tname, 0, sizeof(tname));
1664                                 td = g->threads + p*g->p.nr_threads + t;
1665                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1666                                 print_res(tname, td->speed_gbs,
1667                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1668                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1669                                         "secs", "thread-system-time", "system CPU time/thread");
1670                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1671                                         "secs", "thread-user-time", "user CPU time/thread");
1672                         }
1673                 }
1674         }
1675
1676         free(pids);
1677
1678         deinit();
1679
1680         return 0;
1681 }
1682
1683 #define MAX_ARGS 50
1684
1685 static int command_size(const char **argv)
1686 {
1687         int size = 0;
1688
1689         while (*argv) {
1690                 size++;
1691                 argv++;
1692         }
1693
1694         BUG_ON(size >= MAX_ARGS);
1695
1696         return size;
1697 }
1698
1699 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1700 {
1701         int i;
1702
1703         printf("\n # Running %s \"perf bench numa", name);
1704
1705         for (i = 0; i < argc; i++)
1706                 printf(" %s", argv[i]);
1707
1708         printf("\"\n");
1709
1710         memset(p, 0, sizeof(*p));
1711
1712         /* Initialize nonzero defaults: */
1713
1714         p->serialize_startup            = 1;
1715         p->data_reads                   = true;
1716         p->data_writes                  = true;
1717         p->data_backwards               = true;
1718         p->data_rand_walk               = true;
1719         p->nr_loops                     = -1;
1720         p->init_random                  = true;
1721         p->mb_global_str                = "1";
1722         p->nr_proc                      = 1;
1723         p->nr_threads                   = 1;
1724         p->nr_secs                      = 5;
1725         p->run_all                      = argc == 1;
1726 }
1727
1728 static int run_bench_numa(const char *name, const char **argv)
1729 {
1730         int argc = command_size(argv);
1731
1732         init_params(&p0, name, argc, argv);
1733         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1734         if (argc)
1735                 goto err;
1736
1737         if (__bench_numa(name))
1738                 goto err;
1739
1740         return 0;
1741
1742 err:
1743         return -1;
1744 }
1745
1746 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1747 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1748
1749 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1750 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1751
1752 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1753 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1754
1755 /*
1756  * The built-in test-suite executed by "perf bench numa -a".
1757  *
1758  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1759  */
1760 static const char *tests[][MAX_ARGS] = {
1761    /* Basic single-stream NUMA bandwidth measurements: */
1762    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1763                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1764    { "RAM-bw-local-NOTHP,",
1765                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1766                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1767    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1768                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1769
1770    /* 2-stream NUMA bandwidth measurements: */
1771    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1772                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1773    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1774                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1775
1776    /* Cross-stream NUMA bandwidth measurement: */
1777    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1778                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1779
1780    /* Convergence latency measurements: */
1781    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1782    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1783    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1784    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1785    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1786    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1787    { " 4x4-convergence-NOTHP,",
1788                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1789    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1790    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1791    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1792    { " 8x4-convergence-NOTHP,",
1793                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1794    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1795    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1796    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1797    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1798    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1799
1800    /* Various NUMA process/thread layout bandwidth measurements: */
1801    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1802    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1803    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1804    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1805    { " 8x1-bw-process-NOTHP,",
1806                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1807    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1808
1809    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1810    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1811    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1812    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1813
1814    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1815    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1816    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1817    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1818    { " 4x8-bw-process-NOTHP,",
1819                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1820    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1821    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1822
1823    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1824    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1825
1826    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1827    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1828    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1829    { "numa01-bw-thread-NOTHP,",
1830                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1831 };
1832
1833 static int bench_all(void)
1834 {
1835         int nr = ARRAY_SIZE(tests);
1836         int ret;
1837         int i;
1838
1839         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1840         BUG_ON(ret < 0);
1841
1842         for (i = 0; i < nr; i++) {
1843                 run_bench_numa(tests[i][0], tests[i] + 1);
1844         }
1845
1846         printf("\n");
1847
1848         return 0;
1849 }
1850
1851 int bench_numa(int argc, const char **argv)
1852 {
1853         init_params(&p0, "main,", argc, argv);
1854         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1855         if (argc)
1856                 goto err;
1857
1858         if (p0.run_all)
1859                 return bench_all();
1860
1861         if (__bench_numa(NULL))
1862                 goto err;
1863
1864         return 0;
1865
1866 err:
1867         usage_with_options(numa_usage, options);
1868         return -1;
1869 }