GNU Linux-libre 5.10.217-gnu1
[releases.git] / tools / lib / bpf / libbpf.c
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC            0xcafe4a11
64 #endif
65
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72
73 #define __printf(a, b)  __attribute__((format(printf, a, b)))
74
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78
79 static int __base_pr(enum libbpf_print_level level, const char *format,
80                      va_list args)
81 {
82         if (level == LIBBPF_DEBUG)
83                 return 0;
84
85         return vfprintf(stderr, format, args);
86 }
87
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89
90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92         libbpf_print_fn_t old_print_fn = __libbpf_pr;
93
94         __libbpf_pr = fn;
95         return old_print_fn;
96 }
97
98 __printf(2, 3)
99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101         va_list args;
102
103         if (!__libbpf_pr)
104                 return;
105
106         va_start(args, format);
107         __libbpf_pr(level, format, args);
108         va_end(args);
109 }
110
111 static void pr_perm_msg(int err)
112 {
113         struct rlimit limit;
114         char buf[100];
115
116         if (err != -EPERM || geteuid() != 0)
117                 return;
118
119         err = getrlimit(RLIMIT_MEMLOCK, &limit);
120         if (err)
121                 return;
122
123         if (limit.rlim_cur == RLIM_INFINITY)
124                 return;
125
126         if (limit.rlim_cur < 1024)
127                 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128         else if (limit.rlim_cur < 1024*1024)
129                 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130         else
131                 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132
133         pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134                 buf);
135 }
136
137 #define STRERR_BUFSIZE  128
138
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143
144 #ifndef zclose
145 # define zclose(fd) ({                  \
146         int ___err = 0;                 \
147         if ((fd) >= 0)                  \
148                 ___err = close((fd));   \
149         fd = -1;                        \
150         ___err; })
151 #endif
152
153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155         return (__u64) (unsigned long) ptr;
156 }
157
158 enum kern_feature_id {
159         /* v4.14: kernel support for program & map names. */
160         FEAT_PROG_NAME,
161         /* v5.2: kernel support for global data sections. */
162         FEAT_GLOBAL_DATA,
163         /* BTF support */
164         FEAT_BTF,
165         /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166         FEAT_BTF_FUNC,
167         /* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168         FEAT_BTF_DATASEC,
169         /* BTF_FUNC_GLOBAL is supported */
170         FEAT_BTF_GLOBAL_FUNC,
171         /* BPF_F_MMAPABLE is supported for arrays */
172         FEAT_ARRAY_MMAP,
173         /* kernel support for expected_attach_type in BPF_PROG_LOAD */
174         FEAT_EXP_ATTACH_TYPE,
175         /* bpf_probe_read_{kernel,user}[_str] helpers */
176         FEAT_PROBE_READ_KERN,
177         /* BPF_PROG_BIND_MAP is supported */
178         FEAT_PROG_BIND_MAP,
179         __FEAT_CNT,
180 };
181
182 static bool kernel_supports(enum kern_feature_id feat_id);
183
184 enum reloc_type {
185         RELO_LD64,
186         RELO_CALL,
187         RELO_DATA,
188         RELO_EXTERN,
189 };
190
191 struct reloc_desc {
192         enum reloc_type type;
193         int insn_idx;
194         int map_idx;
195         int sym_off;
196         bool processed;
197 };
198
199 struct bpf_sec_def;
200
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202                                         struct bpf_program *prog);
203
204 struct bpf_sec_def {
205         const char *sec;
206         size_t len;
207         enum bpf_prog_type prog_type;
208         enum bpf_attach_type expected_attach_type;
209         bool is_exp_attach_type_optional;
210         bool is_attachable;
211         bool is_attach_btf;
212         bool is_sleepable;
213         attach_fn_t attach_fn;
214 };
215
216 /*
217  * bpf_prog should be a better name but it has been used in
218  * linux/filter.h.
219  */
220 struct bpf_program {
221         const struct bpf_sec_def *sec_def;
222         char *sec_name;
223         size_t sec_idx;
224         /* this program's instruction offset (in number of instructions)
225          * within its containing ELF section
226          */
227         size_t sec_insn_off;
228         /* number of original instructions in ELF section belonging to this
229          * program, not taking into account subprogram instructions possible
230          * appended later during relocation
231          */
232         size_t sec_insn_cnt;
233         /* Offset (in number of instructions) of the start of instruction
234          * belonging to this BPF program  within its containing main BPF
235          * program. For the entry-point (main) BPF program, this is always
236          * zero. For a sub-program, this gets reset before each of main BPF
237          * programs are processed and relocated and is used to determined
238          * whether sub-program was already appended to the main program, and
239          * if yes, at which instruction offset.
240          */
241         size_t sub_insn_off;
242
243         char *name;
244         /* sec_name with / replaced by _; makes recursive pinning
245          * in bpf_object__pin_programs easier
246          */
247         char *pin_name;
248
249         /* instructions that belong to BPF program; insns[0] is located at
250          * sec_insn_off instruction within its ELF section in ELF file, so
251          * when mapping ELF file instruction index to the local instruction,
252          * one needs to subtract sec_insn_off; and vice versa.
253          */
254         struct bpf_insn *insns;
255         /* actual number of instruction in this BPF program's image; for
256          * entry-point BPF programs this includes the size of main program
257          * itself plus all the used sub-programs, appended at the end
258          */
259         size_t insns_cnt;
260
261         struct reloc_desc *reloc_desc;
262         int nr_reloc;
263         int log_level;
264
265         struct {
266                 int nr;
267                 int *fds;
268         } instances;
269         bpf_program_prep_t preprocessor;
270
271         struct bpf_object *obj;
272         void *priv;
273         bpf_program_clear_priv_t clear_priv;
274
275         bool load;
276         enum bpf_prog_type type;
277         enum bpf_attach_type expected_attach_type;
278         int prog_ifindex;
279         __u32 attach_btf_id;
280         __u32 attach_prog_fd;
281         void *func_info;
282         __u32 func_info_rec_size;
283         __u32 func_info_cnt;
284
285         void *line_info;
286         __u32 line_info_rec_size;
287         __u32 line_info_cnt;
288         __u32 prog_flags;
289 };
290
291 struct bpf_struct_ops {
292         const char *tname;
293         const struct btf_type *type;
294         struct bpf_program **progs;
295         __u32 *kern_func_off;
296         /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297         void *data;
298         /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299          *      btf_vmlinux's format.
300          * struct bpf_struct_ops_tcp_congestion_ops {
301          *      [... some other kernel fields ...]
302          *      struct tcp_congestion_ops data;
303          * }
304          * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305          * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306          * from "data".
307          */
308         void *kern_vdata;
309         __u32 type_id;
310 };
311
312 #define DATA_SEC ".data"
313 #define BSS_SEC ".bss"
314 #define RODATA_SEC ".rodata"
315 #define KCONFIG_SEC ".kconfig"
316 #define KSYMS_SEC ".ksyms"
317 #define STRUCT_OPS_SEC ".struct_ops"
318
319 enum libbpf_map_type {
320         LIBBPF_MAP_UNSPEC,
321         LIBBPF_MAP_DATA,
322         LIBBPF_MAP_BSS,
323         LIBBPF_MAP_RODATA,
324         LIBBPF_MAP_KCONFIG,
325 };
326
327 static const char * const libbpf_type_to_btf_name[] = {
328         [LIBBPF_MAP_DATA]       = DATA_SEC,
329         [LIBBPF_MAP_BSS]        = BSS_SEC,
330         [LIBBPF_MAP_RODATA]     = RODATA_SEC,
331         [LIBBPF_MAP_KCONFIG]    = KCONFIG_SEC,
332 };
333
334 struct bpf_map {
335         char *name;
336         int fd;
337         int sec_idx;
338         size_t sec_offset;
339         int map_ifindex;
340         int inner_map_fd;
341         struct bpf_map_def def;
342         __u32 numa_node;
343         __u32 btf_var_idx;
344         __u32 btf_key_type_id;
345         __u32 btf_value_type_id;
346         __u32 btf_vmlinux_value_type_id;
347         void *priv;
348         bpf_map_clear_priv_t clear_priv;
349         enum libbpf_map_type libbpf_type;
350         void *mmaped;
351         struct bpf_struct_ops *st_ops;
352         struct bpf_map *inner_map;
353         void **init_slots;
354         int init_slots_sz;
355         char *pin_path;
356         bool pinned;
357         bool reused;
358 };
359
360 enum extern_type {
361         EXT_UNKNOWN,
362         EXT_KCFG,
363         EXT_KSYM,
364 };
365
366 enum kcfg_type {
367         KCFG_UNKNOWN,
368         KCFG_CHAR,
369         KCFG_BOOL,
370         KCFG_INT,
371         KCFG_TRISTATE,
372         KCFG_CHAR_ARR,
373 };
374
375 struct extern_desc {
376         enum extern_type type;
377         int sym_idx;
378         int btf_id;
379         int sec_btf_id;
380         const char *name;
381         bool is_set;
382         bool is_weak;
383         union {
384                 struct {
385                         enum kcfg_type type;
386                         int sz;
387                         int align;
388                         int data_off;
389                         bool is_signed;
390                 } kcfg;
391                 struct {
392                         unsigned long long addr;
393
394                         /* target btf_id of the corresponding kernel var. */
395                         int vmlinux_btf_id;
396
397                         /* local btf_id of the ksym extern's type. */
398                         __u32 type_id;
399                 } ksym;
400         };
401 };
402
403 static LIST_HEAD(bpf_objects_list);
404
405 struct bpf_object {
406         char name[BPF_OBJ_NAME_LEN];
407         char license[64];
408         __u32 kern_version;
409
410         struct bpf_program *programs;
411         size_t nr_programs;
412         struct bpf_map *maps;
413         size_t nr_maps;
414         size_t maps_cap;
415
416         char *kconfig;
417         struct extern_desc *externs;
418         int nr_extern;
419         int kconfig_map_idx;
420         int rodata_map_idx;
421
422         bool loaded;
423         bool has_subcalls;
424
425         /*
426          * Information when doing elf related work. Only valid if fd
427          * is valid.
428          */
429         struct {
430                 int fd;
431                 const void *obj_buf;
432                 size_t obj_buf_sz;
433                 Elf *elf;
434                 GElf_Ehdr ehdr;
435                 Elf_Data *symbols;
436                 Elf_Data *data;
437                 Elf_Data *rodata;
438                 Elf_Data *bss;
439                 Elf_Data *st_ops_data;
440                 size_t shstrndx; /* section index for section name strings */
441                 size_t strtabidx;
442                 struct {
443                         GElf_Shdr shdr;
444                         Elf_Data *data;
445                 } *reloc_sects;
446                 int nr_reloc_sects;
447                 int maps_shndx;
448                 int btf_maps_shndx;
449                 __u32 btf_maps_sec_btf_id;
450                 int text_shndx;
451                 int symbols_shndx;
452                 int data_shndx;
453                 int rodata_shndx;
454                 int bss_shndx;
455                 int st_ops_shndx;
456         } efile;
457         /*
458          * All loaded bpf_object is linked in a list, which is
459          * hidden to caller. bpf_objects__<func> handlers deal with
460          * all objects.
461          */
462         struct list_head list;
463
464         struct btf *btf;
465         /* Parse and load BTF vmlinux if any of the programs in the object need
466          * it at load time.
467          */
468         struct btf *btf_vmlinux;
469         struct btf_ext *btf_ext;
470
471         void *priv;
472         bpf_object_clear_priv_t clear_priv;
473
474         char path[];
475 };
476 #define obj_elf_valid(o)        ((o)->efile.elf)
477
478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
486                               size_t off, __u32 sym_type, GElf_Sym *sym);
487
488 void bpf_program__unload(struct bpf_program *prog)
489 {
490         int i;
491
492         if (!prog)
493                 return;
494
495         /*
496          * If the object is opened but the program was never loaded,
497          * it is possible that prog->instances.nr == -1.
498          */
499         if (prog->instances.nr > 0) {
500                 for (i = 0; i < prog->instances.nr; i++)
501                         zclose(prog->instances.fds[i]);
502         } else if (prog->instances.nr != -1) {
503                 pr_warn("Internal error: instances.nr is %d\n",
504                         prog->instances.nr);
505         }
506
507         prog->instances.nr = -1;
508         zfree(&prog->instances.fds);
509
510         zfree(&prog->func_info);
511         zfree(&prog->line_info);
512 }
513
514 static void bpf_program__exit(struct bpf_program *prog)
515 {
516         if (!prog)
517                 return;
518
519         if (prog->clear_priv)
520                 prog->clear_priv(prog, prog->priv);
521
522         prog->priv = NULL;
523         prog->clear_priv = NULL;
524
525         bpf_program__unload(prog);
526         zfree(&prog->name);
527         zfree(&prog->sec_name);
528         zfree(&prog->pin_name);
529         zfree(&prog->insns);
530         zfree(&prog->reloc_desc);
531
532         prog->nr_reloc = 0;
533         prog->insns_cnt = 0;
534         prog->sec_idx = -1;
535 }
536
537 static char *__bpf_program__pin_name(struct bpf_program *prog)
538 {
539         char *name, *p;
540
541         name = p = strdup(prog->sec_name);
542         while ((p = strchr(p, '/')))
543                 *p = '_';
544
545         return name;
546 }
547
548 static bool insn_is_subprog_call(const struct bpf_insn *insn)
549 {
550         return BPF_CLASS(insn->code) == BPF_JMP &&
551                BPF_OP(insn->code) == BPF_CALL &&
552                BPF_SRC(insn->code) == BPF_K &&
553                insn->src_reg == BPF_PSEUDO_CALL &&
554                insn->dst_reg == 0 &&
555                insn->off == 0;
556 }
557
558 static int
559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
560                       const char *name, size_t sec_idx, const char *sec_name,
561                       size_t sec_off, void *insn_data, size_t insn_data_sz)
562 {
563         if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
564                 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
565                         sec_name, name, sec_off, insn_data_sz);
566                 return -EINVAL;
567         }
568
569         memset(prog, 0, sizeof(*prog));
570         prog->obj = obj;
571
572         prog->sec_idx = sec_idx;
573         prog->sec_insn_off = sec_off / BPF_INSN_SZ;
574         prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
575         /* insns_cnt can later be increased by appending used subprograms */
576         prog->insns_cnt = prog->sec_insn_cnt;
577
578         prog->type = BPF_PROG_TYPE_UNSPEC;
579         prog->load = true;
580
581         prog->instances.fds = NULL;
582         prog->instances.nr = -1;
583
584         prog->sec_name = strdup(sec_name);
585         if (!prog->sec_name)
586                 goto errout;
587
588         prog->name = strdup(name);
589         if (!prog->name)
590                 goto errout;
591
592         prog->pin_name = __bpf_program__pin_name(prog);
593         if (!prog->pin_name)
594                 goto errout;
595
596         prog->insns = malloc(insn_data_sz);
597         if (!prog->insns)
598                 goto errout;
599         memcpy(prog->insns, insn_data, insn_data_sz);
600
601         return 0;
602 errout:
603         pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
604         bpf_program__exit(prog);
605         return -ENOMEM;
606 }
607
608 static int
609 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
610                          const char *sec_name, int sec_idx)
611 {
612         struct bpf_program *prog, *progs;
613         void *data = sec_data->d_buf;
614         size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
615         int nr_progs, err;
616         const char *name;
617         GElf_Sym sym;
618
619         progs = obj->programs;
620         nr_progs = obj->nr_programs;
621         sec_off = 0;
622
623         while (sec_off < sec_sz) {
624                 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
625                         pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
626                                 sec_name, sec_off);
627                         return -LIBBPF_ERRNO__FORMAT;
628                 }
629
630                 prog_sz = sym.st_size;
631
632                 name = elf_sym_str(obj, sym.st_name);
633                 if (!name) {
634                         pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
635                                 sec_name, sec_off);
636                         return -LIBBPF_ERRNO__FORMAT;
637                 }
638
639                 if (sec_off + prog_sz > sec_sz) {
640                         pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
641                                 sec_name, sec_off);
642                         return -LIBBPF_ERRNO__FORMAT;
643                 }
644
645                 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
646                          sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
647
648                 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
649                 if (!progs) {
650                         /*
651                          * In this case the original obj->programs
652                          * is still valid, so don't need special treat for
653                          * bpf_close_object().
654                          */
655                         pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
656                                 sec_name, name);
657                         return -ENOMEM;
658                 }
659                 obj->programs = progs;
660
661                 prog = &progs[nr_progs];
662
663                 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
664                                             sec_off, data + sec_off, prog_sz);
665                 if (err)
666                         return err;
667
668                 nr_progs++;
669                 obj->nr_programs = nr_progs;
670
671                 sec_off += prog_sz;
672         }
673
674         return 0;
675 }
676
677 static __u32 get_kernel_version(void)
678 {
679         __u32 major, minor, patch;
680         struct utsname info;
681
682         uname(&info);
683         if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
684                 return 0;
685         return KERNEL_VERSION(major, minor, patch);
686 }
687
688 static const struct btf_member *
689 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
690 {
691         struct btf_member *m;
692         int i;
693
694         for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
695                 if (btf_member_bit_offset(t, i) == bit_offset)
696                         return m;
697         }
698
699         return NULL;
700 }
701
702 static const struct btf_member *
703 find_member_by_name(const struct btf *btf, const struct btf_type *t,
704                     const char *name)
705 {
706         struct btf_member *m;
707         int i;
708
709         for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
710                 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
711                         return m;
712         }
713
714         return NULL;
715 }
716
717 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
718 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
719                                    const char *name, __u32 kind);
720
721 static int
722 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
723                            const struct btf_type **type, __u32 *type_id,
724                            const struct btf_type **vtype, __u32 *vtype_id,
725                            const struct btf_member **data_member)
726 {
727         const struct btf_type *kern_type, *kern_vtype;
728         const struct btf_member *kern_data_member;
729         __s32 kern_vtype_id, kern_type_id;
730         __u32 i;
731
732         kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
733         if (kern_type_id < 0) {
734                 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
735                         tname);
736                 return kern_type_id;
737         }
738         kern_type = btf__type_by_id(btf, kern_type_id);
739
740         /* Find the corresponding "map_value" type that will be used
741          * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
742          * find "struct bpf_struct_ops_tcp_congestion_ops" from the
743          * btf_vmlinux.
744          */
745         kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
746                                                 tname, BTF_KIND_STRUCT);
747         if (kern_vtype_id < 0) {
748                 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
749                         STRUCT_OPS_VALUE_PREFIX, tname);
750                 return kern_vtype_id;
751         }
752         kern_vtype = btf__type_by_id(btf, kern_vtype_id);
753
754         /* Find "struct tcp_congestion_ops" from
755          * struct bpf_struct_ops_tcp_congestion_ops {
756          *      [ ... ]
757          *      struct tcp_congestion_ops data;
758          * }
759          */
760         kern_data_member = btf_members(kern_vtype);
761         for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
762                 if (kern_data_member->type == kern_type_id)
763                         break;
764         }
765         if (i == btf_vlen(kern_vtype)) {
766                 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
767                         tname, STRUCT_OPS_VALUE_PREFIX, tname);
768                 return -EINVAL;
769         }
770
771         *type = kern_type;
772         *type_id = kern_type_id;
773         *vtype = kern_vtype;
774         *vtype_id = kern_vtype_id;
775         *data_member = kern_data_member;
776
777         return 0;
778 }
779
780 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
781 {
782         return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
783 }
784
785 /* Init the map's fields that depend on kern_btf */
786 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
787                                          const struct btf *btf,
788                                          const struct btf *kern_btf)
789 {
790         const struct btf_member *member, *kern_member, *kern_data_member;
791         const struct btf_type *type, *kern_type, *kern_vtype;
792         __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
793         struct bpf_struct_ops *st_ops;
794         void *data, *kern_data;
795         const char *tname;
796         int err;
797
798         st_ops = map->st_ops;
799         type = st_ops->type;
800         tname = st_ops->tname;
801         err = find_struct_ops_kern_types(kern_btf, tname,
802                                          &kern_type, &kern_type_id,
803                                          &kern_vtype, &kern_vtype_id,
804                                          &kern_data_member);
805         if (err)
806                 return err;
807
808         pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
809                  map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
810
811         map->def.value_size = kern_vtype->size;
812         map->btf_vmlinux_value_type_id = kern_vtype_id;
813
814         st_ops->kern_vdata = calloc(1, kern_vtype->size);
815         if (!st_ops->kern_vdata)
816                 return -ENOMEM;
817
818         data = st_ops->data;
819         kern_data_off = kern_data_member->offset / 8;
820         kern_data = st_ops->kern_vdata + kern_data_off;
821
822         member = btf_members(type);
823         for (i = 0; i < btf_vlen(type); i++, member++) {
824                 const struct btf_type *mtype, *kern_mtype;
825                 __u32 mtype_id, kern_mtype_id;
826                 void *mdata, *kern_mdata;
827                 __s64 msize, kern_msize;
828                 __u32 moff, kern_moff;
829                 __u32 kern_member_idx;
830                 const char *mname;
831
832                 mname = btf__name_by_offset(btf, member->name_off);
833                 kern_member = find_member_by_name(kern_btf, kern_type, mname);
834                 if (!kern_member) {
835                         pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
836                                 map->name, mname);
837                         return -ENOTSUP;
838                 }
839
840                 kern_member_idx = kern_member - btf_members(kern_type);
841                 if (btf_member_bitfield_size(type, i) ||
842                     btf_member_bitfield_size(kern_type, kern_member_idx)) {
843                         pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
844                                 map->name, mname);
845                         return -ENOTSUP;
846                 }
847
848                 moff = member->offset / 8;
849                 kern_moff = kern_member->offset / 8;
850
851                 mdata = data + moff;
852                 kern_mdata = kern_data + kern_moff;
853
854                 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
855                 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
856                                                     &kern_mtype_id);
857                 if (BTF_INFO_KIND(mtype->info) !=
858                     BTF_INFO_KIND(kern_mtype->info)) {
859                         pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
860                                 map->name, mname, BTF_INFO_KIND(mtype->info),
861                                 BTF_INFO_KIND(kern_mtype->info));
862                         return -ENOTSUP;
863                 }
864
865                 if (btf_is_ptr(mtype)) {
866                         struct bpf_program *prog;
867
868                         prog = st_ops->progs[i];
869                         if (!prog)
870                                 continue;
871
872                         kern_mtype = skip_mods_and_typedefs(kern_btf,
873                                                             kern_mtype->type,
874                                                             &kern_mtype_id);
875
876                         /* mtype->type must be a func_proto which was
877                          * guaranteed in bpf_object__collect_st_ops_relos(),
878                          * so only check kern_mtype for func_proto here.
879                          */
880                         if (!btf_is_func_proto(kern_mtype)) {
881                                 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
882                                         map->name, mname);
883                                 return -ENOTSUP;
884                         }
885
886                         prog->attach_btf_id = kern_type_id;
887                         prog->expected_attach_type = kern_member_idx;
888
889                         st_ops->kern_func_off[i] = kern_data_off + kern_moff;
890
891                         pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
892                                  map->name, mname, prog->name, moff,
893                                  kern_moff);
894
895                         continue;
896                 }
897
898                 msize = btf__resolve_size(btf, mtype_id);
899                 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
900                 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
901                         pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
902                                 map->name, mname, (ssize_t)msize,
903                                 (ssize_t)kern_msize);
904                         return -ENOTSUP;
905                 }
906
907                 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
908                          map->name, mname, (unsigned int)msize,
909                          moff, kern_moff);
910                 memcpy(kern_mdata, mdata, msize);
911         }
912
913         return 0;
914 }
915
916 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
917 {
918         struct bpf_map *map;
919         size_t i;
920         int err;
921
922         for (i = 0; i < obj->nr_maps; i++) {
923                 map = &obj->maps[i];
924
925                 if (!bpf_map__is_struct_ops(map))
926                         continue;
927
928                 err = bpf_map__init_kern_struct_ops(map, obj->btf,
929                                                     obj->btf_vmlinux);
930                 if (err)
931                         return err;
932         }
933
934         return 0;
935 }
936
937 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
938 {
939         const struct btf_type *type, *datasec;
940         const struct btf_var_secinfo *vsi;
941         struct bpf_struct_ops *st_ops;
942         const char *tname, *var_name;
943         __s32 type_id, datasec_id;
944         const struct btf *btf;
945         struct bpf_map *map;
946         __u32 i;
947
948         if (obj->efile.st_ops_shndx == -1)
949                 return 0;
950
951         btf = obj->btf;
952         datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
953                                             BTF_KIND_DATASEC);
954         if (datasec_id < 0) {
955                 pr_warn("struct_ops init: DATASEC %s not found\n",
956                         STRUCT_OPS_SEC);
957                 return -EINVAL;
958         }
959
960         datasec = btf__type_by_id(btf, datasec_id);
961         vsi = btf_var_secinfos(datasec);
962         for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
963                 type = btf__type_by_id(obj->btf, vsi->type);
964                 var_name = btf__name_by_offset(obj->btf, type->name_off);
965
966                 type_id = btf__resolve_type(obj->btf, vsi->type);
967                 if (type_id < 0) {
968                         pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
969                                 vsi->type, STRUCT_OPS_SEC);
970                         return -EINVAL;
971                 }
972
973                 type = btf__type_by_id(obj->btf, type_id);
974                 tname = btf__name_by_offset(obj->btf, type->name_off);
975                 if (!tname[0]) {
976                         pr_warn("struct_ops init: anonymous type is not supported\n");
977                         return -ENOTSUP;
978                 }
979                 if (!btf_is_struct(type)) {
980                         pr_warn("struct_ops init: %s is not a struct\n", tname);
981                         return -EINVAL;
982                 }
983
984                 map = bpf_object__add_map(obj);
985                 if (IS_ERR(map))
986                         return PTR_ERR(map);
987
988                 map->sec_idx = obj->efile.st_ops_shndx;
989                 map->sec_offset = vsi->offset;
990                 map->name = strdup(var_name);
991                 if (!map->name)
992                         return -ENOMEM;
993
994                 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
995                 map->def.key_size = sizeof(int);
996                 map->def.value_size = type->size;
997                 map->def.max_entries = 1;
998
999                 map->st_ops = calloc(1, sizeof(*map->st_ops));
1000                 if (!map->st_ops)
1001                         return -ENOMEM;
1002                 st_ops = map->st_ops;
1003                 st_ops->data = malloc(type->size);
1004                 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1005                 st_ops->kern_func_off = malloc(btf_vlen(type) *
1006                                                sizeof(*st_ops->kern_func_off));
1007                 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1008                         return -ENOMEM;
1009
1010                 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1011                         pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1012                                 var_name, STRUCT_OPS_SEC);
1013                         return -EINVAL;
1014                 }
1015
1016                 memcpy(st_ops->data,
1017                        obj->efile.st_ops_data->d_buf + vsi->offset,
1018                        type->size);
1019                 st_ops->tname = tname;
1020                 st_ops->type = type;
1021                 st_ops->type_id = type_id;
1022
1023                 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1024                          tname, type_id, var_name, vsi->offset);
1025         }
1026
1027         return 0;
1028 }
1029
1030 static struct bpf_object *bpf_object__new(const char *path,
1031                                           const void *obj_buf,
1032                                           size_t obj_buf_sz,
1033                                           const char *obj_name)
1034 {
1035         struct bpf_object *obj;
1036         char *end;
1037
1038         obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1039         if (!obj) {
1040                 pr_warn("alloc memory failed for %s\n", path);
1041                 return ERR_PTR(-ENOMEM);
1042         }
1043
1044         strcpy(obj->path, path);
1045         if (obj_name) {
1046                 strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1047                 obj->name[sizeof(obj->name) - 1] = 0;
1048         } else {
1049                 /* Using basename() GNU version which doesn't modify arg. */
1050                 strncpy(obj->name, basename((void *)path),
1051                         sizeof(obj->name) - 1);
1052                 end = strchr(obj->name, '.');
1053                 if (end)
1054                         *end = 0;
1055         }
1056
1057         obj->efile.fd = -1;
1058         /*
1059          * Caller of this function should also call
1060          * bpf_object__elf_finish() after data collection to return
1061          * obj_buf to user. If not, we should duplicate the buffer to
1062          * avoid user freeing them before elf finish.
1063          */
1064         obj->efile.obj_buf = obj_buf;
1065         obj->efile.obj_buf_sz = obj_buf_sz;
1066         obj->efile.maps_shndx = -1;
1067         obj->efile.btf_maps_shndx = -1;
1068         obj->efile.data_shndx = -1;
1069         obj->efile.rodata_shndx = -1;
1070         obj->efile.bss_shndx = -1;
1071         obj->efile.st_ops_shndx = -1;
1072         obj->kconfig_map_idx = -1;
1073         obj->rodata_map_idx = -1;
1074
1075         obj->kern_version = get_kernel_version();
1076         obj->loaded = false;
1077
1078         INIT_LIST_HEAD(&obj->list);
1079         list_add(&obj->list, &bpf_objects_list);
1080         return obj;
1081 }
1082
1083 static void bpf_object__elf_finish(struct bpf_object *obj)
1084 {
1085         if (!obj_elf_valid(obj))
1086                 return;
1087
1088         if (obj->efile.elf) {
1089                 elf_end(obj->efile.elf);
1090                 obj->efile.elf = NULL;
1091         }
1092         obj->efile.symbols = NULL;
1093         obj->efile.data = NULL;
1094         obj->efile.rodata = NULL;
1095         obj->efile.bss = NULL;
1096         obj->efile.st_ops_data = NULL;
1097
1098         zfree(&obj->efile.reloc_sects);
1099         obj->efile.nr_reloc_sects = 0;
1100         zclose(obj->efile.fd);
1101         obj->efile.obj_buf = NULL;
1102         obj->efile.obj_buf_sz = 0;
1103 }
1104
1105 /* if libelf is old and doesn't support mmap(), fall back to read() */
1106 #ifndef ELF_C_READ_MMAP
1107 #define ELF_C_READ_MMAP ELF_C_READ
1108 #endif
1109
1110 static int bpf_object__elf_init(struct bpf_object *obj)
1111 {
1112         int err = 0;
1113         GElf_Ehdr *ep;
1114
1115         if (obj_elf_valid(obj)) {
1116                 pr_warn("elf: init internal error\n");
1117                 return -LIBBPF_ERRNO__LIBELF;
1118         }
1119
1120         if (obj->efile.obj_buf_sz > 0) {
1121                 /*
1122                  * obj_buf should have been validated by
1123                  * bpf_object__open_buffer().
1124                  */
1125                 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1126                                             obj->efile.obj_buf_sz);
1127         } else {
1128                 obj->efile.fd = open(obj->path, O_RDONLY);
1129                 if (obj->efile.fd < 0) {
1130                         char errmsg[STRERR_BUFSIZE], *cp;
1131
1132                         err = -errno;
1133                         cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1134                         pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1135                         return err;
1136                 }
1137
1138                 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1139         }
1140
1141         if (!obj->efile.elf) {
1142                 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1143                 err = -LIBBPF_ERRNO__LIBELF;
1144                 goto errout;
1145         }
1146
1147         if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1148                 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1149                 err = -LIBBPF_ERRNO__FORMAT;
1150                 goto errout;
1151         }
1152         ep = &obj->efile.ehdr;
1153
1154         if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1155                 pr_warn("elf: failed to get section names section index for %s: %s\n",
1156                         obj->path, elf_errmsg(-1));
1157                 err = -LIBBPF_ERRNO__FORMAT;
1158                 goto errout;
1159         }
1160
1161         /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1162         if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1163                 pr_warn("elf: failed to get section names strings from %s: %s\n",
1164                         obj->path, elf_errmsg(-1));
1165                 err = -LIBBPF_ERRNO__FORMAT;
1166                 goto errout;
1167         }
1168
1169         /* Old LLVM set e_machine to EM_NONE */
1170         if (ep->e_type != ET_REL ||
1171             (ep->e_machine && ep->e_machine != EM_BPF)) {
1172                 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1173                 err = -LIBBPF_ERRNO__FORMAT;
1174                 goto errout;
1175         }
1176
1177         return 0;
1178 errout:
1179         bpf_object__elf_finish(obj);
1180         return err;
1181 }
1182
1183 static int bpf_object__check_endianness(struct bpf_object *obj)
1184 {
1185 #if __BYTE_ORDER == __LITTLE_ENDIAN
1186         if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1187                 return 0;
1188 #elif __BYTE_ORDER == __BIG_ENDIAN
1189         if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1190                 return 0;
1191 #else
1192 # error "Unrecognized __BYTE_ORDER__"
1193 #endif
1194         pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1195         return -LIBBPF_ERRNO__ENDIAN;
1196 }
1197
1198 static int
1199 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1200 {
1201         memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1202         pr_debug("license of %s is %s\n", obj->path, obj->license);
1203         return 0;
1204 }
1205
1206 static int
1207 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1208 {
1209         __u32 kver;
1210
1211         if (size != sizeof(kver)) {
1212                 pr_warn("invalid kver section in %s\n", obj->path);
1213                 return -LIBBPF_ERRNO__FORMAT;
1214         }
1215         memcpy(&kver, data, sizeof(kver));
1216         obj->kern_version = kver;
1217         pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1218         return 0;
1219 }
1220
1221 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1222 {
1223         if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1224             type == BPF_MAP_TYPE_HASH_OF_MAPS)
1225                 return true;
1226         return false;
1227 }
1228
1229 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1230                              __u32 *size)
1231 {
1232         int ret = -ENOENT;
1233
1234         *size = 0;
1235         if (!name) {
1236                 return -EINVAL;
1237         } else if (!strcmp(name, DATA_SEC)) {
1238                 if (obj->efile.data)
1239                         *size = obj->efile.data->d_size;
1240         } else if (!strcmp(name, BSS_SEC)) {
1241                 if (obj->efile.bss)
1242                         *size = obj->efile.bss->d_size;
1243         } else if (!strcmp(name, RODATA_SEC)) {
1244                 if (obj->efile.rodata)
1245                         *size = obj->efile.rodata->d_size;
1246         } else if (!strcmp(name, STRUCT_OPS_SEC)) {
1247                 if (obj->efile.st_ops_data)
1248                         *size = obj->efile.st_ops_data->d_size;
1249         } else {
1250                 Elf_Scn *scn = elf_sec_by_name(obj, name);
1251                 Elf_Data *data = elf_sec_data(obj, scn);
1252
1253                 if (data) {
1254                         ret = 0; /* found it */
1255                         *size = data->d_size;
1256                 }
1257         }
1258
1259         return *size ? 0 : ret;
1260 }
1261
1262 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1263                                 __u32 *off)
1264 {
1265         Elf_Data *symbols = obj->efile.symbols;
1266         const char *sname;
1267         size_t si;
1268
1269         if (!name || !off)
1270                 return -EINVAL;
1271
1272         for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1273                 GElf_Sym sym;
1274
1275                 if (!gelf_getsym(symbols, si, &sym))
1276                         continue;
1277                 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1278                     GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1279                         continue;
1280
1281                 sname = elf_sym_str(obj, sym.st_name);
1282                 if (!sname) {
1283                         pr_warn("failed to get sym name string for var %s\n",
1284                                 name);
1285                         return -EIO;
1286                 }
1287                 if (strcmp(name, sname) == 0) {
1288                         *off = sym.st_value;
1289                         return 0;
1290                 }
1291         }
1292
1293         return -ENOENT;
1294 }
1295
1296 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1297 {
1298         struct bpf_map *new_maps;
1299         size_t new_cap;
1300         int i;
1301
1302         if (obj->nr_maps < obj->maps_cap)
1303                 return &obj->maps[obj->nr_maps++];
1304
1305         new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1306         new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1307         if (!new_maps) {
1308                 pr_warn("alloc maps for object failed\n");
1309                 return ERR_PTR(-ENOMEM);
1310         }
1311
1312         obj->maps_cap = new_cap;
1313         obj->maps = new_maps;
1314
1315         /* zero out new maps */
1316         memset(obj->maps + obj->nr_maps, 0,
1317                (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1318         /*
1319          * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1320          * when failure (zclose won't close negative fd)).
1321          */
1322         for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1323                 obj->maps[i].fd = -1;
1324                 obj->maps[i].inner_map_fd = -1;
1325         }
1326
1327         return &obj->maps[obj->nr_maps++];
1328 }
1329
1330 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1331 {
1332         long page_sz = sysconf(_SC_PAGE_SIZE);
1333         size_t map_sz;
1334
1335         map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1336         map_sz = roundup(map_sz, page_sz);
1337         return map_sz;
1338 }
1339
1340 static char *internal_map_name(struct bpf_object *obj,
1341                                enum libbpf_map_type type)
1342 {
1343         char map_name[BPF_OBJ_NAME_LEN], *p;
1344         const char *sfx = libbpf_type_to_btf_name[type];
1345         int sfx_len = max((size_t)7, strlen(sfx));
1346         int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1347                           strlen(obj->name));
1348
1349         snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1350                  sfx_len, libbpf_type_to_btf_name[type]);
1351
1352         /* sanitise map name to characters allowed by kernel */
1353         for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1354                 if (!isalnum(*p) && *p != '_' && *p != '.')
1355                         *p = '_';
1356
1357         return strdup(map_name);
1358 }
1359
1360 static int
1361 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1362                               int sec_idx, void *data, size_t data_sz)
1363 {
1364         struct bpf_map_def *def;
1365         struct bpf_map *map;
1366         int err;
1367
1368         map = bpf_object__add_map(obj);
1369         if (IS_ERR(map))
1370                 return PTR_ERR(map);
1371
1372         map->libbpf_type = type;
1373         map->sec_idx = sec_idx;
1374         map->sec_offset = 0;
1375         map->name = internal_map_name(obj, type);
1376         if (!map->name) {
1377                 pr_warn("failed to alloc map name\n");
1378                 return -ENOMEM;
1379         }
1380
1381         def = &map->def;
1382         def->type = BPF_MAP_TYPE_ARRAY;
1383         def->key_size = sizeof(int);
1384         def->value_size = data_sz;
1385         def->max_entries = 1;
1386         def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1387                          ? BPF_F_RDONLY_PROG : 0;
1388         def->map_flags |= BPF_F_MMAPABLE;
1389
1390         pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1391                  map->name, map->sec_idx, map->sec_offset, def->map_flags);
1392
1393         map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1394                            MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1395         if (map->mmaped == MAP_FAILED) {
1396                 err = -errno;
1397                 map->mmaped = NULL;
1398                 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1399                         map->name, err);
1400                 zfree(&map->name);
1401                 return err;
1402         }
1403
1404         if (data)
1405                 memcpy(map->mmaped, data, data_sz);
1406
1407         pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1408         return 0;
1409 }
1410
1411 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1412 {
1413         int err;
1414
1415         /*
1416          * Populate obj->maps with libbpf internal maps.
1417          */
1418         if (obj->efile.data_shndx >= 0) {
1419                 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1420                                                     obj->efile.data_shndx,
1421                                                     obj->efile.data->d_buf,
1422                                                     obj->efile.data->d_size);
1423                 if (err)
1424                         return err;
1425         }
1426         if (obj->efile.rodata_shndx >= 0) {
1427                 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1428                                                     obj->efile.rodata_shndx,
1429                                                     obj->efile.rodata->d_buf,
1430                                                     obj->efile.rodata->d_size);
1431                 if (err)
1432                         return err;
1433
1434                 obj->rodata_map_idx = obj->nr_maps - 1;
1435         }
1436         if (obj->efile.bss_shndx >= 0) {
1437                 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1438                                                     obj->efile.bss_shndx,
1439                                                     NULL,
1440                                                     obj->efile.bss->d_size);
1441                 if (err)
1442                         return err;
1443         }
1444         return 0;
1445 }
1446
1447
1448 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1449                                                const void *name)
1450 {
1451         int i;
1452
1453         for (i = 0; i < obj->nr_extern; i++) {
1454                 if (strcmp(obj->externs[i].name, name) == 0)
1455                         return &obj->externs[i];
1456         }
1457         return NULL;
1458 }
1459
1460 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1461                               char value)
1462 {
1463         switch (ext->kcfg.type) {
1464         case KCFG_BOOL:
1465                 if (value == 'm') {
1466                         pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1467                                 ext->name, value);
1468                         return -EINVAL;
1469                 }
1470                 *(bool *)ext_val = value == 'y' ? true : false;
1471                 break;
1472         case KCFG_TRISTATE:
1473                 if (value == 'y')
1474                         *(enum libbpf_tristate *)ext_val = TRI_YES;
1475                 else if (value == 'm')
1476                         *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1477                 else /* value == 'n' */
1478                         *(enum libbpf_tristate *)ext_val = TRI_NO;
1479                 break;
1480         case KCFG_CHAR:
1481                 *(char *)ext_val = value;
1482                 break;
1483         case KCFG_UNKNOWN:
1484         case KCFG_INT:
1485         case KCFG_CHAR_ARR:
1486         default:
1487                 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1488                         ext->name, value);
1489                 return -EINVAL;
1490         }
1491         ext->is_set = true;
1492         return 0;
1493 }
1494
1495 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1496                               const char *value)
1497 {
1498         size_t len;
1499
1500         if (ext->kcfg.type != KCFG_CHAR_ARR) {
1501                 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1502                 return -EINVAL;
1503         }
1504
1505         len = strlen(value);
1506         if (value[len - 1] != '"') {
1507                 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1508                         ext->name, value);
1509                 return -EINVAL;
1510         }
1511
1512         /* strip quotes */
1513         len -= 2;
1514         if (len >= ext->kcfg.sz) {
1515                 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1516                         ext->name, value, len, ext->kcfg.sz - 1);
1517                 len = ext->kcfg.sz - 1;
1518         }
1519         memcpy(ext_val, value + 1, len);
1520         ext_val[len] = '\0';
1521         ext->is_set = true;
1522         return 0;
1523 }
1524
1525 static int parse_u64(const char *value, __u64 *res)
1526 {
1527         char *value_end;
1528         int err;
1529
1530         errno = 0;
1531         *res = strtoull(value, &value_end, 0);
1532         if (errno) {
1533                 err = -errno;
1534                 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1535                 return err;
1536         }
1537         if (*value_end) {
1538                 pr_warn("failed to parse '%s' as integer completely\n", value);
1539                 return -EINVAL;
1540         }
1541         return 0;
1542 }
1543
1544 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1545 {
1546         int bit_sz = ext->kcfg.sz * 8;
1547
1548         if (ext->kcfg.sz == 8)
1549                 return true;
1550
1551         /* Validate that value stored in u64 fits in integer of `ext->sz`
1552          * bytes size without any loss of information. If the target integer
1553          * is signed, we rely on the following limits of integer type of
1554          * Y bits and subsequent transformation:
1555          *
1556          *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1557          *            0 <= X + 2^(Y-1) <= 2^Y - 1
1558          *            0 <= X + 2^(Y-1) <  2^Y
1559          *
1560          *  For unsigned target integer, check that all the (64 - Y) bits are
1561          *  zero.
1562          */
1563         if (ext->kcfg.is_signed)
1564                 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1565         else
1566                 return (v >> bit_sz) == 0;
1567 }
1568
1569 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1570                               __u64 value)
1571 {
1572         if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1573                 pr_warn("extern (kcfg) %s=%llu should be integer\n",
1574                         ext->name, (unsigned long long)value);
1575                 return -EINVAL;
1576         }
1577         if (!is_kcfg_value_in_range(ext, value)) {
1578                 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1579                         ext->name, (unsigned long long)value, ext->kcfg.sz);
1580                 return -ERANGE;
1581         }
1582         switch (ext->kcfg.sz) {
1583                 case 1: *(__u8 *)ext_val = value; break;
1584                 case 2: *(__u16 *)ext_val = value; break;
1585                 case 4: *(__u32 *)ext_val = value; break;
1586                 case 8: *(__u64 *)ext_val = value; break;
1587                 default:
1588                         return -EINVAL;
1589         }
1590         ext->is_set = true;
1591         return 0;
1592 }
1593
1594 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1595                                             char *buf, void *data)
1596 {
1597         struct extern_desc *ext;
1598         char *sep, *value;
1599         int len, err = 0;
1600         void *ext_val;
1601         __u64 num;
1602
1603         if (strncmp(buf, "CONFIG_", 7))
1604                 return 0;
1605
1606         sep = strchr(buf, '=');
1607         if (!sep) {
1608                 pr_warn("failed to parse '%s': no separator\n", buf);
1609                 return -EINVAL;
1610         }
1611
1612         /* Trim ending '\n' */
1613         len = strlen(buf);
1614         if (buf[len - 1] == '\n')
1615                 buf[len - 1] = '\0';
1616         /* Split on '=' and ensure that a value is present. */
1617         *sep = '\0';
1618         if (!sep[1]) {
1619                 *sep = '=';
1620                 pr_warn("failed to parse '%s': no value\n", buf);
1621                 return -EINVAL;
1622         }
1623
1624         ext = find_extern_by_name(obj, buf);
1625         if (!ext || ext->is_set)
1626                 return 0;
1627
1628         ext_val = data + ext->kcfg.data_off;
1629         value = sep + 1;
1630
1631         switch (*value) {
1632         case 'y': case 'n': case 'm':
1633                 err = set_kcfg_value_tri(ext, ext_val, *value);
1634                 break;
1635         case '"':
1636                 err = set_kcfg_value_str(ext, ext_val, value);
1637                 break;
1638         default:
1639                 /* assume integer */
1640                 err = parse_u64(value, &num);
1641                 if (err) {
1642                         pr_warn("extern (kcfg) %s=%s should be integer\n",
1643                                 ext->name, value);
1644                         return err;
1645                 }
1646                 err = set_kcfg_value_num(ext, ext_val, num);
1647                 break;
1648         }
1649         if (err)
1650                 return err;
1651         pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1652         return 0;
1653 }
1654
1655 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1656 {
1657         char buf[PATH_MAX];
1658         struct utsname uts;
1659         int len, err = 0;
1660         gzFile file;
1661
1662         uname(&uts);
1663         len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1664         if (len < 0)
1665                 return -EINVAL;
1666         else if (len >= PATH_MAX)
1667                 return -ENAMETOOLONG;
1668
1669         /* gzopen also accepts uncompressed files. */
1670         file = gzopen(buf, "r");
1671         if (!file)
1672                 file = gzopen("/proc/config.gz", "r");
1673
1674         if (!file) {
1675                 pr_warn("failed to open system Kconfig\n");
1676                 return -ENOENT;
1677         }
1678
1679         while (gzgets(file, buf, sizeof(buf))) {
1680                 err = bpf_object__process_kconfig_line(obj, buf, data);
1681                 if (err) {
1682                         pr_warn("error parsing system Kconfig line '%s': %d\n",
1683                                 buf, err);
1684                         goto out;
1685                 }
1686         }
1687
1688 out:
1689         gzclose(file);
1690         return err;
1691 }
1692
1693 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1694                                         const char *config, void *data)
1695 {
1696         char buf[PATH_MAX];
1697         int err = 0;
1698         FILE *file;
1699
1700         file = fmemopen((void *)config, strlen(config), "r");
1701         if (!file) {
1702                 err = -errno;
1703                 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1704                 return err;
1705         }
1706
1707         while (fgets(buf, sizeof(buf), file)) {
1708                 err = bpf_object__process_kconfig_line(obj, buf, data);
1709                 if (err) {
1710                         pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1711                                 buf, err);
1712                         break;
1713                 }
1714         }
1715
1716         fclose(file);
1717         return err;
1718 }
1719
1720 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1721 {
1722         struct extern_desc *last_ext = NULL, *ext;
1723         size_t map_sz;
1724         int i, err;
1725
1726         for (i = 0; i < obj->nr_extern; i++) {
1727                 ext = &obj->externs[i];
1728                 if (ext->type == EXT_KCFG)
1729                         last_ext = ext;
1730         }
1731
1732         if (!last_ext)
1733                 return 0;
1734
1735         map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1736         err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1737                                             obj->efile.symbols_shndx,
1738                                             NULL, map_sz);
1739         if (err)
1740                 return err;
1741
1742         obj->kconfig_map_idx = obj->nr_maps - 1;
1743
1744         return 0;
1745 }
1746
1747 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1748 {
1749         Elf_Data *symbols = obj->efile.symbols;
1750         int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1751         Elf_Data *data = NULL;
1752         Elf_Scn *scn;
1753
1754         if (obj->efile.maps_shndx < 0)
1755                 return 0;
1756
1757         if (!symbols)
1758                 return -EINVAL;
1759
1760
1761         scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1762         data = elf_sec_data(obj, scn);
1763         if (!scn || !data) {
1764                 pr_warn("elf: failed to get legacy map definitions for %s\n",
1765                         obj->path);
1766                 return -EINVAL;
1767         }
1768
1769         /*
1770          * Count number of maps. Each map has a name.
1771          * Array of maps is not supported: only the first element is
1772          * considered.
1773          *
1774          * TODO: Detect array of map and report error.
1775          */
1776         nr_syms = symbols->d_size / sizeof(GElf_Sym);
1777         for (i = 0; i < nr_syms; i++) {
1778                 GElf_Sym sym;
1779
1780                 if (!gelf_getsym(symbols, i, &sym))
1781                         continue;
1782                 if (sym.st_shndx != obj->efile.maps_shndx)
1783                         continue;
1784                 nr_maps++;
1785         }
1786         /* Assume equally sized map definitions */
1787         pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1788                  nr_maps, data->d_size, obj->path);
1789
1790         if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1791                 pr_warn("elf: unable to determine legacy map definition size in %s\n",
1792                         obj->path);
1793                 return -EINVAL;
1794         }
1795         map_def_sz = data->d_size / nr_maps;
1796
1797         /* Fill obj->maps using data in "maps" section.  */
1798         for (i = 0; i < nr_syms; i++) {
1799                 GElf_Sym sym;
1800                 const char *map_name;
1801                 struct bpf_map_def *def;
1802                 struct bpf_map *map;
1803
1804                 if (!gelf_getsym(symbols, i, &sym))
1805                         continue;
1806                 if (sym.st_shndx != obj->efile.maps_shndx)
1807                         continue;
1808
1809                 map = bpf_object__add_map(obj);
1810                 if (IS_ERR(map))
1811                         return PTR_ERR(map);
1812
1813                 map_name = elf_sym_str(obj, sym.st_name);
1814                 if (!map_name) {
1815                         pr_warn("failed to get map #%d name sym string for obj %s\n",
1816                                 i, obj->path);
1817                         return -LIBBPF_ERRNO__FORMAT;
1818                 }
1819
1820                 map->libbpf_type = LIBBPF_MAP_UNSPEC;
1821                 map->sec_idx = sym.st_shndx;
1822                 map->sec_offset = sym.st_value;
1823                 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1824                          map_name, map->sec_idx, map->sec_offset);
1825                 if (sym.st_value + map_def_sz > data->d_size) {
1826                         pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1827                                 obj->path, map_name);
1828                         return -EINVAL;
1829                 }
1830
1831                 map->name = strdup(map_name);
1832                 if (!map->name) {
1833                         pr_warn("failed to alloc map name\n");
1834                         return -ENOMEM;
1835                 }
1836                 pr_debug("map %d is \"%s\"\n", i, map->name);
1837                 def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1838                 /*
1839                  * If the definition of the map in the object file fits in
1840                  * bpf_map_def, copy it.  Any extra fields in our version
1841                  * of bpf_map_def will default to zero as a result of the
1842                  * calloc above.
1843                  */
1844                 if (map_def_sz <= sizeof(struct bpf_map_def)) {
1845                         memcpy(&map->def, def, map_def_sz);
1846                 } else {
1847                         /*
1848                          * Here the map structure being read is bigger than what
1849                          * we expect, truncate if the excess bits are all zero.
1850                          * If they are not zero, reject this map as
1851                          * incompatible.
1852                          */
1853                         char *b;
1854
1855                         for (b = ((char *)def) + sizeof(struct bpf_map_def);
1856                              b < ((char *)def) + map_def_sz; b++) {
1857                                 if (*b != 0) {
1858                                         pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1859                                                 obj->path, map_name);
1860                                         if (strict)
1861                                                 return -EINVAL;
1862                                 }
1863                         }
1864                         memcpy(&map->def, def, sizeof(struct bpf_map_def));
1865                 }
1866         }
1867         return 0;
1868 }
1869
1870 static const struct btf_type *
1871 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1872 {
1873         const struct btf_type *t = btf__type_by_id(btf, id);
1874
1875         if (res_id)
1876                 *res_id = id;
1877
1878         while (btf_is_mod(t) || btf_is_typedef(t)) {
1879                 if (res_id)
1880                         *res_id = t->type;
1881                 t = btf__type_by_id(btf, t->type);
1882         }
1883
1884         return t;
1885 }
1886
1887 static const struct btf_type *
1888 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1889 {
1890         const struct btf_type *t;
1891
1892         t = skip_mods_and_typedefs(btf, id, NULL);
1893         if (!btf_is_ptr(t))
1894                 return NULL;
1895
1896         t = skip_mods_and_typedefs(btf, t->type, res_id);
1897
1898         return btf_is_func_proto(t) ? t : NULL;
1899 }
1900
1901 static const char *btf_kind_str(const struct btf_type *t)
1902 {
1903         switch (btf_kind(t)) {
1904         case BTF_KIND_UNKN: return "void";
1905         case BTF_KIND_INT: return "int";
1906         case BTF_KIND_PTR: return "ptr";
1907         case BTF_KIND_ARRAY: return "array";
1908         case BTF_KIND_STRUCT: return "struct";
1909         case BTF_KIND_UNION: return "union";
1910         case BTF_KIND_ENUM: return "enum";
1911         case BTF_KIND_FWD: return "fwd";
1912         case BTF_KIND_TYPEDEF: return "typedef";
1913         case BTF_KIND_VOLATILE: return "volatile";
1914         case BTF_KIND_CONST: return "const";
1915         case BTF_KIND_RESTRICT: return "restrict";
1916         case BTF_KIND_FUNC: return "func";
1917         case BTF_KIND_FUNC_PROTO: return "func_proto";
1918         case BTF_KIND_VAR: return "var";
1919         case BTF_KIND_DATASEC: return "datasec";
1920         default: return "unknown";
1921         }
1922 }
1923
1924 /*
1925  * Fetch integer attribute of BTF map definition. Such attributes are
1926  * represented using a pointer to an array, in which dimensionality of array
1927  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1928  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1929  * type definition, while using only sizeof(void *) space in ELF data section.
1930  */
1931 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1932                               const struct btf_member *m, __u32 *res)
1933 {
1934         const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1935         const char *name = btf__name_by_offset(btf, m->name_off);
1936         const struct btf_array *arr_info;
1937         const struct btf_type *arr_t;
1938
1939         if (!btf_is_ptr(t)) {
1940                 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1941                         map_name, name, btf_kind_str(t));
1942                 return false;
1943         }
1944
1945         arr_t = btf__type_by_id(btf, t->type);
1946         if (!arr_t) {
1947                 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1948                         map_name, name, t->type);
1949                 return false;
1950         }
1951         if (!btf_is_array(arr_t)) {
1952                 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1953                         map_name, name, btf_kind_str(arr_t));
1954                 return false;
1955         }
1956         arr_info = btf_array(arr_t);
1957         *res = arr_info->nelems;
1958         return true;
1959 }
1960
1961 static int build_map_pin_path(struct bpf_map *map, const char *path)
1962 {
1963         char buf[PATH_MAX];
1964         int len;
1965
1966         if (!path)
1967                 path = "/sys/fs/bpf";
1968
1969         len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1970         if (len < 0)
1971                 return -EINVAL;
1972         else if (len >= PATH_MAX)
1973                 return -ENAMETOOLONG;
1974
1975         return bpf_map__set_pin_path(map, buf);
1976 }
1977
1978
1979 static int parse_btf_map_def(struct bpf_object *obj,
1980                              struct bpf_map *map,
1981                              const struct btf_type *def,
1982                              bool strict, bool is_inner,
1983                              const char *pin_root_path)
1984 {
1985         const struct btf_type *t;
1986         const struct btf_member *m;
1987         int vlen, i;
1988
1989         vlen = btf_vlen(def);
1990         m = btf_members(def);
1991         for (i = 0; i < vlen; i++, m++) {
1992                 const char *name = btf__name_by_offset(obj->btf, m->name_off);
1993
1994                 if (!name) {
1995                         pr_warn("map '%s': invalid field #%d.\n", map->name, i);
1996                         return -EINVAL;
1997                 }
1998                 if (strcmp(name, "type") == 0) {
1999                         if (!get_map_field_int(map->name, obj->btf, m,
2000                                                &map->def.type))
2001                                 return -EINVAL;
2002                         pr_debug("map '%s': found type = %u.\n",
2003                                  map->name, map->def.type);
2004                 } else if (strcmp(name, "max_entries") == 0) {
2005                         if (!get_map_field_int(map->name, obj->btf, m,
2006                                                &map->def.max_entries))
2007                                 return -EINVAL;
2008                         pr_debug("map '%s': found max_entries = %u.\n",
2009                                  map->name, map->def.max_entries);
2010                 } else if (strcmp(name, "map_flags") == 0) {
2011                         if (!get_map_field_int(map->name, obj->btf, m,
2012                                                &map->def.map_flags))
2013                                 return -EINVAL;
2014                         pr_debug("map '%s': found map_flags = %u.\n",
2015                                  map->name, map->def.map_flags);
2016                 } else if (strcmp(name, "numa_node") == 0) {
2017                         if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2018                                 return -EINVAL;
2019                         pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2020                 } else if (strcmp(name, "key_size") == 0) {
2021                         __u32 sz;
2022
2023                         if (!get_map_field_int(map->name, obj->btf, m, &sz))
2024                                 return -EINVAL;
2025                         pr_debug("map '%s': found key_size = %u.\n",
2026                                  map->name, sz);
2027                         if (map->def.key_size && map->def.key_size != sz) {
2028                                 pr_warn("map '%s': conflicting key size %u != %u.\n",
2029                                         map->name, map->def.key_size, sz);
2030                                 return -EINVAL;
2031                         }
2032                         map->def.key_size = sz;
2033                 } else if (strcmp(name, "key") == 0) {
2034                         __s64 sz;
2035
2036                         t = btf__type_by_id(obj->btf, m->type);
2037                         if (!t) {
2038                                 pr_warn("map '%s': key type [%d] not found.\n",
2039                                         map->name, m->type);
2040                                 return -EINVAL;
2041                         }
2042                         if (!btf_is_ptr(t)) {
2043                                 pr_warn("map '%s': key spec is not PTR: %s.\n",
2044                                         map->name, btf_kind_str(t));
2045                                 return -EINVAL;
2046                         }
2047                         sz = btf__resolve_size(obj->btf, t->type);
2048                         if (sz < 0) {
2049                                 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2050                                         map->name, t->type, (ssize_t)sz);
2051                                 return sz;
2052                         }
2053                         pr_debug("map '%s': found key [%u], sz = %zd.\n",
2054                                  map->name, t->type, (ssize_t)sz);
2055                         if (map->def.key_size && map->def.key_size != sz) {
2056                                 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2057                                         map->name, map->def.key_size, (ssize_t)sz);
2058                                 return -EINVAL;
2059                         }
2060                         map->def.key_size = sz;
2061                         map->btf_key_type_id = t->type;
2062                 } else if (strcmp(name, "value_size") == 0) {
2063                         __u32 sz;
2064
2065                         if (!get_map_field_int(map->name, obj->btf, m, &sz))
2066                                 return -EINVAL;
2067                         pr_debug("map '%s': found value_size = %u.\n",
2068                                  map->name, sz);
2069                         if (map->def.value_size && map->def.value_size != sz) {
2070                                 pr_warn("map '%s': conflicting value size %u != %u.\n",
2071                                         map->name, map->def.value_size, sz);
2072                                 return -EINVAL;
2073                         }
2074                         map->def.value_size = sz;
2075                 } else if (strcmp(name, "value") == 0) {
2076                         __s64 sz;
2077
2078                         t = btf__type_by_id(obj->btf, m->type);
2079                         if (!t) {
2080                                 pr_warn("map '%s': value type [%d] not found.\n",
2081                                         map->name, m->type);
2082                                 return -EINVAL;
2083                         }
2084                         if (!btf_is_ptr(t)) {
2085                                 pr_warn("map '%s': value spec is not PTR: %s.\n",
2086                                         map->name, btf_kind_str(t));
2087                                 return -EINVAL;
2088                         }
2089                         sz = btf__resolve_size(obj->btf, t->type);
2090                         if (sz < 0) {
2091                                 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2092                                         map->name, t->type, (ssize_t)sz);
2093                                 return sz;
2094                         }
2095                         pr_debug("map '%s': found value [%u], sz = %zd.\n",
2096                                  map->name, t->type, (ssize_t)sz);
2097                         if (map->def.value_size && map->def.value_size != sz) {
2098                                 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2099                                         map->name, map->def.value_size, (ssize_t)sz);
2100                                 return -EINVAL;
2101                         }
2102                         map->def.value_size = sz;
2103                         map->btf_value_type_id = t->type;
2104                 }
2105                 else if (strcmp(name, "values") == 0) {
2106                         int err;
2107
2108                         if (is_inner) {
2109                                 pr_warn("map '%s': multi-level inner maps not supported.\n",
2110                                         map->name);
2111                                 return -ENOTSUP;
2112                         }
2113                         if (i != vlen - 1) {
2114                                 pr_warn("map '%s': '%s' member should be last.\n",
2115                                         map->name, name);
2116                                 return -EINVAL;
2117                         }
2118                         if (!bpf_map_type__is_map_in_map(map->def.type)) {
2119                                 pr_warn("map '%s': should be map-in-map.\n",
2120                                         map->name);
2121                                 return -ENOTSUP;
2122                         }
2123                         if (map->def.value_size && map->def.value_size != 4) {
2124                                 pr_warn("map '%s': conflicting value size %u != 4.\n",
2125                                         map->name, map->def.value_size);
2126                                 return -EINVAL;
2127                         }
2128                         map->def.value_size = 4;
2129                         t = btf__type_by_id(obj->btf, m->type);
2130                         if (!t) {
2131                                 pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2132                                         map->name, m->type);
2133                                 return -EINVAL;
2134                         }
2135                         if (!btf_is_array(t) || btf_array(t)->nelems) {
2136                                 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2137                                         map->name);
2138                                 return -EINVAL;
2139                         }
2140                         t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2141                                                    NULL);
2142                         if (!btf_is_ptr(t)) {
2143                                 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2144                                         map->name, btf_kind_str(t));
2145                                 return -EINVAL;
2146                         }
2147                         t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2148                         if (!btf_is_struct(t)) {
2149                                 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2150                                         map->name, btf_kind_str(t));
2151                                 return -EINVAL;
2152                         }
2153
2154                         map->inner_map = calloc(1, sizeof(*map->inner_map));
2155                         if (!map->inner_map)
2156                                 return -ENOMEM;
2157                         map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2158                         map->inner_map->name = malloc(strlen(map->name) +
2159                                                       sizeof(".inner") + 1);
2160                         if (!map->inner_map->name)
2161                                 return -ENOMEM;
2162                         sprintf(map->inner_map->name, "%s.inner", map->name);
2163
2164                         err = parse_btf_map_def(obj, map->inner_map, t, strict,
2165                                                 true /* is_inner */, NULL);
2166                         if (err)
2167                                 return err;
2168                 } else if (strcmp(name, "pinning") == 0) {
2169                         __u32 val;
2170                         int err;
2171
2172                         if (is_inner) {
2173                                 pr_debug("map '%s': inner def can't be pinned.\n",
2174                                          map->name);
2175                                 return -EINVAL;
2176                         }
2177                         if (!get_map_field_int(map->name, obj->btf, m, &val))
2178                                 return -EINVAL;
2179                         pr_debug("map '%s': found pinning = %u.\n",
2180                                  map->name, val);
2181
2182                         if (val != LIBBPF_PIN_NONE &&
2183                             val != LIBBPF_PIN_BY_NAME) {
2184                                 pr_warn("map '%s': invalid pinning value %u.\n",
2185                                         map->name, val);
2186                                 return -EINVAL;
2187                         }
2188                         if (val == LIBBPF_PIN_BY_NAME) {
2189                                 err = build_map_pin_path(map, pin_root_path);
2190                                 if (err) {
2191                                         pr_warn("map '%s': couldn't build pin path.\n",
2192                                                 map->name);
2193                                         return err;
2194                                 }
2195                         }
2196                 } else {
2197                         if (strict) {
2198                                 pr_warn("map '%s': unknown field '%s'.\n",
2199                                         map->name, name);
2200                                 return -ENOTSUP;
2201                         }
2202                         pr_debug("map '%s': ignoring unknown field '%s'.\n",
2203                                  map->name, name);
2204                 }
2205         }
2206
2207         if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2208                 pr_warn("map '%s': map type isn't specified.\n", map->name);
2209                 return -EINVAL;
2210         }
2211
2212         return 0;
2213 }
2214
2215 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2216                                          const struct btf_type *sec,
2217                                          int var_idx, int sec_idx,
2218                                          const Elf_Data *data, bool strict,
2219                                          const char *pin_root_path)
2220 {
2221         const struct btf_type *var, *def;
2222         const struct btf_var_secinfo *vi;
2223         const struct btf_var *var_extra;
2224         const char *map_name;
2225         struct bpf_map *map;
2226
2227         vi = btf_var_secinfos(sec) + var_idx;
2228         var = btf__type_by_id(obj->btf, vi->type);
2229         var_extra = btf_var(var);
2230         map_name = btf__name_by_offset(obj->btf, var->name_off);
2231
2232         if (map_name == NULL || map_name[0] == '\0') {
2233                 pr_warn("map #%d: empty name.\n", var_idx);
2234                 return -EINVAL;
2235         }
2236         if ((__u64)vi->offset + vi->size > data->d_size) {
2237                 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2238                 return -EINVAL;
2239         }
2240         if (!btf_is_var(var)) {
2241                 pr_warn("map '%s': unexpected var kind %s.\n",
2242                         map_name, btf_kind_str(var));
2243                 return -EINVAL;
2244         }
2245         if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2246             var_extra->linkage != BTF_VAR_STATIC) {
2247                 pr_warn("map '%s': unsupported var linkage %u.\n",
2248                         map_name, var_extra->linkage);
2249                 return -EOPNOTSUPP;
2250         }
2251
2252         def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2253         if (!btf_is_struct(def)) {
2254                 pr_warn("map '%s': unexpected def kind %s.\n",
2255                         map_name, btf_kind_str(var));
2256                 return -EINVAL;
2257         }
2258         if (def->size > vi->size) {
2259                 pr_warn("map '%s': invalid def size.\n", map_name);
2260                 return -EINVAL;
2261         }
2262
2263         map = bpf_object__add_map(obj);
2264         if (IS_ERR(map))
2265                 return PTR_ERR(map);
2266         map->name = strdup(map_name);
2267         if (!map->name) {
2268                 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2269                 return -ENOMEM;
2270         }
2271         map->libbpf_type = LIBBPF_MAP_UNSPEC;
2272         map->def.type = BPF_MAP_TYPE_UNSPEC;
2273         map->sec_idx = sec_idx;
2274         map->sec_offset = vi->offset;
2275         map->btf_var_idx = var_idx;
2276         pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2277                  map_name, map->sec_idx, map->sec_offset);
2278
2279         return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2280 }
2281
2282 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2283                                           const char *pin_root_path)
2284 {
2285         const struct btf_type *sec = NULL;
2286         int nr_types, i, vlen, err;
2287         const struct btf_type *t;
2288         const char *name;
2289         Elf_Data *data;
2290         Elf_Scn *scn;
2291
2292         if (obj->efile.btf_maps_shndx < 0)
2293                 return 0;
2294
2295         scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2296         data = elf_sec_data(obj, scn);
2297         if (!scn || !data) {
2298                 pr_warn("elf: failed to get %s map definitions for %s\n",
2299                         MAPS_ELF_SEC, obj->path);
2300                 return -EINVAL;
2301         }
2302
2303         nr_types = btf__get_nr_types(obj->btf);
2304         for (i = 1; i <= nr_types; i++) {
2305                 t = btf__type_by_id(obj->btf, i);
2306                 if (!btf_is_datasec(t))
2307                         continue;
2308                 name = btf__name_by_offset(obj->btf, t->name_off);
2309                 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2310                         sec = t;
2311                         obj->efile.btf_maps_sec_btf_id = i;
2312                         break;
2313                 }
2314         }
2315
2316         if (!sec) {
2317                 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2318                 return -ENOENT;
2319         }
2320
2321         vlen = btf_vlen(sec);
2322         for (i = 0; i < vlen; i++) {
2323                 err = bpf_object__init_user_btf_map(obj, sec, i,
2324                                                     obj->efile.btf_maps_shndx,
2325                                                     data, strict,
2326                                                     pin_root_path);
2327                 if (err)
2328                         return err;
2329         }
2330
2331         return 0;
2332 }
2333
2334 static int bpf_object__init_maps(struct bpf_object *obj,
2335                                  const struct bpf_object_open_opts *opts)
2336 {
2337         const char *pin_root_path;
2338         bool strict;
2339         int err;
2340
2341         strict = !OPTS_GET(opts, relaxed_maps, false);
2342         pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2343
2344         err = bpf_object__init_user_maps(obj, strict);
2345         err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2346         err = err ?: bpf_object__init_global_data_maps(obj);
2347         err = err ?: bpf_object__init_kconfig_map(obj);
2348         err = err ?: bpf_object__init_struct_ops_maps(obj);
2349         if (err)
2350                 return err;
2351
2352         return 0;
2353 }
2354
2355 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2356 {
2357         GElf_Shdr sh;
2358
2359         if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2360                 return false;
2361
2362         return sh.sh_flags & SHF_EXECINSTR;
2363 }
2364
2365 static bool btf_needs_sanitization(struct bpf_object *obj)
2366 {
2367         bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2368         bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2369         bool has_func = kernel_supports(FEAT_BTF_FUNC);
2370
2371         return !has_func || !has_datasec || !has_func_global;
2372 }
2373
2374 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2375 {
2376         bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2377         bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2378         bool has_func = kernel_supports(FEAT_BTF_FUNC);
2379         struct btf_type *t;
2380         int i, j, vlen;
2381
2382         for (i = 1; i <= btf__get_nr_types(btf); i++) {
2383                 t = (struct btf_type *)btf__type_by_id(btf, i);
2384
2385                 if (!has_datasec && btf_is_var(t)) {
2386                         /* replace VAR with INT */
2387                         t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2388                         /*
2389                          * using size = 1 is the safest choice, 4 will be too
2390                          * big and cause kernel BTF validation failure if
2391                          * original variable took less than 4 bytes
2392                          */
2393                         t->size = 1;
2394                         *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2395                 } else if (!has_datasec && btf_is_datasec(t)) {
2396                         /* replace DATASEC with STRUCT */
2397                         const struct btf_var_secinfo *v = btf_var_secinfos(t);
2398                         struct btf_member *m = btf_members(t);
2399                         struct btf_type *vt;
2400                         char *name;
2401
2402                         name = (char *)btf__name_by_offset(btf, t->name_off);
2403                         while (*name) {
2404                                 if (*name == '.')
2405                                         *name = '_';
2406                                 name++;
2407                         }
2408
2409                         vlen = btf_vlen(t);
2410                         t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2411                         for (j = 0; j < vlen; j++, v++, m++) {
2412                                 /* order of field assignments is important */
2413                                 m->offset = v->offset * 8;
2414                                 m->type = v->type;
2415                                 /* preserve variable name as member name */
2416                                 vt = (void *)btf__type_by_id(btf, v->type);
2417                                 m->name_off = vt->name_off;
2418                         }
2419                 } else if (!has_func && btf_is_func_proto(t)) {
2420                         /* replace FUNC_PROTO with ENUM */
2421                         vlen = btf_vlen(t);
2422                         t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2423                         t->size = sizeof(__u32); /* kernel enforced */
2424                 } else if (!has_func && btf_is_func(t)) {
2425                         /* replace FUNC with TYPEDEF */
2426                         t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2427                 } else if (!has_func_global && btf_is_func(t)) {
2428                         /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2429                         t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2430                 }
2431         }
2432 }
2433
2434 static bool libbpf_needs_btf(const struct bpf_object *obj)
2435 {
2436         return obj->efile.btf_maps_shndx >= 0 ||
2437                obj->efile.st_ops_shndx >= 0 ||
2438                obj->nr_extern > 0;
2439 }
2440
2441 static bool kernel_needs_btf(const struct bpf_object *obj)
2442 {
2443         return obj->efile.st_ops_shndx >= 0;
2444 }
2445
2446 static int bpf_object__init_btf(struct bpf_object *obj,
2447                                 Elf_Data *btf_data,
2448                                 Elf_Data *btf_ext_data)
2449 {
2450         int err = -ENOENT;
2451
2452         if (btf_data) {
2453                 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2454                 if (IS_ERR(obj->btf)) {
2455                         err = PTR_ERR(obj->btf);
2456                         obj->btf = NULL;
2457                         pr_warn("Error loading ELF section %s: %d.\n",
2458                                 BTF_ELF_SEC, err);
2459                         goto out;
2460                 }
2461                 /* enforce 8-byte pointers for BPF-targeted BTFs */
2462                 btf__set_pointer_size(obj->btf, 8);
2463                 err = 0;
2464         }
2465         if (btf_ext_data) {
2466                 if (!obj->btf) {
2467                         pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2468                                  BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2469                         goto out;
2470                 }
2471                 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2472                                             btf_ext_data->d_size);
2473                 if (IS_ERR(obj->btf_ext)) {
2474                         pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2475                                 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2476                         obj->btf_ext = NULL;
2477                         goto out;
2478                 }
2479         }
2480 out:
2481         if (err && libbpf_needs_btf(obj)) {
2482                 pr_warn("BTF is required, but is missing or corrupted.\n");
2483                 return err;
2484         }
2485         return 0;
2486 }
2487
2488 static int bpf_object__finalize_btf(struct bpf_object *obj)
2489 {
2490         int err;
2491
2492         if (!obj->btf)
2493                 return 0;
2494
2495         err = btf__finalize_data(obj, obj->btf);
2496         if (err) {
2497                 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2498                 return err;
2499         }
2500
2501         return 0;
2502 }
2503
2504 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2505 {
2506         if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2507             prog->type == BPF_PROG_TYPE_LSM)
2508                 return true;
2509
2510         /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2511          * also need vmlinux BTF
2512          */
2513         if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2514                 return true;
2515
2516         return false;
2517 }
2518
2519 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2520 {
2521         bool need_vmlinux_btf = false;
2522         struct bpf_program *prog;
2523         int i, err;
2524
2525         /* CO-RE relocations need kernel BTF */
2526         if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2527                 need_vmlinux_btf = true;
2528
2529         /* Support for typed ksyms needs kernel BTF */
2530         for (i = 0; i < obj->nr_extern; i++) {
2531                 const struct extern_desc *ext;
2532
2533                 ext = &obj->externs[i];
2534                 if (ext->type == EXT_KSYM && ext->ksym.type_id) {
2535                         need_vmlinux_btf = true;
2536                         break;
2537                 }
2538         }
2539
2540         bpf_object__for_each_program(prog, obj) {
2541                 if (!prog->load)
2542                         continue;
2543                 if (libbpf_prog_needs_vmlinux_btf(prog)) {
2544                         need_vmlinux_btf = true;
2545                         break;
2546                 }
2547         }
2548
2549         if (!need_vmlinux_btf)
2550                 return 0;
2551
2552         obj->btf_vmlinux = libbpf_find_kernel_btf();
2553         if (IS_ERR(obj->btf_vmlinux)) {
2554                 err = PTR_ERR(obj->btf_vmlinux);
2555                 pr_warn("Error loading vmlinux BTF: %d\n", err);
2556                 obj->btf_vmlinux = NULL;
2557                 return err;
2558         }
2559         return 0;
2560 }
2561
2562 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2563 {
2564         struct btf *kern_btf = obj->btf;
2565         bool btf_mandatory, sanitize;
2566         int err = 0;
2567
2568         if (!obj->btf)
2569                 return 0;
2570
2571         if (!kernel_supports(FEAT_BTF)) {
2572                 if (kernel_needs_btf(obj)) {
2573                         err = -EOPNOTSUPP;
2574                         goto report;
2575                 }
2576                 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2577                 return 0;
2578         }
2579
2580         sanitize = btf_needs_sanitization(obj);
2581         if (sanitize) {
2582                 const void *raw_data;
2583                 __u32 sz;
2584
2585                 /* clone BTF to sanitize a copy and leave the original intact */
2586                 raw_data = btf__get_raw_data(obj->btf, &sz);
2587                 kern_btf = btf__new(raw_data, sz);
2588                 if (IS_ERR(kern_btf))
2589                         return PTR_ERR(kern_btf);
2590
2591                 /* enforce 8-byte pointers for BPF-targeted BTFs */
2592                 btf__set_pointer_size(obj->btf, 8);
2593                 bpf_object__sanitize_btf(obj, kern_btf);
2594         }
2595
2596         err = btf__load(kern_btf);
2597         if (sanitize) {
2598                 if (!err) {
2599                         /* move fd to libbpf's BTF */
2600                         btf__set_fd(obj->btf, btf__fd(kern_btf));
2601                         btf__set_fd(kern_btf, -1);
2602                 }
2603                 btf__free(kern_btf);
2604         }
2605 report:
2606         if (err) {
2607                 btf_mandatory = kernel_needs_btf(obj);
2608                 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2609                         btf_mandatory ? "BTF is mandatory, can't proceed."
2610                                       : "BTF is optional, ignoring.");
2611                 if (!btf_mandatory)
2612                         err = 0;
2613         }
2614         return err;
2615 }
2616
2617 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2618 {
2619         const char *name;
2620
2621         name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2622         if (!name) {
2623                 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2624                         off, obj->path, elf_errmsg(-1));
2625                 return NULL;
2626         }
2627
2628         return name;
2629 }
2630
2631 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2632 {
2633         const char *name;
2634
2635         name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2636         if (!name) {
2637                 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2638                         off, obj->path, elf_errmsg(-1));
2639                 return NULL;
2640         }
2641
2642         return name;
2643 }
2644
2645 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2646 {
2647         Elf_Scn *scn;
2648
2649         scn = elf_getscn(obj->efile.elf, idx);
2650         if (!scn) {
2651                 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2652                         idx, obj->path, elf_errmsg(-1));
2653                 return NULL;
2654         }
2655         return scn;
2656 }
2657
2658 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2659 {
2660         Elf_Scn *scn = NULL;
2661         Elf *elf = obj->efile.elf;
2662         const char *sec_name;
2663
2664         while ((scn = elf_nextscn(elf, scn)) != NULL) {
2665                 sec_name = elf_sec_name(obj, scn);
2666                 if (!sec_name)
2667                         return NULL;
2668
2669                 if (strcmp(sec_name, name) != 0)
2670                         continue;
2671
2672                 return scn;
2673         }
2674         return NULL;
2675 }
2676
2677 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2678 {
2679         if (!scn)
2680                 return -EINVAL;
2681
2682         if (gelf_getshdr(scn, hdr) != hdr) {
2683                 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2684                         elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2685                 return -EINVAL;
2686         }
2687
2688         return 0;
2689 }
2690
2691 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2692 {
2693         const char *name;
2694         GElf_Shdr sh;
2695
2696         if (!scn)
2697                 return NULL;
2698
2699         if (elf_sec_hdr(obj, scn, &sh))
2700                 return NULL;
2701
2702         name = elf_sec_str(obj, sh.sh_name);
2703         if (!name) {
2704                 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2705                         elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2706                 return NULL;
2707         }
2708
2709         return name;
2710 }
2711
2712 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2713 {
2714         Elf_Data *data;
2715
2716         if (!scn)
2717                 return NULL;
2718
2719         data = elf_getdata(scn, 0);
2720         if (!data) {
2721                 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2722                         elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2723                         obj->path, elf_errmsg(-1));
2724                 return NULL;
2725         }
2726
2727         return data;
2728 }
2729
2730 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2731                               size_t off, __u32 sym_type, GElf_Sym *sym)
2732 {
2733         Elf_Data *symbols = obj->efile.symbols;
2734         size_t n = symbols->d_size / sizeof(GElf_Sym);
2735         int i;
2736
2737         for (i = 0; i < n; i++) {
2738                 if (!gelf_getsym(symbols, i, sym))
2739                         continue;
2740                 if (sym->st_shndx != sec_idx || sym->st_value != off)
2741                         continue;
2742                 if (GELF_ST_TYPE(sym->st_info) != sym_type)
2743                         continue;
2744                 return 0;
2745         }
2746
2747         return -ENOENT;
2748 }
2749
2750 static bool is_sec_name_dwarf(const char *name)
2751 {
2752         /* approximation, but the actual list is too long */
2753         return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2754 }
2755
2756 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2757 {
2758         /* no special handling of .strtab */
2759         if (hdr->sh_type == SHT_STRTAB)
2760                 return true;
2761
2762         /* ignore .llvm_addrsig section as well */
2763         if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2764                 return true;
2765
2766         /* no subprograms will lead to an empty .text section, ignore it */
2767         if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2768             strcmp(name, ".text") == 0)
2769                 return true;
2770
2771         /* DWARF sections */
2772         if (is_sec_name_dwarf(name))
2773                 return true;
2774
2775         if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2776                 name += sizeof(".rel") - 1;
2777                 /* DWARF section relocations */
2778                 if (is_sec_name_dwarf(name))
2779                         return true;
2780
2781                 /* .BTF and .BTF.ext don't need relocations */
2782                 if (strcmp(name, BTF_ELF_SEC) == 0 ||
2783                     strcmp(name, BTF_EXT_ELF_SEC) == 0)
2784                         return true;
2785         }
2786
2787         return false;
2788 }
2789
2790 static int cmp_progs(const void *_a, const void *_b)
2791 {
2792         const struct bpf_program *a = _a;
2793         const struct bpf_program *b = _b;
2794
2795         if (a->sec_idx != b->sec_idx)
2796                 return a->sec_idx < b->sec_idx ? -1 : 1;
2797
2798         /* sec_insn_off can't be the same within the section */
2799         return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2800 }
2801
2802 static int bpf_object__elf_collect(struct bpf_object *obj)
2803 {
2804         Elf *elf = obj->efile.elf;
2805         Elf_Data *btf_ext_data = NULL;
2806         Elf_Data *btf_data = NULL;
2807         int idx = 0, err = 0;
2808         const char *name;
2809         Elf_Data *data;
2810         Elf_Scn *scn;
2811         GElf_Shdr sh;
2812
2813         /* a bunch of ELF parsing functionality depends on processing symbols,
2814          * so do the first pass and find the symbol table
2815          */
2816         scn = NULL;
2817         while ((scn = elf_nextscn(elf, scn)) != NULL) {
2818                 if (elf_sec_hdr(obj, scn, &sh))
2819                         return -LIBBPF_ERRNO__FORMAT;
2820
2821                 if (sh.sh_type == SHT_SYMTAB) {
2822                         if (obj->efile.symbols) {
2823                                 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2824                                 return -LIBBPF_ERRNO__FORMAT;
2825                         }
2826
2827                         data = elf_sec_data(obj, scn);
2828                         if (!data)
2829                                 return -LIBBPF_ERRNO__FORMAT;
2830
2831                         obj->efile.symbols = data;
2832                         obj->efile.symbols_shndx = elf_ndxscn(scn);
2833                         obj->efile.strtabidx = sh.sh_link;
2834                 }
2835         }
2836
2837         scn = NULL;
2838         while ((scn = elf_nextscn(elf, scn)) != NULL) {
2839                 idx++;
2840
2841                 if (elf_sec_hdr(obj, scn, &sh))
2842                         return -LIBBPF_ERRNO__FORMAT;
2843
2844                 name = elf_sec_str(obj, sh.sh_name);
2845                 if (!name)
2846                         return -LIBBPF_ERRNO__FORMAT;
2847
2848                 if (ignore_elf_section(&sh, name))
2849                         continue;
2850
2851                 data = elf_sec_data(obj, scn);
2852                 if (!data)
2853                         return -LIBBPF_ERRNO__FORMAT;
2854
2855                 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2856                          idx, name, (unsigned long)data->d_size,
2857                          (int)sh.sh_link, (unsigned long)sh.sh_flags,
2858                          (int)sh.sh_type);
2859
2860                 if (strcmp(name, "license") == 0) {
2861                         err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2862                         if (err)
2863                                 return err;
2864                 } else if (strcmp(name, "version") == 0) {
2865                         err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2866                         if (err)
2867                                 return err;
2868                 } else if (strcmp(name, "maps") == 0) {
2869                         obj->efile.maps_shndx = idx;
2870                 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2871                         obj->efile.btf_maps_shndx = idx;
2872                 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
2873                         btf_data = data;
2874                 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2875                         btf_ext_data = data;
2876                 } else if (sh.sh_type == SHT_SYMTAB) {
2877                         /* already processed during the first pass above */
2878                 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2879                         if (sh.sh_flags & SHF_EXECINSTR) {
2880                                 if (strcmp(name, ".text") == 0)
2881                                         obj->efile.text_shndx = idx;
2882                                 err = bpf_object__add_programs(obj, data, name, idx);
2883                                 if (err)
2884                                         return err;
2885                         } else if (strcmp(name, DATA_SEC) == 0) {
2886                                 obj->efile.data = data;
2887                                 obj->efile.data_shndx = idx;
2888                         } else if (strcmp(name, RODATA_SEC) == 0) {
2889                                 obj->efile.rodata = data;
2890                                 obj->efile.rodata_shndx = idx;
2891                         } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2892                                 obj->efile.st_ops_data = data;
2893                                 obj->efile.st_ops_shndx = idx;
2894                         } else {
2895                                 pr_info("elf: skipping unrecognized data section(%d) %s\n",
2896                                         idx, name);
2897                         }
2898                 } else if (sh.sh_type == SHT_REL) {
2899                         int nr_sects = obj->efile.nr_reloc_sects;
2900                         void *sects = obj->efile.reloc_sects;
2901                         int sec = sh.sh_info; /* points to other section */
2902
2903                         /* Only do relo for section with exec instructions */
2904                         if (!section_have_execinstr(obj, sec) &&
2905                             strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2906                             strcmp(name, ".rel" MAPS_ELF_SEC)) {
2907                                 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2908                                         idx, name, sec,
2909                                         elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2910                                 continue;
2911                         }
2912
2913                         sects = libbpf_reallocarray(sects, nr_sects + 1,
2914                                                     sizeof(*obj->efile.reloc_sects));
2915                         if (!sects)
2916                                 return -ENOMEM;
2917
2918                         obj->efile.reloc_sects = sects;
2919                         obj->efile.nr_reloc_sects++;
2920
2921                         obj->efile.reloc_sects[nr_sects].shdr = sh;
2922                         obj->efile.reloc_sects[nr_sects].data = data;
2923                 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2924                         obj->efile.bss = data;
2925                         obj->efile.bss_shndx = idx;
2926                 } else {
2927                         pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2928                                 (size_t)sh.sh_size);
2929                 }
2930         }
2931
2932         if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2933                 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2934                 return -LIBBPF_ERRNO__FORMAT;
2935         }
2936
2937         /* sort BPF programs by section name and in-section instruction offset
2938          * for faster search */
2939         qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2940
2941         return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2942 }
2943
2944 static bool sym_is_extern(const GElf_Sym *sym)
2945 {
2946         int bind = GELF_ST_BIND(sym->st_info);
2947         /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2948         return sym->st_shndx == SHN_UNDEF &&
2949                (bind == STB_GLOBAL || bind == STB_WEAK) &&
2950                GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2951 }
2952
2953 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2954 {
2955         const struct btf_type *t;
2956         const char *var_name;
2957         int i, n;
2958
2959         if (!btf)
2960                 return -ESRCH;
2961
2962         n = btf__get_nr_types(btf);
2963         for (i = 1; i <= n; i++) {
2964                 t = btf__type_by_id(btf, i);
2965
2966                 if (!btf_is_var(t))
2967                         continue;
2968
2969                 var_name = btf__name_by_offset(btf, t->name_off);
2970                 if (strcmp(var_name, ext_name))
2971                         continue;
2972
2973                 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2974                         return -EINVAL;
2975
2976                 return i;
2977         }
2978
2979         return -ENOENT;
2980 }
2981
2982 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2983         const struct btf_var_secinfo *vs;
2984         const struct btf_type *t;
2985         int i, j, n;
2986
2987         if (!btf)
2988                 return -ESRCH;
2989
2990         n = btf__get_nr_types(btf);
2991         for (i = 1; i <= n; i++) {
2992                 t = btf__type_by_id(btf, i);
2993
2994                 if (!btf_is_datasec(t))
2995                         continue;
2996
2997                 vs = btf_var_secinfos(t);
2998                 for (j = 0; j < btf_vlen(t); j++, vs++) {
2999                         if (vs->type == ext_btf_id)
3000                                 return i;
3001                 }
3002         }
3003
3004         return -ENOENT;
3005 }
3006
3007 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3008                                      bool *is_signed)
3009 {
3010         const struct btf_type *t;
3011         const char *name;
3012
3013         t = skip_mods_and_typedefs(btf, id, NULL);
3014         name = btf__name_by_offset(btf, t->name_off);
3015
3016         if (is_signed)
3017                 *is_signed = false;
3018         switch (btf_kind(t)) {
3019         case BTF_KIND_INT: {
3020                 int enc = btf_int_encoding(t);
3021
3022                 if (enc & BTF_INT_BOOL)
3023                         return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3024                 if (is_signed)
3025                         *is_signed = enc & BTF_INT_SIGNED;
3026                 if (t->size == 1)
3027                         return KCFG_CHAR;
3028                 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3029                         return KCFG_UNKNOWN;
3030                 return KCFG_INT;
3031         }
3032         case BTF_KIND_ENUM:
3033                 if (t->size != 4)
3034                         return KCFG_UNKNOWN;
3035                 if (strcmp(name, "libbpf_tristate"))
3036                         return KCFG_UNKNOWN;
3037                 return KCFG_TRISTATE;
3038         case BTF_KIND_ARRAY:
3039                 if (btf_array(t)->nelems == 0)
3040                         return KCFG_UNKNOWN;
3041                 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3042                         return KCFG_UNKNOWN;
3043                 return KCFG_CHAR_ARR;
3044         default:
3045                 return KCFG_UNKNOWN;
3046         }
3047 }
3048
3049 static int cmp_externs(const void *_a, const void *_b)
3050 {
3051         const struct extern_desc *a = _a;
3052         const struct extern_desc *b = _b;
3053
3054         if (a->type != b->type)
3055                 return a->type < b->type ? -1 : 1;
3056
3057         if (a->type == EXT_KCFG) {
3058                 /* descending order by alignment requirements */
3059                 if (a->kcfg.align != b->kcfg.align)
3060                         return a->kcfg.align > b->kcfg.align ? -1 : 1;
3061                 /* ascending order by size, within same alignment class */
3062                 if (a->kcfg.sz != b->kcfg.sz)
3063                         return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3064         }
3065
3066         /* resolve ties by name */
3067         return strcmp(a->name, b->name);
3068 }
3069
3070 static int find_int_btf_id(const struct btf *btf)
3071 {
3072         const struct btf_type *t;
3073         int i, n;
3074
3075         n = btf__get_nr_types(btf);
3076         for (i = 1; i <= n; i++) {
3077                 t = btf__type_by_id(btf, i);
3078
3079                 if (btf_is_int(t) && btf_int_bits(t) == 32)
3080                         return i;
3081         }
3082
3083         return 0;
3084 }
3085
3086 static int bpf_object__collect_externs(struct bpf_object *obj)
3087 {
3088         struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3089         const struct btf_type *t;
3090         struct extern_desc *ext;
3091         int i, n, off;
3092         const char *ext_name, *sec_name;
3093         Elf_Scn *scn;
3094         GElf_Shdr sh;
3095
3096         if (!obj->efile.symbols)
3097                 return 0;
3098
3099         scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3100         if (elf_sec_hdr(obj, scn, &sh))
3101                 return -LIBBPF_ERRNO__FORMAT;
3102
3103         n = sh.sh_size / sh.sh_entsize;
3104         pr_debug("looking for externs among %d symbols...\n", n);
3105
3106         for (i = 0; i < n; i++) {
3107                 GElf_Sym sym;
3108
3109                 if (!gelf_getsym(obj->efile.symbols, i, &sym))
3110                         return -LIBBPF_ERRNO__FORMAT;
3111                 if (!sym_is_extern(&sym))
3112                         continue;
3113                 ext_name = elf_sym_str(obj, sym.st_name);
3114                 if (!ext_name || !ext_name[0])
3115                         continue;
3116
3117                 ext = obj->externs;
3118                 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3119                 if (!ext)
3120                         return -ENOMEM;
3121                 obj->externs = ext;
3122                 ext = &ext[obj->nr_extern];
3123                 memset(ext, 0, sizeof(*ext));
3124                 obj->nr_extern++;
3125
3126                 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3127                 if (ext->btf_id <= 0) {
3128                         pr_warn("failed to find BTF for extern '%s': %d\n",
3129                                 ext_name, ext->btf_id);
3130                         return ext->btf_id;
3131                 }
3132                 t = btf__type_by_id(obj->btf, ext->btf_id);
3133                 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3134                 ext->sym_idx = i;
3135                 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3136
3137                 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3138                 if (ext->sec_btf_id <= 0) {
3139                         pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3140                                 ext_name, ext->btf_id, ext->sec_btf_id);
3141                         return ext->sec_btf_id;
3142                 }
3143                 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3144                 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3145
3146                 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3147                         kcfg_sec = sec;
3148                         ext->type = EXT_KCFG;
3149                         ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3150                         if (ext->kcfg.sz <= 0) {
3151                                 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3152                                         ext_name, ext->kcfg.sz);
3153                                 return ext->kcfg.sz;
3154                         }
3155                         ext->kcfg.align = btf__align_of(obj->btf, t->type);
3156                         if (ext->kcfg.align <= 0) {
3157                                 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3158                                         ext_name, ext->kcfg.align);
3159                                 return -EINVAL;
3160                         }
3161                         ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3162                                                         &ext->kcfg.is_signed);
3163                         if (ext->kcfg.type == KCFG_UNKNOWN) {
3164                                 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3165                                 return -ENOTSUP;
3166                         }
3167                 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3168                         ksym_sec = sec;
3169                         ext->type = EXT_KSYM;
3170                         skip_mods_and_typedefs(obj->btf, t->type,
3171                                                &ext->ksym.type_id);
3172                 } else {
3173                         pr_warn("unrecognized extern section '%s'\n", sec_name);
3174                         return -ENOTSUP;
3175                 }
3176         }
3177         pr_debug("collected %d externs total\n", obj->nr_extern);
3178
3179         if (!obj->nr_extern)
3180                 return 0;
3181
3182         /* sort externs by type, for kcfg ones also by (align, size, name) */
3183         qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3184
3185         /* for .ksyms section, we need to turn all externs into allocated
3186          * variables in BTF to pass kernel verification; we do this by
3187          * pretending that each extern is a 8-byte variable
3188          */
3189         if (ksym_sec) {
3190                 /* find existing 4-byte integer type in BTF to use for fake
3191                  * extern variables in DATASEC
3192                  */
3193                 int int_btf_id = find_int_btf_id(obj->btf);
3194
3195                 for (i = 0; i < obj->nr_extern; i++) {
3196                         ext = &obj->externs[i];
3197                         if (ext->type != EXT_KSYM)
3198                                 continue;
3199                         pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3200                                  i, ext->sym_idx, ext->name);
3201                 }
3202
3203                 sec = ksym_sec;
3204                 n = btf_vlen(sec);
3205                 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3206                         struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3207                         struct btf_type *vt;
3208
3209                         vt = (void *)btf__type_by_id(obj->btf, vs->type);
3210                         ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3211                         ext = find_extern_by_name(obj, ext_name);
3212                         if (!ext) {
3213                                 pr_warn("failed to find extern definition for BTF var '%s'\n",
3214                                         ext_name);
3215                                 return -ESRCH;
3216                         }
3217                         btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3218                         vt->type = int_btf_id;
3219                         vs->offset = off;
3220                         vs->size = sizeof(int);
3221                 }
3222                 sec->size = off;
3223         }
3224
3225         if (kcfg_sec) {
3226                 sec = kcfg_sec;
3227                 /* for kcfg externs calculate their offsets within a .kconfig map */
3228                 off = 0;
3229                 for (i = 0; i < obj->nr_extern; i++) {
3230                         ext = &obj->externs[i];
3231                         if (ext->type != EXT_KCFG)
3232                                 continue;
3233
3234                         ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3235                         off = ext->kcfg.data_off + ext->kcfg.sz;
3236                         pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3237                                  i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3238                 }
3239                 sec->size = off;
3240                 n = btf_vlen(sec);
3241                 for (i = 0; i < n; i++) {
3242                         struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3243
3244                         t = btf__type_by_id(obj->btf, vs->type);
3245                         ext_name = btf__name_by_offset(obj->btf, t->name_off);
3246                         ext = find_extern_by_name(obj, ext_name);
3247                         if (!ext) {
3248                                 pr_warn("failed to find extern definition for BTF var '%s'\n",
3249                                         ext_name);
3250                                 return -ESRCH;
3251                         }
3252                         btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3253                         vs->offset = ext->kcfg.data_off;
3254                 }
3255         }
3256         return 0;
3257 }
3258
3259 struct bpf_program *
3260 bpf_object__find_program_by_title(const struct bpf_object *obj,
3261                                   const char *title)
3262 {
3263         struct bpf_program *pos;
3264
3265         bpf_object__for_each_program(pos, obj) {
3266                 if (pos->sec_name && !strcmp(pos->sec_name, title))
3267                         return pos;
3268         }
3269         return NULL;
3270 }
3271
3272 static bool prog_is_subprog(const struct bpf_object *obj,
3273                             const struct bpf_program *prog)
3274 {
3275         /* For legacy reasons, libbpf supports an entry-point BPF programs
3276          * without SEC() attribute, i.e., those in the .text section. But if
3277          * there are 2 or more such programs in the .text section, they all
3278          * must be subprograms called from entry-point BPF programs in
3279          * designated SEC()'tions, otherwise there is no way to distinguish
3280          * which of those programs should be loaded vs which are a subprogram.
3281          * Similarly, if there is a function/program in .text and at least one
3282          * other BPF program with custom SEC() attribute, then we just assume
3283          * .text programs are subprograms (even if they are not called from
3284          * other programs), because libbpf never explicitly supported mixing
3285          * SEC()-designated BPF programs and .text entry-point BPF programs.
3286          */
3287         return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3288 }
3289
3290 struct bpf_program *
3291 bpf_object__find_program_by_name(const struct bpf_object *obj,
3292                                  const char *name)
3293 {
3294         struct bpf_program *prog;
3295
3296         bpf_object__for_each_program(prog, obj) {
3297                 if (prog_is_subprog(obj, prog))
3298                         continue;
3299                 if (!strcmp(prog->name, name))
3300                         return prog;
3301         }
3302         return NULL;
3303 }
3304
3305 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3306                                       int shndx)
3307 {
3308         return shndx == obj->efile.data_shndx ||
3309                shndx == obj->efile.bss_shndx ||
3310                shndx == obj->efile.rodata_shndx;
3311 }
3312
3313 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3314                                       int shndx)
3315 {
3316         return shndx == obj->efile.maps_shndx ||
3317                shndx == obj->efile.btf_maps_shndx;
3318 }
3319
3320 static enum libbpf_map_type
3321 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3322 {
3323         if (shndx == obj->efile.data_shndx)
3324                 return LIBBPF_MAP_DATA;
3325         else if (shndx == obj->efile.bss_shndx)
3326                 return LIBBPF_MAP_BSS;
3327         else if (shndx == obj->efile.rodata_shndx)
3328                 return LIBBPF_MAP_RODATA;
3329         else if (shndx == obj->efile.symbols_shndx)
3330                 return LIBBPF_MAP_KCONFIG;
3331         else
3332                 return LIBBPF_MAP_UNSPEC;
3333 }
3334
3335 static int bpf_program__record_reloc(struct bpf_program *prog,
3336                                      struct reloc_desc *reloc_desc,
3337                                      __u32 insn_idx, const char *sym_name,
3338                                      const GElf_Sym *sym, const GElf_Rel *rel)
3339 {
3340         struct bpf_insn *insn = &prog->insns[insn_idx];
3341         size_t map_idx, nr_maps = prog->obj->nr_maps;
3342         struct bpf_object *obj = prog->obj;
3343         __u32 shdr_idx = sym->st_shndx;
3344         enum libbpf_map_type type;
3345         const char *sym_sec_name;
3346         struct bpf_map *map;
3347
3348         reloc_desc->processed = false;
3349
3350         /* sub-program call relocation */
3351         if (insn->code == (BPF_JMP | BPF_CALL)) {
3352                 if (insn->src_reg != BPF_PSEUDO_CALL) {
3353                         pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3354                         return -LIBBPF_ERRNO__RELOC;
3355                 }
3356                 /* text_shndx can be 0, if no default "main" program exists */
3357                 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3358                         sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3359                         pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3360                                 prog->name, sym_name, sym_sec_name);
3361                         return -LIBBPF_ERRNO__RELOC;
3362                 }
3363                 if (sym->st_value % BPF_INSN_SZ) {
3364                         pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3365                                 prog->name, sym_name, (size_t)sym->st_value);
3366                         return -LIBBPF_ERRNO__RELOC;
3367                 }
3368                 reloc_desc->type = RELO_CALL;
3369                 reloc_desc->insn_idx = insn_idx;
3370                 reloc_desc->sym_off = sym->st_value;
3371                 return 0;
3372         }
3373
3374         if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3375                 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3376                         prog->name, sym_name, insn_idx, insn->code);
3377                 return -LIBBPF_ERRNO__RELOC;
3378         }
3379
3380         if (sym_is_extern(sym)) {
3381                 int sym_idx = GELF_R_SYM(rel->r_info);
3382                 int i, n = obj->nr_extern;
3383                 struct extern_desc *ext;
3384
3385                 for (i = 0; i < n; i++) {
3386                         ext = &obj->externs[i];
3387                         if (ext->sym_idx == sym_idx)
3388                                 break;
3389                 }
3390                 if (i >= n) {
3391                         pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3392                                 prog->name, sym_name, sym_idx);
3393                         return -LIBBPF_ERRNO__RELOC;
3394                 }
3395                 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3396                          prog->name, i, ext->name, ext->sym_idx, insn_idx);
3397                 reloc_desc->type = RELO_EXTERN;
3398                 reloc_desc->insn_idx = insn_idx;
3399                 reloc_desc->sym_off = i; /* sym_off stores extern index */
3400                 return 0;
3401         }
3402
3403         if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3404                 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3405                         prog->name, sym_name, shdr_idx);
3406                 return -LIBBPF_ERRNO__RELOC;
3407         }
3408
3409         type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3410         sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3411
3412         /* generic map reference relocation */
3413         if (type == LIBBPF_MAP_UNSPEC) {
3414                 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3415                         pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3416                                 prog->name, sym_name, sym_sec_name);
3417                         return -LIBBPF_ERRNO__RELOC;
3418                 }
3419                 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3420                         map = &obj->maps[map_idx];
3421                         if (map->libbpf_type != type ||
3422                             map->sec_idx != sym->st_shndx ||
3423                             map->sec_offset != sym->st_value)
3424                                 continue;
3425                         pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3426                                  prog->name, map_idx, map->name, map->sec_idx,
3427                                  map->sec_offset, insn_idx);
3428                         break;
3429                 }
3430                 if (map_idx >= nr_maps) {
3431                         pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3432                                 prog->name, sym_sec_name, (size_t)sym->st_value);
3433                         return -LIBBPF_ERRNO__RELOC;
3434                 }
3435                 reloc_desc->type = RELO_LD64;
3436                 reloc_desc->insn_idx = insn_idx;
3437                 reloc_desc->map_idx = map_idx;
3438                 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3439                 return 0;
3440         }
3441
3442         /* global data map relocation */
3443         if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3444                 pr_warn("prog '%s': bad data relo against section '%s'\n",
3445                         prog->name, sym_sec_name);
3446                 return -LIBBPF_ERRNO__RELOC;
3447         }
3448         for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3449                 map = &obj->maps[map_idx];
3450                 if (map->libbpf_type != type)
3451                         continue;
3452                 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3453                          prog->name, map_idx, map->name, map->sec_idx,
3454                          map->sec_offset, insn_idx);
3455                 break;
3456         }
3457         if (map_idx >= nr_maps) {
3458                 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3459                         prog->name, sym_sec_name);
3460                 return -LIBBPF_ERRNO__RELOC;
3461         }
3462
3463         reloc_desc->type = RELO_DATA;
3464         reloc_desc->insn_idx = insn_idx;
3465         reloc_desc->map_idx = map_idx;
3466         reloc_desc->sym_off = sym->st_value;
3467         return 0;
3468 }
3469
3470 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3471 {
3472         return insn_idx >= prog->sec_insn_off &&
3473                insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3474 }
3475
3476 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3477                                                  size_t sec_idx, size_t insn_idx)
3478 {
3479         int l = 0, r = obj->nr_programs - 1, m;
3480         struct bpf_program *prog;
3481
3482         if (!obj->nr_programs)
3483                 return NULL;
3484
3485         while (l < r) {
3486                 m = l + (r - l + 1) / 2;
3487                 prog = &obj->programs[m];
3488
3489                 if (prog->sec_idx < sec_idx ||
3490                     (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3491                         l = m;
3492                 else
3493                         r = m - 1;
3494         }
3495         /* matching program could be at index l, but it still might be the
3496          * wrong one, so we need to double check conditions for the last time
3497          */
3498         prog = &obj->programs[l];
3499         if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3500                 return prog;
3501         return NULL;
3502 }
3503
3504 static int
3505 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3506 {
3507         Elf_Data *symbols = obj->efile.symbols;
3508         const char *relo_sec_name, *sec_name;
3509         size_t sec_idx = shdr->sh_info;
3510         struct bpf_program *prog;
3511         struct reloc_desc *relos;
3512         int err, i, nrels;
3513         const char *sym_name;
3514         __u32 insn_idx;
3515         GElf_Sym sym;
3516         GElf_Rel rel;
3517
3518         relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3519         sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3520         if (!relo_sec_name || !sec_name)
3521                 return -EINVAL;
3522
3523         pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3524                  relo_sec_name, sec_idx, sec_name);
3525         nrels = shdr->sh_size / shdr->sh_entsize;
3526
3527         for (i = 0; i < nrels; i++) {
3528                 if (!gelf_getrel(data, i, &rel)) {
3529                         pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3530                         return -LIBBPF_ERRNO__FORMAT;
3531                 }
3532                 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3533                         pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3534                                 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3535                         return -LIBBPF_ERRNO__FORMAT;
3536                 }
3537                 if (rel.r_offset % BPF_INSN_SZ) {
3538                         pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3539                                 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3540                         return -LIBBPF_ERRNO__FORMAT;
3541                 }
3542
3543                 insn_idx = rel.r_offset / BPF_INSN_SZ;
3544                 /* relocations against static functions are recorded as
3545                  * relocations against the section that contains a function;
3546                  * in such case, symbol will be STT_SECTION and sym.st_name
3547                  * will point to empty string (0), so fetch section name
3548                  * instead
3549                  */
3550                 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3551                         sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3552                 else
3553                         sym_name = elf_sym_str(obj, sym.st_name);
3554                 sym_name = sym_name ?: "<?";
3555
3556                 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3557                          relo_sec_name, i, insn_idx, sym_name);
3558
3559                 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3560                 if (!prog) {
3561                         pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3562                                 relo_sec_name, i, sec_name, insn_idx);
3563                         return -LIBBPF_ERRNO__RELOC;
3564                 }
3565
3566                 relos = libbpf_reallocarray(prog->reloc_desc,
3567                                             prog->nr_reloc + 1, sizeof(*relos));
3568                 if (!relos)
3569                         return -ENOMEM;
3570                 prog->reloc_desc = relos;
3571
3572                 /* adjust insn_idx to local BPF program frame of reference */
3573                 insn_idx -= prog->sec_insn_off;
3574                 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3575                                                 insn_idx, sym_name, &sym, &rel);
3576                 if (err)
3577                         return err;
3578
3579                 prog->nr_reloc++;
3580         }
3581         return 0;
3582 }
3583
3584 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3585 {
3586         struct bpf_map_def *def = &map->def;
3587         __u32 key_type_id = 0, value_type_id = 0;
3588         int ret;
3589
3590         /* if it's BTF-defined map, we don't need to search for type IDs.
3591          * For struct_ops map, it does not need btf_key_type_id and
3592          * btf_value_type_id.
3593          */
3594         if (map->sec_idx == obj->efile.btf_maps_shndx ||
3595             bpf_map__is_struct_ops(map))
3596                 return 0;
3597
3598         if (!bpf_map__is_internal(map)) {
3599                 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3600                                            def->value_size, &key_type_id,
3601                                            &value_type_id);
3602         } else {
3603                 /*
3604                  * LLVM annotates global data differently in BTF, that is,
3605                  * only as '.data', '.bss' or '.rodata'.
3606                  */
3607                 ret = btf__find_by_name(obj->btf,
3608                                 libbpf_type_to_btf_name[map->libbpf_type]);
3609         }
3610         if (ret < 0)
3611                 return ret;
3612
3613         map->btf_key_type_id = key_type_id;
3614         map->btf_value_type_id = bpf_map__is_internal(map) ?
3615                                  ret : value_type_id;
3616         return 0;
3617 }
3618
3619 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
3620 {
3621         char file[PATH_MAX], buff[4096];
3622         FILE *fp;
3623         __u32 val;
3624         int err;
3625
3626         snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
3627         memset(info, 0, sizeof(*info));
3628
3629         fp = fopen(file, "r");
3630         if (!fp) {
3631                 err = -errno;
3632                 pr_warn("failed to open %s: %d. No procfs support?\n", file,
3633                         err);
3634                 return err;
3635         }
3636
3637         while (fgets(buff, sizeof(buff), fp)) {
3638                 if (sscanf(buff, "map_type:\t%u", &val) == 1)
3639                         info->type = val;
3640                 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
3641                         info->key_size = val;
3642                 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
3643                         info->value_size = val;
3644                 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
3645                         info->max_entries = val;
3646                 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
3647                         info->map_flags = val;
3648         }
3649
3650         fclose(fp);
3651
3652         return 0;
3653 }
3654
3655 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3656 {
3657         struct bpf_map_info info = {};
3658         __u32 len = sizeof(info), name_len;
3659         int new_fd, err;
3660         char *new_name;
3661
3662         err = bpf_obj_get_info_by_fd(fd, &info, &len);
3663         if (err && errno == EINVAL)
3664                 err = bpf_get_map_info_from_fdinfo(fd, &info);
3665         if (err)
3666                 return err;
3667
3668         name_len = strlen(info.name);
3669         if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
3670                 new_name = strdup(map->name);
3671         else
3672                 new_name = strdup(info.name);
3673
3674         if (!new_name)
3675                 return -errno;
3676
3677         new_fd = open("/", O_RDONLY | O_CLOEXEC);
3678         if (new_fd < 0) {
3679                 err = -errno;
3680                 goto err_free_new_name;
3681         }
3682
3683         new_fd = dup3(fd, new_fd, O_CLOEXEC);
3684         if (new_fd < 0) {
3685                 err = -errno;
3686                 goto err_close_new_fd;
3687         }
3688
3689         err = zclose(map->fd);
3690         if (err) {
3691                 err = -errno;
3692                 goto err_close_new_fd;
3693         }
3694         free(map->name);
3695
3696         map->fd = new_fd;
3697         map->name = new_name;
3698         map->def.type = info.type;
3699         map->def.key_size = info.key_size;
3700         map->def.value_size = info.value_size;
3701         map->def.max_entries = info.max_entries;
3702         map->def.map_flags = info.map_flags;
3703         map->btf_key_type_id = info.btf_key_type_id;
3704         map->btf_value_type_id = info.btf_value_type_id;
3705         map->reused = true;
3706
3707         return 0;
3708
3709 err_close_new_fd:
3710         close(new_fd);
3711 err_free_new_name:
3712         free(new_name);
3713         return err;
3714 }
3715
3716 __u32 bpf_map__max_entries(const struct bpf_map *map)
3717 {
3718         return map->def.max_entries;
3719 }
3720
3721 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3722 {
3723         if (map->fd >= 0)
3724                 return -EBUSY;
3725         map->def.max_entries = max_entries;
3726         return 0;
3727 }
3728
3729 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3730 {
3731         if (!map || !max_entries)
3732                 return -EINVAL;
3733
3734         return bpf_map__set_max_entries(map, max_entries);
3735 }
3736
3737 static int
3738 bpf_object__probe_loading(struct bpf_object *obj)
3739 {
3740         struct bpf_load_program_attr attr;
3741         char *cp, errmsg[STRERR_BUFSIZE];
3742         struct bpf_insn insns[] = {
3743                 BPF_MOV64_IMM(BPF_REG_0, 0),
3744                 BPF_EXIT_INSN(),
3745         };
3746         int ret;
3747
3748         /* make sure basic loading works */
3749
3750         memset(&attr, 0, sizeof(attr));
3751         attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3752         attr.insns = insns;
3753         attr.insns_cnt = ARRAY_SIZE(insns);
3754         attr.license = "GPL";
3755
3756         ret = bpf_load_program_xattr(&attr, NULL, 0);
3757         if (ret < 0) {
3758                 ret = errno;
3759                 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3760                 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3761                         "program. Make sure your kernel supports BPF "
3762                         "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3763                         "set to big enough value.\n", __func__, cp, ret);
3764                 return -ret;
3765         }
3766         close(ret);
3767
3768         return 0;
3769 }
3770
3771 static int probe_fd(int fd)
3772 {
3773         if (fd >= 0)
3774                 close(fd);
3775         return fd >= 0;
3776 }
3777
3778 static int probe_kern_prog_name(void)
3779 {
3780         struct bpf_load_program_attr attr;
3781         struct bpf_insn insns[] = {
3782                 BPF_MOV64_IMM(BPF_REG_0, 0),
3783                 BPF_EXIT_INSN(),
3784         };
3785         int ret;
3786
3787         /* make sure loading with name works */
3788
3789         memset(&attr, 0, sizeof(attr));
3790         attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3791         attr.insns = insns;
3792         attr.insns_cnt = ARRAY_SIZE(insns);
3793         attr.license = "GPL";
3794         attr.name = "test";
3795         ret = bpf_load_program_xattr(&attr, NULL, 0);
3796         return probe_fd(ret);
3797 }
3798
3799 static int probe_kern_global_data(void)
3800 {
3801         struct bpf_load_program_attr prg_attr;
3802         struct bpf_create_map_attr map_attr;
3803         char *cp, errmsg[STRERR_BUFSIZE];
3804         struct bpf_insn insns[] = {
3805                 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3806                 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3807                 BPF_MOV64_IMM(BPF_REG_0, 0),
3808                 BPF_EXIT_INSN(),
3809         };
3810         int ret, map;
3811
3812         memset(&map_attr, 0, sizeof(map_attr));
3813         map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3814         map_attr.key_size = sizeof(int);
3815         map_attr.value_size = 32;
3816         map_attr.max_entries = 1;
3817
3818         map = bpf_create_map_xattr(&map_attr);
3819         if (map < 0) {
3820                 ret = -errno;
3821                 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3822                 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3823                         __func__, cp, -ret);
3824                 return ret;
3825         }
3826
3827         insns[0].imm = map;
3828
3829         memset(&prg_attr, 0, sizeof(prg_attr));
3830         prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3831         prg_attr.insns = insns;
3832         prg_attr.insns_cnt = ARRAY_SIZE(insns);
3833         prg_attr.license = "GPL";
3834
3835         ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3836         close(map);
3837         return probe_fd(ret);
3838 }
3839
3840 static int probe_kern_btf(void)
3841 {
3842         static const char strs[] = "\0int";
3843         __u32 types[] = {
3844                 /* int */
3845                 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3846         };
3847
3848         return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3849                                              strs, sizeof(strs)));
3850 }
3851
3852 static int probe_kern_btf_func(void)
3853 {
3854         static const char strs[] = "\0int\0x\0a";
3855         /* void x(int a) {} */
3856         __u32 types[] = {
3857                 /* int */
3858                 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3859                 /* FUNC_PROTO */                                /* [2] */
3860                 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3861                 BTF_PARAM_ENC(7, 1),
3862                 /* FUNC x */                                    /* [3] */
3863                 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3864         };
3865
3866         return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3867                                              strs, sizeof(strs)));
3868 }
3869
3870 static int probe_kern_btf_func_global(void)
3871 {
3872         static const char strs[] = "\0int\0x\0a";
3873         /* static void x(int a) {} */
3874         __u32 types[] = {
3875                 /* int */
3876                 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3877                 /* FUNC_PROTO */                                /* [2] */
3878                 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3879                 BTF_PARAM_ENC(7, 1),
3880                 /* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3881                 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3882         };
3883
3884         return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3885                                              strs, sizeof(strs)));
3886 }
3887
3888 static int probe_kern_btf_datasec(void)
3889 {
3890         static const char strs[] = "\0x\0.data";
3891         /* static int a; */
3892         __u32 types[] = {
3893                 /* int */
3894                 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3895                 /* VAR x */                                     /* [2] */
3896                 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3897                 BTF_VAR_STATIC,
3898                 /* DATASEC val */                               /* [3] */
3899                 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3900                 BTF_VAR_SECINFO_ENC(2, 0, 4),
3901         };
3902
3903         return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3904                                              strs, sizeof(strs)));
3905 }
3906
3907 static int probe_kern_array_mmap(void)
3908 {
3909         struct bpf_create_map_attr attr = {
3910                 .map_type = BPF_MAP_TYPE_ARRAY,
3911                 .map_flags = BPF_F_MMAPABLE,
3912                 .key_size = sizeof(int),
3913                 .value_size = sizeof(int),
3914                 .max_entries = 1,
3915         };
3916
3917         return probe_fd(bpf_create_map_xattr(&attr));
3918 }
3919
3920 static int probe_kern_exp_attach_type(void)
3921 {
3922         struct bpf_load_program_attr attr;
3923         struct bpf_insn insns[] = {
3924                 BPF_MOV64_IMM(BPF_REG_0, 0),
3925                 BPF_EXIT_INSN(),
3926         };
3927
3928         memset(&attr, 0, sizeof(attr));
3929         /* use any valid combination of program type and (optional)
3930          * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3931          * to see if kernel supports expected_attach_type field for
3932          * BPF_PROG_LOAD command
3933          */
3934         attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3935         attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3936         attr.insns = insns;
3937         attr.insns_cnt = ARRAY_SIZE(insns);
3938         attr.license = "GPL";
3939
3940         return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3941 }
3942
3943 static int probe_kern_probe_read_kernel(void)
3944 {
3945         struct bpf_load_program_attr attr;
3946         struct bpf_insn insns[] = {
3947                 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),   /* r1 = r10 (fp) */
3948                 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),  /* r1 += -8 */
3949                 BPF_MOV64_IMM(BPF_REG_2, 8),            /* r2 = 8 */
3950                 BPF_MOV64_IMM(BPF_REG_3, 0),            /* r3 = 0 */
3951                 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3952                 BPF_EXIT_INSN(),
3953         };
3954
3955         memset(&attr, 0, sizeof(attr));
3956         attr.prog_type = BPF_PROG_TYPE_KPROBE;
3957         attr.insns = insns;
3958         attr.insns_cnt = ARRAY_SIZE(insns);
3959         attr.license = "GPL";
3960
3961         return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3962 }
3963
3964 static int probe_prog_bind_map(void)
3965 {
3966         struct bpf_load_program_attr prg_attr;
3967         struct bpf_create_map_attr map_attr;
3968         char *cp, errmsg[STRERR_BUFSIZE];
3969         struct bpf_insn insns[] = {
3970                 BPF_MOV64_IMM(BPF_REG_0, 0),
3971                 BPF_EXIT_INSN(),
3972         };
3973         int ret, map, prog;
3974
3975         memset(&map_attr, 0, sizeof(map_attr));
3976         map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3977         map_attr.key_size = sizeof(int);
3978         map_attr.value_size = 32;
3979         map_attr.max_entries = 1;
3980
3981         map = bpf_create_map_xattr(&map_attr);
3982         if (map < 0) {
3983                 ret = -errno;
3984                 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3985                 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3986                         __func__, cp, -ret);
3987                 return ret;
3988         }
3989
3990         memset(&prg_attr, 0, sizeof(prg_attr));
3991         prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3992         prg_attr.insns = insns;
3993         prg_attr.insns_cnt = ARRAY_SIZE(insns);
3994         prg_attr.license = "GPL";
3995
3996         prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3997         if (prog < 0) {
3998                 close(map);
3999                 return 0;
4000         }
4001
4002         ret = bpf_prog_bind_map(prog, map, NULL);
4003
4004         close(map);
4005         close(prog);
4006
4007         return ret >= 0;
4008 }
4009
4010 enum kern_feature_result {
4011         FEAT_UNKNOWN = 0,
4012         FEAT_SUPPORTED = 1,
4013         FEAT_MISSING = 2,
4014 };
4015
4016 typedef int (*feature_probe_fn)(void);
4017
4018 static struct kern_feature_desc {
4019         const char *desc;
4020         feature_probe_fn probe;
4021         enum kern_feature_result res;
4022 } feature_probes[__FEAT_CNT] = {
4023         [FEAT_PROG_NAME] = {
4024                 "BPF program name", probe_kern_prog_name,
4025         },
4026         [FEAT_GLOBAL_DATA] = {
4027                 "global variables", probe_kern_global_data,
4028         },
4029         [FEAT_BTF] = {
4030                 "minimal BTF", probe_kern_btf,
4031         },
4032         [FEAT_BTF_FUNC] = {
4033                 "BTF functions", probe_kern_btf_func,
4034         },
4035         [FEAT_BTF_GLOBAL_FUNC] = {
4036                 "BTF global function", probe_kern_btf_func_global,
4037         },
4038         [FEAT_BTF_DATASEC] = {
4039                 "BTF data section and variable", probe_kern_btf_datasec,
4040         },
4041         [FEAT_ARRAY_MMAP] = {
4042                 "ARRAY map mmap()", probe_kern_array_mmap,
4043         },
4044         [FEAT_EXP_ATTACH_TYPE] = {
4045                 "BPF_PROG_LOAD expected_attach_type attribute",
4046                 probe_kern_exp_attach_type,
4047         },
4048         [FEAT_PROBE_READ_KERN] = {
4049                 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4050         },
4051         [FEAT_PROG_BIND_MAP] = {
4052                 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4053         }
4054 };
4055
4056 static bool kernel_supports(enum kern_feature_id feat_id)
4057 {
4058         struct kern_feature_desc *feat = &feature_probes[feat_id];
4059         int ret;
4060
4061         if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4062                 ret = feat->probe();
4063                 if (ret > 0) {
4064                         WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4065                 } else if (ret == 0) {
4066                         WRITE_ONCE(feat->res, FEAT_MISSING);
4067                 } else {
4068                         pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4069                         WRITE_ONCE(feat->res, FEAT_MISSING);
4070                 }
4071         }
4072
4073         return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4074 }
4075
4076 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4077 {
4078         struct bpf_map_info map_info = {};
4079         char msg[STRERR_BUFSIZE];
4080         __u32 map_info_len;
4081         int err;
4082
4083         map_info_len = sizeof(map_info);
4084
4085         err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4086         if (err && errno == EINVAL)
4087                 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4088         if (err) {
4089                 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4090                         libbpf_strerror_r(errno, msg, sizeof(msg)));
4091                 return false;
4092         }
4093
4094         return (map_info.type == map->def.type &&
4095                 map_info.key_size == map->def.key_size &&
4096                 map_info.value_size == map->def.value_size &&
4097                 map_info.max_entries == map->def.max_entries &&
4098                 map_info.map_flags == map->def.map_flags);
4099 }
4100
4101 static int
4102 bpf_object__reuse_map(struct bpf_map *map)
4103 {
4104         char *cp, errmsg[STRERR_BUFSIZE];
4105         int err, pin_fd;
4106
4107         pin_fd = bpf_obj_get(map->pin_path);
4108         if (pin_fd < 0) {
4109                 err = -errno;
4110                 if (err == -ENOENT) {
4111                         pr_debug("found no pinned map to reuse at '%s'\n",
4112                                  map->pin_path);
4113                         return 0;
4114                 }
4115
4116                 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4117                 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4118                         map->pin_path, cp);
4119                 return err;
4120         }
4121
4122         if (!map_is_reuse_compat(map, pin_fd)) {
4123                 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4124                         map->pin_path);
4125                 close(pin_fd);
4126                 return -EINVAL;
4127         }
4128
4129         err = bpf_map__reuse_fd(map, pin_fd);
4130         if (err) {
4131                 close(pin_fd);
4132                 return err;
4133         }
4134         map->pinned = true;
4135         pr_debug("reused pinned map at '%s'\n", map->pin_path);
4136
4137         return 0;
4138 }
4139
4140 static int
4141 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4142 {
4143         enum libbpf_map_type map_type = map->libbpf_type;
4144         char *cp, errmsg[STRERR_BUFSIZE];
4145         int err, zero = 0;
4146
4147         err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4148         if (err) {
4149                 err = -errno;
4150                 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4151                 pr_warn("Error setting initial map(%s) contents: %s\n",
4152                         map->name, cp);
4153                 return err;
4154         }
4155
4156         /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4157         if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4158                 err = bpf_map_freeze(map->fd);
4159                 if (err) {
4160                         err = -errno;
4161                         cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4162                         pr_warn("Error freezing map(%s) as read-only: %s\n",
4163                                 map->name, cp);
4164                         return err;
4165                 }
4166         }
4167         return 0;
4168 }
4169
4170 static void bpf_map__destroy(struct bpf_map *map);
4171
4172 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4173 {
4174         struct bpf_create_map_attr create_attr;
4175         struct bpf_map_def *def = &map->def;
4176         int err = 0;
4177
4178         memset(&create_attr, 0, sizeof(create_attr));
4179
4180         if (kernel_supports(FEAT_PROG_NAME))
4181                 create_attr.name = map->name;
4182         create_attr.map_ifindex = map->map_ifindex;
4183         create_attr.map_type = def->type;
4184         create_attr.map_flags = def->map_flags;
4185         create_attr.key_size = def->key_size;
4186         create_attr.value_size = def->value_size;
4187         create_attr.numa_node = map->numa_node;
4188
4189         if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4190                 int nr_cpus;
4191
4192                 nr_cpus = libbpf_num_possible_cpus();
4193                 if (nr_cpus < 0) {
4194                         pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4195                                 map->name, nr_cpus);
4196                         return nr_cpus;
4197                 }
4198                 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4199                 create_attr.max_entries = nr_cpus;
4200         } else {
4201                 create_attr.max_entries = def->max_entries;
4202         }
4203
4204         if (bpf_map__is_struct_ops(map))
4205                 create_attr.btf_vmlinux_value_type_id =
4206                         map->btf_vmlinux_value_type_id;
4207
4208         create_attr.btf_fd = 0;
4209         create_attr.btf_key_type_id = 0;
4210         create_attr.btf_value_type_id = 0;
4211         if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4212                 create_attr.btf_fd = btf__fd(obj->btf);
4213                 create_attr.btf_key_type_id = map->btf_key_type_id;
4214                 create_attr.btf_value_type_id = map->btf_value_type_id;
4215         }
4216
4217         if (bpf_map_type__is_map_in_map(def->type)) {
4218                 if (map->inner_map) {
4219                         err = bpf_object__create_map(obj, map->inner_map);
4220                         if (err) {
4221                                 pr_warn("map '%s': failed to create inner map: %d\n",
4222                                         map->name, err);
4223                                 return err;
4224                         }
4225                         map->inner_map_fd = bpf_map__fd(map->inner_map);
4226                 }
4227                 if (map->inner_map_fd >= 0)
4228                         create_attr.inner_map_fd = map->inner_map_fd;
4229         }
4230
4231         map->fd = bpf_create_map_xattr(&create_attr);
4232         if (map->fd < 0 && (create_attr.btf_key_type_id ||
4233                             create_attr.btf_value_type_id)) {
4234                 char *cp, errmsg[STRERR_BUFSIZE];
4235
4236                 err = -errno;
4237                 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4238                 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4239                         map->name, cp, err);
4240                 create_attr.btf_fd = 0;
4241                 create_attr.btf_key_type_id = 0;
4242                 create_attr.btf_value_type_id = 0;
4243                 map->btf_key_type_id = 0;
4244                 map->btf_value_type_id = 0;
4245                 map->fd = bpf_create_map_xattr(&create_attr);
4246         }
4247
4248         err = map->fd < 0 ? -errno : 0;
4249
4250         if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4251                 bpf_map__destroy(map->inner_map);
4252                 zfree(&map->inner_map);
4253         }
4254
4255         return err;
4256 }
4257
4258 static int init_map_slots(struct bpf_map *map)
4259 {
4260         const struct bpf_map *targ_map;
4261         unsigned int i;
4262         int fd, err;
4263
4264         for (i = 0; i < map->init_slots_sz; i++) {
4265                 if (!map->init_slots[i])
4266                         continue;
4267
4268                 targ_map = map->init_slots[i];
4269                 fd = bpf_map__fd(targ_map);
4270                 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4271                 if (err) {
4272                         err = -errno;
4273                         pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4274                                 map->name, i, targ_map->name,
4275                                 fd, err);
4276                         return err;
4277                 }
4278                 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4279                          map->name, i, targ_map->name, fd);
4280         }
4281
4282         zfree(&map->init_slots);
4283         map->init_slots_sz = 0;
4284
4285         return 0;
4286 }
4287
4288 static int
4289 bpf_object__create_maps(struct bpf_object *obj)
4290 {
4291         struct bpf_map *map;
4292         char *cp, errmsg[STRERR_BUFSIZE];
4293         unsigned int i, j;
4294         int err;
4295         bool retried;
4296
4297         for (i = 0; i < obj->nr_maps; i++) {
4298                 map = &obj->maps[i];
4299
4300                 retried = false;
4301 retry:
4302                 if (map->pin_path) {
4303                         err = bpf_object__reuse_map(map);
4304                         if (err) {
4305                                 pr_warn("map '%s': error reusing pinned map\n",
4306                                         map->name);
4307                                 goto err_out;
4308                         }
4309                         if (retried && map->fd < 0) {
4310                                 pr_warn("map '%s': cannot find pinned map\n",
4311                                         map->name);
4312                                 err = -ENOENT;
4313                                 goto err_out;
4314                         }
4315                 }
4316
4317                 if (map->fd >= 0) {
4318                         pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4319                                  map->name, map->fd);
4320                 } else {
4321                         err = bpf_object__create_map(obj, map);
4322                         if (err)
4323                                 goto err_out;
4324
4325                         pr_debug("map '%s': created successfully, fd=%d\n",
4326                                  map->name, map->fd);
4327
4328                         if (bpf_map__is_internal(map)) {
4329                                 err = bpf_object__populate_internal_map(obj, map);
4330                                 if (err < 0) {
4331                                         zclose(map->fd);
4332                                         goto err_out;
4333                                 }
4334                         }
4335
4336                         if (map->init_slots_sz) {
4337                                 err = init_map_slots(map);
4338                                 if (err < 0) {
4339                                         zclose(map->fd);
4340                                         goto err_out;
4341                                 }
4342                         }
4343                 }
4344
4345                 if (map->pin_path && !map->pinned) {
4346                         err = bpf_map__pin(map, NULL);
4347                         if (err) {
4348                                 zclose(map->fd);
4349                                 if (!retried && err == -EEXIST) {
4350                                         retried = true;
4351                                         goto retry;
4352                                 }
4353                                 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4354                                         map->name, map->pin_path, err);
4355                                 goto err_out;
4356                         }
4357                 }
4358         }
4359
4360         return 0;
4361
4362 err_out:
4363         cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4364         pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4365         pr_perm_msg(err);
4366         for (j = 0; j < i; j++)
4367                 zclose(obj->maps[j].fd);
4368         return err;
4369 }
4370
4371 #define BPF_CORE_SPEC_MAX_LEN 64
4372
4373 /* represents BPF CO-RE field or array element accessor */
4374 struct bpf_core_accessor {
4375         __u32 type_id;          /* struct/union type or array element type */
4376         __u32 idx;              /* field index or array index */
4377         const char *name;       /* field name or NULL for array accessor */
4378 };
4379
4380 struct bpf_core_spec {
4381         const struct btf *btf;
4382         /* high-level spec: named fields and array indices only */
4383         struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4384         /* original unresolved (no skip_mods_or_typedefs) root type ID */
4385         __u32 root_type_id;
4386         /* CO-RE relocation kind */
4387         enum bpf_core_relo_kind relo_kind;
4388         /* high-level spec length */
4389         int len;
4390         /* raw, low-level spec: 1-to-1 with accessor spec string */
4391         int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4392         /* raw spec length */
4393         int raw_len;
4394         /* field bit offset represented by spec */
4395         __u32 bit_offset;
4396 };
4397
4398 static bool str_is_empty(const char *s)
4399 {
4400         return !s || !s[0];
4401 }
4402
4403 static bool is_flex_arr(const struct btf *btf,
4404                         const struct bpf_core_accessor *acc,
4405                         const struct btf_array *arr)
4406 {
4407         const struct btf_type *t;
4408
4409         /* not a flexible array, if not inside a struct or has non-zero size */
4410         if (!acc->name || arr->nelems > 0)
4411                 return false;
4412
4413         /* has to be the last member of enclosing struct */
4414         t = btf__type_by_id(btf, acc->type_id);
4415         return acc->idx == btf_vlen(t) - 1;
4416 }
4417
4418 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4419 {
4420         switch (kind) {
4421         case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4422         case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4423         case BPF_FIELD_EXISTS: return "field_exists";
4424         case BPF_FIELD_SIGNED: return "signed";
4425         case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4426         case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4427         case BPF_TYPE_ID_LOCAL: return "local_type_id";
4428         case BPF_TYPE_ID_TARGET: return "target_type_id";
4429         case BPF_TYPE_EXISTS: return "type_exists";
4430         case BPF_TYPE_SIZE: return "type_size";
4431         case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4432         case BPF_ENUMVAL_VALUE: return "enumval_value";
4433         default: return "unknown";
4434         }
4435 }
4436
4437 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4438 {
4439         switch (kind) {
4440         case BPF_FIELD_BYTE_OFFSET:
4441         case BPF_FIELD_BYTE_SIZE:
4442         case BPF_FIELD_EXISTS:
4443         case BPF_FIELD_SIGNED:
4444         case BPF_FIELD_LSHIFT_U64:
4445         case BPF_FIELD_RSHIFT_U64:
4446                 return true;
4447         default:
4448                 return false;
4449         }
4450 }
4451
4452 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4453 {
4454         switch (kind) {
4455         case BPF_TYPE_ID_LOCAL:
4456         case BPF_TYPE_ID_TARGET:
4457         case BPF_TYPE_EXISTS:
4458         case BPF_TYPE_SIZE:
4459                 return true;
4460         default:
4461                 return false;
4462         }
4463 }
4464
4465 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4466 {
4467         switch (kind) {
4468         case BPF_ENUMVAL_EXISTS:
4469         case BPF_ENUMVAL_VALUE:
4470                 return true;
4471         default:
4472                 return false;
4473         }
4474 }
4475
4476 /*
4477  * Turn bpf_core_relo into a low- and high-level spec representation,
4478  * validating correctness along the way, as well as calculating resulting
4479  * field bit offset, specified by accessor string. Low-level spec captures
4480  * every single level of nestedness, including traversing anonymous
4481  * struct/union members. High-level one only captures semantically meaningful
4482  * "turning points": named fields and array indicies.
4483  * E.g., for this case:
4484  *
4485  *   struct sample {
4486  *       int __unimportant;
4487  *       struct {
4488  *           int __1;
4489  *           int __2;
4490  *           int a[7];
4491  *       };
4492  *   };
4493  *
4494  *   struct sample *s = ...;
4495  *
4496  *   int x = &s->a[3]; // access string = '0:1:2:3'
4497  *
4498  * Low-level spec has 1:1 mapping with each element of access string (it's
4499  * just a parsed access string representation): [0, 1, 2, 3].
4500  *
4501  * High-level spec will capture only 3 points:
4502  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4503  *   - field 'a' access (corresponds to '2' in low-level spec);
4504  *   - array element #3 access (corresponds to '3' in low-level spec).
4505  *
4506  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4507  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4508  * spec and raw_spec are kept empty.
4509  *
4510  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4511  * string to specify enumerator's value index that need to be relocated.
4512  */
4513 static int bpf_core_parse_spec(const struct btf *btf,
4514                                __u32 type_id,
4515                                const char *spec_str,
4516                                enum bpf_core_relo_kind relo_kind,
4517                                struct bpf_core_spec *spec)
4518 {
4519         int access_idx, parsed_len, i;
4520         struct bpf_core_accessor *acc;
4521         const struct btf_type *t;
4522         const char *name;
4523         __u32 id;
4524         __s64 sz;
4525
4526         if (str_is_empty(spec_str) || *spec_str == ':')
4527                 return -EINVAL;
4528
4529         memset(spec, 0, sizeof(*spec));
4530         spec->btf = btf;
4531         spec->root_type_id = type_id;
4532         spec->relo_kind = relo_kind;
4533
4534         /* type-based relocations don't have a field access string */
4535         if (core_relo_is_type_based(relo_kind)) {
4536                 if (strcmp(spec_str, "0"))
4537                         return -EINVAL;
4538                 return 0;
4539         }
4540
4541         /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4542         while (*spec_str) {
4543                 if (*spec_str == ':')
4544                         ++spec_str;
4545                 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4546                         return -EINVAL;
4547                 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4548                         return -E2BIG;
4549                 spec_str += parsed_len;
4550                 spec->raw_spec[spec->raw_len++] = access_idx;
4551         }
4552
4553         if (spec->raw_len == 0)
4554                 return -EINVAL;
4555
4556         t = skip_mods_and_typedefs(btf, type_id, &id);
4557         if (!t)
4558                 return -EINVAL;
4559
4560         access_idx = spec->raw_spec[0];
4561         acc = &spec->spec[0];
4562         acc->type_id = id;
4563         acc->idx = access_idx;
4564         spec->len++;
4565
4566         if (core_relo_is_enumval_based(relo_kind)) {
4567                 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4568                         return -EINVAL;
4569
4570                 /* record enumerator name in a first accessor */
4571                 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4572                 return 0;
4573         }
4574
4575         if (!core_relo_is_field_based(relo_kind))
4576                 return -EINVAL;
4577
4578         sz = btf__resolve_size(btf, id);
4579         if (sz < 0)
4580                 return sz;
4581         spec->bit_offset = access_idx * sz * 8;
4582
4583         for (i = 1; i < spec->raw_len; i++) {
4584                 t = skip_mods_and_typedefs(btf, id, &id);
4585                 if (!t)
4586                         return -EINVAL;
4587
4588                 access_idx = spec->raw_spec[i];
4589                 acc = &spec->spec[spec->len];
4590
4591                 if (btf_is_composite(t)) {
4592                         const struct btf_member *m;
4593                         __u32 bit_offset;
4594
4595                         if (access_idx >= btf_vlen(t))
4596                                 return -EINVAL;
4597
4598                         bit_offset = btf_member_bit_offset(t, access_idx);
4599                         spec->bit_offset += bit_offset;
4600
4601                         m = btf_members(t) + access_idx;
4602                         if (m->name_off) {
4603                                 name = btf__name_by_offset(btf, m->name_off);
4604                                 if (str_is_empty(name))
4605                                         return -EINVAL;
4606
4607                                 acc->type_id = id;
4608                                 acc->idx = access_idx;
4609                                 acc->name = name;
4610                                 spec->len++;
4611                         }
4612
4613                         id = m->type;
4614                 } else if (btf_is_array(t)) {
4615                         const struct btf_array *a = btf_array(t);
4616                         bool flex;
4617
4618                         t = skip_mods_and_typedefs(btf, a->type, &id);
4619                         if (!t)
4620                                 return -EINVAL;
4621
4622                         flex = is_flex_arr(btf, acc - 1, a);
4623                         if (!flex && access_idx >= a->nelems)
4624                                 return -EINVAL;
4625
4626                         spec->spec[spec->len].type_id = id;
4627                         spec->spec[spec->len].idx = access_idx;
4628                         spec->len++;
4629
4630                         sz = btf__resolve_size(btf, id);
4631                         if (sz < 0)
4632                                 return sz;
4633                         spec->bit_offset += access_idx * sz * 8;
4634                 } else {
4635                         pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4636                                 type_id, spec_str, i, id, btf_kind_str(t));
4637                         return -EINVAL;
4638                 }
4639         }
4640
4641         return 0;
4642 }
4643
4644 static bool bpf_core_is_flavor_sep(const char *s)
4645 {
4646         /* check X___Y name pattern, where X and Y are not underscores */
4647         return s[0] != '_' &&                                 /* X */
4648                s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4649                s[4] != '_';                                   /* Y */
4650 }
4651
4652 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4653  * before last triple underscore. Struct name part after last triple
4654  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4655  */
4656 static size_t bpf_core_essential_name_len(const char *name)
4657 {
4658         size_t n = strlen(name);
4659         int i;
4660
4661         for (i = n - 5; i >= 0; i--) {
4662                 if (bpf_core_is_flavor_sep(name + i))
4663                         return i + 1;
4664         }
4665         return n;
4666 }
4667
4668 /* dynamically sized list of type IDs */
4669 struct ids_vec {
4670         __u32 *data;
4671         int len;
4672 };
4673
4674 static void bpf_core_free_cands(struct ids_vec *cand_ids)
4675 {
4676         free(cand_ids->data);
4677         free(cand_ids);
4678 }
4679
4680 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4681                                            __u32 local_type_id,
4682                                            const struct btf *targ_btf)
4683 {
4684         size_t local_essent_len, targ_essent_len;
4685         const char *local_name, *targ_name;
4686         const struct btf_type *t, *local_t;
4687         struct ids_vec *cand_ids;
4688         __u32 *new_ids;
4689         int i, err, n;
4690
4691         local_t = btf__type_by_id(local_btf, local_type_id);
4692         if (!local_t)
4693                 return ERR_PTR(-EINVAL);
4694
4695         local_name = btf__name_by_offset(local_btf, local_t->name_off);
4696         if (str_is_empty(local_name))
4697                 return ERR_PTR(-EINVAL);
4698         local_essent_len = bpf_core_essential_name_len(local_name);
4699
4700         cand_ids = calloc(1, sizeof(*cand_ids));
4701         if (!cand_ids)
4702                 return ERR_PTR(-ENOMEM);
4703
4704         n = btf__get_nr_types(targ_btf);
4705         for (i = 1; i <= n; i++) {
4706                 t = btf__type_by_id(targ_btf, i);
4707                 if (btf_kind(t) != btf_kind(local_t))
4708                         continue;
4709
4710                 targ_name = btf__name_by_offset(targ_btf, t->name_off);
4711                 if (str_is_empty(targ_name))
4712                         continue;
4713
4714                 targ_essent_len = bpf_core_essential_name_len(targ_name);
4715                 if (targ_essent_len != local_essent_len)
4716                         continue;
4717
4718                 if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4719                         pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4720                                  local_type_id, btf_kind_str(local_t),
4721                                  local_name, i, btf_kind_str(t), targ_name);
4722                         new_ids = libbpf_reallocarray(cand_ids->data,
4723                                                       cand_ids->len + 1,
4724                                                       sizeof(*cand_ids->data));
4725                         if (!new_ids) {
4726                                 err = -ENOMEM;
4727                                 goto err_out;
4728                         }
4729                         cand_ids->data = new_ids;
4730                         cand_ids->data[cand_ids->len++] = i;
4731                 }
4732         }
4733         return cand_ids;
4734 err_out:
4735         bpf_core_free_cands(cand_ids);
4736         return ERR_PTR(err);
4737 }
4738
4739 /* Check two types for compatibility for the purpose of field access
4740  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4741  * are relocating semantically compatible entities:
4742  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4743  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4744  *   - any two PTRs are always compatible;
4745  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4746  *     least one of enums should be anonymous;
4747  *   - for ENUMs, check sizes, names are ignored;
4748  *   - for INT, size and signedness are ignored;
4749  *   - for ARRAY, dimensionality is ignored, element types are checked for
4750  *     compatibility recursively;
4751  *   - everything else shouldn't be ever a target of relocation.
4752  * These rules are not set in stone and probably will be adjusted as we get
4753  * more experience with using BPF CO-RE relocations.
4754  */
4755 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4756                                       __u32 local_id,
4757                                       const struct btf *targ_btf,
4758                                       __u32 targ_id)
4759 {
4760         const struct btf_type *local_type, *targ_type;
4761
4762 recur:
4763         local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4764         targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4765         if (!local_type || !targ_type)
4766                 return -EINVAL;
4767
4768         if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4769                 return 1;
4770         if (btf_kind(local_type) != btf_kind(targ_type))
4771                 return 0;
4772
4773         switch (btf_kind(local_type)) {
4774         case BTF_KIND_PTR:
4775                 return 1;
4776         case BTF_KIND_FWD:
4777         case BTF_KIND_ENUM: {
4778                 const char *local_name, *targ_name;
4779                 size_t local_len, targ_len;
4780
4781                 local_name = btf__name_by_offset(local_btf,
4782                                                  local_type->name_off);
4783                 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4784                 local_len = bpf_core_essential_name_len(local_name);
4785                 targ_len = bpf_core_essential_name_len(targ_name);
4786                 /* one of them is anonymous or both w/ same flavor-less names */
4787                 return local_len == 0 || targ_len == 0 ||
4788                        (local_len == targ_len &&
4789                         strncmp(local_name, targ_name, local_len) == 0);
4790         }
4791         case BTF_KIND_INT:
4792                 /* just reject deprecated bitfield-like integers; all other
4793                  * integers are by default compatible between each other
4794                  */
4795                 return btf_int_offset(local_type) == 0 &&
4796                        btf_int_offset(targ_type) == 0;
4797         case BTF_KIND_ARRAY:
4798                 local_id = btf_array(local_type)->type;
4799                 targ_id = btf_array(targ_type)->type;
4800                 goto recur;
4801         default:
4802                 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4803                         btf_kind(local_type), local_id, targ_id);
4804                 return 0;
4805         }
4806 }
4807
4808 /*
4809  * Given single high-level named field accessor in local type, find
4810  * corresponding high-level accessor for a target type. Along the way,
4811  * maintain low-level spec for target as well. Also keep updating target
4812  * bit offset.
4813  *
4814  * Searching is performed through recursive exhaustive enumeration of all
4815  * fields of a struct/union. If there are any anonymous (embedded)
4816  * structs/unions, they are recursively searched as well. If field with
4817  * desired name is found, check compatibility between local and target types,
4818  * before returning result.
4819  *
4820  * 1 is returned, if field is found.
4821  * 0 is returned if no compatible field is found.
4822  * <0 is returned on error.
4823  */
4824 static int bpf_core_match_member(const struct btf *local_btf,
4825                                  const struct bpf_core_accessor *local_acc,
4826                                  const struct btf *targ_btf,
4827                                  __u32 targ_id,
4828                                  struct bpf_core_spec *spec,
4829                                  __u32 *next_targ_id)
4830 {
4831         const struct btf_type *local_type, *targ_type;
4832         const struct btf_member *local_member, *m;
4833         const char *local_name, *targ_name;
4834         __u32 local_id;
4835         int i, n, found;
4836
4837         targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4838         if (!targ_type)
4839                 return -EINVAL;
4840         if (!btf_is_composite(targ_type))
4841                 return 0;
4842
4843         local_id = local_acc->type_id;
4844         local_type = btf__type_by_id(local_btf, local_id);
4845         local_member = btf_members(local_type) + local_acc->idx;
4846         local_name = btf__name_by_offset(local_btf, local_member->name_off);
4847
4848         n = btf_vlen(targ_type);
4849         m = btf_members(targ_type);
4850         for (i = 0; i < n; i++, m++) {
4851                 __u32 bit_offset;
4852
4853                 bit_offset = btf_member_bit_offset(targ_type, i);
4854
4855                 /* too deep struct/union/array nesting */
4856                 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4857                         return -E2BIG;
4858
4859                 /* speculate this member will be the good one */
4860                 spec->bit_offset += bit_offset;
4861                 spec->raw_spec[spec->raw_len++] = i;
4862
4863                 targ_name = btf__name_by_offset(targ_btf, m->name_off);
4864                 if (str_is_empty(targ_name)) {
4865                         /* embedded struct/union, we need to go deeper */
4866                         found = bpf_core_match_member(local_btf, local_acc,
4867                                                       targ_btf, m->type,
4868                                                       spec, next_targ_id);
4869                         if (found) /* either found or error */
4870                                 return found;
4871                 } else if (strcmp(local_name, targ_name) == 0) {
4872                         /* matching named field */
4873                         struct bpf_core_accessor *targ_acc;
4874
4875                         targ_acc = &spec->spec[spec->len++];
4876                         targ_acc->type_id = targ_id;
4877                         targ_acc->idx = i;
4878                         targ_acc->name = targ_name;
4879
4880                         *next_targ_id = m->type;
4881                         found = bpf_core_fields_are_compat(local_btf,
4882                                                            local_member->type,
4883                                                            targ_btf, m->type);
4884                         if (!found)
4885                                 spec->len--; /* pop accessor */
4886                         return found;
4887                 }
4888                 /* member turned out not to be what we looked for */
4889                 spec->bit_offset -= bit_offset;
4890                 spec->raw_len--;
4891         }
4892
4893         return 0;
4894 }
4895
4896 /* Check local and target types for compatibility. This check is used for
4897  * type-based CO-RE relocations and follow slightly different rules than
4898  * field-based relocations. This function assumes that root types were already
4899  * checked for name match. Beyond that initial root-level name check, names
4900  * are completely ignored. Compatibility rules are as follows:
4901  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4902  *     kind should match for local and target types (i.e., STRUCT is not
4903  *     compatible with UNION);
4904  *   - for ENUMs, the size is ignored;
4905  *   - for INT, size and signedness are ignored;
4906  *   - for ARRAY, dimensionality is ignored, element types are checked for
4907  *     compatibility recursively;
4908  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
4909  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4910  *   - FUNC_PROTOs are compatible if they have compatible signature: same
4911  *     number of input args and compatible return and argument types.
4912  * These rules are not set in stone and probably will be adjusted as we get
4913  * more experience with using BPF CO-RE relocations.
4914  */
4915 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4916                                      const struct btf *targ_btf, __u32 targ_id)
4917 {
4918         const struct btf_type *local_type, *targ_type;
4919         int depth = 32; /* max recursion depth */
4920
4921         /* caller made sure that names match (ignoring flavor suffix) */
4922         local_type = btf__type_by_id(local_btf, local_id);
4923         targ_type = btf__type_by_id(targ_btf, targ_id);
4924         if (btf_kind(local_type) != btf_kind(targ_type))
4925                 return 0;
4926
4927 recur:
4928         depth--;
4929         if (depth < 0)
4930                 return -EINVAL;
4931
4932         local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4933         targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4934         if (!local_type || !targ_type)
4935                 return -EINVAL;
4936
4937         if (btf_kind(local_type) != btf_kind(targ_type))
4938                 return 0;
4939
4940         switch (btf_kind(local_type)) {
4941         case BTF_KIND_UNKN:
4942         case BTF_KIND_STRUCT:
4943         case BTF_KIND_UNION:
4944         case BTF_KIND_ENUM:
4945         case BTF_KIND_FWD:
4946                 return 1;
4947         case BTF_KIND_INT:
4948                 /* just reject deprecated bitfield-like integers; all other
4949                  * integers are by default compatible between each other
4950                  */
4951                 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4952         case BTF_KIND_PTR:
4953                 local_id = local_type->type;
4954                 targ_id = targ_type->type;
4955                 goto recur;
4956         case BTF_KIND_ARRAY:
4957                 local_id = btf_array(local_type)->type;
4958                 targ_id = btf_array(targ_type)->type;
4959                 goto recur;
4960         case BTF_KIND_FUNC_PROTO: {
4961                 struct btf_param *local_p = btf_params(local_type);
4962                 struct btf_param *targ_p = btf_params(targ_type);
4963                 __u16 local_vlen = btf_vlen(local_type);
4964                 __u16 targ_vlen = btf_vlen(targ_type);
4965                 int i, err;
4966
4967                 if (local_vlen != targ_vlen)
4968                         return 0;
4969
4970                 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4971                         skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4972                         skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4973                         err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4974                         if (err <= 0)
4975                                 return err;
4976                 }
4977
4978                 /* tail recurse for return type check */
4979                 skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4980                 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4981                 goto recur;
4982         }
4983         default:
4984                 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4985                         btf_kind_str(local_type), local_id, targ_id);
4986                 return 0;
4987         }
4988 }
4989
4990 /*
4991  * Try to match local spec to a target type and, if successful, produce full
4992  * target spec (high-level, low-level + bit offset).
4993  */
4994 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4995                                const struct btf *targ_btf, __u32 targ_id,
4996                                struct bpf_core_spec *targ_spec)
4997 {
4998         const struct btf_type *targ_type;
4999         const struct bpf_core_accessor *local_acc;
5000         struct bpf_core_accessor *targ_acc;
5001         int i, sz, matched;
5002
5003         memset(targ_spec, 0, sizeof(*targ_spec));
5004         targ_spec->btf = targ_btf;
5005         targ_spec->root_type_id = targ_id;
5006         targ_spec->relo_kind = local_spec->relo_kind;
5007
5008         if (core_relo_is_type_based(local_spec->relo_kind)) {
5009                 return bpf_core_types_are_compat(local_spec->btf,
5010                                                  local_spec->root_type_id,
5011                                                  targ_btf, targ_id);
5012         }
5013
5014         local_acc = &local_spec->spec[0];
5015         targ_acc = &targ_spec->spec[0];
5016
5017         if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5018                 size_t local_essent_len, targ_essent_len;
5019                 const struct btf_enum *e;
5020                 const char *targ_name;
5021
5022                 /* has to resolve to an enum */
5023                 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5024                 if (!btf_is_enum(targ_type))
5025                         return 0;
5026
5027                 local_essent_len = bpf_core_essential_name_len(local_acc->name);
5028
5029                 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5030                         targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5031                         targ_essent_len = bpf_core_essential_name_len(targ_name);
5032                         if (targ_essent_len != local_essent_len)
5033                                 continue;
5034                         if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5035                                 targ_acc->type_id = targ_id;
5036                                 targ_acc->idx = i;
5037                                 targ_acc->name = targ_name;
5038                                 targ_spec->len++;
5039                                 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5040                                 targ_spec->raw_len++;
5041                                 return 1;
5042                         }
5043                 }
5044                 return 0;
5045         }
5046
5047         if (!core_relo_is_field_based(local_spec->relo_kind))
5048                 return -EINVAL;
5049
5050         for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5051                 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5052                                                    &targ_id);
5053                 if (!targ_type)
5054                         return -EINVAL;
5055
5056                 if (local_acc->name) {
5057                         matched = bpf_core_match_member(local_spec->btf,
5058                                                         local_acc,
5059                                                         targ_btf, targ_id,
5060                                                         targ_spec, &targ_id);
5061                         if (matched <= 0)
5062                                 return matched;
5063                 } else {
5064                         /* for i=0, targ_id is already treated as array element
5065                          * type (because it's the original struct), for others
5066                          * we should find array element type first
5067                          */
5068                         if (i > 0) {
5069                                 const struct btf_array *a;
5070                                 bool flex;
5071
5072                                 if (!btf_is_array(targ_type))
5073                                         return 0;
5074
5075                                 a = btf_array(targ_type);
5076                                 flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5077                                 if (!flex && local_acc->idx >= a->nelems)
5078                                         return 0;
5079                                 if (!skip_mods_and_typedefs(targ_btf, a->type,
5080                                                             &targ_id))
5081                                         return -EINVAL;
5082                         }
5083
5084                         /* too deep struct/union/array nesting */
5085                         if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5086                                 return -E2BIG;
5087
5088                         targ_acc->type_id = targ_id;
5089                         targ_acc->idx = local_acc->idx;
5090                         targ_acc->name = NULL;
5091                         targ_spec->len++;
5092                         targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5093                         targ_spec->raw_len++;
5094
5095                         sz = btf__resolve_size(targ_btf, targ_id);
5096                         if (sz < 0)
5097                                 return sz;
5098                         targ_spec->bit_offset += local_acc->idx * sz * 8;
5099                 }
5100         }
5101
5102         return 1;
5103 }
5104
5105 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5106                                     const struct bpf_core_relo *relo,
5107                                     const struct bpf_core_spec *spec,
5108                                     __u32 *val, __u32 *field_sz, __u32 *type_id,
5109                                     bool *validate)
5110 {
5111         const struct bpf_core_accessor *acc;
5112         const struct btf_type *t;
5113         __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5114         const struct btf_member *m;
5115         const struct btf_type *mt;
5116         bool bitfield;
5117         __s64 sz;
5118
5119         *field_sz = 0;
5120
5121         if (relo->kind == BPF_FIELD_EXISTS) {
5122                 *val = spec ? 1 : 0;
5123                 return 0;
5124         }
5125
5126         if (!spec)
5127                 return -EUCLEAN; /* request instruction poisoning */
5128
5129         acc = &spec->spec[spec->len - 1];
5130         t = btf__type_by_id(spec->btf, acc->type_id);
5131
5132         /* a[n] accessor needs special handling */
5133         if (!acc->name) {
5134                 if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5135                         *val = spec->bit_offset / 8;
5136                         /* remember field size for load/store mem size */
5137                         sz = btf__resolve_size(spec->btf, acc->type_id);
5138                         if (sz < 0)
5139                                 return -EINVAL;
5140                         *field_sz = sz;
5141                         *type_id = acc->type_id;
5142                 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5143                         sz = btf__resolve_size(spec->btf, acc->type_id);
5144                         if (sz < 0)
5145                                 return -EINVAL;
5146                         *val = sz;
5147                 } else {
5148                         pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5149                                 prog->name, relo->kind, relo->insn_off / 8);
5150                         return -EINVAL;
5151                 }
5152                 if (validate)
5153                         *validate = true;
5154                 return 0;
5155         }
5156
5157         m = btf_members(t) + acc->idx;
5158         mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5159         bit_off = spec->bit_offset;
5160         bit_sz = btf_member_bitfield_size(t, acc->idx);
5161
5162         bitfield = bit_sz > 0;
5163         if (bitfield) {
5164                 byte_sz = mt->size;
5165                 byte_off = bit_off / 8 / byte_sz * byte_sz;
5166                 /* figure out smallest int size necessary for bitfield load */
5167                 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5168                         if (byte_sz >= 8) {
5169                                 /* bitfield can't be read with 64-bit read */
5170                                 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5171                                         prog->name, relo->kind, relo->insn_off / 8);
5172                                 return -E2BIG;
5173                         }
5174                         byte_sz *= 2;
5175                         byte_off = bit_off / 8 / byte_sz * byte_sz;
5176                 }
5177         } else {
5178                 sz = btf__resolve_size(spec->btf, field_type_id);
5179                 if (sz < 0)
5180                         return -EINVAL;
5181                 byte_sz = sz;
5182                 byte_off = spec->bit_offset / 8;
5183                 bit_sz = byte_sz * 8;
5184         }
5185
5186         /* for bitfields, all the relocatable aspects are ambiguous and we
5187          * might disagree with compiler, so turn off validation of expected
5188          * value, except for signedness
5189          */
5190         if (validate)
5191                 *validate = !bitfield;
5192
5193         switch (relo->kind) {
5194         case BPF_FIELD_BYTE_OFFSET:
5195                 *val = byte_off;
5196                 if (!bitfield) {
5197                         *field_sz = byte_sz;
5198                         *type_id = field_type_id;
5199                 }
5200                 break;
5201         case BPF_FIELD_BYTE_SIZE:
5202                 *val = byte_sz;
5203                 break;
5204         case BPF_FIELD_SIGNED:
5205                 /* enums will be assumed unsigned */
5206                 *val = btf_is_enum(mt) ||
5207                        (btf_int_encoding(mt) & BTF_INT_SIGNED);
5208                 if (validate)
5209                         *validate = true; /* signedness is never ambiguous */
5210                 break;
5211         case BPF_FIELD_LSHIFT_U64:
5212 #if __BYTE_ORDER == __LITTLE_ENDIAN
5213                 *val = 64 - (bit_off + bit_sz - byte_off  * 8);
5214 #else
5215                 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5216 #endif
5217                 break;
5218         case BPF_FIELD_RSHIFT_U64:
5219                 *val = 64 - bit_sz;
5220                 if (validate)
5221                         *validate = true; /* right shift is never ambiguous */
5222                 break;
5223         case BPF_FIELD_EXISTS:
5224         default:
5225                 return -EOPNOTSUPP;
5226         }
5227
5228         return 0;
5229 }
5230
5231 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5232                                    const struct bpf_core_spec *spec,
5233                                    __u32 *val)
5234 {
5235         __s64 sz;
5236
5237         /* type-based relos return zero when target type is not found */
5238         if (!spec) {
5239                 *val = 0;
5240                 return 0;
5241         }
5242
5243         switch (relo->kind) {
5244         case BPF_TYPE_ID_TARGET:
5245                 *val = spec->root_type_id;
5246                 break;
5247         case BPF_TYPE_EXISTS:
5248                 *val = 1;
5249                 break;
5250         case BPF_TYPE_SIZE:
5251                 sz = btf__resolve_size(spec->btf, spec->root_type_id);
5252                 if (sz < 0)
5253                         return -EINVAL;
5254                 *val = sz;
5255                 break;
5256         case BPF_TYPE_ID_LOCAL:
5257         /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5258         default:
5259                 return -EOPNOTSUPP;
5260         }
5261
5262         return 0;
5263 }
5264
5265 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5266                                       const struct bpf_core_spec *spec,
5267                                       __u32 *val)
5268 {
5269         const struct btf_type *t;
5270         const struct btf_enum *e;
5271
5272         switch (relo->kind) {
5273         case BPF_ENUMVAL_EXISTS:
5274                 *val = spec ? 1 : 0;
5275                 break;
5276         case BPF_ENUMVAL_VALUE:
5277                 if (!spec)
5278                         return -EUCLEAN; /* request instruction poisoning */
5279                 t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5280                 e = btf_enum(t) + spec->spec[0].idx;
5281                 *val = e->val;
5282                 break;
5283         default:
5284                 return -EOPNOTSUPP;
5285         }
5286
5287         return 0;
5288 }
5289
5290 struct bpf_core_relo_res
5291 {
5292         /* expected value in the instruction, unless validate == false */
5293         __u32 orig_val;
5294         /* new value that needs to be patched up to */
5295         __u32 new_val;
5296         /* relocation unsuccessful, poison instruction, but don't fail load */
5297         bool poison;
5298         /* some relocations can't be validated against orig_val */
5299         bool validate;
5300         /* for field byte offset relocations or the forms:
5301          *     *(T *)(rX + <off>) = rY
5302          *     rX = *(T *)(rY + <off>),
5303          * we remember original and resolved field size to adjust direct
5304          * memory loads of pointers and integers; this is necessary for 32-bit
5305          * host kernel architectures, but also allows to automatically
5306          * relocate fields that were resized from, e.g., u32 to u64, etc.
5307          */
5308         bool fail_memsz_adjust;
5309         __u32 orig_sz;
5310         __u32 orig_type_id;
5311         __u32 new_sz;
5312         __u32 new_type_id;
5313 };
5314
5315 /* Calculate original and target relocation values, given local and target
5316  * specs and relocation kind. These values are calculated for each candidate.
5317  * If there are multiple candidates, resulting values should all be consistent
5318  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5319  * If instruction has to be poisoned, *poison will be set to true.
5320  */
5321 static int bpf_core_calc_relo(const struct bpf_program *prog,
5322                               const struct bpf_core_relo *relo,
5323                               int relo_idx,
5324                               const struct bpf_core_spec *local_spec,
5325                               const struct bpf_core_spec *targ_spec,
5326                               struct bpf_core_relo_res *res)
5327 {
5328         int err = -EOPNOTSUPP;
5329
5330         res->orig_val = 0;
5331         res->new_val = 0;
5332         res->poison = false;
5333         res->validate = true;
5334         res->fail_memsz_adjust = false;
5335         res->orig_sz = res->new_sz = 0;
5336         res->orig_type_id = res->new_type_id = 0;
5337
5338         if (core_relo_is_field_based(relo->kind)) {
5339                 err = bpf_core_calc_field_relo(prog, relo, local_spec,
5340                                                &res->orig_val, &res->orig_sz,
5341                                                &res->orig_type_id, &res->validate);
5342                 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5343                                                       &res->new_val, &res->new_sz,
5344                                                       &res->new_type_id, NULL);
5345                 if (err)
5346                         goto done;
5347                 /* Validate if it's safe to adjust load/store memory size.
5348                  * Adjustments are performed only if original and new memory
5349                  * sizes differ.
5350                  */
5351                 res->fail_memsz_adjust = false;
5352                 if (res->orig_sz != res->new_sz) {
5353                         const struct btf_type *orig_t, *new_t;
5354
5355                         orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5356                         new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5357
5358                         /* There are two use cases in which it's safe to
5359                          * adjust load/store's mem size:
5360                          *   - reading a 32-bit kernel pointer, while on BPF
5361                          *   size pointers are always 64-bit; in this case
5362                          *   it's safe to "downsize" instruction size due to
5363                          *   pointer being treated as unsigned integer with
5364                          *   zero-extended upper 32-bits;
5365                          *   - reading unsigned integers, again due to
5366                          *   zero-extension is preserving the value correctly.
5367                          *
5368                          * In all other cases it's incorrect to attempt to
5369                          * load/store field because read value will be
5370                          * incorrect, so we poison relocated instruction.
5371                          */
5372                         if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5373                                 goto done;
5374                         if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5375                             btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5376                             btf_int_encoding(new_t) != BTF_INT_SIGNED)
5377                                 goto done;
5378
5379                         /* mark as invalid mem size adjustment, but this will
5380                          * only be checked for LDX/STX/ST insns
5381                          */
5382                         res->fail_memsz_adjust = true;
5383                 }
5384         } else if (core_relo_is_type_based(relo->kind)) {
5385                 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5386                 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5387         } else if (core_relo_is_enumval_based(relo->kind)) {
5388                 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5389                 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5390         }
5391
5392 done:
5393         if (err == -EUCLEAN) {
5394                 /* EUCLEAN is used to signal instruction poisoning request */
5395                 res->poison = true;
5396                 err = 0;
5397         } else if (err == -EOPNOTSUPP) {
5398                 /* EOPNOTSUPP means unknown/unsupported relocation */
5399                 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5400                         prog->name, relo_idx, core_relo_kind_str(relo->kind),
5401                         relo->kind, relo->insn_off / 8);
5402         }
5403
5404         return err;
5405 }
5406
5407 /*
5408  * Turn instruction for which CO_RE relocation failed into invalid one with
5409  * distinct signature.
5410  */
5411 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5412                                  int insn_idx, struct bpf_insn *insn)
5413 {
5414         pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5415                  prog->name, relo_idx, insn_idx);
5416         insn->code = BPF_JMP | BPF_CALL;
5417         insn->dst_reg = 0;
5418         insn->src_reg = 0;
5419         insn->off = 0;
5420         /* if this instruction is reachable (not a dead code),
5421          * verifier will complain with the following message:
5422          * invalid func unknown#195896080
5423          */
5424         insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5425 }
5426
5427 static bool is_ldimm64(struct bpf_insn *insn)
5428 {
5429         return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5430 }
5431
5432 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5433 {
5434         switch (BPF_SIZE(insn->code)) {
5435         case BPF_DW: return 8;
5436         case BPF_W: return 4;
5437         case BPF_H: return 2;
5438         case BPF_B: return 1;
5439         default: return -1;
5440         }
5441 }
5442
5443 static int insn_bytes_to_bpf_size(__u32 sz)
5444 {
5445         switch (sz) {
5446         case 8: return BPF_DW;
5447         case 4: return BPF_W;
5448         case 2: return BPF_H;
5449         case 1: return BPF_B;
5450         default: return -1;
5451         }
5452 }
5453
5454 /*
5455  * Patch relocatable BPF instruction.
5456  *
5457  * Patched value is determined by relocation kind and target specification.
5458  * For existence relocations target spec will be NULL if field/type is not found.
5459  * Expected insn->imm value is determined using relocation kind and local
5460  * spec, and is checked before patching instruction. If actual insn->imm value
5461  * is wrong, bail out with error.
5462  *
5463  * Currently supported classes of BPF instruction are:
5464  * 1. rX = <imm> (assignment with immediate operand);
5465  * 2. rX += <imm> (arithmetic operations with immediate operand);
5466  * 3. rX = <imm64> (load with 64-bit immediate value);
5467  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5468  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5469  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5470  */
5471 static int bpf_core_patch_insn(struct bpf_program *prog,
5472                                const struct bpf_core_relo *relo,
5473                                int relo_idx,
5474                                const struct bpf_core_relo_res *res)
5475 {
5476         __u32 orig_val, new_val;
5477         struct bpf_insn *insn;
5478         int insn_idx;
5479         __u8 class;
5480
5481         if (relo->insn_off % BPF_INSN_SZ)
5482                 return -EINVAL;
5483         insn_idx = relo->insn_off / BPF_INSN_SZ;
5484         /* adjust insn_idx from section frame of reference to the local
5485          * program's frame of reference; (sub-)program code is not yet
5486          * relocated, so it's enough to just subtract in-section offset
5487          */
5488         insn_idx = insn_idx - prog->sec_insn_off;
5489         insn = &prog->insns[insn_idx];
5490         class = BPF_CLASS(insn->code);
5491
5492         if (res->poison) {
5493 poison:
5494                 /* poison second part of ldimm64 to avoid confusing error from
5495                  * verifier about "unknown opcode 00"
5496                  */
5497                 if (is_ldimm64(insn))
5498                         bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5499                 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5500                 return 0;
5501         }
5502
5503         orig_val = res->orig_val;
5504         new_val = res->new_val;
5505
5506         switch (class) {
5507         case BPF_ALU:
5508         case BPF_ALU64:
5509                 if (BPF_SRC(insn->code) != BPF_K)
5510                         return -EINVAL;
5511                 if (res->validate && insn->imm != orig_val) {
5512                         pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5513                                 prog->name, relo_idx,
5514                                 insn_idx, insn->imm, orig_val, new_val);
5515                         return -EINVAL;
5516                 }
5517                 orig_val = insn->imm;
5518                 insn->imm = new_val;
5519                 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5520                          prog->name, relo_idx, insn_idx,
5521                          orig_val, new_val);
5522                 break;
5523         case BPF_LDX:
5524         case BPF_ST:
5525         case BPF_STX:
5526                 if (res->validate && insn->off != orig_val) {
5527                         pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5528                                 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5529                         return -EINVAL;
5530                 }
5531                 if (new_val > SHRT_MAX) {
5532                         pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5533                                 prog->name, relo_idx, insn_idx, new_val);
5534                         return -ERANGE;
5535                 }
5536                 if (res->fail_memsz_adjust) {
5537                         pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5538                                 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5539                                 prog->name, relo_idx, insn_idx);
5540                         goto poison;
5541                 }
5542
5543                 orig_val = insn->off;
5544                 insn->off = new_val;
5545                 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5546                          prog->name, relo_idx, insn_idx, orig_val, new_val);
5547
5548                 if (res->new_sz != res->orig_sz) {
5549                         int insn_bytes_sz, insn_bpf_sz;
5550
5551                         insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5552                         if (insn_bytes_sz != res->orig_sz) {
5553                                 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5554                                         prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5555                                 return -EINVAL;
5556                         }
5557
5558                         insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5559                         if (insn_bpf_sz < 0) {
5560                                 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5561                                         prog->name, relo_idx, insn_idx, res->new_sz);
5562                                 return -EINVAL;
5563                         }
5564
5565                         insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5566                         pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5567                                  prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5568                 }
5569                 break;
5570         case BPF_LD: {
5571                 __u64 imm;
5572
5573                 if (!is_ldimm64(insn) ||
5574                     insn[0].src_reg != 0 || insn[0].off != 0 ||
5575                     insn_idx + 1 >= prog->insns_cnt ||
5576                     insn[1].code != 0 || insn[1].dst_reg != 0 ||
5577                     insn[1].src_reg != 0 || insn[1].off != 0) {
5578                         pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5579                                 prog->name, relo_idx, insn_idx);
5580                         return -EINVAL;
5581                 }
5582
5583                 imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5584                 if (res->validate && imm != orig_val) {
5585                         pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5586                                 prog->name, relo_idx,
5587                                 insn_idx, (unsigned long long)imm,
5588                                 orig_val, new_val);
5589                         return -EINVAL;
5590                 }
5591
5592                 insn[0].imm = new_val;
5593                 insn[1].imm = 0; /* currently only 32-bit values are supported */
5594                 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5595                          prog->name, relo_idx, insn_idx,
5596                          (unsigned long long)imm, new_val);
5597                 break;
5598         }
5599         default:
5600                 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5601                         prog->name, relo_idx, insn_idx, insn->code,
5602                         insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5603                 return -EINVAL;
5604         }
5605
5606         return 0;
5607 }
5608
5609 /* Output spec definition in the format:
5610  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5611  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5612  */
5613 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5614 {
5615         const struct btf_type *t;
5616         const struct btf_enum *e;
5617         const char *s;
5618         __u32 type_id;
5619         int i;
5620
5621         type_id = spec->root_type_id;
5622         t = btf__type_by_id(spec->btf, type_id);
5623         s = btf__name_by_offset(spec->btf, t->name_off);
5624
5625         libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5626
5627         if (core_relo_is_type_based(spec->relo_kind))
5628                 return;
5629
5630         if (core_relo_is_enumval_based(spec->relo_kind)) {
5631                 t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5632                 e = btf_enum(t) + spec->raw_spec[0];
5633                 s = btf__name_by_offset(spec->btf, e->name_off);
5634
5635                 libbpf_print(level, "::%s = %u", s, e->val);
5636                 return;
5637         }
5638
5639         if (core_relo_is_field_based(spec->relo_kind)) {
5640                 for (i = 0; i < spec->len; i++) {
5641                         if (spec->spec[i].name)
5642                                 libbpf_print(level, ".%s", spec->spec[i].name);
5643                         else if (i > 0 || spec->spec[i].idx > 0)
5644                                 libbpf_print(level, "[%u]", spec->spec[i].idx);
5645                 }
5646
5647                 libbpf_print(level, " (");
5648                 for (i = 0; i < spec->raw_len; i++)
5649                         libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5650
5651                 if (spec->bit_offset % 8)
5652                         libbpf_print(level, " @ offset %u.%u)",
5653                                      spec->bit_offset / 8, spec->bit_offset % 8);
5654                 else
5655                         libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5656                 return;
5657         }
5658 }
5659
5660 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5661 {
5662         return (size_t)key;
5663 }
5664
5665 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5666 {
5667         return k1 == k2;
5668 }
5669
5670 static void *u32_as_hash_key(__u32 x)
5671 {
5672         return (void *)(uintptr_t)x;
5673 }
5674
5675 /*
5676  * CO-RE relocate single instruction.
5677  *
5678  * The outline and important points of the algorithm:
5679  * 1. For given local type, find corresponding candidate target types.
5680  *    Candidate type is a type with the same "essential" name, ignoring
5681  *    everything after last triple underscore (___). E.g., `sample`,
5682  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5683  *    for each other. Names with triple underscore are referred to as
5684  *    "flavors" and are useful, among other things, to allow to
5685  *    specify/support incompatible variations of the same kernel struct, which
5686  *    might differ between different kernel versions and/or build
5687  *    configurations.
5688  *
5689  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5690  *    converter, when deduplicated BTF of a kernel still contains more than
5691  *    one different types with the same name. In that case, ___2, ___3, etc
5692  *    are appended starting from second name conflict. But start flavors are
5693  *    also useful to be defined "locally", in BPF program, to extract same
5694  *    data from incompatible changes between different kernel
5695  *    versions/configurations. For instance, to handle field renames between
5696  *    kernel versions, one can use two flavors of the struct name with the
5697  *    same common name and use conditional relocations to extract that field,
5698  *    depending on target kernel version.
5699  * 2. For each candidate type, try to match local specification to this
5700  *    candidate target type. Matching involves finding corresponding
5701  *    high-level spec accessors, meaning that all named fields should match,
5702  *    as well as all array accesses should be within the actual bounds. Also,
5703  *    types should be compatible (see bpf_core_fields_are_compat for details).
5704  * 3. It is supported and expected that there might be multiple flavors
5705  *    matching the spec. As long as all the specs resolve to the same set of
5706  *    offsets across all candidates, there is no error. If there is any
5707  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5708  *    imprefection of BTF deduplication, which can cause slight duplication of
5709  *    the same BTF type, if some directly or indirectly referenced (by
5710  *    pointer) type gets resolved to different actual types in different
5711  *    object files. If such situation occurs, deduplicated BTF will end up
5712  *    with two (or more) structurally identical types, which differ only in
5713  *    types they refer to through pointer. This should be OK in most cases and
5714  *    is not an error.
5715  * 4. Candidate types search is performed by linearly scanning through all
5716  *    types in target BTF. It is anticipated that this is overall more
5717  *    efficient memory-wise and not significantly worse (if not better)
5718  *    CPU-wise compared to prebuilding a map from all local type names to
5719  *    a list of candidate type names. It's also sped up by caching resolved
5720  *    list of matching candidates per each local "root" type ID, that has at
5721  *    least one bpf_core_relo associated with it. This list is shared
5722  *    between multiple relocations for the same type ID and is updated as some
5723  *    of the candidates are pruned due to structural incompatibility.
5724  */
5725 static int bpf_core_apply_relo(struct bpf_program *prog,
5726                                const struct bpf_core_relo *relo,
5727                                int relo_idx,
5728                                const struct btf *local_btf,
5729                                const struct btf *targ_btf,
5730                                struct hashmap *cand_cache)
5731 {
5732         struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5733         const void *type_key = u32_as_hash_key(relo->type_id);
5734         struct bpf_core_relo_res cand_res, targ_res;
5735         const struct btf_type *local_type;
5736         const char *local_name;
5737         struct ids_vec *cand_ids;
5738         __u32 local_id, cand_id;
5739         const char *spec_str;
5740         int i, j, err;
5741
5742         local_id = relo->type_id;
5743         local_type = btf__type_by_id(local_btf, local_id);
5744         if (!local_type)
5745                 return -EINVAL;
5746
5747         local_name = btf__name_by_offset(local_btf, local_type->name_off);
5748         if (!local_name)
5749                 return -EINVAL;
5750
5751         spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5752         if (str_is_empty(spec_str))
5753                 return -EINVAL;
5754
5755         err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5756         if (err) {
5757                 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5758                         prog->name, relo_idx, local_id, btf_kind_str(local_type),
5759                         str_is_empty(local_name) ? "<anon>" : local_name,
5760                         spec_str, err);
5761                 return -EINVAL;
5762         }
5763
5764         pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5765                  relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5766         bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5767         libbpf_print(LIBBPF_DEBUG, "\n");
5768
5769         /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5770         if (relo->kind == BPF_TYPE_ID_LOCAL) {
5771                 targ_res.validate = true;
5772                 targ_res.poison = false;
5773                 targ_res.orig_val = local_spec.root_type_id;
5774                 targ_res.new_val = local_spec.root_type_id;
5775                 goto patch_insn;
5776         }
5777
5778         /* libbpf doesn't support candidate search for anonymous types */
5779         if (str_is_empty(spec_str)) {
5780                 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5781                         prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5782                 return -EOPNOTSUPP;
5783         }
5784
5785         if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5786                 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5787                 if (IS_ERR(cand_ids)) {
5788                         pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5789                                 prog->name, relo_idx, local_id, btf_kind_str(local_type),
5790                                 local_name, PTR_ERR(cand_ids));
5791                         return PTR_ERR(cand_ids);
5792                 }
5793                 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5794                 if (err) {
5795                         bpf_core_free_cands(cand_ids);
5796                         return err;
5797                 }
5798         }
5799
5800         for (i = 0, j = 0; i < cand_ids->len; i++) {
5801                 cand_id = cand_ids->data[i];
5802                 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5803                 if (err < 0) {
5804                         pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5805                                 prog->name, relo_idx, i);
5806                         bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5807                         libbpf_print(LIBBPF_WARN, ": %d\n", err);
5808                         return err;
5809                 }
5810
5811                 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5812                          relo_idx, err == 0 ? "non-matching" : "matching", i);
5813                 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5814                 libbpf_print(LIBBPF_DEBUG, "\n");
5815
5816                 if (err == 0)
5817                         continue;
5818
5819                 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5820                 if (err)
5821                         return err;
5822
5823                 if (j == 0) {
5824                         targ_res = cand_res;
5825                         targ_spec = cand_spec;
5826                 } else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5827                         /* if there are many field relo candidates, they
5828                          * should all resolve to the same bit offset
5829                          */
5830                         pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5831                                 prog->name, relo_idx, cand_spec.bit_offset,
5832                                 targ_spec.bit_offset);
5833                         return -EINVAL;
5834                 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5835                         /* all candidates should result in the same relocation
5836                          * decision and value, otherwise it's dangerous to
5837                          * proceed due to ambiguity
5838                          */
5839                         pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5840                                 prog->name, relo_idx,
5841                                 cand_res.poison ? "failure" : "success", cand_res.new_val,
5842                                 targ_res.poison ? "failure" : "success", targ_res.new_val);
5843                         return -EINVAL;
5844                 }
5845
5846                 cand_ids->data[j++] = cand_spec.root_type_id;
5847         }
5848
5849         /*
5850          * For BPF_FIELD_EXISTS relo or when used BPF program has field
5851          * existence checks or kernel version/config checks, it's expected
5852          * that we might not find any candidates. In this case, if field
5853          * wasn't found in any candidate, the list of candidates shouldn't
5854          * change at all, we'll just handle relocating appropriately,
5855          * depending on relo's kind.
5856          */
5857         if (j > 0)
5858                 cand_ids->len = j;
5859
5860         /*
5861          * If no candidates were found, it might be both a programmer error,
5862          * as well as expected case, depending whether instruction w/
5863          * relocation is guarded in some way that makes it unreachable (dead
5864          * code) if relocation can't be resolved. This is handled in
5865          * bpf_core_patch_insn() uniformly by replacing that instruction with
5866          * BPF helper call insn (using invalid helper ID). If that instruction
5867          * is indeed unreachable, then it will be ignored and eliminated by
5868          * verifier. If it was an error, then verifier will complain and point
5869          * to a specific instruction number in its log.
5870          */
5871         if (j == 0) {
5872                 pr_debug("prog '%s': relo #%d: no matching targets found\n",
5873                          prog->name, relo_idx);
5874
5875                 /* calculate single target relo result explicitly */
5876                 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5877                 if (err)
5878                         return err;
5879         }
5880
5881 patch_insn:
5882         /* bpf_core_patch_insn() should know how to handle missing targ_spec */
5883         err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5884         if (err) {
5885                 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5886                         prog->name, relo_idx, relo->insn_off, err);
5887                 return -EINVAL;
5888         }
5889
5890         return 0;
5891 }
5892
5893 static int
5894 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5895 {
5896         const struct btf_ext_info_sec *sec;
5897         const struct bpf_core_relo *rec;
5898         const struct btf_ext_info *seg;
5899         struct hashmap_entry *entry;
5900         struct hashmap *cand_cache = NULL;
5901         struct bpf_program *prog;
5902         struct btf *targ_btf;
5903         const char *sec_name;
5904         int i, err = 0, insn_idx, sec_idx;
5905
5906         if (obj->btf_ext->core_relo_info.len == 0)
5907                 return 0;
5908
5909         if (targ_btf_path)
5910                 targ_btf = btf__parse(targ_btf_path, NULL);
5911         else
5912                 targ_btf = obj->btf_vmlinux;
5913         if (IS_ERR_OR_NULL(targ_btf)) {
5914                 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5915                 return PTR_ERR(targ_btf);
5916         }
5917
5918         cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5919         if (IS_ERR(cand_cache)) {
5920                 err = PTR_ERR(cand_cache);
5921                 goto out;
5922         }
5923
5924         seg = &obj->btf_ext->core_relo_info;
5925         for_each_btf_ext_sec(seg, sec) {
5926                 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5927                 if (str_is_empty(sec_name)) {
5928                         err = -EINVAL;
5929                         goto out;
5930                 }
5931                 /* bpf_object's ELF is gone by now so it's not easy to find
5932                  * section index by section name, but we can find *any*
5933                  * bpf_program within desired section name and use it's
5934                  * prog->sec_idx to do a proper search by section index and
5935                  * instruction offset
5936                  */
5937                 prog = NULL;
5938                 for (i = 0; i < obj->nr_programs; i++) {
5939                         if (strcmp(obj->programs[i].sec_name, sec_name) == 0) {
5940                                 prog = &obj->programs[i];
5941                                 break;
5942                         }
5943                 }
5944                 if (!prog) {
5945                         pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5946                         return -ENOENT;
5947                 }
5948                 sec_idx = prog->sec_idx;
5949
5950                 pr_debug("sec '%s': found %d CO-RE relocations\n",
5951                          sec_name, sec->num_info);
5952
5953                 for_each_btf_ext_rec(seg, sec, i, rec) {
5954                         insn_idx = rec->insn_off / BPF_INSN_SZ;
5955                         prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5956                         if (!prog) {
5957                                 /* When __weak subprog is "overridden" by another instance
5958                                  * of the subprog from a different object file, linker still
5959                                  * appends all the .BTF.ext info that used to belong to that
5960                                  * eliminated subprogram.
5961                                  * This is similar to what x86-64 linker does for relocations.
5962                                  * So just ignore such relocations just like we ignore
5963                                  * subprog instructions when discovering subprograms.
5964                                  */
5965                                 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5966                                          sec_name, i, insn_idx);
5967                                 continue;
5968                         }
5969                         /* no need to apply CO-RE relocation if the program is
5970                          * not going to be loaded
5971                          */
5972                         if (!prog->load)
5973                                 continue;
5974
5975                         err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5976                                                   targ_btf, cand_cache);
5977                         if (err) {
5978                                 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5979                                         prog->name, i, err);
5980                                 goto out;
5981                         }
5982                 }
5983         }
5984
5985 out:
5986         /* obj->btf_vmlinux is freed at the end of object load phase */
5987         if (targ_btf != obj->btf_vmlinux)
5988                 btf__free(targ_btf);
5989         if (!IS_ERR_OR_NULL(cand_cache)) {
5990                 hashmap__for_each_entry(cand_cache, entry, i) {
5991                         bpf_core_free_cands(entry->value);
5992                 }
5993                 hashmap__free(cand_cache);
5994         }
5995         return err;
5996 }
5997
5998 /* Relocate data references within program code:
5999  *  - map references;
6000  *  - global variable references;
6001  *  - extern references.
6002  */
6003 static int
6004 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6005 {
6006         int i;
6007
6008         for (i = 0; i < prog->nr_reloc; i++) {
6009                 struct reloc_desc *relo = &prog->reloc_desc[i];
6010                 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6011                 struct extern_desc *ext;
6012
6013                 switch (relo->type) {
6014                 case RELO_LD64:
6015                         insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6016                         insn[0].imm = obj->maps[relo->map_idx].fd;
6017                         relo->processed = true;
6018                         break;
6019                 case RELO_DATA:
6020                         insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6021                         insn[1].imm = insn[0].imm + relo->sym_off;
6022                         insn[0].imm = obj->maps[relo->map_idx].fd;
6023                         relo->processed = true;
6024                         break;
6025                 case RELO_EXTERN:
6026                         ext = &obj->externs[relo->sym_off];
6027                         if (ext->type == EXT_KCFG) {
6028                                 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6029                                 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6030                                 insn[1].imm = ext->kcfg.data_off;
6031                         } else /* EXT_KSYM */ {
6032                                 if (ext->ksym.type_id) { /* typed ksyms */
6033                                         insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6034                                         insn[0].imm = ext->ksym.vmlinux_btf_id;
6035                                 } else { /* typeless ksyms */
6036                                         insn[0].imm = (__u32)ext->ksym.addr;
6037                                         insn[1].imm = ext->ksym.addr >> 32;
6038                                 }
6039                         }
6040                         relo->processed = true;
6041                         break;
6042                 case RELO_CALL:
6043                         /* will be handled as a follow up pass */
6044                         break;
6045                 default:
6046                         pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6047                                 prog->name, i, relo->type);
6048                         return -EINVAL;
6049                 }
6050         }
6051
6052         return 0;
6053 }
6054
6055 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6056                                     const struct bpf_program *prog,
6057                                     const struct btf_ext_info *ext_info,
6058                                     void **prog_info, __u32 *prog_rec_cnt,
6059                                     __u32 *prog_rec_sz)
6060 {
6061         void *copy_start = NULL, *copy_end = NULL;
6062         void *rec, *rec_end, *new_prog_info;
6063         const struct btf_ext_info_sec *sec;
6064         size_t old_sz, new_sz;
6065         const char *sec_name;
6066         int i, off_adj;
6067
6068         for_each_btf_ext_sec(ext_info, sec) {
6069                 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6070                 if (!sec_name)
6071                         return -EINVAL;
6072                 if (strcmp(sec_name, prog->sec_name) != 0)
6073                         continue;
6074
6075                 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6076                         __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6077
6078                         if (insn_off < prog->sec_insn_off)
6079                                 continue;
6080                         if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6081                                 break;
6082
6083                         if (!copy_start)
6084                                 copy_start = rec;
6085                         copy_end = rec + ext_info->rec_size;
6086                 }
6087
6088                 if (!copy_start)
6089                         return -ENOENT;
6090
6091                 /* append func/line info of a given (sub-)program to the main
6092                  * program func/line info
6093                  */
6094                 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6095                 new_sz = old_sz + (copy_end - copy_start);
6096                 new_prog_info = realloc(*prog_info, new_sz);
6097                 if (!new_prog_info)
6098                         return -ENOMEM;
6099                 *prog_info = new_prog_info;
6100                 *prog_rec_cnt = new_sz / ext_info->rec_size;
6101                 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6102
6103                 /* Kernel instruction offsets are in units of 8-byte
6104                  * instructions, while .BTF.ext instruction offsets generated
6105                  * by Clang are in units of bytes. So convert Clang offsets
6106                  * into kernel offsets and adjust offset according to program
6107                  * relocated position.
6108                  */
6109                 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6110                 rec = new_prog_info + old_sz;
6111                 rec_end = new_prog_info + new_sz;
6112                 for (; rec < rec_end; rec += ext_info->rec_size) {
6113                         __u32 *insn_off = rec;
6114
6115                         *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6116                 }
6117                 *prog_rec_sz = ext_info->rec_size;
6118                 return 0;
6119         }
6120
6121         return -ENOENT;
6122 }
6123
6124 static int
6125 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6126                               struct bpf_program *main_prog,
6127                               const struct bpf_program *prog)
6128 {
6129         int err;
6130
6131         /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6132          * supprot func/line info
6133          */
6134         if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6135                 return 0;
6136
6137         /* only attempt func info relocation if main program's func_info
6138          * relocation was successful
6139          */
6140         if (main_prog != prog && !main_prog->func_info)
6141                 goto line_info;
6142
6143         err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6144                                        &main_prog->func_info,
6145                                        &main_prog->func_info_cnt,
6146                                        &main_prog->func_info_rec_size);
6147         if (err) {
6148                 if (err != -ENOENT) {
6149                         pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6150                                 prog->name, err);
6151                         return err;
6152                 }
6153                 if (main_prog->func_info) {
6154                         /*
6155                          * Some info has already been found but has problem
6156                          * in the last btf_ext reloc. Must have to error out.
6157                          */
6158                         pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6159                         return err;
6160                 }
6161                 /* Have problem loading the very first info. Ignore the rest. */
6162                 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6163                         prog->name);
6164         }
6165
6166 line_info:
6167         /* don't relocate line info if main program's relocation failed */
6168         if (main_prog != prog && !main_prog->line_info)
6169                 return 0;
6170
6171         err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6172                                        &main_prog->line_info,
6173                                        &main_prog->line_info_cnt,
6174                                        &main_prog->line_info_rec_size);
6175         if (err) {
6176                 if (err != -ENOENT) {
6177                         pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6178                                 prog->name, err);
6179                         return err;
6180                 }
6181                 if (main_prog->line_info) {
6182                         /*
6183                          * Some info has already been found but has problem
6184                          * in the last btf_ext reloc. Must have to error out.
6185                          */
6186                         pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6187                         return err;
6188                 }
6189                 /* Have problem loading the very first info. Ignore the rest. */
6190                 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6191                         prog->name);
6192         }
6193         return 0;
6194 }
6195
6196 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6197 {
6198         size_t insn_idx = *(const size_t *)key;
6199         const struct reloc_desc *relo = elem;
6200
6201         if (insn_idx == relo->insn_idx)
6202                 return 0;
6203         return insn_idx < relo->insn_idx ? -1 : 1;
6204 }
6205
6206 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6207 {
6208         return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6209                        sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6210 }
6211
6212 static int
6213 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6214                        struct bpf_program *prog)
6215 {
6216         size_t sub_insn_idx, insn_idx, new_cnt;
6217         struct bpf_program *subprog;
6218         struct bpf_insn *insns, *insn;
6219         struct reloc_desc *relo;
6220         int err;
6221
6222         err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6223         if (err)
6224                 return err;
6225
6226         for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6227                 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6228                 if (!insn_is_subprog_call(insn))
6229                         continue;
6230
6231                 relo = find_prog_insn_relo(prog, insn_idx);
6232                 if (relo && relo->type != RELO_CALL) {
6233                         pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6234                                 prog->name, insn_idx, relo->type);
6235                         return -LIBBPF_ERRNO__RELOC;
6236                 }
6237                 if (relo) {
6238                         /* sub-program instruction index is a combination of
6239                          * an offset of a symbol pointed to by relocation and
6240                          * call instruction's imm field; for global functions,
6241                          * call always has imm = -1, but for static functions
6242                          * relocation is against STT_SECTION and insn->imm
6243                          * points to a start of a static function
6244                          */
6245                         sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6246                 } else {
6247                         /* if subprogram call is to a static function within
6248                          * the same ELF section, there won't be any relocation
6249                          * emitted, but it also means there is no additional
6250                          * offset necessary, insns->imm is relative to
6251                          * instruction's original position within the section
6252                          */
6253                         sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6254                 }
6255
6256                 /* we enforce that sub-programs should be in .text section */
6257                 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6258                 if (!subprog) {
6259                         pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6260                                 prog->name);
6261                         return -LIBBPF_ERRNO__RELOC;
6262                 }
6263
6264                 /* if it's the first call instruction calling into this
6265                  * subprogram (meaning this subprog hasn't been processed
6266                  * yet) within the context of current main program:
6267                  *   - append it at the end of main program's instructions blog;
6268                  *   - process is recursively, while current program is put on hold;
6269                  *   - if that subprogram calls some other not yet processes
6270                  *   subprogram, same thing will happen recursively until
6271                  *   there are no more unprocesses subprograms left to append
6272                  *   and relocate.
6273                  */
6274                 if (subprog->sub_insn_off == 0) {
6275                         subprog->sub_insn_off = main_prog->insns_cnt;
6276
6277                         new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6278                         insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6279                         if (!insns) {
6280                                 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6281                                 return -ENOMEM;
6282                         }
6283                         main_prog->insns = insns;
6284                         main_prog->insns_cnt = new_cnt;
6285
6286                         memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6287                                subprog->insns_cnt * sizeof(*insns));
6288
6289                         pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6290                                  main_prog->name, subprog->insns_cnt, subprog->name);
6291
6292                         err = bpf_object__reloc_code(obj, main_prog, subprog);
6293                         if (err)
6294                                 return err;
6295                 }
6296
6297                 /* main_prog->insns memory could have been re-allocated, so
6298                  * calculate pointer again
6299                  */
6300                 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6301                 /* calculate correct instruction position within current main
6302                  * prog; each main prog can have a different set of
6303                  * subprograms appended (potentially in different order as
6304                  * well), so position of any subprog can be different for
6305                  * different main programs */
6306                 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6307
6308                 if (relo)
6309                         relo->processed = true;
6310
6311                 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6312                          prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6313         }
6314
6315         return 0;
6316 }
6317
6318 /*
6319  * Relocate sub-program calls.
6320  *
6321  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6322  * main prog) is processed separately. For each subprog (non-entry functions,
6323  * that can be called from either entry progs or other subprogs) gets their
6324  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6325  * hasn't been yet appended and relocated within current main prog. Once its
6326  * relocated, sub_insn_off will point at the position within current main prog
6327  * where given subprog was appended. This will further be used to relocate all
6328  * the call instructions jumping into this subprog.
6329  *
6330  * We start with main program and process all call instructions. If the call
6331  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6332  * is zero), subprog instructions are appended at the end of main program's
6333  * instruction array. Then main program is "put on hold" while we recursively
6334  * process newly appended subprogram. If that subprogram calls into another
6335  * subprogram that hasn't been appended, new subprogram is appended again to
6336  * the *main* prog's instructions (subprog's instructions are always left
6337  * untouched, as they need to be in unmodified state for subsequent main progs
6338  * and subprog instructions are always sent only as part of a main prog) and
6339  * the process continues recursively. Once all the subprogs called from a main
6340  * prog or any of its subprogs are appended (and relocated), all their
6341  * positions within finalized instructions array are known, so it's easy to
6342  * rewrite call instructions with correct relative offsets, corresponding to
6343  * desired target subprog.
6344  *
6345  * Its important to realize that some subprogs might not be called from some
6346  * main prog and any of its called/used subprogs. Those will keep their
6347  * subprog->sub_insn_off as zero at all times and won't be appended to current
6348  * main prog and won't be relocated within the context of current main prog.
6349  * They might still be used from other main progs later.
6350  *
6351  * Visually this process can be shown as below. Suppose we have two main
6352  * programs mainA and mainB and BPF object contains three subprogs: subA,
6353  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6354  * subC both call subB:
6355  *
6356  *        +--------+ +-------+
6357  *        |        v v       |
6358  *     +--+---+ +--+-+-+ +---+--+
6359  *     | subA | | subB | | subC |
6360  *     +--+---+ +------+ +---+--+
6361  *        ^                  ^
6362  *        |                  |
6363  *    +---+-------+   +------+----+
6364  *    |   mainA   |   |   mainB   |
6365  *    +-----------+   +-----------+
6366  *
6367  * We'll start relocating mainA, will find subA, append it and start
6368  * processing sub A recursively:
6369  *
6370  *    +-----------+------+
6371  *    |   mainA   | subA |
6372  *    +-----------+------+
6373  *
6374  * At this point we notice that subB is used from subA, so we append it and
6375  * relocate (there are no further subcalls from subB):
6376  *
6377  *    +-----------+------+------+
6378  *    |   mainA   | subA | subB |
6379  *    +-----------+------+------+
6380  *
6381  * At this point, we relocate subA calls, then go one level up and finish with
6382  * relocatin mainA calls. mainA is done.
6383  *
6384  * For mainB process is similar but results in different order. We start with
6385  * mainB and skip subA and subB, as mainB never calls them (at least
6386  * directly), but we see subC is needed, so we append and start processing it:
6387  *
6388  *    +-----------+------+
6389  *    |   mainB   | subC |
6390  *    +-----------+------+
6391  * Now we see subC needs subB, so we go back to it, append and relocate it:
6392  *
6393  *    +-----------+------+------+
6394  *    |   mainB   | subC | subB |
6395  *    +-----------+------+------+
6396  *
6397  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6398  */
6399 static int
6400 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6401 {
6402         struct bpf_program *subprog;
6403         int i, j, err;
6404
6405         /* mark all subprogs as not relocated (yet) within the context of
6406          * current main program
6407          */
6408         for (i = 0; i < obj->nr_programs; i++) {
6409                 subprog = &obj->programs[i];
6410                 if (!prog_is_subprog(obj, subprog))
6411                         continue;
6412
6413                 subprog->sub_insn_off = 0;
6414                 for (j = 0; j < subprog->nr_reloc; j++)
6415                         if (subprog->reloc_desc[j].type == RELO_CALL)
6416                                 subprog->reloc_desc[j].processed = false;
6417         }
6418
6419         err = bpf_object__reloc_code(obj, prog, prog);
6420         if (err)
6421                 return err;
6422
6423
6424         return 0;
6425 }
6426
6427 static int
6428 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6429 {
6430         struct bpf_program *prog;
6431         size_t i;
6432         int err;
6433
6434         if (obj->btf_ext) {
6435                 err = bpf_object__relocate_core(obj, targ_btf_path);
6436                 if (err) {
6437                         pr_warn("failed to perform CO-RE relocations: %d\n",
6438                                 err);
6439                         return err;
6440                 }
6441         }
6442         /* relocate data references first for all programs and sub-programs,
6443          * as they don't change relative to code locations, so subsequent
6444          * subprogram processing won't need to re-calculate any of them
6445          */
6446         for (i = 0; i < obj->nr_programs; i++) {
6447                 prog = &obj->programs[i];
6448                 err = bpf_object__relocate_data(obj, prog);
6449                 if (err) {
6450                         pr_warn("prog '%s': failed to relocate data references: %d\n",
6451                                 prog->name, err);
6452                         return err;
6453                 }
6454         }
6455         /* now relocate subprogram calls and append used subprograms to main
6456          * programs; each copy of subprogram code needs to be relocated
6457          * differently for each main program, because its code location might
6458          * have changed
6459          */
6460         for (i = 0; i < obj->nr_programs; i++) {
6461                 prog = &obj->programs[i];
6462                 /* sub-program's sub-calls are relocated within the context of
6463                  * its main program only
6464                  */
6465                 if (prog_is_subprog(obj, prog))
6466                         continue;
6467
6468                 err = bpf_object__relocate_calls(obj, prog);
6469                 if (err) {
6470                         pr_warn("prog '%s': failed to relocate calls: %d\n",
6471                                 prog->name, err);
6472                         return err;
6473                 }
6474         }
6475         /* free up relocation descriptors */
6476         for (i = 0; i < obj->nr_programs; i++) {
6477                 prog = &obj->programs[i];
6478                 zfree(&prog->reloc_desc);
6479                 prog->nr_reloc = 0;
6480         }
6481         return 0;
6482 }
6483
6484 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6485                                             GElf_Shdr *shdr, Elf_Data *data);
6486
6487 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6488                                          GElf_Shdr *shdr, Elf_Data *data)
6489 {
6490         const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6491         int i, j, nrels, new_sz;
6492         const struct btf_var_secinfo *vi = NULL;
6493         const struct btf_type *sec, *var, *def;
6494         struct bpf_map *map = NULL, *targ_map;
6495         const struct btf_member *member;
6496         const char *name, *mname;
6497         Elf_Data *symbols;
6498         unsigned int moff;
6499         GElf_Sym sym;
6500         GElf_Rel rel;
6501         void *tmp;
6502
6503         if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6504                 return -EINVAL;
6505         sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6506         if (!sec)
6507                 return -EINVAL;
6508
6509         symbols = obj->efile.symbols;
6510         nrels = shdr->sh_size / shdr->sh_entsize;
6511         for (i = 0; i < nrels; i++) {
6512                 if (!gelf_getrel(data, i, &rel)) {
6513                         pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6514                         return -LIBBPF_ERRNO__FORMAT;
6515                 }
6516                 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6517                         pr_warn(".maps relo #%d: symbol %zx not found\n",
6518                                 i, (size_t)GELF_R_SYM(rel.r_info));
6519                         return -LIBBPF_ERRNO__FORMAT;
6520                 }
6521                 name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6522                 if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6523                         pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6524                                 i, name);
6525                         return -LIBBPF_ERRNO__RELOC;
6526                 }
6527
6528                 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6529                          i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6530                          (size_t)rel.r_offset, sym.st_name, name);
6531
6532                 for (j = 0; j < obj->nr_maps; j++) {
6533                         map = &obj->maps[j];
6534                         if (map->sec_idx != obj->efile.btf_maps_shndx)
6535                                 continue;
6536
6537                         vi = btf_var_secinfos(sec) + map->btf_var_idx;
6538                         if (vi->offset <= rel.r_offset &&
6539                             rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6540                                 break;
6541                 }
6542                 if (j == obj->nr_maps) {
6543                         pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6544                                 i, name, (size_t)rel.r_offset);
6545                         return -EINVAL;
6546                 }
6547
6548                 if (!bpf_map_type__is_map_in_map(map->def.type))
6549                         return -EINVAL;
6550                 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6551                     map->def.key_size != sizeof(int)) {
6552                         pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6553                                 i, map->name, sizeof(int));
6554                         return -EINVAL;
6555                 }
6556
6557                 targ_map = bpf_object__find_map_by_name(obj, name);
6558                 if (!targ_map)
6559                         return -ESRCH;
6560
6561                 var = btf__type_by_id(obj->btf, vi->type);
6562                 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6563                 if (btf_vlen(def) == 0)
6564                         return -EINVAL;
6565                 member = btf_members(def) + btf_vlen(def) - 1;
6566                 mname = btf__name_by_offset(obj->btf, member->name_off);
6567                 if (strcmp(mname, "values"))
6568                         return -EINVAL;
6569
6570                 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6571                 if (rel.r_offset - vi->offset < moff)
6572                         return -EINVAL;
6573
6574                 moff = rel.r_offset - vi->offset - moff;
6575                 /* here we use BPF pointer size, which is always 64 bit, as we
6576                  * are parsing ELF that was built for BPF target
6577                  */
6578                 if (moff % bpf_ptr_sz)
6579                         return -EINVAL;
6580                 moff /= bpf_ptr_sz;
6581                 if (moff >= map->init_slots_sz) {
6582                         new_sz = moff + 1;
6583                         tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6584                         if (!tmp)
6585                                 return -ENOMEM;
6586                         map->init_slots = tmp;
6587                         memset(map->init_slots + map->init_slots_sz, 0,
6588                                (new_sz - map->init_slots_sz) * host_ptr_sz);
6589                         map->init_slots_sz = new_sz;
6590                 }
6591                 map->init_slots[moff] = targ_map;
6592
6593                 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6594                          i, map->name, moff, name);
6595         }
6596
6597         return 0;
6598 }
6599
6600 static int cmp_relocs(const void *_a, const void *_b)
6601 {
6602         const struct reloc_desc *a = _a;
6603         const struct reloc_desc *b = _b;
6604
6605         if (a->insn_idx != b->insn_idx)
6606                 return a->insn_idx < b->insn_idx ? -1 : 1;
6607
6608         /* no two relocations should have the same insn_idx, but ... */
6609         if (a->type != b->type)
6610                 return a->type < b->type ? -1 : 1;
6611
6612         return 0;
6613 }
6614
6615 static int bpf_object__collect_relos(struct bpf_object *obj)
6616 {
6617         int i, err;
6618
6619         for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6620                 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6621                 Elf_Data *data = obj->efile.reloc_sects[i].data;
6622                 int idx = shdr->sh_info;
6623
6624                 if (shdr->sh_type != SHT_REL) {
6625                         pr_warn("internal error at %d\n", __LINE__);
6626                         return -LIBBPF_ERRNO__INTERNAL;
6627                 }
6628
6629                 if (idx == obj->efile.st_ops_shndx)
6630                         err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6631                 else if (idx == obj->efile.btf_maps_shndx)
6632                         err = bpf_object__collect_map_relos(obj, shdr, data);
6633                 else
6634                         err = bpf_object__collect_prog_relos(obj, shdr, data);
6635                 if (err)
6636                         return err;
6637         }
6638
6639         for (i = 0; i < obj->nr_programs; i++) {
6640                 struct bpf_program *p = &obj->programs[i];
6641                 
6642                 if (!p->nr_reloc)
6643                         continue;
6644
6645                 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6646         }
6647         return 0;
6648 }
6649
6650 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6651 {
6652         if (BPF_CLASS(insn->code) == BPF_JMP &&
6653             BPF_OP(insn->code) == BPF_CALL &&
6654             BPF_SRC(insn->code) == BPF_K &&
6655             insn->src_reg == 0 &&
6656             insn->dst_reg == 0) {
6657                     *func_id = insn->imm;
6658                     return true;
6659         }
6660         return false;
6661 }
6662
6663 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6664 {
6665         struct bpf_insn *insn = prog->insns;
6666         enum bpf_func_id func_id;
6667         int i;
6668
6669         for (i = 0; i < prog->insns_cnt; i++, insn++) {
6670                 if (!insn_is_helper_call(insn, &func_id))
6671                         continue;
6672
6673                 /* on kernels that don't yet support
6674                  * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6675                  * to bpf_probe_read() which works well for old kernels
6676                  */
6677                 switch (func_id) {
6678                 case BPF_FUNC_probe_read_kernel:
6679                 case BPF_FUNC_probe_read_user:
6680                         if (!kernel_supports(FEAT_PROBE_READ_KERN))
6681                                 insn->imm = BPF_FUNC_probe_read;
6682                         break;
6683                 case BPF_FUNC_probe_read_kernel_str:
6684                 case BPF_FUNC_probe_read_user_str:
6685                         if (!kernel_supports(FEAT_PROBE_READ_KERN))
6686                                 insn->imm = BPF_FUNC_probe_read_str;
6687                         break;
6688                 default:
6689                         break;
6690                 }
6691         }
6692         return 0;
6693 }
6694
6695 static int
6696 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6697              char *license, __u32 kern_version, int *pfd)
6698 {
6699         struct bpf_load_program_attr load_attr;
6700         char *cp, errmsg[STRERR_BUFSIZE];
6701         size_t log_buf_size = 0;
6702         char *log_buf = NULL;
6703         int btf_fd, ret;
6704
6705         if (!insns || !insns_cnt)
6706                 return -EINVAL;
6707
6708         memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6709         load_attr.prog_type = prog->type;
6710         /* old kernels might not support specifying expected_attach_type */
6711         if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6712             prog->sec_def->is_exp_attach_type_optional)
6713                 load_attr.expected_attach_type = 0;
6714         else
6715                 load_attr.expected_attach_type = prog->expected_attach_type;
6716         if (kernel_supports(FEAT_PROG_NAME))
6717                 load_attr.name = prog->name;
6718         load_attr.insns = insns;
6719         load_attr.insns_cnt = insns_cnt;
6720         load_attr.license = license;
6721         if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6722             prog->type == BPF_PROG_TYPE_LSM) {
6723                 load_attr.attach_btf_id = prog->attach_btf_id;
6724         } else if (prog->type == BPF_PROG_TYPE_TRACING ||
6725                    prog->type == BPF_PROG_TYPE_EXT) {
6726                 load_attr.attach_prog_fd = prog->attach_prog_fd;
6727                 load_attr.attach_btf_id = prog->attach_btf_id;
6728         } else {
6729                 load_attr.kern_version = kern_version;
6730                 load_attr.prog_ifindex = prog->prog_ifindex;
6731         }
6732         /* specify func_info/line_info only if kernel supports them */
6733         btf_fd = bpf_object__btf_fd(prog->obj);
6734         if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6735                 load_attr.prog_btf_fd = btf_fd;
6736                 load_attr.func_info = prog->func_info;
6737                 load_attr.func_info_rec_size = prog->func_info_rec_size;
6738                 load_attr.func_info_cnt = prog->func_info_cnt;
6739                 load_attr.line_info = prog->line_info;
6740                 load_attr.line_info_rec_size = prog->line_info_rec_size;
6741                 load_attr.line_info_cnt = prog->line_info_cnt;
6742         }
6743         load_attr.log_level = prog->log_level;
6744         load_attr.prog_flags = prog->prog_flags;
6745
6746 retry_load:
6747         if (log_buf_size) {
6748                 log_buf = malloc(log_buf_size);
6749                 if (!log_buf)
6750                         return -ENOMEM;
6751
6752                 *log_buf = 0;
6753         }
6754
6755         ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6756
6757         if (ret >= 0) {
6758                 if (log_buf && load_attr.log_level)
6759                         pr_debug("verifier log:\n%s", log_buf);
6760
6761                 if (prog->obj->rodata_map_idx >= 0 &&
6762                     kernel_supports(FEAT_PROG_BIND_MAP)) {
6763                         struct bpf_map *rodata_map =
6764                                 &prog->obj->maps[prog->obj->rodata_map_idx];
6765
6766                         if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6767                                 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6768                                 pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6769                                         prog->name, cp);
6770                                 /* Don't fail hard if can't bind rodata. */
6771                         }
6772                 }
6773
6774                 *pfd = ret;
6775                 ret = 0;
6776                 goto out;
6777         }
6778
6779         if (!log_buf || errno == ENOSPC) {
6780                 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6781                                    log_buf_size << 1);
6782
6783                 free(log_buf);
6784                 goto retry_load;
6785         }
6786         ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6787         cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6788         pr_warn("load bpf program failed: %s\n", cp);
6789         pr_perm_msg(ret);
6790
6791         if (log_buf && log_buf[0] != '\0') {
6792                 ret = -LIBBPF_ERRNO__VERIFY;
6793                 pr_warn("-- BEGIN DUMP LOG ---\n");
6794                 pr_warn("\n%s\n", log_buf);
6795                 pr_warn("-- END LOG --\n");
6796         } else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6797                 pr_warn("Program too large (%zu insns), at most %d insns\n",
6798                         load_attr.insns_cnt, BPF_MAXINSNS);
6799                 ret = -LIBBPF_ERRNO__PROG2BIG;
6800         } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6801                 /* Wrong program type? */
6802                 int fd;
6803
6804                 load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6805                 load_attr.expected_attach_type = 0;
6806                 fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6807                 if (fd >= 0) {
6808                         close(fd);
6809                         ret = -LIBBPF_ERRNO__PROGTYPE;
6810                         goto out;
6811                 }
6812         }
6813
6814 out:
6815         free(log_buf);
6816         return ret;
6817 }
6818
6819 static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6820
6821 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6822 {
6823         int err = 0, fd, i, btf_id;
6824
6825         if (prog->obj->loaded) {
6826                 pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6827                 return -EINVAL;
6828         }
6829
6830         if ((prog->type == BPF_PROG_TYPE_TRACING ||
6831              prog->type == BPF_PROG_TYPE_LSM ||
6832              prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6833                 btf_id = libbpf_find_attach_btf_id(prog);
6834                 if (btf_id <= 0)
6835                         return btf_id;
6836                 prog->attach_btf_id = btf_id;
6837         }
6838
6839         if (prog->instances.nr < 0 || !prog->instances.fds) {
6840                 if (prog->preprocessor) {
6841                         pr_warn("Internal error: can't load program '%s'\n",
6842                                 prog->name);
6843                         return -LIBBPF_ERRNO__INTERNAL;
6844                 }
6845
6846                 prog->instances.fds = malloc(sizeof(int));
6847                 if (!prog->instances.fds) {
6848                         pr_warn("Not enough memory for BPF fds\n");
6849                         return -ENOMEM;
6850                 }
6851                 prog->instances.nr = 1;
6852                 prog->instances.fds[0] = -1;
6853         }
6854
6855         if (!prog->preprocessor) {
6856                 if (prog->instances.nr != 1) {
6857                         pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6858                                 prog->name, prog->instances.nr);
6859                 }
6860                 err = load_program(prog, prog->insns, prog->insns_cnt,
6861                                    license, kern_ver, &fd);
6862                 if (!err)
6863                         prog->instances.fds[0] = fd;
6864                 goto out;
6865         }
6866
6867         for (i = 0; i < prog->instances.nr; i++) {
6868                 struct bpf_prog_prep_result result;
6869                 bpf_program_prep_t preprocessor = prog->preprocessor;
6870
6871                 memset(&result, 0, sizeof(result));
6872                 err = preprocessor(prog, i, prog->insns,
6873                                    prog->insns_cnt, &result);
6874                 if (err) {
6875                         pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6876                                 i, prog->name);
6877                         goto out;
6878                 }
6879
6880                 if (!result.new_insn_ptr || !result.new_insn_cnt) {
6881                         pr_debug("Skip loading the %dth instance of program '%s'\n",
6882                                  i, prog->name);
6883                         prog->instances.fds[i] = -1;
6884                         if (result.pfd)
6885                                 *result.pfd = -1;
6886                         continue;
6887                 }
6888
6889                 err = load_program(prog, result.new_insn_ptr,
6890                                    result.new_insn_cnt, license, kern_ver, &fd);
6891                 if (err) {
6892                         pr_warn("Loading the %dth instance of program '%s' failed\n",
6893                                 i, prog->name);
6894                         goto out;
6895                 }
6896
6897                 if (result.pfd)
6898                         *result.pfd = fd;
6899                 prog->instances.fds[i] = fd;
6900         }
6901 out:
6902         if (err)
6903                 pr_warn("failed to load program '%s'\n", prog->name);
6904         zfree(&prog->insns);
6905         prog->insns_cnt = 0;
6906         return err;
6907 }
6908
6909 static int
6910 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6911 {
6912         struct bpf_program *prog;
6913         size_t i;
6914         int err;
6915
6916         for (i = 0; i < obj->nr_programs; i++) {
6917                 prog = &obj->programs[i];
6918                 err = bpf_object__sanitize_prog(obj, prog);
6919                 if (err)
6920                         return err;
6921         }
6922
6923         for (i = 0; i < obj->nr_programs; i++) {
6924                 prog = &obj->programs[i];
6925                 if (prog_is_subprog(obj, prog))
6926                         continue;
6927                 if (!prog->load) {
6928                         pr_debug("prog '%s': skipped loading\n", prog->name);
6929                         continue;
6930                 }
6931                 prog->log_level |= log_level;
6932                 err = bpf_program__load(prog, obj->license, obj->kern_version);
6933                 if (err)
6934                         return err;
6935         }
6936         return 0;
6937 }
6938
6939 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6940
6941 static struct bpf_object *
6942 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6943                    const struct bpf_object_open_opts *opts)
6944 {
6945         const char *obj_name, *kconfig;
6946         struct bpf_program *prog;
6947         struct bpf_object *obj;
6948         char tmp_name[64];
6949         int err;
6950
6951         if (elf_version(EV_CURRENT) == EV_NONE) {
6952                 pr_warn("failed to init libelf for %s\n",
6953                         path ? : "(mem buf)");
6954                 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6955         }
6956
6957         if (!OPTS_VALID(opts, bpf_object_open_opts))
6958                 return ERR_PTR(-EINVAL);
6959
6960         obj_name = OPTS_GET(opts, object_name, NULL);
6961         if (obj_buf) {
6962                 if (!obj_name) {
6963                         snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6964                                  (unsigned long)obj_buf,
6965                                  (unsigned long)obj_buf_sz);
6966                         obj_name = tmp_name;
6967                 }
6968                 path = obj_name;
6969                 pr_debug("loading object '%s' from buffer\n", obj_name);
6970         }
6971
6972         obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6973         if (IS_ERR(obj))
6974                 return obj;
6975
6976         kconfig = OPTS_GET(opts, kconfig, NULL);
6977         if (kconfig) {
6978                 obj->kconfig = strdup(kconfig);
6979                 if (!obj->kconfig) {
6980                         err = -ENOMEM;
6981                         goto out;
6982                 }
6983         }
6984
6985         err = bpf_object__elf_init(obj);
6986         err = err ? : bpf_object__check_endianness(obj);
6987         err = err ? : bpf_object__elf_collect(obj);
6988         err = err ? : bpf_object__collect_externs(obj);
6989         err = err ? : bpf_object__finalize_btf(obj);
6990         err = err ? : bpf_object__init_maps(obj, opts);
6991         err = err ? : bpf_object__collect_relos(obj);
6992         if (err)
6993                 goto out;
6994         bpf_object__elf_finish(obj);
6995
6996         bpf_object__for_each_program(prog, obj) {
6997                 prog->sec_def = find_sec_def(prog->sec_name);
6998                 if (!prog->sec_def)
6999                         /* couldn't guess, but user might manually specify */
7000                         continue;
7001
7002                 if (prog->sec_def->is_sleepable)
7003                         prog->prog_flags |= BPF_F_SLEEPABLE;
7004                 bpf_program__set_type(prog, prog->sec_def->prog_type);
7005                 bpf_program__set_expected_attach_type(prog,
7006                                 prog->sec_def->expected_attach_type);
7007
7008                 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7009                     prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7010                         prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7011         }
7012
7013         return obj;
7014 out:
7015         bpf_object__close(obj);
7016         return ERR_PTR(err);
7017 }
7018
7019 static struct bpf_object *
7020 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7021 {
7022         DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7023                 .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7024         );
7025
7026         /* param validation */
7027         if (!attr->file)
7028                 return NULL;
7029
7030         pr_debug("loading %s\n", attr->file);
7031         return __bpf_object__open(attr->file, NULL, 0, &opts);
7032 }
7033
7034 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7035 {
7036         return __bpf_object__open_xattr(attr, 0);
7037 }
7038
7039 struct bpf_object *bpf_object__open(const char *path)
7040 {
7041         struct bpf_object_open_attr attr = {
7042                 .file           = path,
7043                 .prog_type      = BPF_PROG_TYPE_UNSPEC,
7044         };
7045
7046         return bpf_object__open_xattr(&attr);
7047 }
7048
7049 struct bpf_object *
7050 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7051 {
7052         if (!path)
7053                 return ERR_PTR(-EINVAL);
7054
7055         pr_debug("loading %s\n", path);
7056
7057         return __bpf_object__open(path, NULL, 0, opts);
7058 }
7059
7060 struct bpf_object *
7061 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7062                      const struct bpf_object_open_opts *opts)
7063 {
7064         if (!obj_buf || obj_buf_sz == 0)
7065                 return ERR_PTR(-EINVAL);
7066
7067         return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7068 }
7069
7070 struct bpf_object *
7071 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7072                         const char *name)
7073 {
7074         DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7075                 .object_name = name,
7076                 /* wrong default, but backwards-compatible */
7077                 .relaxed_maps = true,
7078         );
7079
7080         /* returning NULL is wrong, but backwards-compatible */
7081         if (!obj_buf || obj_buf_sz == 0)
7082                 return NULL;
7083
7084         return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7085 }
7086
7087 int bpf_object__unload(struct bpf_object *obj)
7088 {
7089         size_t i;
7090
7091         if (!obj)
7092                 return -EINVAL;
7093
7094         for (i = 0; i < obj->nr_maps; i++) {
7095                 zclose(obj->maps[i].fd);
7096                 if (obj->maps[i].st_ops)
7097                         zfree(&obj->maps[i].st_ops->kern_vdata);
7098         }
7099
7100         for (i = 0; i < obj->nr_programs; i++)
7101                 bpf_program__unload(&obj->programs[i]);
7102
7103         return 0;
7104 }
7105
7106 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7107 {
7108         struct bpf_map *m;
7109
7110         bpf_object__for_each_map(m, obj) {
7111                 if (!bpf_map__is_internal(m))
7112                         continue;
7113                 if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7114                         pr_warn("kernel doesn't support global data\n");
7115                         return -ENOTSUP;
7116                 }
7117                 if (!kernel_supports(FEAT_ARRAY_MMAP))
7118                         m->def.map_flags ^= BPF_F_MMAPABLE;
7119         }
7120
7121         return 0;
7122 }
7123
7124 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7125 {
7126         char sym_type, sym_name[500];
7127         unsigned long long sym_addr;
7128         struct extern_desc *ext;
7129         int ret, err = 0;
7130         FILE *f;
7131
7132         f = fopen("/proc/kallsyms", "r");
7133         if (!f) {
7134                 err = -errno;
7135                 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7136                 return err;
7137         }
7138
7139         while (true) {
7140                 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7141                              &sym_addr, &sym_type, sym_name);
7142                 if (ret == EOF && feof(f))
7143                         break;
7144                 if (ret != 3) {
7145                         pr_warn("failed to read kallsyms entry: %d\n", ret);
7146                         err = -EINVAL;
7147                         goto out;
7148                 }
7149
7150                 ext = find_extern_by_name(obj, sym_name);
7151                 if (!ext || ext->type != EXT_KSYM)
7152                         continue;
7153
7154                 if (ext->is_set && ext->ksym.addr != sym_addr) {
7155                         pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7156                                 sym_name, ext->ksym.addr, sym_addr);
7157                         err = -EINVAL;
7158                         goto out;
7159                 }
7160                 if (!ext->is_set) {
7161                         ext->is_set = true;
7162                         ext->ksym.addr = sym_addr;
7163                         pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7164                 }
7165         }
7166
7167 out:
7168         fclose(f);
7169         return err;
7170 }
7171
7172 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7173 {
7174         struct extern_desc *ext;
7175         int i, id;
7176
7177         for (i = 0; i < obj->nr_extern; i++) {
7178                 const struct btf_type *targ_var, *targ_type;
7179                 __u32 targ_type_id, local_type_id;
7180                 const char *targ_var_name;
7181                 int ret;
7182
7183                 ext = &obj->externs[i];
7184                 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7185                         continue;
7186
7187                 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7188                                             BTF_KIND_VAR);
7189                 if (id <= 0) {
7190                         pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7191                                 ext->name);
7192                         return -ESRCH;
7193                 }
7194
7195                 /* find local type_id */
7196                 local_type_id = ext->ksym.type_id;
7197
7198                 /* find target type_id */
7199                 targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7200                 targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7201                                                     targ_var->name_off);
7202                 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7203                                                    targ_var->type,
7204                                                    &targ_type_id);
7205
7206                 ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7207                                                 obj->btf_vmlinux, targ_type_id);
7208                 if (ret <= 0) {
7209                         const struct btf_type *local_type;
7210                         const char *targ_name, *local_name;
7211
7212                         local_type = btf__type_by_id(obj->btf, local_type_id);
7213                         local_name = btf__name_by_offset(obj->btf,
7214                                                          local_type->name_off);
7215                         targ_name = btf__name_by_offset(obj->btf_vmlinux,
7216                                                         targ_type->name_off);
7217
7218                         pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7219                                 ext->name, local_type_id,
7220                                 btf_kind_str(local_type), local_name, targ_type_id,
7221                                 btf_kind_str(targ_type), targ_name);
7222                         return -EINVAL;
7223                 }
7224
7225                 ext->is_set = true;
7226                 ext->ksym.vmlinux_btf_id = id;
7227                 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7228                          ext->name, id, btf_kind_str(targ_var), targ_var_name);
7229         }
7230         return 0;
7231 }
7232
7233 static int bpf_object__resolve_externs(struct bpf_object *obj,
7234                                        const char *extra_kconfig)
7235 {
7236         bool need_config = false, need_kallsyms = false;
7237         bool need_vmlinux_btf = false;
7238         struct extern_desc *ext;
7239         void *kcfg_data = NULL;
7240         int err, i;
7241
7242         if (obj->nr_extern == 0)
7243                 return 0;
7244
7245         if (obj->kconfig_map_idx >= 0)
7246                 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7247
7248         for (i = 0; i < obj->nr_extern; i++) {
7249                 ext = &obj->externs[i];
7250
7251                 if (ext->type == EXT_KCFG &&
7252                     strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7253                         void *ext_val = kcfg_data + ext->kcfg.data_off;
7254                         __u32 kver = get_kernel_version();
7255
7256                         if (!kver) {
7257                                 pr_warn("failed to get kernel version\n");
7258                                 return -EINVAL;
7259                         }
7260                         err = set_kcfg_value_num(ext, ext_val, kver);
7261                         if (err)
7262                                 return err;
7263                         pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7264                 } else if (ext->type == EXT_KCFG &&
7265                            strncmp(ext->name, "CONFIG_", 7) == 0) {
7266                         need_config = true;
7267                 } else if (ext->type == EXT_KSYM) {
7268                         if (ext->ksym.type_id)
7269                                 need_vmlinux_btf = true;
7270                         else
7271                                 need_kallsyms = true;
7272                 } else {
7273                         pr_warn("unrecognized extern '%s'\n", ext->name);
7274                         return -EINVAL;
7275                 }
7276         }
7277         if (need_config && extra_kconfig) {
7278                 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7279                 if (err)
7280                         return -EINVAL;
7281                 need_config = false;
7282                 for (i = 0; i < obj->nr_extern; i++) {
7283                         ext = &obj->externs[i];
7284                         if (ext->type == EXT_KCFG && !ext->is_set) {
7285                                 need_config = true;
7286                                 break;
7287                         }
7288                 }
7289         }
7290         if (need_config) {
7291                 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7292                 if (err)
7293                         return -EINVAL;
7294         }
7295         if (need_kallsyms) {
7296                 err = bpf_object__read_kallsyms_file(obj);
7297                 if (err)
7298                         return -EINVAL;
7299         }
7300         if (need_vmlinux_btf) {
7301                 err = bpf_object__resolve_ksyms_btf_id(obj);
7302                 if (err)
7303                         return -EINVAL;
7304         }
7305         for (i = 0; i < obj->nr_extern; i++) {
7306                 ext = &obj->externs[i];
7307
7308                 if (!ext->is_set && !ext->is_weak) {
7309                         pr_warn("extern %s (strong) not resolved\n", ext->name);
7310                         return -ESRCH;
7311                 } else if (!ext->is_set) {
7312                         pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7313                                  ext->name);
7314                 }
7315         }
7316
7317         return 0;
7318 }
7319
7320 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7321 {
7322         struct bpf_object *obj;
7323         int err, i;
7324
7325         if (!attr)
7326                 return -EINVAL;
7327         obj = attr->obj;
7328         if (!obj)
7329                 return -EINVAL;
7330
7331         if (obj->loaded) {
7332                 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7333                 return -EINVAL;
7334         }
7335
7336         err = bpf_object__probe_loading(obj);
7337         err = err ? : bpf_object__load_vmlinux_btf(obj);
7338         err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7339         err = err ? : bpf_object__sanitize_and_load_btf(obj);
7340         err = err ? : bpf_object__sanitize_maps(obj);
7341         err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7342         err = err ? : bpf_object__create_maps(obj);
7343         err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7344         err = err ? : bpf_object__load_progs(obj, attr->log_level);
7345
7346         btf__free(obj->btf_vmlinux);
7347         obj->btf_vmlinux = NULL;
7348
7349         obj->loaded = true; /* doesn't matter if successfully or not */
7350
7351         if (err)
7352                 goto out;
7353
7354         return 0;
7355 out:
7356         /* unpin any maps that were auto-pinned during load */
7357         for (i = 0; i < obj->nr_maps; i++)
7358                 if (obj->maps[i].pinned && !obj->maps[i].reused)
7359                         bpf_map__unpin(&obj->maps[i], NULL);
7360
7361         bpf_object__unload(obj);
7362         pr_warn("failed to load object '%s'\n", obj->path);
7363         return err;
7364 }
7365
7366 int bpf_object__load(struct bpf_object *obj)
7367 {
7368         struct bpf_object_load_attr attr = {
7369                 .obj = obj,
7370         };
7371
7372         return bpf_object__load_xattr(&attr);
7373 }
7374
7375 static int make_parent_dir(const char *path)
7376 {
7377         char *cp, errmsg[STRERR_BUFSIZE];
7378         char *dname, *dir;
7379         int err = 0;
7380
7381         dname = strdup(path);
7382         if (dname == NULL)
7383                 return -ENOMEM;
7384
7385         dir = dirname(dname);
7386         if (mkdir(dir, 0700) && errno != EEXIST)
7387                 err = -errno;
7388
7389         free(dname);
7390         if (err) {
7391                 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7392                 pr_warn("failed to mkdir %s: %s\n", path, cp);
7393         }
7394         return err;
7395 }
7396
7397 static int check_path(const char *path)
7398 {
7399         char *cp, errmsg[STRERR_BUFSIZE];
7400         struct statfs st_fs;
7401         char *dname, *dir;
7402         int err = 0;
7403
7404         if (path == NULL)
7405                 return -EINVAL;
7406
7407         dname = strdup(path);
7408         if (dname == NULL)
7409                 return -ENOMEM;
7410
7411         dir = dirname(dname);
7412         if (statfs(dir, &st_fs)) {
7413                 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7414                 pr_warn("failed to statfs %s: %s\n", dir, cp);
7415                 err = -errno;
7416         }
7417         free(dname);
7418
7419         if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7420                 pr_warn("specified path %s is not on BPF FS\n", path);
7421                 err = -EINVAL;
7422         }
7423
7424         return err;
7425 }
7426
7427 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7428                               int instance)
7429 {
7430         char *cp, errmsg[STRERR_BUFSIZE];
7431         int err;
7432
7433         err = make_parent_dir(path);
7434         if (err)
7435                 return err;
7436
7437         err = check_path(path);
7438         if (err)
7439                 return err;
7440
7441         if (prog == NULL) {
7442                 pr_warn("invalid program pointer\n");
7443                 return -EINVAL;
7444         }
7445
7446         if (instance < 0 || instance >= prog->instances.nr) {
7447                 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7448                         instance, prog->name, prog->instances.nr);
7449                 return -EINVAL;
7450         }
7451
7452         if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7453                 err = -errno;
7454                 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7455                 pr_warn("failed to pin program: %s\n", cp);
7456                 return err;
7457         }
7458         pr_debug("pinned program '%s'\n", path);
7459
7460         return 0;
7461 }
7462
7463 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7464                                 int instance)
7465 {
7466         int err;
7467
7468         err = check_path(path);
7469         if (err)
7470                 return err;
7471
7472         if (prog == NULL) {
7473                 pr_warn("invalid program pointer\n");
7474                 return -EINVAL;
7475         }
7476
7477         if (instance < 0 || instance >= prog->instances.nr) {
7478                 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7479                         instance, prog->name, prog->instances.nr);
7480                 return -EINVAL;
7481         }
7482
7483         err = unlink(path);
7484         if (err != 0)
7485                 return -errno;
7486         pr_debug("unpinned program '%s'\n", path);
7487
7488         return 0;
7489 }
7490
7491 int bpf_program__pin(struct bpf_program *prog, const char *path)
7492 {
7493         int i, err;
7494
7495         err = make_parent_dir(path);
7496         if (err)
7497                 return err;
7498
7499         err = check_path(path);
7500         if (err)
7501                 return err;
7502
7503         if (prog == NULL) {
7504                 pr_warn("invalid program pointer\n");
7505                 return -EINVAL;
7506         }
7507
7508         if (prog->instances.nr <= 0) {
7509                 pr_warn("no instances of prog %s to pin\n", prog->name);
7510                 return -EINVAL;
7511         }
7512
7513         if (prog->instances.nr == 1) {
7514                 /* don't create subdirs when pinning single instance */
7515                 return bpf_program__pin_instance(prog, path, 0);
7516         }
7517
7518         for (i = 0; i < prog->instances.nr; i++) {
7519                 char buf[PATH_MAX];
7520                 int len;
7521
7522                 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7523                 if (len < 0) {
7524                         err = -EINVAL;
7525                         goto err_unpin;
7526                 } else if (len >= PATH_MAX) {
7527                         err = -ENAMETOOLONG;
7528                         goto err_unpin;
7529                 }
7530
7531                 err = bpf_program__pin_instance(prog, buf, i);
7532                 if (err)
7533                         goto err_unpin;
7534         }
7535
7536         return 0;
7537
7538 err_unpin:
7539         for (i = i - 1; i >= 0; i--) {
7540                 char buf[PATH_MAX];
7541                 int len;
7542
7543                 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7544                 if (len < 0)
7545                         continue;
7546                 else if (len >= PATH_MAX)
7547                         continue;
7548
7549                 bpf_program__unpin_instance(prog, buf, i);
7550         }
7551
7552         rmdir(path);
7553
7554         return err;
7555 }
7556
7557 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7558 {
7559         int i, err;
7560
7561         err = check_path(path);
7562         if (err)
7563                 return err;
7564
7565         if (prog == NULL) {
7566                 pr_warn("invalid program pointer\n");
7567                 return -EINVAL;
7568         }
7569
7570         if (prog->instances.nr <= 0) {
7571                 pr_warn("no instances of prog %s to pin\n", prog->name);
7572                 return -EINVAL;
7573         }
7574
7575         if (prog->instances.nr == 1) {
7576                 /* don't create subdirs when pinning single instance */
7577                 return bpf_program__unpin_instance(prog, path, 0);
7578         }
7579
7580         for (i = 0; i < prog->instances.nr; i++) {
7581                 char buf[PATH_MAX];
7582                 int len;
7583
7584                 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7585                 if (len < 0)
7586                         return -EINVAL;
7587                 else if (len >= PATH_MAX)
7588                         return -ENAMETOOLONG;
7589
7590                 err = bpf_program__unpin_instance(prog, buf, i);
7591                 if (err)
7592                         return err;
7593         }
7594
7595         err = rmdir(path);
7596         if (err)
7597                 return -errno;
7598
7599         return 0;
7600 }
7601
7602 int bpf_map__pin(struct bpf_map *map, const char *path)
7603 {
7604         char *cp, errmsg[STRERR_BUFSIZE];
7605         int err;
7606
7607         if (map == NULL) {
7608                 pr_warn("invalid map pointer\n");
7609                 return -EINVAL;
7610         }
7611
7612         if (map->pin_path) {
7613                 if (path && strcmp(path, map->pin_path)) {
7614                         pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7615                                 bpf_map__name(map), map->pin_path, path);
7616                         return -EINVAL;
7617                 } else if (map->pinned) {
7618                         pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7619                                  bpf_map__name(map), map->pin_path);
7620                         return 0;
7621                 }
7622         } else {
7623                 if (!path) {
7624                         pr_warn("missing a path to pin map '%s' at\n",
7625                                 bpf_map__name(map));
7626                         return -EINVAL;
7627                 } else if (map->pinned) {
7628                         pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7629                         return -EEXIST;
7630                 }
7631
7632                 map->pin_path = strdup(path);
7633                 if (!map->pin_path) {
7634                         err = -errno;
7635                         goto out_err;
7636                 }
7637         }
7638
7639         err = make_parent_dir(map->pin_path);
7640         if (err)
7641                 return err;
7642
7643         err = check_path(map->pin_path);
7644         if (err)
7645                 return err;
7646
7647         if (bpf_obj_pin(map->fd, map->pin_path)) {
7648                 err = -errno;
7649                 goto out_err;
7650         }
7651
7652         map->pinned = true;
7653         pr_debug("pinned map '%s'\n", map->pin_path);
7654
7655         return 0;
7656
7657 out_err:
7658         cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7659         pr_warn("failed to pin map: %s\n", cp);
7660         return err;
7661 }
7662
7663 int bpf_map__unpin(struct bpf_map *map, const char *path)
7664 {
7665         int err;
7666
7667         if (map == NULL) {
7668                 pr_warn("invalid map pointer\n");
7669                 return -EINVAL;
7670         }
7671
7672         if (map->pin_path) {
7673                 if (path && strcmp(path, map->pin_path)) {
7674                         pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7675                                 bpf_map__name(map), map->pin_path, path);
7676                         return -EINVAL;
7677                 }
7678                 path = map->pin_path;
7679         } else if (!path) {
7680                 pr_warn("no path to unpin map '%s' from\n",
7681                         bpf_map__name(map));
7682                 return -EINVAL;
7683         }
7684
7685         err = check_path(path);
7686         if (err)
7687                 return err;
7688
7689         err = unlink(path);
7690         if (err != 0)
7691                 return -errno;
7692
7693         map->pinned = false;
7694         pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7695
7696         return 0;
7697 }
7698
7699 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7700 {
7701         char *new = NULL;
7702
7703         if (path) {
7704                 new = strdup(path);
7705                 if (!new)
7706                         return -errno;
7707         }
7708
7709         free(map->pin_path);
7710         map->pin_path = new;
7711         return 0;
7712 }
7713
7714 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7715 {
7716         return map->pin_path;
7717 }
7718
7719 bool bpf_map__is_pinned(const struct bpf_map *map)
7720 {
7721         return map->pinned;
7722 }
7723
7724 static void sanitize_pin_path(char *s)
7725 {
7726         /* bpffs disallows periods in path names */
7727         while (*s) {
7728                 if (*s == '.')
7729                         *s = '_';
7730                 s++;
7731         }
7732 }
7733
7734 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7735 {
7736         struct bpf_map *map;
7737         int err;
7738
7739         if (!obj)
7740                 return -ENOENT;
7741
7742         if (!obj->loaded) {
7743                 pr_warn("object not yet loaded; load it first\n");
7744                 return -ENOENT;
7745         }
7746
7747         bpf_object__for_each_map(map, obj) {
7748                 char *pin_path = NULL;
7749                 char buf[PATH_MAX];
7750
7751                 if (path) {
7752                         int len;
7753
7754                         len = snprintf(buf, PATH_MAX, "%s/%s", path,
7755                                        bpf_map__name(map));
7756                         if (len < 0) {
7757                                 err = -EINVAL;
7758                                 goto err_unpin_maps;
7759                         } else if (len >= PATH_MAX) {
7760                                 err = -ENAMETOOLONG;
7761                                 goto err_unpin_maps;
7762                         }
7763                         sanitize_pin_path(buf);
7764                         pin_path = buf;
7765                 } else if (!map->pin_path) {
7766                         continue;
7767                 }
7768
7769                 err = bpf_map__pin(map, pin_path);
7770                 if (err)
7771                         goto err_unpin_maps;
7772         }
7773
7774         return 0;
7775
7776 err_unpin_maps:
7777         while ((map = bpf_map__prev(map, obj))) {
7778                 if (!map->pin_path)
7779                         continue;
7780
7781                 bpf_map__unpin(map, NULL);
7782         }
7783
7784         return err;
7785 }
7786
7787 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7788 {
7789         struct bpf_map *map;
7790         int err;
7791
7792         if (!obj)
7793                 return -ENOENT;
7794
7795         bpf_object__for_each_map(map, obj) {
7796                 char *pin_path = NULL;
7797                 char buf[PATH_MAX];
7798
7799                 if (path) {
7800                         int len;
7801
7802                         len = snprintf(buf, PATH_MAX, "%s/%s", path,
7803                                        bpf_map__name(map));
7804                         if (len < 0)
7805                                 return -EINVAL;
7806                         else if (len >= PATH_MAX)
7807                                 return -ENAMETOOLONG;
7808                         sanitize_pin_path(buf);
7809                         pin_path = buf;
7810                 } else if (!map->pin_path) {
7811                         continue;
7812                 }
7813
7814                 err = bpf_map__unpin(map, pin_path);
7815                 if (err)
7816                         return err;
7817         }
7818
7819         return 0;
7820 }
7821
7822 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7823 {
7824         struct bpf_program *prog;
7825         int err;
7826
7827         if (!obj)
7828                 return -ENOENT;
7829
7830         if (!obj->loaded) {
7831                 pr_warn("object not yet loaded; load it first\n");
7832                 return -ENOENT;
7833         }
7834
7835         bpf_object__for_each_program(prog, obj) {
7836                 char buf[PATH_MAX];
7837                 int len;
7838
7839                 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7840                                prog->pin_name);
7841                 if (len < 0) {
7842                         err = -EINVAL;
7843                         goto err_unpin_programs;
7844                 } else if (len >= PATH_MAX) {
7845                         err = -ENAMETOOLONG;
7846                         goto err_unpin_programs;
7847                 }
7848
7849                 err = bpf_program__pin(prog, buf);
7850                 if (err)
7851                         goto err_unpin_programs;
7852         }
7853
7854         return 0;
7855
7856 err_unpin_programs:
7857         while ((prog = bpf_program__prev(prog, obj))) {
7858                 char buf[PATH_MAX];
7859                 int len;
7860
7861                 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7862                                prog->pin_name);
7863                 if (len < 0)
7864                         continue;
7865                 else if (len >= PATH_MAX)
7866                         continue;
7867
7868                 bpf_program__unpin(prog, buf);
7869         }
7870
7871         return err;
7872 }
7873
7874 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7875 {
7876         struct bpf_program *prog;
7877         int err;
7878
7879         if (!obj)
7880                 return -ENOENT;
7881
7882         bpf_object__for_each_program(prog, obj) {
7883                 char buf[PATH_MAX];
7884                 int len;
7885
7886                 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7887                                prog->pin_name);
7888                 if (len < 0)
7889                         return -EINVAL;
7890                 else if (len >= PATH_MAX)
7891                         return -ENAMETOOLONG;
7892
7893                 err = bpf_program__unpin(prog, buf);
7894                 if (err)
7895                         return err;
7896         }
7897
7898         return 0;
7899 }
7900
7901 int bpf_object__pin(struct bpf_object *obj, const char *path)
7902 {
7903         int err;
7904
7905         err = bpf_object__pin_maps(obj, path);
7906         if (err)
7907                 return err;
7908
7909         err = bpf_object__pin_programs(obj, path);
7910         if (err) {
7911                 bpf_object__unpin_maps(obj, path);
7912                 return err;
7913         }
7914
7915         return 0;
7916 }
7917
7918 static void bpf_map__destroy(struct bpf_map *map)
7919 {
7920         if (map->clear_priv)
7921                 map->clear_priv(map, map->priv);
7922         map->priv = NULL;
7923         map->clear_priv = NULL;
7924
7925         if (map->inner_map) {
7926                 bpf_map__destroy(map->inner_map);
7927                 zfree(&map->inner_map);
7928         }
7929
7930         zfree(&map->init_slots);
7931         map->init_slots_sz = 0;
7932
7933         if (map->mmaped) {
7934                 munmap(map->mmaped, bpf_map_mmap_sz(map));
7935                 map->mmaped = NULL;
7936         }
7937
7938         if (map->st_ops) {
7939                 zfree(&map->st_ops->data);
7940                 zfree(&map->st_ops->progs);
7941                 zfree(&map->st_ops->kern_func_off);
7942                 zfree(&map->st_ops);
7943         }
7944
7945         zfree(&map->name);
7946         zfree(&map->pin_path);
7947
7948         if (map->fd >= 0)
7949                 zclose(map->fd);
7950 }
7951
7952 void bpf_object__close(struct bpf_object *obj)
7953 {
7954         size_t i;
7955
7956         if (IS_ERR_OR_NULL(obj))
7957                 return;
7958
7959         if (obj->clear_priv)
7960                 obj->clear_priv(obj, obj->priv);
7961
7962         bpf_object__elf_finish(obj);
7963         bpf_object__unload(obj);
7964         btf__free(obj->btf);
7965         btf_ext__free(obj->btf_ext);
7966
7967         for (i = 0; i < obj->nr_maps; i++)
7968                 bpf_map__destroy(&obj->maps[i]);
7969
7970         zfree(&obj->kconfig);
7971         zfree(&obj->externs);
7972         obj->nr_extern = 0;
7973
7974         zfree(&obj->maps);
7975         obj->nr_maps = 0;
7976
7977         if (obj->programs && obj->nr_programs) {
7978                 for (i = 0; i < obj->nr_programs; i++)
7979                         bpf_program__exit(&obj->programs[i]);
7980         }
7981         zfree(&obj->programs);
7982
7983         list_del(&obj->list);
7984         free(obj);
7985 }
7986
7987 struct bpf_object *
7988 bpf_object__next(struct bpf_object *prev)
7989 {
7990         struct bpf_object *next;
7991
7992         if (!prev)
7993                 next = list_first_entry(&bpf_objects_list,
7994                                         struct bpf_object,
7995                                         list);
7996         else
7997                 next = list_next_entry(prev, list);
7998
7999         /* Empty list is noticed here so don't need checking on entry. */
8000         if (&next->list == &bpf_objects_list)
8001                 return NULL;
8002
8003         return next;
8004 }
8005
8006 const char *bpf_object__name(const struct bpf_object *obj)
8007 {
8008         return obj ? obj->name : ERR_PTR(-EINVAL);
8009 }
8010
8011 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8012 {
8013         return obj ? obj->kern_version : 0;
8014 }
8015
8016 struct btf *bpf_object__btf(const struct bpf_object *obj)
8017 {
8018         return obj ? obj->btf : NULL;
8019 }
8020
8021 int bpf_object__btf_fd(const struct bpf_object *obj)
8022 {
8023         return obj->btf ? btf__fd(obj->btf) : -1;
8024 }
8025
8026 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8027                          bpf_object_clear_priv_t clear_priv)
8028 {
8029         if (obj->priv && obj->clear_priv)
8030                 obj->clear_priv(obj, obj->priv);
8031
8032         obj->priv = priv;
8033         obj->clear_priv = clear_priv;
8034         return 0;
8035 }
8036
8037 void *bpf_object__priv(const struct bpf_object *obj)
8038 {
8039         return obj ? obj->priv : ERR_PTR(-EINVAL);
8040 }
8041
8042 static struct bpf_program *
8043 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8044                     bool forward)
8045 {
8046         size_t nr_programs = obj->nr_programs;
8047         ssize_t idx;
8048
8049         if (!nr_programs)
8050                 return NULL;
8051
8052         if (!p)
8053                 /* Iter from the beginning */
8054                 return forward ? &obj->programs[0] :
8055                         &obj->programs[nr_programs - 1];
8056
8057         if (p->obj != obj) {
8058                 pr_warn("error: program handler doesn't match object\n");
8059                 return NULL;
8060         }
8061
8062         idx = (p - obj->programs) + (forward ? 1 : -1);
8063         if (idx >= obj->nr_programs || idx < 0)
8064                 return NULL;
8065         return &obj->programs[idx];
8066 }
8067
8068 struct bpf_program *
8069 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8070 {
8071         struct bpf_program *prog = prev;
8072
8073         do {
8074                 prog = __bpf_program__iter(prog, obj, true);
8075         } while (prog && prog_is_subprog(obj, prog));
8076
8077         return prog;
8078 }
8079
8080 struct bpf_program *
8081 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8082 {
8083         struct bpf_program *prog = next;
8084
8085         do {
8086                 prog = __bpf_program__iter(prog, obj, false);
8087         } while (prog && prog_is_subprog(obj, prog));
8088
8089         return prog;
8090 }
8091
8092 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8093                           bpf_program_clear_priv_t clear_priv)
8094 {
8095         if (prog->priv && prog->clear_priv)
8096                 prog->clear_priv(prog, prog->priv);
8097
8098         prog->priv = priv;
8099         prog->clear_priv = clear_priv;
8100         return 0;
8101 }
8102
8103 void *bpf_program__priv(const struct bpf_program *prog)
8104 {
8105         return prog ? prog->priv : ERR_PTR(-EINVAL);
8106 }
8107
8108 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8109 {
8110         prog->prog_ifindex = ifindex;
8111 }
8112
8113 const char *bpf_program__name(const struct bpf_program *prog)
8114 {
8115         return prog->name;
8116 }
8117
8118 const char *bpf_program__section_name(const struct bpf_program *prog)
8119 {
8120         return prog->sec_name;
8121 }
8122
8123 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8124 {
8125         const char *title;
8126
8127         title = prog->sec_name;
8128         if (needs_copy) {
8129                 title = strdup(title);
8130                 if (!title) {
8131                         pr_warn("failed to strdup program title\n");
8132                         return ERR_PTR(-ENOMEM);
8133                 }
8134         }
8135
8136         return title;
8137 }
8138
8139 bool bpf_program__autoload(const struct bpf_program *prog)
8140 {
8141         return prog->load;
8142 }
8143
8144 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8145 {
8146         if (prog->obj->loaded)
8147                 return -EINVAL;
8148
8149         prog->load = autoload;
8150         return 0;
8151 }
8152
8153 int bpf_program__fd(const struct bpf_program *prog)
8154 {
8155         return bpf_program__nth_fd(prog, 0);
8156 }
8157
8158 size_t bpf_program__size(const struct bpf_program *prog)
8159 {
8160         return prog->insns_cnt * BPF_INSN_SZ;
8161 }
8162
8163 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8164                           bpf_program_prep_t prep)
8165 {
8166         int *instances_fds;
8167
8168         if (nr_instances <= 0 || !prep)
8169                 return -EINVAL;
8170
8171         if (prog->instances.nr > 0 || prog->instances.fds) {
8172                 pr_warn("Can't set pre-processor after loading\n");
8173                 return -EINVAL;
8174         }
8175
8176         instances_fds = malloc(sizeof(int) * nr_instances);
8177         if (!instances_fds) {
8178                 pr_warn("alloc memory failed for fds\n");
8179                 return -ENOMEM;
8180         }
8181
8182         /* fill all fd with -1 */
8183         memset(instances_fds, -1, sizeof(int) * nr_instances);
8184
8185         prog->instances.nr = nr_instances;
8186         prog->instances.fds = instances_fds;
8187         prog->preprocessor = prep;
8188         return 0;
8189 }
8190
8191 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8192 {
8193         int fd;
8194
8195         if (!prog)
8196                 return -EINVAL;
8197
8198         if (n >= prog->instances.nr || n < 0) {
8199                 pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8200                         n, prog->name, prog->instances.nr);
8201                 return -EINVAL;
8202         }
8203
8204         fd = prog->instances.fds[n];
8205         if (fd < 0) {
8206                 pr_warn("%dth instance of program '%s' is invalid\n",
8207                         n, prog->name);
8208                 return -ENOENT;
8209         }
8210
8211         return fd;
8212 }
8213
8214 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8215 {
8216         return prog->type;
8217 }
8218
8219 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8220 {
8221         prog->type = type;
8222 }
8223
8224 static bool bpf_program__is_type(const struct bpf_program *prog,
8225                                  enum bpf_prog_type type)
8226 {
8227         return prog ? (prog->type == type) : false;
8228 }
8229
8230 #define BPF_PROG_TYPE_FNS(NAME, TYPE)                           \
8231 int bpf_program__set_##NAME(struct bpf_program *prog)           \
8232 {                                                               \
8233         if (!prog)                                              \
8234                 return -EINVAL;                                 \
8235         bpf_program__set_type(prog, TYPE);                      \
8236         return 0;                                               \
8237 }                                                               \
8238                                                                 \
8239 bool bpf_program__is_##NAME(const struct bpf_program *prog)     \
8240 {                                                               \
8241         return bpf_program__is_type(prog, TYPE);                \
8242 }                                                               \
8243
8244 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8245 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8246 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8247 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8248 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8249 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8250 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8251 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8252 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8253 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8254 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8255 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8256 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8257
8258 enum bpf_attach_type
8259 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8260 {
8261         return prog->expected_attach_type;
8262 }
8263
8264 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8265                                            enum bpf_attach_type type)
8266 {
8267         prog->expected_attach_type = type;
8268 }
8269
8270 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,           \
8271                           attachable, attach_btf)                           \
8272         {                                                                   \
8273                 .sec = string,                                              \
8274                 .len = sizeof(string) - 1,                                  \
8275                 .prog_type = ptype,                                         \
8276                 .expected_attach_type = eatype,                             \
8277                 .is_exp_attach_type_optional = eatype_optional,             \
8278                 .is_attachable = attachable,                                \
8279                 .is_attach_btf = attach_btf,                                \
8280         }
8281
8282 /* Programs that can NOT be attached. */
8283 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8284
8285 /* Programs that can be attached. */
8286 #define BPF_APROG_SEC(string, ptype, atype) \
8287         BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8288
8289 /* Programs that must specify expected attach type at load time. */
8290 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8291         BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8292
8293 /* Programs that use BTF to identify attach point */
8294 #define BPF_PROG_BTF(string, ptype, eatype) \
8295         BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8296
8297 /* Programs that can be attached but attach type can't be identified by section
8298  * name. Kept for backward compatibility.
8299  */
8300 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8301
8302 #define SEC_DEF(sec_pfx, ptype, ...) {                                      \
8303         .sec = sec_pfx,                                                     \
8304         .len = sizeof(sec_pfx) - 1,                                         \
8305         .prog_type = BPF_PROG_TYPE_##ptype,                                 \
8306         __VA_ARGS__                                                         \
8307 }
8308
8309 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8310                                       struct bpf_program *prog);
8311 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8312                                   struct bpf_program *prog);
8313 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8314                                       struct bpf_program *prog);
8315 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8316                                      struct bpf_program *prog);
8317 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8318                                    struct bpf_program *prog);
8319 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8320                                     struct bpf_program *prog);
8321
8322 static const struct bpf_sec_def section_defs[] = {
8323         BPF_PROG_SEC("socket",                  BPF_PROG_TYPE_SOCKET_FILTER),
8324         BPF_PROG_SEC("sk_reuseport",            BPF_PROG_TYPE_SK_REUSEPORT),
8325         SEC_DEF("kprobe/", KPROBE,
8326                 .attach_fn = attach_kprobe),
8327         BPF_PROG_SEC("uprobe/",                 BPF_PROG_TYPE_KPROBE),
8328         SEC_DEF("kretprobe/", KPROBE,
8329                 .attach_fn = attach_kprobe),
8330         BPF_PROG_SEC("uretprobe/",              BPF_PROG_TYPE_KPROBE),
8331         BPF_PROG_SEC("classifier",              BPF_PROG_TYPE_SCHED_CLS),
8332         BPF_PROG_SEC("action",                  BPF_PROG_TYPE_SCHED_ACT),
8333         SEC_DEF("tracepoint/", TRACEPOINT,
8334                 .attach_fn = attach_tp),
8335         SEC_DEF("tp/", TRACEPOINT,
8336                 .attach_fn = attach_tp),
8337         SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8338                 .attach_fn = attach_raw_tp),
8339         SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8340                 .attach_fn = attach_raw_tp),
8341         SEC_DEF("tp_btf/", TRACING,
8342                 .expected_attach_type = BPF_TRACE_RAW_TP,
8343                 .is_attach_btf = true,
8344                 .attach_fn = attach_trace),
8345         SEC_DEF("fentry/", TRACING,
8346                 .expected_attach_type = BPF_TRACE_FENTRY,
8347                 .is_attach_btf = true,
8348                 .attach_fn = attach_trace),
8349         SEC_DEF("fmod_ret/", TRACING,
8350                 .expected_attach_type = BPF_MODIFY_RETURN,
8351                 .is_attach_btf = true,
8352                 .attach_fn = attach_trace),
8353         SEC_DEF("fexit/", TRACING,
8354                 .expected_attach_type = BPF_TRACE_FEXIT,
8355                 .is_attach_btf = true,
8356                 .attach_fn = attach_trace),
8357         SEC_DEF("fentry.s/", TRACING,
8358                 .expected_attach_type = BPF_TRACE_FENTRY,
8359                 .is_attach_btf = true,
8360                 .is_sleepable = true,
8361                 .attach_fn = attach_trace),
8362         SEC_DEF("fmod_ret.s/", TRACING,
8363                 .expected_attach_type = BPF_MODIFY_RETURN,
8364                 .is_attach_btf = true,
8365                 .is_sleepable = true,
8366                 .attach_fn = attach_trace),
8367         SEC_DEF("fexit.s/", TRACING,
8368                 .expected_attach_type = BPF_TRACE_FEXIT,
8369                 .is_attach_btf = true,
8370                 .is_sleepable = true,
8371                 .attach_fn = attach_trace),
8372         SEC_DEF("freplace/", EXT,
8373                 .is_attach_btf = true,
8374                 .attach_fn = attach_trace),
8375         SEC_DEF("lsm/", LSM,
8376                 .is_attach_btf = true,
8377                 .expected_attach_type = BPF_LSM_MAC,
8378                 .attach_fn = attach_lsm),
8379         SEC_DEF("lsm.s/", LSM,
8380                 .is_attach_btf = true,
8381                 .is_sleepable = true,
8382                 .expected_attach_type = BPF_LSM_MAC,
8383                 .attach_fn = attach_lsm),
8384         SEC_DEF("iter/", TRACING,
8385                 .expected_attach_type = BPF_TRACE_ITER,
8386                 .is_attach_btf = true,
8387                 .attach_fn = attach_iter),
8388         BPF_EAPROG_SEC("xdp_devmap/",           BPF_PROG_TYPE_XDP,
8389                                                 BPF_XDP_DEVMAP),
8390         BPF_EAPROG_SEC("xdp_cpumap/",           BPF_PROG_TYPE_XDP,
8391                                                 BPF_XDP_CPUMAP),
8392         BPF_APROG_SEC("xdp",                    BPF_PROG_TYPE_XDP,
8393                                                 BPF_XDP),
8394         BPF_PROG_SEC("perf_event",              BPF_PROG_TYPE_PERF_EVENT),
8395         BPF_PROG_SEC("lwt_in",                  BPF_PROG_TYPE_LWT_IN),
8396         BPF_PROG_SEC("lwt_out",                 BPF_PROG_TYPE_LWT_OUT),
8397         BPF_PROG_SEC("lwt_xmit",                BPF_PROG_TYPE_LWT_XMIT),
8398         BPF_PROG_SEC("lwt_seg6local",           BPF_PROG_TYPE_LWT_SEG6LOCAL),
8399         BPF_APROG_SEC("cgroup_skb/ingress",     BPF_PROG_TYPE_CGROUP_SKB,
8400                                                 BPF_CGROUP_INET_INGRESS),
8401         BPF_APROG_SEC("cgroup_skb/egress",      BPF_PROG_TYPE_CGROUP_SKB,
8402                                                 BPF_CGROUP_INET_EGRESS),
8403         BPF_APROG_COMPAT("cgroup/skb",          BPF_PROG_TYPE_CGROUP_SKB),
8404         BPF_EAPROG_SEC("cgroup/sock_create",    BPF_PROG_TYPE_CGROUP_SOCK,
8405                                                 BPF_CGROUP_INET_SOCK_CREATE),
8406         BPF_EAPROG_SEC("cgroup/sock_release",   BPF_PROG_TYPE_CGROUP_SOCK,
8407                                                 BPF_CGROUP_INET_SOCK_RELEASE),
8408         BPF_APROG_SEC("cgroup/sock",            BPF_PROG_TYPE_CGROUP_SOCK,
8409                                                 BPF_CGROUP_INET_SOCK_CREATE),
8410         BPF_EAPROG_SEC("cgroup/post_bind4",     BPF_PROG_TYPE_CGROUP_SOCK,
8411                                                 BPF_CGROUP_INET4_POST_BIND),
8412         BPF_EAPROG_SEC("cgroup/post_bind6",     BPF_PROG_TYPE_CGROUP_SOCK,
8413                                                 BPF_CGROUP_INET6_POST_BIND),
8414         BPF_APROG_SEC("cgroup/dev",             BPF_PROG_TYPE_CGROUP_DEVICE,
8415                                                 BPF_CGROUP_DEVICE),
8416         BPF_APROG_SEC("sockops",                BPF_PROG_TYPE_SOCK_OPS,
8417                                                 BPF_CGROUP_SOCK_OPS),
8418         BPF_APROG_SEC("sk_skb/stream_parser",   BPF_PROG_TYPE_SK_SKB,
8419                                                 BPF_SK_SKB_STREAM_PARSER),
8420         BPF_APROG_SEC("sk_skb/stream_verdict",  BPF_PROG_TYPE_SK_SKB,
8421                                                 BPF_SK_SKB_STREAM_VERDICT),
8422         BPF_APROG_COMPAT("sk_skb",              BPF_PROG_TYPE_SK_SKB),
8423         BPF_APROG_SEC("sk_msg",                 BPF_PROG_TYPE_SK_MSG,
8424                                                 BPF_SK_MSG_VERDICT),
8425         BPF_APROG_SEC("lirc_mode2",             BPF_PROG_TYPE_LIRC_MODE2,
8426                                                 BPF_LIRC_MODE2),
8427         BPF_APROG_SEC("flow_dissector",         BPF_PROG_TYPE_FLOW_DISSECTOR,
8428                                                 BPF_FLOW_DISSECTOR),
8429         BPF_EAPROG_SEC("cgroup/bind4",          BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8430                                                 BPF_CGROUP_INET4_BIND),
8431         BPF_EAPROG_SEC("cgroup/bind6",          BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8432                                                 BPF_CGROUP_INET6_BIND),
8433         BPF_EAPROG_SEC("cgroup/connect4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8434                                                 BPF_CGROUP_INET4_CONNECT),
8435         BPF_EAPROG_SEC("cgroup/connect6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8436                                                 BPF_CGROUP_INET6_CONNECT),
8437         BPF_EAPROG_SEC("cgroup/sendmsg4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8438                                                 BPF_CGROUP_UDP4_SENDMSG),
8439         BPF_EAPROG_SEC("cgroup/sendmsg6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8440                                                 BPF_CGROUP_UDP6_SENDMSG),
8441         BPF_EAPROG_SEC("cgroup/recvmsg4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8442                                                 BPF_CGROUP_UDP4_RECVMSG),
8443         BPF_EAPROG_SEC("cgroup/recvmsg6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8444                                                 BPF_CGROUP_UDP6_RECVMSG),
8445         BPF_EAPROG_SEC("cgroup/getpeername4",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8446                                                 BPF_CGROUP_INET4_GETPEERNAME),
8447         BPF_EAPROG_SEC("cgroup/getpeername6",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8448                                                 BPF_CGROUP_INET6_GETPEERNAME),
8449         BPF_EAPROG_SEC("cgroup/getsockname4",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8450                                                 BPF_CGROUP_INET4_GETSOCKNAME),
8451         BPF_EAPROG_SEC("cgroup/getsockname6",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8452                                                 BPF_CGROUP_INET6_GETSOCKNAME),
8453         BPF_EAPROG_SEC("cgroup/sysctl",         BPF_PROG_TYPE_CGROUP_SYSCTL,
8454                                                 BPF_CGROUP_SYSCTL),
8455         BPF_EAPROG_SEC("cgroup/getsockopt",     BPF_PROG_TYPE_CGROUP_SOCKOPT,
8456                                                 BPF_CGROUP_GETSOCKOPT),
8457         BPF_EAPROG_SEC("cgroup/setsockopt",     BPF_PROG_TYPE_CGROUP_SOCKOPT,
8458                                                 BPF_CGROUP_SETSOCKOPT),
8459         BPF_PROG_SEC("struct_ops",              BPF_PROG_TYPE_STRUCT_OPS),
8460         BPF_EAPROG_SEC("sk_lookup/",            BPF_PROG_TYPE_SK_LOOKUP,
8461                                                 BPF_SK_LOOKUP),
8462 };
8463
8464 #undef BPF_PROG_SEC_IMPL
8465 #undef BPF_PROG_SEC
8466 #undef BPF_APROG_SEC
8467 #undef BPF_EAPROG_SEC
8468 #undef BPF_APROG_COMPAT
8469 #undef SEC_DEF
8470
8471 #define MAX_TYPE_NAME_SIZE 32
8472
8473 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8474 {
8475         int i, n = ARRAY_SIZE(section_defs);
8476
8477         for (i = 0; i < n; i++) {
8478                 if (strncmp(sec_name,
8479                             section_defs[i].sec, section_defs[i].len))
8480                         continue;
8481                 return &section_defs[i];
8482         }
8483         return NULL;
8484 }
8485
8486 static char *libbpf_get_type_names(bool attach_type)
8487 {
8488         int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8489         char *buf;
8490
8491         buf = malloc(len);
8492         if (!buf)
8493                 return NULL;
8494
8495         buf[0] = '\0';
8496         /* Forge string buf with all available names */
8497         for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8498                 if (attach_type && !section_defs[i].is_attachable)
8499                         continue;
8500
8501                 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8502                         free(buf);
8503                         return NULL;
8504                 }
8505                 strcat(buf, " ");
8506                 strcat(buf, section_defs[i].sec);
8507         }
8508
8509         return buf;
8510 }
8511
8512 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8513                              enum bpf_attach_type *expected_attach_type)
8514 {
8515         const struct bpf_sec_def *sec_def;
8516         char *type_names;
8517
8518         if (!name)
8519                 return -EINVAL;
8520
8521         sec_def = find_sec_def(name);
8522         if (sec_def) {
8523                 *prog_type = sec_def->prog_type;
8524                 *expected_attach_type = sec_def->expected_attach_type;
8525                 return 0;
8526         }
8527
8528         pr_debug("failed to guess program type from ELF section '%s'\n", name);
8529         type_names = libbpf_get_type_names(false);
8530         if (type_names != NULL) {
8531                 pr_debug("supported section(type) names are:%s\n", type_names);
8532                 free(type_names);
8533         }
8534
8535         return -ESRCH;
8536 }
8537
8538 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8539                                                      size_t offset)
8540 {
8541         struct bpf_map *map;
8542         size_t i;
8543
8544         for (i = 0; i < obj->nr_maps; i++) {
8545                 map = &obj->maps[i];
8546                 if (!bpf_map__is_struct_ops(map))
8547                         continue;
8548                 if (map->sec_offset <= offset &&
8549                     offset - map->sec_offset < map->def.value_size)
8550                         return map;
8551         }
8552
8553         return NULL;
8554 }
8555
8556 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8557 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8558                                             GElf_Shdr *shdr, Elf_Data *data)
8559 {
8560         const struct btf_member *member;
8561         struct bpf_struct_ops *st_ops;
8562         struct bpf_program *prog;
8563         unsigned int shdr_idx;
8564         const struct btf *btf;
8565         struct bpf_map *map;
8566         Elf_Data *symbols;
8567         unsigned int moff, insn_idx;
8568         const char *name;
8569         __u32 member_idx;
8570         GElf_Sym sym;
8571         GElf_Rel rel;
8572         int i, nrels;
8573
8574         symbols = obj->efile.symbols;
8575         btf = obj->btf;
8576         nrels = shdr->sh_size / shdr->sh_entsize;
8577         for (i = 0; i < nrels; i++) {
8578                 if (!gelf_getrel(data, i, &rel)) {
8579                         pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8580                         return -LIBBPF_ERRNO__FORMAT;
8581                 }
8582
8583                 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8584                         pr_warn("struct_ops reloc: symbol %zx not found\n",
8585                                 (size_t)GELF_R_SYM(rel.r_info));
8586                         return -LIBBPF_ERRNO__FORMAT;
8587                 }
8588
8589                 name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8590                 map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8591                 if (!map) {
8592                         pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8593                                 (size_t)rel.r_offset);
8594                         return -EINVAL;
8595                 }
8596
8597                 moff = rel.r_offset - map->sec_offset;
8598                 shdr_idx = sym.st_shndx;
8599                 st_ops = map->st_ops;
8600                 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8601                          map->name,
8602                          (long long)(rel.r_info >> 32),
8603                          (long long)sym.st_value,
8604                          shdr_idx, (size_t)rel.r_offset,
8605                          map->sec_offset, sym.st_name, name);
8606
8607                 if (shdr_idx >= SHN_LORESERVE) {
8608                         pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8609                                 map->name, (size_t)rel.r_offset, shdr_idx);
8610                         return -LIBBPF_ERRNO__RELOC;
8611                 }
8612                 if (sym.st_value % BPF_INSN_SZ) {
8613                         pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8614                                 map->name, (unsigned long long)sym.st_value);
8615                         return -LIBBPF_ERRNO__FORMAT;
8616                 }
8617                 insn_idx = sym.st_value / BPF_INSN_SZ;
8618
8619                 member = find_member_by_offset(st_ops->type, moff * 8);
8620                 if (!member) {
8621                         pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8622                                 map->name, moff);
8623                         return -EINVAL;
8624                 }
8625                 member_idx = member - btf_members(st_ops->type);
8626                 name = btf__name_by_offset(btf, member->name_off);
8627
8628                 if (!resolve_func_ptr(btf, member->type, NULL)) {
8629                         pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8630                                 map->name, name);
8631                         return -EINVAL;
8632                 }
8633
8634                 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8635                 if (!prog) {
8636                         pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8637                                 map->name, shdr_idx, name);
8638                         return -EINVAL;
8639                 }
8640
8641                 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8642                         const struct bpf_sec_def *sec_def;
8643
8644                         sec_def = find_sec_def(prog->sec_name);
8645                         if (sec_def &&
8646                             sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8647                                 /* for pr_warn */
8648                                 prog->type = sec_def->prog_type;
8649                                 goto invalid_prog;
8650                         }
8651
8652                         prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8653                         prog->attach_btf_id = st_ops->type_id;
8654                         prog->expected_attach_type = member_idx;
8655                 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8656                            prog->attach_btf_id != st_ops->type_id ||
8657                            prog->expected_attach_type != member_idx) {
8658                         goto invalid_prog;
8659                 }
8660                 st_ops->progs[member_idx] = prog;
8661         }
8662
8663         return 0;
8664
8665 invalid_prog:
8666         pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8667                 map->name, prog->name, prog->sec_name, prog->type,
8668                 prog->attach_btf_id, prog->expected_attach_type, name);
8669         return -EINVAL;
8670 }
8671
8672 #define BTF_TRACE_PREFIX "btf_trace_"
8673 #define BTF_LSM_PREFIX "bpf_lsm_"
8674 #define BTF_ITER_PREFIX "bpf_iter_"
8675 #define BTF_MAX_NAME_SIZE 128
8676
8677 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8678                                    const char *name, __u32 kind)
8679 {
8680         char btf_type_name[BTF_MAX_NAME_SIZE];
8681         int ret;
8682
8683         ret = snprintf(btf_type_name, sizeof(btf_type_name),
8684                        "%s%s", prefix, name);
8685         /* snprintf returns the number of characters written excluding the
8686          * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8687          * indicates truncation.
8688          */
8689         if (ret < 0 || ret >= sizeof(btf_type_name))
8690                 return -ENAMETOOLONG;
8691         return btf__find_by_name_kind(btf, btf_type_name, kind);
8692 }
8693
8694 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8695                                         enum bpf_attach_type attach_type)
8696 {
8697         int err;
8698
8699         if (attach_type == BPF_TRACE_RAW_TP)
8700                 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8701                                               BTF_KIND_TYPEDEF);
8702         else if (attach_type == BPF_LSM_MAC)
8703                 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8704                                               BTF_KIND_FUNC);
8705         else if (attach_type == BPF_TRACE_ITER)
8706                 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8707                                               BTF_KIND_FUNC);
8708         else
8709                 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8710
8711         if (err <= 0)
8712                 pr_warn("%s is not found in vmlinux BTF\n", name);
8713
8714         return err;
8715 }
8716
8717 int libbpf_find_vmlinux_btf_id(const char *name,
8718                                enum bpf_attach_type attach_type)
8719 {
8720         struct btf *btf;
8721         int err;
8722
8723         btf = libbpf_find_kernel_btf();
8724         if (IS_ERR(btf)) {
8725                 pr_warn("vmlinux BTF is not found\n");
8726                 return -EINVAL;
8727         }
8728
8729         err = __find_vmlinux_btf_id(btf, name, attach_type);
8730         btf__free(btf);
8731         return err;
8732 }
8733
8734 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8735 {
8736         struct bpf_prog_info_linear *info_linear;
8737         struct bpf_prog_info *info;
8738         struct btf *btf = NULL;
8739         int err = -EINVAL;
8740
8741         info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8742         if (IS_ERR_OR_NULL(info_linear)) {
8743                 pr_warn("failed get_prog_info_linear for FD %d\n",
8744                         attach_prog_fd);
8745                 return -EINVAL;
8746         }
8747         info = &info_linear->info;
8748         if (!info->btf_id) {
8749                 pr_warn("The target program doesn't have BTF\n");
8750                 goto out;
8751         }
8752         if (btf__get_from_id(info->btf_id, &btf)) {
8753                 pr_warn("Failed to get BTF of the program\n");
8754                 goto out;
8755         }
8756         err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8757         btf__free(btf);
8758         if (err <= 0) {
8759                 pr_warn("%s is not found in prog's BTF\n", name);
8760                 goto out;
8761         }
8762 out:
8763         free(info_linear);
8764         return err;
8765 }
8766
8767 static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8768 {
8769         enum bpf_attach_type attach_type = prog->expected_attach_type;
8770         __u32 attach_prog_fd = prog->attach_prog_fd;
8771         const char *name = prog->sec_name;
8772         int i, err;
8773
8774         if (!name)
8775                 return -EINVAL;
8776
8777         for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8778                 if (!section_defs[i].is_attach_btf)
8779                         continue;
8780                 if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8781                         continue;
8782                 if (attach_prog_fd)
8783                         err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8784                                                       attach_prog_fd);
8785                 else
8786                         err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8787                                                     name + section_defs[i].len,
8788                                                     attach_type);
8789                 return err;
8790         }
8791         pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8792         return -ESRCH;
8793 }
8794
8795 int libbpf_attach_type_by_name(const char *name,
8796                                enum bpf_attach_type *attach_type)
8797 {
8798         char *type_names;
8799         int i;
8800
8801         if (!name)
8802                 return -EINVAL;
8803
8804         for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8805                 if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8806                         continue;
8807                 if (!section_defs[i].is_attachable)
8808                         return -EINVAL;
8809                 *attach_type = section_defs[i].expected_attach_type;
8810                 return 0;
8811         }
8812         pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8813         type_names = libbpf_get_type_names(true);
8814         if (type_names != NULL) {
8815                 pr_debug("attachable section(type) names are:%s\n", type_names);
8816                 free(type_names);
8817         }
8818
8819         return -EINVAL;
8820 }
8821
8822 int bpf_map__fd(const struct bpf_map *map)
8823 {
8824         return map ? map->fd : -EINVAL;
8825 }
8826
8827 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8828 {
8829         return map ? &map->def : ERR_PTR(-EINVAL);
8830 }
8831
8832 const char *bpf_map__name(const struct bpf_map *map)
8833 {
8834         return map ? map->name : NULL;
8835 }
8836
8837 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8838 {
8839         return map->def.type;
8840 }
8841
8842 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8843 {
8844         if (map->fd >= 0)
8845                 return -EBUSY;
8846         map->def.type = type;
8847         return 0;
8848 }
8849
8850 __u32 bpf_map__map_flags(const struct bpf_map *map)
8851 {
8852         return map->def.map_flags;
8853 }
8854
8855 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8856 {
8857         if (map->fd >= 0)
8858                 return -EBUSY;
8859         map->def.map_flags = flags;
8860         return 0;
8861 }
8862
8863 __u32 bpf_map__numa_node(const struct bpf_map *map)
8864 {
8865         return map->numa_node;
8866 }
8867
8868 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8869 {
8870         if (map->fd >= 0)
8871                 return -EBUSY;
8872         map->numa_node = numa_node;
8873         return 0;
8874 }
8875
8876 __u32 bpf_map__key_size(const struct bpf_map *map)
8877 {
8878         return map->def.key_size;
8879 }
8880
8881 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8882 {
8883         if (map->fd >= 0)
8884                 return -EBUSY;
8885         map->def.key_size = size;
8886         return 0;
8887 }
8888
8889 __u32 bpf_map__value_size(const struct bpf_map *map)
8890 {
8891         return map->def.value_size;
8892 }
8893
8894 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8895 {
8896         if (map->fd >= 0)
8897                 return -EBUSY;
8898         map->def.value_size = size;
8899         return 0;
8900 }
8901
8902 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8903 {
8904         return map ? map->btf_key_type_id : 0;
8905 }
8906
8907 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8908 {
8909         return map ? map->btf_value_type_id : 0;
8910 }
8911
8912 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8913                      bpf_map_clear_priv_t clear_priv)
8914 {
8915         if (!map)
8916                 return -EINVAL;
8917
8918         if (map->priv) {
8919                 if (map->clear_priv)
8920                         map->clear_priv(map, map->priv);
8921         }
8922
8923         map->priv = priv;
8924         map->clear_priv = clear_priv;
8925         return 0;
8926 }
8927
8928 void *bpf_map__priv(const struct bpf_map *map)
8929 {
8930         return map ? map->priv : ERR_PTR(-EINVAL);
8931 }
8932
8933 int bpf_map__set_initial_value(struct bpf_map *map,
8934                                const void *data, size_t size)
8935 {
8936         if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8937             size != map->def.value_size || map->fd >= 0)
8938                 return -EINVAL;
8939
8940         memcpy(map->mmaped, data, size);
8941         return 0;
8942 }
8943
8944 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8945 {
8946         return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8947 }
8948
8949 bool bpf_map__is_internal(const struct bpf_map *map)
8950 {
8951         return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8952 }
8953
8954 __u32 bpf_map__ifindex(const struct bpf_map *map)
8955 {
8956         return map->map_ifindex;
8957 }
8958
8959 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8960 {
8961         if (map->fd >= 0)
8962                 return -EBUSY;
8963         map->map_ifindex = ifindex;
8964         return 0;
8965 }
8966
8967 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8968 {
8969         if (!bpf_map_type__is_map_in_map(map->def.type)) {
8970                 pr_warn("error: unsupported map type\n");
8971                 return -EINVAL;
8972         }
8973         if (map->inner_map_fd != -1) {
8974                 pr_warn("error: inner_map_fd already specified\n");
8975                 return -EINVAL;
8976         }
8977         map->inner_map_fd = fd;
8978         return 0;
8979 }
8980
8981 static struct bpf_map *
8982 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8983 {
8984         ssize_t idx;
8985         struct bpf_map *s, *e;
8986
8987         if (!obj || !obj->maps)
8988                 return NULL;
8989
8990         s = obj->maps;
8991         e = obj->maps + obj->nr_maps;
8992
8993         if ((m < s) || (m >= e)) {
8994                 pr_warn("error in %s: map handler doesn't belong to object\n",
8995                          __func__);
8996                 return NULL;
8997         }
8998
8999         idx = (m - obj->maps) + i;
9000         if (idx >= obj->nr_maps || idx < 0)
9001                 return NULL;
9002         return &obj->maps[idx];
9003 }
9004
9005 struct bpf_map *
9006 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9007 {
9008         if (prev == NULL)
9009                 return obj->maps;
9010
9011         return __bpf_map__iter(prev, obj, 1);
9012 }
9013
9014 struct bpf_map *
9015 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9016 {
9017         if (next == NULL) {
9018                 if (!obj->nr_maps)
9019                         return NULL;
9020                 return obj->maps + obj->nr_maps - 1;
9021         }
9022
9023         return __bpf_map__iter(next, obj, -1);
9024 }
9025
9026 struct bpf_map *
9027 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9028 {
9029         struct bpf_map *pos;
9030
9031         bpf_object__for_each_map(pos, obj) {
9032                 if (pos->name && !strcmp(pos->name, name))
9033                         return pos;
9034         }
9035         return NULL;
9036 }
9037
9038 int
9039 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9040 {
9041         return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9042 }
9043
9044 struct bpf_map *
9045 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9046 {
9047         return ERR_PTR(-ENOTSUP);
9048 }
9049
9050 long libbpf_get_error(const void *ptr)
9051 {
9052         return PTR_ERR_OR_ZERO(ptr);
9053 }
9054
9055 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9056                   struct bpf_object **pobj, int *prog_fd)
9057 {
9058         struct bpf_prog_load_attr attr;
9059
9060         memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9061         attr.file = file;
9062         attr.prog_type = type;
9063         attr.expected_attach_type = 0;
9064
9065         return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9066 }
9067
9068 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9069                         struct bpf_object **pobj, int *prog_fd)
9070 {
9071         struct bpf_object_open_attr open_attr = {};
9072         struct bpf_program *prog, *first_prog = NULL;
9073         struct bpf_object *obj;
9074         struct bpf_map *map;
9075         int err;
9076
9077         if (!attr)
9078                 return -EINVAL;
9079         if (!attr->file)
9080                 return -EINVAL;
9081
9082         open_attr.file = attr->file;
9083         open_attr.prog_type = attr->prog_type;
9084
9085         obj = bpf_object__open_xattr(&open_attr);
9086         if (IS_ERR_OR_NULL(obj))
9087                 return -ENOENT;
9088
9089         bpf_object__for_each_program(prog, obj) {
9090                 enum bpf_attach_type attach_type = attr->expected_attach_type;
9091                 /*
9092                  * to preserve backwards compatibility, bpf_prog_load treats
9093                  * attr->prog_type, if specified, as an override to whatever
9094                  * bpf_object__open guessed
9095                  */
9096                 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9097                         bpf_program__set_type(prog, attr->prog_type);
9098                         bpf_program__set_expected_attach_type(prog,
9099                                                               attach_type);
9100                 }
9101                 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9102                         /*
9103                          * we haven't guessed from section name and user
9104                          * didn't provide a fallback type, too bad...
9105                          */
9106                         bpf_object__close(obj);
9107                         return -EINVAL;
9108                 }
9109
9110                 prog->prog_ifindex = attr->ifindex;
9111                 prog->log_level = attr->log_level;
9112                 prog->prog_flags |= attr->prog_flags;
9113                 if (!first_prog)
9114                         first_prog = prog;
9115         }
9116
9117         bpf_object__for_each_map(map, obj) {
9118                 if (!bpf_map__is_offload_neutral(map))
9119                         map->map_ifindex = attr->ifindex;
9120         }
9121
9122         if (!first_prog) {
9123                 pr_warn("object file doesn't contain bpf program\n");
9124                 bpf_object__close(obj);
9125                 return -ENOENT;
9126         }
9127
9128         err = bpf_object__load(obj);
9129         if (err) {
9130                 bpf_object__close(obj);
9131                 return err;
9132         }
9133
9134         *pobj = obj;
9135         *prog_fd = bpf_program__fd(first_prog);
9136         return 0;
9137 }
9138
9139 struct bpf_link {
9140         int (*detach)(struct bpf_link *link);
9141         int (*destroy)(struct bpf_link *link);
9142         char *pin_path;         /* NULL, if not pinned */
9143         int fd;                 /* hook FD, -1 if not applicable */
9144         bool disconnected;
9145 };
9146
9147 /* Replace link's underlying BPF program with the new one */
9148 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9149 {
9150         return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9151 }
9152
9153 /* Release "ownership" of underlying BPF resource (typically, BPF program
9154  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9155  * link, when destructed through bpf_link__destroy() call won't attempt to
9156  * detach/unregisted that BPF resource. This is useful in situations where,
9157  * say, attached BPF program has to outlive userspace program that attached it
9158  * in the system. Depending on type of BPF program, though, there might be
9159  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9160  * exit of userspace program doesn't trigger automatic detachment and clean up
9161  * inside the kernel.
9162  */
9163 void bpf_link__disconnect(struct bpf_link *link)
9164 {
9165         link->disconnected = true;
9166 }
9167
9168 int bpf_link__destroy(struct bpf_link *link)
9169 {
9170         int err = 0;
9171
9172         if (IS_ERR_OR_NULL(link))
9173                 return 0;
9174
9175         if (!link->disconnected && link->detach)
9176                 err = link->detach(link);
9177         if (link->destroy)
9178                 link->destroy(link);
9179         if (link->pin_path)
9180                 free(link->pin_path);
9181         free(link);
9182
9183         return err;
9184 }
9185
9186 int bpf_link__fd(const struct bpf_link *link)
9187 {
9188         return link->fd;
9189 }
9190
9191 const char *bpf_link__pin_path(const struct bpf_link *link)
9192 {
9193         return link->pin_path;
9194 }
9195
9196 static int bpf_link__detach_fd(struct bpf_link *link)
9197 {
9198         return close(link->fd);
9199 }
9200
9201 struct bpf_link *bpf_link__open(const char *path)
9202 {
9203         struct bpf_link *link;
9204         int fd;
9205
9206         fd = bpf_obj_get(path);
9207         if (fd < 0) {
9208                 fd = -errno;
9209                 pr_warn("failed to open link at %s: %d\n", path, fd);
9210                 return ERR_PTR(fd);
9211         }
9212
9213         link = calloc(1, sizeof(*link));
9214         if (!link) {
9215                 close(fd);
9216                 return ERR_PTR(-ENOMEM);
9217         }
9218         link->detach = &bpf_link__detach_fd;
9219         link->fd = fd;
9220
9221         link->pin_path = strdup(path);
9222         if (!link->pin_path) {
9223                 bpf_link__destroy(link);
9224                 return ERR_PTR(-ENOMEM);
9225         }
9226
9227         return link;
9228 }
9229
9230 int bpf_link__detach(struct bpf_link *link)
9231 {
9232         return bpf_link_detach(link->fd) ? -errno : 0;
9233 }
9234
9235 int bpf_link__pin(struct bpf_link *link, const char *path)
9236 {
9237         int err;
9238
9239         if (link->pin_path)
9240                 return -EBUSY;
9241         err = make_parent_dir(path);
9242         if (err)
9243                 return err;
9244         err = check_path(path);
9245         if (err)
9246                 return err;
9247
9248         link->pin_path = strdup(path);
9249         if (!link->pin_path)
9250                 return -ENOMEM;
9251
9252         if (bpf_obj_pin(link->fd, link->pin_path)) {
9253                 err = -errno;
9254                 zfree(&link->pin_path);
9255                 return err;
9256         }
9257
9258         pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9259         return 0;
9260 }
9261
9262 int bpf_link__unpin(struct bpf_link *link)
9263 {
9264         int err;
9265
9266         if (!link->pin_path)
9267                 return -EINVAL;
9268
9269         err = unlink(link->pin_path);
9270         if (err != 0)
9271                 return -errno;
9272
9273         pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9274         zfree(&link->pin_path);
9275         return 0;
9276 }
9277
9278 static int bpf_link__detach_perf_event(struct bpf_link *link)
9279 {
9280         int err;
9281
9282         err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9283         if (err)
9284                 err = -errno;
9285
9286         close(link->fd);
9287         return err;
9288 }
9289
9290 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9291                                                 int pfd)
9292 {
9293         char errmsg[STRERR_BUFSIZE];
9294         struct bpf_link *link;
9295         int prog_fd, err;
9296
9297         if (pfd < 0) {
9298                 pr_warn("prog '%s': invalid perf event FD %d\n",
9299                         prog->name, pfd);
9300                 return ERR_PTR(-EINVAL);
9301         }
9302         prog_fd = bpf_program__fd(prog);
9303         if (prog_fd < 0) {
9304                 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9305                         prog->name);
9306                 return ERR_PTR(-EINVAL);
9307         }
9308
9309         link = calloc(1, sizeof(*link));
9310         if (!link)
9311                 return ERR_PTR(-ENOMEM);
9312         link->detach = &bpf_link__detach_perf_event;
9313         link->fd = pfd;
9314
9315         if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9316                 err = -errno;
9317                 free(link);
9318                 pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9319                         prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9320                 if (err == -EPROTO)
9321                         pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9322                                 prog->name, pfd);
9323                 return ERR_PTR(err);
9324         }
9325         if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9326                 err = -errno;
9327                 free(link);
9328                 pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9329                         prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9330                 return ERR_PTR(err);
9331         }
9332         return link;
9333 }
9334
9335 /*
9336  * this function is expected to parse integer in the range of [0, 2^31-1] from
9337  * given file using scanf format string fmt. If actual parsed value is
9338  * negative, the result might be indistinguishable from error
9339  */
9340 static int parse_uint_from_file(const char *file, const char *fmt)
9341 {
9342         char buf[STRERR_BUFSIZE];
9343         int err, ret;
9344         FILE *f;
9345
9346         f = fopen(file, "r");
9347         if (!f) {
9348                 err = -errno;
9349                 pr_debug("failed to open '%s': %s\n", file,
9350                          libbpf_strerror_r(err, buf, sizeof(buf)));
9351                 return err;
9352         }
9353         err = fscanf(f, fmt, &ret);
9354         if (err != 1) {
9355                 err = err == EOF ? -EIO : -errno;
9356                 pr_debug("failed to parse '%s': %s\n", file,
9357                         libbpf_strerror_r(err, buf, sizeof(buf)));
9358                 fclose(f);
9359                 return err;
9360         }
9361         fclose(f);
9362         return ret;
9363 }
9364
9365 static int determine_kprobe_perf_type(void)
9366 {
9367         const char *file = "/sys/bus/event_source/devices/kprobe/type";
9368
9369         return parse_uint_from_file(file, "%d\n");
9370 }
9371
9372 static int determine_uprobe_perf_type(void)
9373 {
9374         const char *file = "/sys/bus/event_source/devices/uprobe/type";
9375
9376         return parse_uint_from_file(file, "%d\n");
9377 }
9378
9379 static int determine_kprobe_retprobe_bit(void)
9380 {
9381         const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9382
9383         return parse_uint_from_file(file, "config:%d\n");
9384 }
9385
9386 static int determine_uprobe_retprobe_bit(void)
9387 {
9388         const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9389
9390         return parse_uint_from_file(file, "config:%d\n");
9391 }
9392
9393 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9394                                  uint64_t offset, int pid)
9395 {
9396         struct perf_event_attr attr = {};
9397         char errmsg[STRERR_BUFSIZE];
9398         int type, pfd, err;
9399
9400         type = uprobe ? determine_uprobe_perf_type()
9401                       : determine_kprobe_perf_type();
9402         if (type < 0) {
9403                 pr_warn("failed to determine %s perf type: %s\n",
9404                         uprobe ? "uprobe" : "kprobe",
9405                         libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9406                 return type;
9407         }
9408         if (retprobe) {
9409                 int bit = uprobe ? determine_uprobe_retprobe_bit()
9410                                  : determine_kprobe_retprobe_bit();
9411
9412                 if (bit < 0) {
9413                         pr_warn("failed to determine %s retprobe bit: %s\n",
9414                                 uprobe ? "uprobe" : "kprobe",
9415                                 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9416                         return bit;
9417                 }
9418                 attr.config |= 1 << bit;
9419         }
9420         attr.size = sizeof(attr);
9421         attr.type = type;
9422         attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9423         attr.config2 = offset;           /* kprobe_addr or probe_offset */
9424
9425         /* pid filter is meaningful only for uprobes */
9426         pfd = syscall(__NR_perf_event_open, &attr,
9427                       pid < 0 ? -1 : pid /* pid */,
9428                       pid == -1 ? 0 : -1 /* cpu */,
9429                       -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9430         if (pfd < 0) {
9431                 err = -errno;
9432                 pr_warn("%s perf_event_open() failed: %s\n",
9433                         uprobe ? "uprobe" : "kprobe",
9434                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9435                 return err;
9436         }
9437         return pfd;
9438 }
9439
9440 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9441                                             bool retprobe,
9442                                             const char *func_name)
9443 {
9444         char errmsg[STRERR_BUFSIZE];
9445         struct bpf_link *link;
9446         int pfd, err;
9447
9448         pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9449                                     0 /* offset */, -1 /* pid */);
9450         if (pfd < 0) {
9451                 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9452                         prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9453                         libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9454                 return ERR_PTR(pfd);
9455         }
9456         link = bpf_program__attach_perf_event(prog, pfd);
9457         if (IS_ERR(link)) {
9458                 close(pfd);
9459                 err = PTR_ERR(link);
9460                 pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9461                         prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9462                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9463                 return link;
9464         }
9465         return link;
9466 }
9467
9468 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9469                                       struct bpf_program *prog)
9470 {
9471         const char *func_name;
9472         bool retprobe;
9473
9474         func_name = prog->sec_name + sec->len;
9475         retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9476
9477         return bpf_program__attach_kprobe(prog, retprobe, func_name);
9478 }
9479
9480 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9481                                             bool retprobe, pid_t pid,
9482                                             const char *binary_path,
9483                                             size_t func_offset)
9484 {
9485         char errmsg[STRERR_BUFSIZE];
9486         struct bpf_link *link;
9487         int pfd, err;
9488
9489         pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9490                                     binary_path, func_offset, pid);
9491         if (pfd < 0) {
9492                 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9493                         prog->name, retprobe ? "uretprobe" : "uprobe",
9494                         binary_path, func_offset,
9495                         libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9496                 return ERR_PTR(pfd);
9497         }
9498         link = bpf_program__attach_perf_event(prog, pfd);
9499         if (IS_ERR(link)) {
9500                 close(pfd);
9501                 err = PTR_ERR(link);
9502                 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9503                         prog->name, retprobe ? "uretprobe" : "uprobe",
9504                         binary_path, func_offset,
9505                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9506                 return link;
9507         }
9508         return link;
9509 }
9510
9511 static int determine_tracepoint_id(const char *tp_category,
9512                                    const char *tp_name)
9513 {
9514         char file[PATH_MAX];
9515         int ret;
9516
9517         ret = snprintf(file, sizeof(file),
9518                        "/sys/kernel/debug/tracing/events/%s/%s/id",
9519                        tp_category, tp_name);
9520         if (ret < 0)
9521                 return -errno;
9522         if (ret >= sizeof(file)) {
9523                 pr_debug("tracepoint %s/%s path is too long\n",
9524                          tp_category, tp_name);
9525                 return -E2BIG;
9526         }
9527         return parse_uint_from_file(file, "%d\n");
9528 }
9529
9530 static int perf_event_open_tracepoint(const char *tp_category,
9531                                       const char *tp_name)
9532 {
9533         struct perf_event_attr attr = {};
9534         char errmsg[STRERR_BUFSIZE];
9535         int tp_id, pfd, err;
9536
9537         tp_id = determine_tracepoint_id(tp_category, tp_name);
9538         if (tp_id < 0) {
9539                 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9540                         tp_category, tp_name,
9541                         libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9542                 return tp_id;
9543         }
9544
9545         attr.type = PERF_TYPE_TRACEPOINT;
9546         attr.size = sizeof(attr);
9547         attr.config = tp_id;
9548
9549         pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9550                       -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9551         if (pfd < 0) {
9552                 err = -errno;
9553                 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9554                         tp_category, tp_name,
9555                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9556                 return err;
9557         }
9558         return pfd;
9559 }
9560
9561 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9562                                                 const char *tp_category,
9563                                                 const char *tp_name)
9564 {
9565         char errmsg[STRERR_BUFSIZE];
9566         struct bpf_link *link;
9567         int pfd, err;
9568
9569         pfd = perf_event_open_tracepoint(tp_category, tp_name);
9570         if (pfd < 0) {
9571                 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9572                         prog->name, tp_category, tp_name,
9573                         libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9574                 return ERR_PTR(pfd);
9575         }
9576         link = bpf_program__attach_perf_event(prog, pfd);
9577         if (IS_ERR(link)) {
9578                 close(pfd);
9579                 err = PTR_ERR(link);
9580                 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9581                         prog->name, tp_category, tp_name,
9582                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9583                 return link;
9584         }
9585         return link;
9586 }
9587
9588 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9589                                   struct bpf_program *prog)
9590 {
9591         char *sec_name, *tp_cat, *tp_name;
9592         struct bpf_link *link;
9593
9594         sec_name = strdup(prog->sec_name);
9595         if (!sec_name)
9596                 return ERR_PTR(-ENOMEM);
9597
9598         /* extract "tp/<category>/<name>" */
9599         tp_cat = sec_name + sec->len;
9600         tp_name = strchr(tp_cat, '/');
9601         if (!tp_name) {
9602                 link = ERR_PTR(-EINVAL);
9603                 goto out;
9604         }
9605         *tp_name = '\0';
9606         tp_name++;
9607
9608         link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9609 out:
9610         free(sec_name);
9611         return link;
9612 }
9613
9614 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9615                                                     const char *tp_name)
9616 {
9617         char errmsg[STRERR_BUFSIZE];
9618         struct bpf_link *link;
9619         int prog_fd, pfd;
9620
9621         prog_fd = bpf_program__fd(prog);
9622         if (prog_fd < 0) {
9623                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9624                 return ERR_PTR(-EINVAL);
9625         }
9626
9627         link = calloc(1, sizeof(*link));
9628         if (!link)
9629                 return ERR_PTR(-ENOMEM);
9630         link->detach = &bpf_link__detach_fd;
9631
9632         pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9633         if (pfd < 0) {
9634                 pfd = -errno;
9635                 free(link);
9636                 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9637                         prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9638                 return ERR_PTR(pfd);
9639         }
9640         link->fd = pfd;
9641         return link;
9642 }
9643
9644 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9645                                       struct bpf_program *prog)
9646 {
9647         const char *tp_name = prog->sec_name + sec->len;
9648
9649         return bpf_program__attach_raw_tracepoint(prog, tp_name);
9650 }
9651
9652 /* Common logic for all BPF program types that attach to a btf_id */
9653 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9654 {
9655         char errmsg[STRERR_BUFSIZE];
9656         struct bpf_link *link;
9657         int prog_fd, pfd;
9658
9659         prog_fd = bpf_program__fd(prog);
9660         if (prog_fd < 0) {
9661                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9662                 return ERR_PTR(-EINVAL);
9663         }
9664
9665         link = calloc(1, sizeof(*link));
9666         if (!link)
9667                 return ERR_PTR(-ENOMEM);
9668         link->detach = &bpf_link__detach_fd;
9669
9670         pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9671         if (pfd < 0) {
9672                 pfd = -errno;
9673                 free(link);
9674                 pr_warn("prog '%s': failed to attach: %s\n",
9675                         prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9676                 return ERR_PTR(pfd);
9677         }
9678         link->fd = pfd;
9679         return (struct bpf_link *)link;
9680 }
9681
9682 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9683 {
9684         return bpf_program__attach_btf_id(prog);
9685 }
9686
9687 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9688 {
9689         return bpf_program__attach_btf_id(prog);
9690 }
9691
9692 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9693                                      struct bpf_program *prog)
9694 {
9695         return bpf_program__attach_trace(prog);
9696 }
9697
9698 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9699                                    struct bpf_program *prog)
9700 {
9701         return bpf_program__attach_lsm(prog);
9702 }
9703
9704 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9705                                     struct bpf_program *prog)
9706 {
9707         return bpf_program__attach_iter(prog, NULL);
9708 }
9709
9710 static struct bpf_link *
9711 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9712                        const char *target_name)
9713 {
9714         DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9715                             .target_btf_id = btf_id);
9716         enum bpf_attach_type attach_type;
9717         char errmsg[STRERR_BUFSIZE];
9718         struct bpf_link *link;
9719         int prog_fd, link_fd;
9720
9721         prog_fd = bpf_program__fd(prog);
9722         if (prog_fd < 0) {
9723                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9724                 return ERR_PTR(-EINVAL);
9725         }
9726
9727         link = calloc(1, sizeof(*link));
9728         if (!link)
9729                 return ERR_PTR(-ENOMEM);
9730         link->detach = &bpf_link__detach_fd;
9731
9732         attach_type = bpf_program__get_expected_attach_type(prog);
9733         link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9734         if (link_fd < 0) {
9735                 link_fd = -errno;
9736                 free(link);
9737                 pr_warn("prog '%s': failed to attach to %s: %s\n",
9738                         prog->name, target_name,
9739                         libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9740                 return ERR_PTR(link_fd);
9741         }
9742         link->fd = link_fd;
9743         return link;
9744 }
9745
9746 struct bpf_link *
9747 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9748 {
9749         return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9750 }
9751
9752 struct bpf_link *
9753 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9754 {
9755         return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9756 }
9757
9758 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9759 {
9760         /* target_fd/target_ifindex use the same field in LINK_CREATE */
9761         return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9762 }
9763
9764 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9765                                               int target_fd,
9766                                               const char *attach_func_name)
9767 {
9768         int btf_id;
9769
9770         if (!!target_fd != !!attach_func_name) {
9771                 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9772                         prog->name);
9773                 return ERR_PTR(-EINVAL);
9774         }
9775
9776         if (prog->type != BPF_PROG_TYPE_EXT) {
9777                 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9778                         prog->name);
9779                 return ERR_PTR(-EINVAL);
9780         }
9781
9782         if (target_fd) {
9783                 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9784                 if (btf_id < 0)
9785                         return ERR_PTR(btf_id);
9786
9787                 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
9788         } else {
9789                 /* no target, so use raw_tracepoint_open for compatibility
9790                  * with old kernels
9791                  */
9792                 return bpf_program__attach_trace(prog);
9793         }
9794 }
9795
9796 struct bpf_link *
9797 bpf_program__attach_iter(struct bpf_program *prog,
9798                          const struct bpf_iter_attach_opts *opts)
9799 {
9800         DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9801         char errmsg[STRERR_BUFSIZE];
9802         struct bpf_link *link;
9803         int prog_fd, link_fd;
9804         __u32 target_fd = 0;
9805
9806         if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9807                 return ERR_PTR(-EINVAL);
9808
9809         link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9810         link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9811
9812         prog_fd = bpf_program__fd(prog);
9813         if (prog_fd < 0) {
9814                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9815                 return ERR_PTR(-EINVAL);
9816         }
9817
9818         link = calloc(1, sizeof(*link));
9819         if (!link)
9820                 return ERR_PTR(-ENOMEM);
9821         link->detach = &bpf_link__detach_fd;
9822
9823         link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9824                                   &link_create_opts);
9825         if (link_fd < 0) {
9826                 link_fd = -errno;
9827                 free(link);
9828                 pr_warn("prog '%s': failed to attach to iterator: %s\n",
9829                         prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9830                 return ERR_PTR(link_fd);
9831         }
9832         link->fd = link_fd;
9833         return link;
9834 }
9835
9836 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9837 {
9838         const struct bpf_sec_def *sec_def;
9839
9840         sec_def = find_sec_def(prog->sec_name);
9841         if (!sec_def || !sec_def->attach_fn)
9842                 return ERR_PTR(-ESRCH);
9843
9844         return sec_def->attach_fn(sec_def, prog);
9845 }
9846
9847 static int bpf_link__detach_struct_ops(struct bpf_link *link)
9848 {
9849         __u32 zero = 0;
9850
9851         if (bpf_map_delete_elem(link->fd, &zero))
9852                 return -errno;
9853
9854         return 0;
9855 }
9856
9857 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9858 {
9859         struct bpf_struct_ops *st_ops;
9860         struct bpf_link *link;
9861         __u32 i, zero = 0;
9862         int err;
9863
9864         if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9865                 return ERR_PTR(-EINVAL);
9866
9867         link = calloc(1, sizeof(*link));
9868         if (!link)
9869                 return ERR_PTR(-EINVAL);
9870
9871         st_ops = map->st_ops;
9872         for (i = 0; i < btf_vlen(st_ops->type); i++) {
9873                 struct bpf_program *prog = st_ops->progs[i];
9874                 void *kern_data;
9875                 int prog_fd;
9876
9877                 if (!prog)
9878                         continue;
9879
9880                 prog_fd = bpf_program__fd(prog);
9881                 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9882                 *(unsigned long *)kern_data = prog_fd;
9883         }
9884
9885         err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9886         if (err) {
9887                 err = -errno;
9888                 free(link);
9889                 return ERR_PTR(err);
9890         }
9891
9892         link->detach = bpf_link__detach_struct_ops;
9893         link->fd = map->fd;
9894
9895         return link;
9896 }
9897
9898 enum bpf_perf_event_ret
9899 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9900                            void **copy_mem, size_t *copy_size,
9901                            bpf_perf_event_print_t fn, void *private_data)
9902 {
9903         struct perf_event_mmap_page *header = mmap_mem;
9904         __u64 data_head = ring_buffer_read_head(header);
9905         __u64 data_tail = header->data_tail;
9906         void *base = ((__u8 *)header) + page_size;
9907         int ret = LIBBPF_PERF_EVENT_CONT;
9908         struct perf_event_header *ehdr;
9909         size_t ehdr_size;
9910
9911         while (data_head != data_tail) {
9912                 ehdr = base + (data_tail & (mmap_size - 1));
9913                 ehdr_size = ehdr->size;
9914
9915                 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9916                         void *copy_start = ehdr;
9917                         size_t len_first = base + mmap_size - copy_start;
9918                         size_t len_secnd = ehdr_size - len_first;
9919
9920                         if (*copy_size < ehdr_size) {
9921                                 free(*copy_mem);
9922                                 *copy_mem = malloc(ehdr_size);
9923                                 if (!*copy_mem) {
9924                                         *copy_size = 0;
9925                                         ret = LIBBPF_PERF_EVENT_ERROR;
9926                                         break;
9927                                 }
9928                                 *copy_size = ehdr_size;
9929                         }
9930
9931                         memcpy(*copy_mem, copy_start, len_first);
9932                         memcpy(*copy_mem + len_first, base, len_secnd);
9933                         ehdr = *copy_mem;
9934                 }
9935
9936                 ret = fn(ehdr, private_data);
9937                 data_tail += ehdr_size;
9938                 if (ret != LIBBPF_PERF_EVENT_CONT)
9939                         break;
9940         }
9941
9942         ring_buffer_write_tail(header, data_tail);
9943         return ret;
9944 }
9945
9946 struct perf_buffer;
9947
9948 struct perf_buffer_params {
9949         struct perf_event_attr *attr;
9950         /* if event_cb is specified, it takes precendence */
9951         perf_buffer_event_fn event_cb;
9952         /* sample_cb and lost_cb are higher-level common-case callbacks */
9953         perf_buffer_sample_fn sample_cb;
9954         perf_buffer_lost_fn lost_cb;
9955         void *ctx;
9956         int cpu_cnt;
9957         int *cpus;
9958         int *map_keys;
9959 };
9960
9961 struct perf_cpu_buf {
9962         struct perf_buffer *pb;
9963         void *base; /* mmap()'ed memory */
9964         void *buf; /* for reconstructing segmented data */
9965         size_t buf_size;
9966         int fd;
9967         int cpu;
9968         int map_key;
9969 };
9970
9971 struct perf_buffer {
9972         perf_buffer_event_fn event_cb;
9973         perf_buffer_sample_fn sample_cb;
9974         perf_buffer_lost_fn lost_cb;
9975         void *ctx; /* passed into callbacks */
9976
9977         size_t page_size;
9978         size_t mmap_size;
9979         struct perf_cpu_buf **cpu_bufs;
9980         struct epoll_event *events;
9981         int cpu_cnt; /* number of allocated CPU buffers */
9982         int epoll_fd; /* perf event FD */
9983         int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9984 };
9985
9986 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9987                                       struct perf_cpu_buf *cpu_buf)
9988 {
9989         if (!cpu_buf)
9990                 return;
9991         if (cpu_buf->base &&
9992             munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9993                 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9994         if (cpu_buf->fd >= 0) {
9995                 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9996                 close(cpu_buf->fd);
9997         }
9998         free(cpu_buf->buf);
9999         free(cpu_buf);
10000 }
10001
10002 void perf_buffer__free(struct perf_buffer *pb)
10003 {
10004         int i;
10005
10006         if (IS_ERR_OR_NULL(pb))
10007                 return;
10008         if (pb->cpu_bufs) {
10009                 for (i = 0; i < pb->cpu_cnt; i++) {
10010                         struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10011
10012                         if (!cpu_buf)
10013                                 continue;
10014
10015                         bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10016                         perf_buffer__free_cpu_buf(pb, cpu_buf);
10017                 }
10018                 free(pb->cpu_bufs);
10019         }
10020         if (pb->epoll_fd >= 0)
10021                 close(pb->epoll_fd);
10022         free(pb->events);
10023         free(pb);
10024 }
10025
10026 static struct perf_cpu_buf *
10027 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10028                           int cpu, int map_key)
10029 {
10030         struct perf_cpu_buf *cpu_buf;
10031         char msg[STRERR_BUFSIZE];
10032         int err;
10033
10034         cpu_buf = calloc(1, sizeof(*cpu_buf));
10035         if (!cpu_buf)
10036                 return ERR_PTR(-ENOMEM);
10037
10038         cpu_buf->pb = pb;
10039         cpu_buf->cpu = cpu;
10040         cpu_buf->map_key = map_key;
10041
10042         cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10043                               -1, PERF_FLAG_FD_CLOEXEC);
10044         if (cpu_buf->fd < 0) {
10045                 err = -errno;
10046                 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10047                         cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10048                 goto error;
10049         }
10050
10051         cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10052                              PROT_READ | PROT_WRITE, MAP_SHARED,
10053                              cpu_buf->fd, 0);
10054         if (cpu_buf->base == MAP_FAILED) {
10055                 cpu_buf->base = NULL;
10056                 err = -errno;
10057                 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10058                         cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10059                 goto error;
10060         }
10061
10062         if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10063                 err = -errno;
10064                 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10065                         cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10066                 goto error;
10067         }
10068
10069         return cpu_buf;
10070
10071 error:
10072         perf_buffer__free_cpu_buf(pb, cpu_buf);
10073         return (struct perf_cpu_buf *)ERR_PTR(err);
10074 }
10075
10076 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10077                                               struct perf_buffer_params *p);
10078
10079 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10080                                      const struct perf_buffer_opts *opts)
10081 {
10082         struct perf_buffer_params p = {};
10083         struct perf_event_attr attr = { 0, };
10084
10085         attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10086         attr.type = PERF_TYPE_SOFTWARE;
10087         attr.sample_type = PERF_SAMPLE_RAW;
10088         attr.sample_period = 1;
10089         attr.wakeup_events = 1;
10090
10091         p.attr = &attr;
10092         p.sample_cb = opts ? opts->sample_cb : NULL;
10093         p.lost_cb = opts ? opts->lost_cb : NULL;
10094         p.ctx = opts ? opts->ctx : NULL;
10095
10096         return __perf_buffer__new(map_fd, page_cnt, &p);
10097 }
10098
10099 struct perf_buffer *
10100 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10101                      const struct perf_buffer_raw_opts *opts)
10102 {
10103         struct perf_buffer_params p = {};
10104
10105         p.attr = opts->attr;
10106         p.event_cb = opts->event_cb;
10107         p.ctx = opts->ctx;
10108         p.cpu_cnt = opts->cpu_cnt;
10109         p.cpus = opts->cpus;
10110         p.map_keys = opts->map_keys;
10111
10112         return __perf_buffer__new(map_fd, page_cnt, &p);
10113 }
10114
10115 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10116                                               struct perf_buffer_params *p)
10117 {
10118         const char *online_cpus_file = "/sys/devices/system/cpu/online";
10119         struct bpf_map_info map;
10120         char msg[STRERR_BUFSIZE];
10121         struct perf_buffer *pb;
10122         bool *online = NULL;
10123         __u32 map_info_len;
10124         int err, i, j, n;
10125
10126         if (page_cnt & (page_cnt - 1)) {
10127                 pr_warn("page count should be power of two, but is %zu\n",
10128                         page_cnt);
10129                 return ERR_PTR(-EINVAL);
10130         }
10131
10132         /* best-effort sanity checks */
10133         memset(&map, 0, sizeof(map));
10134         map_info_len = sizeof(map);
10135         err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10136         if (err) {
10137                 err = -errno;
10138                 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10139                  * -EBADFD, -EFAULT, or -E2BIG on real error
10140                  */
10141                 if (err != -EINVAL) {
10142                         pr_warn("failed to get map info for map FD %d: %s\n",
10143                                 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10144                         return ERR_PTR(err);
10145                 }
10146                 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10147                          map_fd);
10148         } else {
10149                 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10150                         pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10151                                 map.name);
10152                         return ERR_PTR(-EINVAL);
10153                 }
10154         }
10155
10156         pb = calloc(1, sizeof(*pb));
10157         if (!pb)
10158                 return ERR_PTR(-ENOMEM);
10159
10160         pb->event_cb = p->event_cb;
10161         pb->sample_cb = p->sample_cb;
10162         pb->lost_cb = p->lost_cb;
10163         pb->ctx = p->ctx;
10164
10165         pb->page_size = getpagesize();
10166         pb->mmap_size = pb->page_size * page_cnt;
10167         pb->map_fd = map_fd;
10168
10169         pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10170         if (pb->epoll_fd < 0) {
10171                 err = -errno;
10172                 pr_warn("failed to create epoll instance: %s\n",
10173                         libbpf_strerror_r(err, msg, sizeof(msg)));
10174                 goto error;
10175         }
10176
10177         if (p->cpu_cnt > 0) {
10178                 pb->cpu_cnt = p->cpu_cnt;
10179         } else {
10180                 pb->cpu_cnt = libbpf_num_possible_cpus();
10181                 if (pb->cpu_cnt < 0) {
10182                         err = pb->cpu_cnt;
10183                         goto error;
10184                 }
10185                 if (map.max_entries && map.max_entries < pb->cpu_cnt)
10186                         pb->cpu_cnt = map.max_entries;
10187         }
10188
10189         pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10190         if (!pb->events) {
10191                 err = -ENOMEM;
10192                 pr_warn("failed to allocate events: out of memory\n");
10193                 goto error;
10194         }
10195         pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10196         if (!pb->cpu_bufs) {
10197                 err = -ENOMEM;
10198                 pr_warn("failed to allocate buffers: out of memory\n");
10199                 goto error;
10200         }
10201
10202         err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10203         if (err) {
10204                 pr_warn("failed to get online CPU mask: %d\n", err);
10205                 goto error;
10206         }
10207
10208         for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10209                 struct perf_cpu_buf *cpu_buf;
10210                 int cpu, map_key;
10211
10212                 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10213                 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10214
10215                 /* in case user didn't explicitly requested particular CPUs to
10216                  * be attached to, skip offline/not present CPUs
10217                  */
10218                 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10219                         continue;
10220
10221                 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10222                 if (IS_ERR(cpu_buf)) {
10223                         err = PTR_ERR(cpu_buf);
10224                         goto error;
10225                 }
10226
10227                 pb->cpu_bufs[j] = cpu_buf;
10228
10229                 err = bpf_map_update_elem(pb->map_fd, &map_key,
10230                                           &cpu_buf->fd, 0);
10231                 if (err) {
10232                         err = -errno;
10233                         pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10234                                 cpu, map_key, cpu_buf->fd,
10235                                 libbpf_strerror_r(err, msg, sizeof(msg)));
10236                         goto error;
10237                 }
10238
10239                 pb->events[j].events = EPOLLIN;
10240                 pb->events[j].data.ptr = cpu_buf;
10241                 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10242                               &pb->events[j]) < 0) {
10243                         err = -errno;
10244                         pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10245                                 cpu, cpu_buf->fd,
10246                                 libbpf_strerror_r(err, msg, sizeof(msg)));
10247                         goto error;
10248                 }
10249                 j++;
10250         }
10251         pb->cpu_cnt = j;
10252         free(online);
10253
10254         return pb;
10255
10256 error:
10257         free(online);
10258         if (pb)
10259                 perf_buffer__free(pb);
10260         return ERR_PTR(err);
10261 }
10262
10263 struct perf_sample_raw {
10264         struct perf_event_header header;
10265         uint32_t size;
10266         char data[];
10267 };
10268
10269 struct perf_sample_lost {
10270         struct perf_event_header header;
10271         uint64_t id;
10272         uint64_t lost;
10273         uint64_t sample_id;
10274 };
10275
10276 static enum bpf_perf_event_ret
10277 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10278 {
10279         struct perf_cpu_buf *cpu_buf = ctx;
10280         struct perf_buffer *pb = cpu_buf->pb;
10281         void *data = e;
10282
10283         /* user wants full control over parsing perf event */
10284         if (pb->event_cb)
10285                 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10286
10287         switch (e->type) {
10288         case PERF_RECORD_SAMPLE: {
10289                 struct perf_sample_raw *s = data;
10290
10291                 if (pb->sample_cb)
10292                         pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10293                 break;
10294         }
10295         case PERF_RECORD_LOST: {
10296                 struct perf_sample_lost *s = data;
10297
10298                 if (pb->lost_cb)
10299                         pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10300                 break;
10301         }
10302         default:
10303                 pr_warn("unknown perf sample type %d\n", e->type);
10304                 return LIBBPF_PERF_EVENT_ERROR;
10305         }
10306         return LIBBPF_PERF_EVENT_CONT;
10307 }
10308
10309 static int perf_buffer__process_records(struct perf_buffer *pb,
10310                                         struct perf_cpu_buf *cpu_buf)
10311 {
10312         enum bpf_perf_event_ret ret;
10313
10314         ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10315                                          pb->page_size, &cpu_buf->buf,
10316                                          &cpu_buf->buf_size,
10317                                          perf_buffer__process_record, cpu_buf);
10318         if (ret != LIBBPF_PERF_EVENT_CONT)
10319                 return ret;
10320         return 0;
10321 }
10322
10323 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10324 {
10325         return pb->epoll_fd;
10326 }
10327
10328 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10329 {
10330         int i, cnt, err;
10331
10332         cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10333         for (i = 0; i < cnt; i++) {
10334                 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10335
10336                 err = perf_buffer__process_records(pb, cpu_buf);
10337                 if (err) {
10338                         pr_warn("error while processing records: %d\n", err);
10339                         return err;
10340                 }
10341         }
10342         return cnt < 0 ? -errno : cnt;
10343 }
10344
10345 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10346  * manager.
10347  */
10348 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10349 {
10350         return pb->cpu_cnt;
10351 }
10352
10353 /*
10354  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10355  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10356  * select()/poll()/epoll() Linux syscalls.
10357  */
10358 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10359 {
10360         struct perf_cpu_buf *cpu_buf;
10361
10362         if (buf_idx >= pb->cpu_cnt)
10363                 return -EINVAL;
10364
10365         cpu_buf = pb->cpu_bufs[buf_idx];
10366         if (!cpu_buf)
10367                 return -ENOENT;
10368
10369         return cpu_buf->fd;
10370 }
10371
10372 /*
10373  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10374  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10375  * consume, do nothing and return success.
10376  * Returns:
10377  *   - 0 on success;
10378  *   - <0 on failure.
10379  */
10380 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10381 {
10382         struct perf_cpu_buf *cpu_buf;
10383
10384         if (buf_idx >= pb->cpu_cnt)
10385                 return -EINVAL;
10386
10387         cpu_buf = pb->cpu_bufs[buf_idx];
10388         if (!cpu_buf)
10389                 return -ENOENT;
10390
10391         return perf_buffer__process_records(pb, cpu_buf);
10392 }
10393
10394 int perf_buffer__consume(struct perf_buffer *pb)
10395 {
10396         int i, err;
10397
10398         for (i = 0; i < pb->cpu_cnt; i++) {
10399                 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10400
10401                 if (!cpu_buf)
10402                         continue;
10403
10404                 err = perf_buffer__process_records(pb, cpu_buf);
10405                 if (err) {
10406                         pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10407                         return err;
10408                 }
10409         }
10410         return 0;
10411 }
10412
10413 struct bpf_prog_info_array_desc {
10414         int     array_offset;   /* e.g. offset of jited_prog_insns */
10415         int     count_offset;   /* e.g. offset of jited_prog_len */
10416         int     size_offset;    /* > 0: offset of rec size,
10417                                  * < 0: fix size of -size_offset
10418                                  */
10419 };
10420
10421 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10422         [BPF_PROG_INFO_JITED_INSNS] = {
10423                 offsetof(struct bpf_prog_info, jited_prog_insns),
10424                 offsetof(struct bpf_prog_info, jited_prog_len),
10425                 -1,
10426         },
10427         [BPF_PROG_INFO_XLATED_INSNS] = {
10428                 offsetof(struct bpf_prog_info, xlated_prog_insns),
10429                 offsetof(struct bpf_prog_info, xlated_prog_len),
10430                 -1,
10431         },
10432         [BPF_PROG_INFO_MAP_IDS] = {
10433                 offsetof(struct bpf_prog_info, map_ids),
10434                 offsetof(struct bpf_prog_info, nr_map_ids),
10435                 -(int)sizeof(__u32),
10436         },
10437         [BPF_PROG_INFO_JITED_KSYMS] = {
10438                 offsetof(struct bpf_prog_info, jited_ksyms),
10439                 offsetof(struct bpf_prog_info, nr_jited_ksyms),
10440                 -(int)sizeof(__u64),
10441         },
10442         [BPF_PROG_INFO_JITED_FUNC_LENS] = {
10443                 offsetof(struct bpf_prog_info, jited_func_lens),
10444                 offsetof(struct bpf_prog_info, nr_jited_func_lens),
10445                 -(int)sizeof(__u32),
10446         },
10447         [BPF_PROG_INFO_FUNC_INFO] = {
10448                 offsetof(struct bpf_prog_info, func_info),
10449                 offsetof(struct bpf_prog_info, nr_func_info),
10450                 offsetof(struct bpf_prog_info, func_info_rec_size),
10451         },
10452         [BPF_PROG_INFO_LINE_INFO] = {
10453                 offsetof(struct bpf_prog_info, line_info),
10454                 offsetof(struct bpf_prog_info, nr_line_info),
10455                 offsetof(struct bpf_prog_info, line_info_rec_size),
10456         },
10457         [BPF_PROG_INFO_JITED_LINE_INFO] = {
10458                 offsetof(struct bpf_prog_info, jited_line_info),
10459                 offsetof(struct bpf_prog_info, nr_jited_line_info),
10460                 offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10461         },
10462         [BPF_PROG_INFO_PROG_TAGS] = {
10463                 offsetof(struct bpf_prog_info, prog_tags),
10464                 offsetof(struct bpf_prog_info, nr_prog_tags),
10465                 -(int)sizeof(__u8) * BPF_TAG_SIZE,
10466         },
10467
10468 };
10469
10470 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10471                                            int offset)
10472 {
10473         __u32 *array = (__u32 *)info;
10474
10475         if (offset >= 0)
10476                 return array[offset / sizeof(__u32)];
10477         return -(int)offset;
10478 }
10479
10480 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10481                                            int offset)
10482 {
10483         __u64 *array = (__u64 *)info;
10484
10485         if (offset >= 0)
10486                 return array[offset / sizeof(__u64)];
10487         return -(int)offset;
10488 }
10489
10490 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10491                                          __u32 val)
10492 {
10493         __u32 *array = (__u32 *)info;
10494
10495         if (offset >= 0)
10496                 array[offset / sizeof(__u32)] = val;
10497 }
10498
10499 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10500                                          __u64 val)
10501 {
10502         __u64 *array = (__u64 *)info;
10503
10504         if (offset >= 0)
10505                 array[offset / sizeof(__u64)] = val;
10506 }
10507
10508 struct bpf_prog_info_linear *
10509 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10510 {
10511         struct bpf_prog_info_linear *info_linear;
10512         struct bpf_prog_info info = {};
10513         __u32 info_len = sizeof(info);
10514         __u32 data_len = 0;
10515         int i, err;
10516         void *ptr;
10517
10518         if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10519                 return ERR_PTR(-EINVAL);
10520
10521         /* step 1: get array dimensions */
10522         err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10523         if (err) {
10524                 pr_debug("can't get prog info: %s", strerror(errno));
10525                 return ERR_PTR(-EFAULT);
10526         }
10527
10528         /* step 2: calculate total size of all arrays */
10529         for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10530                 bool include_array = (arrays & (1UL << i)) > 0;
10531                 struct bpf_prog_info_array_desc *desc;
10532                 __u32 count, size;
10533
10534                 desc = bpf_prog_info_array_desc + i;
10535
10536                 /* kernel is too old to support this field */
10537                 if (info_len < desc->array_offset + sizeof(__u32) ||
10538                     info_len < desc->count_offset + sizeof(__u32) ||
10539                     (desc->size_offset > 0 && info_len < desc->size_offset))
10540                         include_array = false;
10541
10542                 if (!include_array) {
10543                         arrays &= ~(1UL << i);  /* clear the bit */
10544                         continue;
10545                 }
10546
10547                 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10548                 size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10549
10550                 data_len += count * size;
10551         }
10552
10553         /* step 3: allocate continuous memory */
10554         data_len = roundup(data_len, sizeof(__u64));
10555         info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10556         if (!info_linear)
10557                 return ERR_PTR(-ENOMEM);
10558
10559         /* step 4: fill data to info_linear->info */
10560         info_linear->arrays = arrays;
10561         memset(&info_linear->info, 0, sizeof(info));
10562         ptr = info_linear->data;
10563
10564         for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10565                 struct bpf_prog_info_array_desc *desc;
10566                 __u32 count, size;
10567
10568                 if ((arrays & (1UL << i)) == 0)
10569                         continue;
10570
10571                 desc  = bpf_prog_info_array_desc + i;
10572                 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10573                 size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10574                 bpf_prog_info_set_offset_u32(&info_linear->info,
10575                                              desc->count_offset, count);
10576                 bpf_prog_info_set_offset_u32(&info_linear->info,
10577                                              desc->size_offset, size);
10578                 bpf_prog_info_set_offset_u64(&info_linear->info,
10579                                              desc->array_offset,
10580                                              ptr_to_u64(ptr));
10581                 ptr += count * size;
10582         }
10583
10584         /* step 5: call syscall again to get required arrays */
10585         err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10586         if (err) {
10587                 pr_debug("can't get prog info: %s", strerror(errno));
10588                 free(info_linear);
10589                 return ERR_PTR(-EFAULT);
10590         }
10591
10592         /* step 6: verify the data */
10593         for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10594                 struct bpf_prog_info_array_desc *desc;
10595                 __u32 v1, v2;
10596
10597                 if ((arrays & (1UL << i)) == 0)
10598                         continue;
10599
10600                 desc = bpf_prog_info_array_desc + i;
10601                 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10602                 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10603                                                    desc->count_offset);
10604                 if (v1 != v2)
10605                         pr_warn("%s: mismatch in element count\n", __func__);
10606
10607                 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10608                 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10609                                                    desc->size_offset);
10610                 if (v1 != v2)
10611                         pr_warn("%s: mismatch in rec size\n", __func__);
10612         }
10613
10614         /* step 7: update info_len and data_len */
10615         info_linear->info_len = sizeof(struct bpf_prog_info);
10616         info_linear->data_len = data_len;
10617
10618         return info_linear;
10619 }
10620
10621 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10622 {
10623         int i;
10624
10625         for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10626                 struct bpf_prog_info_array_desc *desc;
10627                 __u64 addr, offs;
10628
10629                 if ((info_linear->arrays & (1UL << i)) == 0)
10630                         continue;
10631
10632                 desc = bpf_prog_info_array_desc + i;
10633                 addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10634                                                      desc->array_offset);
10635                 offs = addr - ptr_to_u64(info_linear->data);
10636                 bpf_prog_info_set_offset_u64(&info_linear->info,
10637                                              desc->array_offset, offs);
10638         }
10639 }
10640
10641 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10642 {
10643         int i;
10644
10645         for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10646                 struct bpf_prog_info_array_desc *desc;
10647                 __u64 addr, offs;
10648
10649                 if ((info_linear->arrays & (1UL << i)) == 0)
10650                         continue;
10651
10652                 desc = bpf_prog_info_array_desc + i;
10653                 offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10654                                                      desc->array_offset);
10655                 addr = offs + ptr_to_u64(info_linear->data);
10656                 bpf_prog_info_set_offset_u64(&info_linear->info,
10657                                              desc->array_offset, addr);
10658         }
10659 }
10660
10661 int bpf_program__set_attach_target(struct bpf_program *prog,
10662                                    int attach_prog_fd,
10663                                    const char *attach_func_name)
10664 {
10665         int btf_id;
10666
10667         if (!prog || attach_prog_fd < 0 || !attach_func_name)
10668                 return -EINVAL;
10669
10670         if (attach_prog_fd)
10671                 btf_id = libbpf_find_prog_btf_id(attach_func_name,
10672                                                  attach_prog_fd);
10673         else
10674                 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name,
10675                                                     prog->expected_attach_type);
10676
10677         if (btf_id < 0)
10678                 return btf_id;
10679
10680         prog->attach_btf_id = btf_id;
10681         prog->attach_prog_fd = attach_prog_fd;
10682         return 0;
10683 }
10684
10685 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10686 {
10687         int err = 0, n, len, start, end = -1;
10688         bool *tmp;
10689
10690         *mask = NULL;
10691         *mask_sz = 0;
10692
10693         /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10694         while (*s) {
10695                 if (*s == ',' || *s == '\n') {
10696                         s++;
10697                         continue;
10698                 }
10699                 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10700                 if (n <= 0 || n > 2) {
10701                         pr_warn("Failed to get CPU range %s: %d\n", s, n);
10702                         err = -EINVAL;
10703                         goto cleanup;
10704                 } else if (n == 1) {
10705                         end = start;
10706                 }
10707                 if (start < 0 || start > end) {
10708                         pr_warn("Invalid CPU range [%d,%d] in %s\n",
10709                                 start, end, s);
10710                         err = -EINVAL;
10711                         goto cleanup;
10712                 }
10713                 tmp = realloc(*mask, end + 1);
10714                 if (!tmp) {
10715                         err = -ENOMEM;
10716                         goto cleanup;
10717                 }
10718                 *mask = tmp;
10719                 memset(tmp + *mask_sz, 0, start - *mask_sz);
10720                 memset(tmp + start, 1, end - start + 1);
10721                 *mask_sz = end + 1;
10722                 s += len;
10723         }
10724         if (!*mask_sz) {
10725                 pr_warn("Empty CPU range\n");
10726                 return -EINVAL;
10727         }
10728         return 0;
10729 cleanup:
10730         free(*mask);
10731         *mask = NULL;
10732         return err;
10733 }
10734
10735 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10736 {
10737         int fd, err = 0, len;
10738         char buf[128];
10739
10740         fd = open(fcpu, O_RDONLY);
10741         if (fd < 0) {
10742                 err = -errno;
10743                 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10744                 return err;
10745         }
10746         len = read(fd, buf, sizeof(buf));
10747         close(fd);
10748         if (len <= 0) {
10749                 err = len ? -errno : -EINVAL;
10750                 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10751                 return err;
10752         }
10753         if (len >= sizeof(buf)) {
10754                 pr_warn("CPU mask is too big in file %s\n", fcpu);
10755                 return -E2BIG;
10756         }
10757         buf[len] = '\0';
10758
10759         return parse_cpu_mask_str(buf, mask, mask_sz);
10760 }
10761
10762 int libbpf_num_possible_cpus(void)
10763 {
10764         static const char *fcpu = "/sys/devices/system/cpu/possible";
10765         static int cpus;
10766         int err, n, i, tmp_cpus;
10767         bool *mask;
10768
10769         tmp_cpus = READ_ONCE(cpus);
10770         if (tmp_cpus > 0)
10771                 return tmp_cpus;
10772
10773         err = parse_cpu_mask_file(fcpu, &mask, &n);
10774         if (err)
10775                 return err;
10776
10777         tmp_cpus = 0;
10778         for (i = 0; i < n; i++) {
10779                 if (mask[i])
10780                         tmp_cpus++;
10781         }
10782         free(mask);
10783
10784         WRITE_ONCE(cpus, tmp_cpus);
10785         return tmp_cpus;
10786 }
10787
10788 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10789                               const struct bpf_object_open_opts *opts)
10790 {
10791         DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10792                 .object_name = s->name,
10793         );
10794         struct bpf_object *obj;
10795         int i;
10796
10797         /* Attempt to preserve opts->object_name, unless overriden by user
10798          * explicitly. Overwriting object name for skeletons is discouraged,
10799          * as it breaks global data maps, because they contain object name
10800          * prefix as their own map name prefix. When skeleton is generated,
10801          * bpftool is making an assumption that this name will stay the same.
10802          */
10803         if (opts) {
10804                 memcpy(&skel_opts, opts, sizeof(*opts));
10805                 if (!opts->object_name)
10806                         skel_opts.object_name = s->name;
10807         }
10808
10809         obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10810         if (IS_ERR(obj)) {
10811                 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10812                         s->name, PTR_ERR(obj));
10813                 return PTR_ERR(obj);
10814         }
10815
10816         *s->obj = obj;
10817
10818         for (i = 0; i < s->map_cnt; i++) {
10819                 struct bpf_map **map = s->maps[i].map;
10820                 const char *name = s->maps[i].name;
10821                 void **mmaped = s->maps[i].mmaped;
10822
10823                 *map = bpf_object__find_map_by_name(obj, name);
10824                 if (!*map) {
10825                         pr_warn("failed to find skeleton map '%s'\n", name);
10826                         return -ESRCH;
10827                 }
10828
10829                 /* externs shouldn't be pre-setup from user code */
10830                 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10831                         *mmaped = (*map)->mmaped;
10832         }
10833
10834         for (i = 0; i < s->prog_cnt; i++) {
10835                 struct bpf_program **prog = s->progs[i].prog;
10836                 const char *name = s->progs[i].name;
10837
10838                 *prog = bpf_object__find_program_by_name(obj, name);
10839                 if (!*prog) {
10840                         pr_warn("failed to find skeleton program '%s'\n", name);
10841                         return -ESRCH;
10842                 }
10843         }
10844
10845         return 0;
10846 }
10847
10848 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10849 {
10850         int i, err;
10851
10852         err = bpf_object__load(*s->obj);
10853         if (err) {
10854                 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10855                 return err;
10856         }
10857
10858         for (i = 0; i < s->map_cnt; i++) {
10859                 struct bpf_map *map = *s->maps[i].map;
10860                 size_t mmap_sz = bpf_map_mmap_sz(map);
10861                 int prot, map_fd = bpf_map__fd(map);
10862                 void **mmaped = s->maps[i].mmaped;
10863
10864                 if (!mmaped)
10865                         continue;
10866
10867                 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10868                         *mmaped = NULL;
10869                         continue;
10870                 }
10871
10872                 if (map->def.map_flags & BPF_F_RDONLY_PROG)
10873                         prot = PROT_READ;
10874                 else
10875                         prot = PROT_READ | PROT_WRITE;
10876
10877                 /* Remap anonymous mmap()-ed "map initialization image" as
10878                  * a BPF map-backed mmap()-ed memory, but preserving the same
10879                  * memory address. This will cause kernel to change process'
10880                  * page table to point to a different piece of kernel memory,
10881                  * but from userspace point of view memory address (and its
10882                  * contents, being identical at this point) will stay the
10883                  * same. This mapping will be released by bpf_object__close()
10884                  * as per normal clean up procedure, so we don't need to worry
10885                  * about it from skeleton's clean up perspective.
10886                  */
10887                 *mmaped = mmap(map->mmaped, mmap_sz, prot,
10888                                 MAP_SHARED | MAP_FIXED, map_fd, 0);
10889                 if (*mmaped == MAP_FAILED) {
10890                         err = -errno;
10891                         *mmaped = NULL;
10892                         pr_warn("failed to re-mmap() map '%s': %d\n",
10893                                  bpf_map__name(map), err);
10894                         return err;
10895                 }
10896         }
10897
10898         return 0;
10899 }
10900
10901 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10902 {
10903         int i;
10904
10905         for (i = 0; i < s->prog_cnt; i++) {
10906                 struct bpf_program *prog = *s->progs[i].prog;
10907                 struct bpf_link **link = s->progs[i].link;
10908                 const struct bpf_sec_def *sec_def;
10909
10910                 if (!prog->load)
10911                         continue;
10912
10913                 sec_def = find_sec_def(prog->sec_name);
10914                 if (!sec_def || !sec_def->attach_fn)
10915                         continue;
10916
10917                 *link = sec_def->attach_fn(sec_def, prog);
10918                 if (IS_ERR(*link)) {
10919                         pr_warn("failed to auto-attach program '%s': %ld\n",
10920                                 bpf_program__name(prog), PTR_ERR(*link));
10921                         return PTR_ERR(*link);
10922                 }
10923         }
10924
10925         return 0;
10926 }
10927
10928 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10929 {
10930         int i;
10931
10932         for (i = 0; i < s->prog_cnt; i++) {
10933                 struct bpf_link **link = s->progs[i].link;
10934
10935                 bpf_link__destroy(*link);
10936                 *link = NULL;
10937         }
10938 }
10939
10940 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10941 {
10942         if (!s)
10943                 return;
10944
10945         if (s->progs)
10946                 bpf_object__detach_skeleton(s);
10947         if (s->obj)
10948                 bpf_object__close(*s->obj);
10949         free(s->maps);
10950         free(s->progs);
10951         free(s);
10952 }