Mention branches and keyring.
[releases.git] / ti / knav_qmss_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:     Sandeep Nair <sandeep_n@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23
24 #include "knav_qmss.h"
25
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29         lockdep_is_held(&knav_dev_lock)
30
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX       0
33 #define KNAV_QUEUE_STATUS_REG_INDEX     1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
35 #define KNAV_QUEUE_REGION_REG_INDEX     3
36 #define KNAV_QUEUE_PUSH_REG_INDEX       4
37 #define KNAV_QUEUE_POP_REG_INDEX        5
38
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40  * There are no status and vbusm push registers on this version
41  * of QMSS. Push registers are same as pop, So all indices above 1
42  * are to be re-defined
43  */
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
47
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
53
54 #define knav_queue_idx_to_inst(kdev, idx)                       \
55         (kdev->instances + (idx << kdev->inst_shift))
56
57 #define for_each_handle_rcu(qh, inst)                           \
58         list_for_each_entry_rcu(qh, &inst->handles, list,       \
59                                 knav_dev_lock_held())
60
61 #define for_each_instance(idx, inst, kdev)              \
62         for (idx = 0, inst = kdev->instances;           \
63              idx < (kdev)->num_queues_in_use;                   \
64              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65
66 /* All firmware file names end up here. List the firmware file names below.
67  * Newest followed by older ones. Search is done from start of the array
68  * until a firmware file is found.
69  */
70 static const char * const knav_acc_firmwares[] = {"/*(DEBLOBBED)*/"};
71
72 static bool device_ready;
73 bool knav_qmss_device_ready(void)
74 {
75         return device_ready;
76 }
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78
79 /**
80  * knav_queue_notify: qmss queue notfier call
81  *
82  * @inst:               qmss queue instance like accumulator
83  */
84 void knav_queue_notify(struct knav_queue_inst *inst)
85 {
86         struct knav_queue *qh;
87
88         if (!inst)
89                 return;
90
91         rcu_read_lock();
92         for_each_handle_rcu(qh, inst) {
93                 if (atomic_read(&qh->notifier_enabled) <= 0)
94                         continue;
95                 if (WARN_ON(!qh->notifier_fn))
96                         continue;
97                 this_cpu_inc(qh->stats->notifies);
98                 qh->notifier_fn(qh->notifier_fn_arg);
99         }
100         rcu_read_unlock();
101 }
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
103
104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105 {
106         struct knav_queue_inst *inst = _instdata;
107
108         knav_queue_notify(inst);
109         return IRQ_HANDLED;
110 }
111
112 static int knav_queue_setup_irq(struct knav_range_info *range,
113                           struct knav_queue_inst *inst)
114 {
115         unsigned queue = inst->id - range->queue_base;
116         int ret = 0, irq;
117
118         if (range->flags & RANGE_HAS_IRQ) {
119                 irq = range->irqs[queue].irq;
120                 ret = request_irq(irq, knav_queue_int_handler, 0,
121                                         inst->irq_name, inst);
122                 if (ret)
123                         return ret;
124                 disable_irq(irq);
125                 if (range->irqs[queue].cpu_mask) {
126                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127                         if (ret) {
128                                 dev_warn(range->kdev->dev,
129                                          "Failed to set IRQ affinity\n");
130                                 return ret;
131                         }
132                 }
133         }
134         return ret;
135 }
136
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139         struct knav_range_info *range = inst->range;
140         unsigned queue = inst->id - inst->range->queue_base;
141         int irq;
142
143         if (range->flags & RANGE_HAS_IRQ) {
144                 irq = range->irqs[queue].irq;
145                 irq_set_affinity_hint(irq, NULL);
146                 free_irq(irq, inst);
147         }
148 }
149
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152         return !list_empty(&inst->handles);
153 }
154
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157         return inst->range->flags & RANGE_RESERVED;
158 }
159
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162         struct knav_queue *tmp;
163
164         rcu_read_lock();
165         for_each_handle_rcu(tmp, inst) {
166                 if (tmp->flags & KNAV_QUEUE_SHARED) {
167                         rcu_read_unlock();
168                         return true;
169                 }
170         }
171         rcu_read_unlock();
172         return false;
173 }
174
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176                                                 unsigned type)
177 {
178         if ((type == KNAV_QUEUE_QPEND) &&
179             (inst->range->flags & RANGE_HAS_IRQ)) {
180                 return true;
181         } else if ((type == KNAV_QUEUE_ACC) &&
182                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183                 return true;
184         } else if ((type == KNAV_QUEUE_GP) &&
185                 !(inst->range->flags &
186                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187                 return true;
188         }
189         return false;
190 }
191
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195         struct knav_queue_inst *inst;
196         int idx;
197
198         for_each_instance(idx, inst, kdev) {
199                 if (inst->id == id)
200                         return inst;
201         }
202         return NULL;
203 }
204
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207         if (kdev->base_id <= id &&
208             kdev->base_id + kdev->num_queues > id) {
209                 id -= kdev->base_id;
210                 return knav_queue_match_id_to_inst(kdev, id);
211         }
212         return NULL;
213 }
214
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216                                       const char *name, unsigned flags)
217 {
218         struct knav_queue *qh;
219         unsigned id;
220         int ret = 0;
221
222         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223         if (!qh)
224                 return ERR_PTR(-ENOMEM);
225
226         qh->stats = alloc_percpu(struct knav_queue_stats);
227         if (!qh->stats) {
228                 ret = -ENOMEM;
229                 goto err;
230         }
231
232         qh->flags = flags;
233         qh->inst = inst;
234         id = inst->id - inst->qmgr->start_queue;
235         qh->reg_push = &inst->qmgr->reg_push[id];
236         qh->reg_pop = &inst->qmgr->reg_pop[id];
237         qh->reg_peek = &inst->qmgr->reg_peek[id];
238
239         /* first opener? */
240         if (!knav_queue_is_busy(inst)) {
241                 struct knav_range_info *range = inst->range;
242
243                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244                 if (range->ops && range->ops->open_queue)
245                         ret = range->ops->open_queue(range, inst, flags);
246
247                 if (ret)
248                         goto err;
249         }
250         list_add_tail_rcu(&qh->list, &inst->handles);
251         return qh;
252
253 err:
254         if (qh->stats)
255                 free_percpu(qh->stats);
256         devm_kfree(inst->kdev->dev, qh);
257         return ERR_PTR(ret);
258 }
259
260 static struct knav_queue *
261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263         struct knav_queue_inst *inst;
264         struct knav_queue *qh;
265
266         mutex_lock(&knav_dev_lock);
267
268         qh = ERR_PTR(-ENODEV);
269         inst = knav_queue_find_by_id(id);
270         if (!inst)
271                 goto unlock_ret;
272
273         qh = ERR_PTR(-EEXIST);
274         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275                 goto unlock_ret;
276
277         qh = ERR_PTR(-EBUSY);
278         if ((flags & KNAV_QUEUE_SHARED) &&
279             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280                 goto unlock_ret;
281
282         qh = __knav_queue_open(inst, name, flags);
283
284 unlock_ret:
285         mutex_unlock(&knav_dev_lock);
286
287         return qh;
288 }
289
290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291                                                 unsigned type, unsigned flags)
292 {
293         struct knav_queue_inst *inst;
294         struct knav_queue *qh = ERR_PTR(-EINVAL);
295         int idx;
296
297         mutex_lock(&knav_dev_lock);
298
299         for_each_instance(idx, inst, kdev) {
300                 if (knav_queue_is_reserved(inst))
301                         continue;
302                 if (!knav_queue_match_type(inst, type))
303                         continue;
304                 if (knav_queue_is_busy(inst))
305                         continue;
306                 qh = __knav_queue_open(inst, name, flags);
307                 goto unlock_ret;
308         }
309
310 unlock_ret:
311         mutex_unlock(&knav_dev_lock);
312         return qh;
313 }
314
315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317         struct knav_range_info *range = inst->range;
318
319         if (range->ops && range->ops->set_notify)
320                 range->ops->set_notify(range, inst, enabled);
321 }
322
323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325         struct knav_queue_inst *inst = qh->inst;
326         bool first;
327
328         if (WARN_ON(!qh->notifier_fn))
329                 return -EINVAL;
330
331         /* Adjust the per handle notifier count */
332         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333         if (!first)
334                 return 0; /* nothing to do */
335
336         /* Now adjust the per instance notifier count */
337         first = (atomic_inc_return(&inst->num_notifiers) == 1);
338         if (first)
339                 knav_queue_set_notify(inst, true);
340
341         return 0;
342 }
343
344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346         struct knav_queue_inst *inst = qh->inst;
347         bool last;
348
349         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350         if (!last)
351                 return 0; /* nothing to do */
352
353         last = (atomic_dec_return(&inst->num_notifiers) == 0);
354         if (last)
355                 knav_queue_set_notify(inst, false);
356
357         return 0;
358 }
359
360 static int knav_queue_set_notifier(struct knav_queue *qh,
361                                 struct knav_queue_notify_config *cfg)
362 {
363         knav_queue_notify_fn old_fn = qh->notifier_fn;
364
365         if (!cfg)
366                 return -EINVAL;
367
368         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369                 return -ENOTSUPP;
370
371         if (!cfg->fn && old_fn)
372                 knav_queue_disable_notifier(qh);
373
374         qh->notifier_fn = cfg->fn;
375         qh->notifier_fn_arg = cfg->fn_arg;
376
377         if (cfg->fn && !old_fn)
378                 knav_queue_enable_notifier(qh);
379
380         return 0;
381 }
382
383 static int knav_gp_set_notify(struct knav_range_info *range,
384                                struct knav_queue_inst *inst,
385                                bool enabled)
386 {
387         unsigned queue;
388
389         if (range->flags & RANGE_HAS_IRQ) {
390                 queue = inst->id - range->queue_base;
391                 if (enabled)
392                         enable_irq(range->irqs[queue].irq);
393                 else
394                         disable_irq_nosync(range->irqs[queue].irq);
395         }
396         return 0;
397 }
398
399 static int knav_gp_open_queue(struct knav_range_info *range,
400                                 struct knav_queue_inst *inst, unsigned flags)
401 {
402         return knav_queue_setup_irq(range, inst);
403 }
404
405 static int knav_gp_close_queue(struct knav_range_info *range,
406                                 struct knav_queue_inst *inst)
407 {
408         knav_queue_free_irq(inst);
409         return 0;
410 }
411
412 static struct knav_range_ops knav_gp_range_ops = {
413         .set_notify     = knav_gp_set_notify,
414         .open_queue     = knav_gp_open_queue,
415         .close_queue    = knav_gp_close_queue,
416 };
417
418
419 static int knav_queue_get_count(void *qhandle)
420 {
421         struct knav_queue *qh = qhandle;
422         struct knav_queue_inst *inst = qh->inst;
423
424         return readl_relaxed(&qh->reg_peek[0].entry_count) +
425                 atomic_read(&inst->desc_count);
426 }
427
428 static void knav_queue_debug_show_instance(struct seq_file *s,
429                                         struct knav_queue_inst *inst)
430 {
431         struct knav_device *kdev = inst->kdev;
432         struct knav_queue *qh;
433         int cpu = 0;
434         int pushes = 0;
435         int pops = 0;
436         int push_errors = 0;
437         int pop_errors = 0;
438         int notifies = 0;
439
440         if (!knav_queue_is_busy(inst))
441                 return;
442
443         seq_printf(s, "\tqueue id %d (%s)\n",
444                    kdev->base_id + inst->id, inst->name);
445         for_each_handle_rcu(qh, inst) {
446                 for_each_possible_cpu(cpu) {
447                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
449                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452                 }
453
454                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455                                 qh,
456                                 pushes,
457                                 pops,
458                                 knav_queue_get_count(qh),
459                                 notifies,
460                                 push_errors,
461                                 pop_errors);
462         }
463 }
464
465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467         struct knav_queue_inst *inst;
468         int idx;
469
470         mutex_lock(&knav_dev_lock);
471         seq_printf(s, "%s: %u-%u\n",
472                    dev_name(kdev->dev), kdev->base_id,
473                    kdev->base_id + kdev->num_queues - 1);
474         for_each_instance(idx, inst, kdev)
475                 knav_queue_debug_show_instance(s, inst);
476         mutex_unlock(&knav_dev_lock);
477
478         return 0;
479 }
480
481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
482
483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
484                                         u32 flags)
485 {
486         unsigned long end;
487         u32 val = 0;
488
489         end = jiffies + msecs_to_jiffies(timeout);
490         while (time_after(end, jiffies)) {
491                 val = readl_relaxed(addr);
492                 if (flags)
493                         val &= flags;
494                 if (!val)
495                         break;
496                 cpu_relax();
497         }
498         return val ? -ETIMEDOUT : 0;
499 }
500
501
502 static int knav_queue_flush(struct knav_queue *qh)
503 {
504         struct knav_queue_inst *inst = qh->inst;
505         unsigned id = inst->id - inst->qmgr->start_queue;
506
507         atomic_set(&inst->desc_count, 0);
508         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
509         return 0;
510 }
511
512 /**
513  * knav_queue_open()    - open a hardware queue
514  * @name                - name to give the queue handle
515  * @id                  - desired queue number if any or specifes the type
516  *                        of queue
517  * @flags               - the following flags are applicable to queues:
518  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
519  *                           exclusive by default.
520  *                           Subsequent attempts to open a shared queue should
521  *                           also have this flag.
522  *
523  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
524  * to check the returned value for error codes.
525  */
526 void *knav_queue_open(const char *name, unsigned id,
527                                         unsigned flags)
528 {
529         struct knav_queue *qh = ERR_PTR(-EINVAL);
530
531         switch (id) {
532         case KNAV_QUEUE_QPEND:
533         case KNAV_QUEUE_ACC:
534         case KNAV_QUEUE_GP:
535                 qh = knav_queue_open_by_type(name, id, flags);
536                 break;
537
538         default:
539                 qh = knav_queue_open_by_id(name, id, flags);
540                 break;
541         }
542         return qh;
543 }
544 EXPORT_SYMBOL_GPL(knav_queue_open);
545
546 /**
547  * knav_queue_close()   - close a hardware queue handle
548  * @qh                  - handle to close
549  */
550 void knav_queue_close(void *qhandle)
551 {
552         struct knav_queue *qh = qhandle;
553         struct knav_queue_inst *inst = qh->inst;
554
555         while (atomic_read(&qh->notifier_enabled) > 0)
556                 knav_queue_disable_notifier(qh);
557
558         mutex_lock(&knav_dev_lock);
559         list_del_rcu(&qh->list);
560         mutex_unlock(&knav_dev_lock);
561         synchronize_rcu();
562         if (!knav_queue_is_busy(inst)) {
563                 struct knav_range_info *range = inst->range;
564
565                 if (range->ops && range->ops->close_queue)
566                         range->ops->close_queue(range, inst);
567         }
568         free_percpu(qh->stats);
569         devm_kfree(inst->kdev->dev, qh);
570 }
571 EXPORT_SYMBOL_GPL(knav_queue_close);
572
573 /**
574  * knav_queue_device_control()  - Perform control operations on a queue
575  * @qh                          - queue handle
576  * @cmd                         - control commands
577  * @arg                         - command argument
578  *
579  * Returns 0 on success, errno otherwise.
580  */
581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
582                                 unsigned long arg)
583 {
584         struct knav_queue *qh = qhandle;
585         struct knav_queue_notify_config *cfg;
586         int ret;
587
588         switch ((int)cmd) {
589         case KNAV_QUEUE_GET_ID:
590                 ret = qh->inst->kdev->base_id + qh->inst->id;
591                 break;
592
593         case KNAV_QUEUE_FLUSH:
594                 ret = knav_queue_flush(qh);
595                 break;
596
597         case KNAV_QUEUE_SET_NOTIFIER:
598                 cfg = (void *)arg;
599                 ret = knav_queue_set_notifier(qh, cfg);
600                 break;
601
602         case KNAV_QUEUE_ENABLE_NOTIFY:
603                 ret = knav_queue_enable_notifier(qh);
604                 break;
605
606         case KNAV_QUEUE_DISABLE_NOTIFY:
607                 ret = knav_queue_disable_notifier(qh);
608                 break;
609
610         case KNAV_QUEUE_GET_COUNT:
611                 ret = knav_queue_get_count(qh);
612                 break;
613
614         default:
615                 ret = -ENOTSUPP;
616                 break;
617         }
618         return ret;
619 }
620 EXPORT_SYMBOL_GPL(knav_queue_device_control);
621
622
623
624 /**
625  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
626  * @qh                  - hardware queue handle
627  * @data                - data to push
628  * @size                - size of data to push
629  * @flags               - can be used to pass additional information
630  *
631  * Returns 0 on success, errno otherwise.
632  */
633 int knav_queue_push(void *qhandle, dma_addr_t dma,
634                                         unsigned size, unsigned flags)
635 {
636         struct knav_queue *qh = qhandle;
637         u32 val;
638
639         val = (u32)dma | ((size / 16) - 1);
640         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
641
642         this_cpu_inc(qh->stats->pushes);
643         return 0;
644 }
645 EXPORT_SYMBOL_GPL(knav_queue_push);
646
647 /**
648  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
649  * @qh                  - hardware queue handle
650  * @size                - (optional) size of the data pop'ed.
651  *
652  * Returns a DMA address on success, 0 on failure.
653  */
654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
655 {
656         struct knav_queue *qh = qhandle;
657         struct knav_queue_inst *inst = qh->inst;
658         dma_addr_t dma;
659         u32 val, idx;
660
661         /* are we accumulated? */
662         if (inst->descs) {
663                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
664                         atomic_inc(&inst->desc_count);
665                         return 0;
666                 }
667                 idx  = atomic_inc_return(&inst->desc_head);
668                 idx &= ACC_DESCS_MASK;
669                 val = inst->descs[idx];
670         } else {
671                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
672                 if (unlikely(!val))
673                         return 0;
674         }
675
676         dma = val & DESC_PTR_MASK;
677         if (size)
678                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
679
680         this_cpu_inc(qh->stats->pops);
681         return dma;
682 }
683 EXPORT_SYMBOL_GPL(knav_queue_pop);
684
685 /* carve out descriptors and push into queue */
686 static void kdesc_fill_pool(struct knav_pool *pool)
687 {
688         struct knav_region *region;
689         int i;
690
691         region = pool->region;
692         pool->desc_size = region->desc_size;
693         for (i = 0; i < pool->num_desc; i++) {
694                 int index = pool->region_offset + i;
695                 dma_addr_t dma_addr;
696                 unsigned dma_size;
697                 dma_addr = region->dma_start + (region->desc_size * index);
698                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
699                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
700                                            DMA_TO_DEVICE);
701                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
702         }
703 }
704
705 /* pop out descriptors and close the queue */
706 static void kdesc_empty_pool(struct knav_pool *pool)
707 {
708         dma_addr_t dma;
709         unsigned size;
710         void *desc;
711         int i;
712
713         if (!pool->queue)
714                 return;
715
716         for (i = 0;; i++) {
717                 dma = knav_queue_pop(pool->queue, &size);
718                 if (!dma)
719                         break;
720                 desc = knav_pool_desc_dma_to_virt(pool, dma);
721                 if (!desc) {
722                         dev_dbg(pool->kdev->dev,
723                                 "couldn't unmap desc, continuing\n");
724                         continue;
725                 }
726         }
727         WARN_ON(i != pool->num_desc);
728         knav_queue_close(pool->queue);
729 }
730
731
732 /* Get the DMA address of a descriptor */
733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735         struct knav_pool *pool = ph;
736         return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739
740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742         struct knav_pool *pool = ph;
743         return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746
747 /**
748  * knav_pool_create()   - Create a pool of descriptors
749  * @name                - name to give the pool handle
750  * @num_desc            - numbers of descriptors in the pool
751  * @region_id           - QMSS region id from which the descriptors are to be
752  *                        allocated.
753  *
754  * Returns a pool handle on success.
755  * Use IS_ERR_OR_NULL() to identify error values on return.
756  */
757 void *knav_pool_create(const char *name,
758                                         int num_desc, int region_id)
759 {
760         struct knav_region *reg_itr, *region = NULL;
761         struct knav_pool *pool, *pi;
762         struct list_head *node;
763         unsigned last_offset;
764         bool slot_found;
765         int ret;
766
767         if (!kdev)
768                 return ERR_PTR(-EPROBE_DEFER);
769
770         if (!kdev->dev)
771                 return ERR_PTR(-ENODEV);
772
773         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
774         if (!pool) {
775                 dev_err(kdev->dev, "out of memory allocating pool\n");
776                 return ERR_PTR(-ENOMEM);
777         }
778
779         for_each_region(kdev, reg_itr) {
780                 if (reg_itr->id != region_id)
781                         continue;
782                 region = reg_itr;
783                 break;
784         }
785
786         if (!region) {
787                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
788                 ret = -EINVAL;
789                 goto err;
790         }
791
792         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
793         if (IS_ERR_OR_NULL(pool->queue)) {
794                 dev_err(kdev->dev,
795                         "failed to open queue for pool(%s), error %ld\n",
796                         name, PTR_ERR(pool->queue));
797                 ret = PTR_ERR(pool->queue);
798                 goto err;
799         }
800
801         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
802         pool->kdev = kdev;
803         pool->dev = kdev->dev;
804
805         mutex_lock(&knav_dev_lock);
806
807         if (num_desc > (region->num_desc - region->used_desc)) {
808                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
809                         region_id, name);
810                 ret = -ENOMEM;
811                 goto err_unlock;
812         }
813
814         /* Region maintains a sorted (by region offset) list of pools
815          * use the first free slot which is large enough to accomodate
816          * the request
817          */
818         last_offset = 0;
819         slot_found = false;
820         node = &region->pools;
821         list_for_each_entry(pi, &region->pools, region_inst) {
822                 if ((pi->region_offset - last_offset) >= num_desc) {
823                         slot_found = true;
824                         break;
825                 }
826                 last_offset = pi->region_offset + pi->num_desc;
827         }
828         node = &pi->region_inst;
829
830         if (slot_found) {
831                 pool->region = region;
832                 pool->num_desc = num_desc;
833                 pool->region_offset = last_offset;
834                 region->used_desc += num_desc;
835                 list_add_tail(&pool->list, &kdev->pools);
836                 list_add_tail(&pool->region_inst, node);
837         } else {
838                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
839                         name, region_id);
840                 ret = -ENOMEM;
841                 goto err_unlock;
842         }
843
844         mutex_unlock(&knav_dev_lock);
845         kdesc_fill_pool(pool);
846         return pool;
847
848 err_unlock:
849         mutex_unlock(&knav_dev_lock);
850 err:
851         kfree(pool->name);
852         devm_kfree(kdev->dev, pool);
853         return ERR_PTR(ret);
854 }
855 EXPORT_SYMBOL_GPL(knav_pool_create);
856
857 /**
858  * knav_pool_destroy()  - Free a pool of descriptors
859  * @pool                - pool handle
860  */
861 void knav_pool_destroy(void *ph)
862 {
863         struct knav_pool *pool = ph;
864
865         if (!pool)
866                 return;
867
868         if (!pool->region)
869                 return;
870
871         kdesc_empty_pool(pool);
872         mutex_lock(&knav_dev_lock);
873
874         pool->region->used_desc -= pool->num_desc;
875         list_del(&pool->region_inst);
876         list_del(&pool->list);
877
878         mutex_unlock(&knav_dev_lock);
879         kfree(pool->name);
880         devm_kfree(kdev->dev, pool);
881 }
882 EXPORT_SYMBOL_GPL(knav_pool_destroy);
883
884
885 /**
886  * knav_pool_desc_get() - Get a descriptor from the pool
887  * @pool                        - pool handle
888  *
889  * Returns descriptor from the pool.
890  */
891 void *knav_pool_desc_get(void *ph)
892 {
893         struct knav_pool *pool = ph;
894         dma_addr_t dma;
895         unsigned size;
896         void *data;
897
898         dma = knav_queue_pop(pool->queue, &size);
899         if (unlikely(!dma))
900                 return ERR_PTR(-ENOMEM);
901         data = knav_pool_desc_dma_to_virt(pool, dma);
902         return data;
903 }
904 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
905
906 /**
907  * knav_pool_desc_put() - return a descriptor to the pool
908  * @pool                        - pool handle
909  */
910 void knav_pool_desc_put(void *ph, void *desc)
911 {
912         struct knav_pool *pool = ph;
913         dma_addr_t dma;
914         dma = knav_pool_desc_virt_to_dma(pool, desc);
915         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
916 }
917 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
918
919 /**
920  * knav_pool_desc_map() - Map descriptor for DMA transfer
921  * @pool                        - pool handle
922  * @desc                        - address of descriptor to map
923  * @size                        - size of descriptor to map
924  * @dma                         - DMA address return pointer
925  * @dma_sz                      - adjusted return pointer
926  *
927  * Returns 0 on success, errno otherwise.
928  */
929 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
930                                         dma_addr_t *dma, unsigned *dma_sz)
931 {
932         struct knav_pool *pool = ph;
933         *dma = knav_pool_desc_virt_to_dma(pool, desc);
934         size = min(size, pool->region->desc_size);
935         size = ALIGN(size, SMP_CACHE_BYTES);
936         *dma_sz = size;
937         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
938
939         /* Ensure the descriptor reaches to the memory */
940         __iowmb();
941
942         return 0;
943 }
944 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
945
946 /**
947  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
948  * @pool                        - pool handle
949  * @dma                         - DMA address of descriptor to unmap
950  * @dma_sz                      - size of descriptor to unmap
951  *
952  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
953  * error values on return.
954  */
955 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
956 {
957         struct knav_pool *pool = ph;
958         unsigned desc_sz;
959         void *desc;
960
961         desc_sz = min(dma_sz, pool->region->desc_size);
962         desc = knav_pool_desc_dma_to_virt(pool, dma);
963         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
964         prefetch(desc);
965         return desc;
966 }
967 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
968
969 /**
970  * knav_pool_count()    - Get the number of descriptors in pool.
971  * @pool                - pool handle
972  * Returns number of elements in the pool.
973  */
974 int knav_pool_count(void *ph)
975 {
976         struct knav_pool *pool = ph;
977         return knav_queue_get_count(pool->queue);
978 }
979 EXPORT_SYMBOL_GPL(knav_pool_count);
980
981 static void knav_queue_setup_region(struct knav_device *kdev,
982                                         struct knav_region *region)
983 {
984         unsigned hw_num_desc, hw_desc_size, size;
985         struct knav_reg_region __iomem  *regs;
986         struct knav_qmgr_info *qmgr;
987         struct knav_pool *pool;
988         int id = region->id;
989         struct page *page;
990
991         /* unused region? */
992         if (!region->num_desc) {
993                 dev_warn(kdev->dev, "unused region %s\n", region->name);
994                 return;
995         }
996
997         /* get hardware descriptor value */
998         hw_num_desc = ilog2(region->num_desc - 1) + 1;
999
1000         /* did we force fit ourselves into nothingness? */
1001         if (region->num_desc < 32) {
1002                 region->num_desc = 0;
1003                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1004                          region->name);
1005                 return;
1006         }
1007
1008         size = region->num_desc * region->desc_size;
1009         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1010                                                 GFP_DMA32);
1011         if (!region->virt_start) {
1012                 region->num_desc = 0;
1013                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1014                         region->name);
1015                 return;
1016         }
1017         region->virt_end = region->virt_start + size;
1018         page = virt_to_page(region->virt_start);
1019
1020         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1021                                          DMA_BIDIRECTIONAL);
1022         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1023                 dev_err(kdev->dev, "dma map failed for region %s\n",
1024                         region->name);
1025                 goto fail;
1026         }
1027         region->dma_end = region->dma_start + size;
1028
1029         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1030         if (!pool) {
1031                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1032                 goto fail;
1033         }
1034         pool->num_desc = 0;
1035         pool->region_offset = region->num_desc;
1036         list_add(&pool->region_inst, &region->pools);
1037
1038         dev_dbg(kdev->dev,
1039                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1040                 region->name, id, region->desc_size, region->num_desc,
1041                 region->link_index, &region->dma_start, &region->dma_end,
1042                 region->virt_start, region->virt_end);
1043
1044         hw_desc_size = (region->desc_size / 16) - 1;
1045         hw_num_desc -= 5;
1046
1047         for_each_qmgr(kdev, qmgr) {
1048                 regs = qmgr->reg_region + id;
1049                 writel_relaxed((u32)region->dma_start, &regs->base);
1050                 writel_relaxed(region->link_index, &regs->start_index);
1051                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1052                                &regs->size_count);
1053         }
1054         return;
1055
1056 fail:
1057         if (region->dma_start)
1058                 dma_unmap_page(kdev->dev, region->dma_start, size,
1059                                 DMA_BIDIRECTIONAL);
1060         if (region->virt_start)
1061                 free_pages_exact(region->virt_start, size);
1062         region->num_desc = 0;
1063         return;
1064 }
1065
1066 static const char *knav_queue_find_name(struct device_node *node)
1067 {
1068         const char *name;
1069
1070         if (of_property_read_string(node, "label", &name) < 0)
1071                 name = node->name;
1072         if (!name)
1073                 name = "unknown";
1074         return name;
1075 }
1076
1077 static int knav_queue_setup_regions(struct knav_device *kdev,
1078                                         struct device_node *regions)
1079 {
1080         struct device *dev = kdev->dev;
1081         struct knav_region *region;
1082         struct device_node *child;
1083         u32 temp[2];
1084         int ret;
1085
1086         for_each_child_of_node(regions, child) {
1087                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1088                 if (!region) {
1089                         dev_err(dev, "out of memory allocating region\n");
1090                         return -ENOMEM;
1091                 }
1092
1093                 region->name = knav_queue_find_name(child);
1094                 of_property_read_u32(child, "id", &region->id);
1095                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1096                 if (!ret) {
1097                         region->num_desc  = temp[0];
1098                         region->desc_size = temp[1];
1099                 } else {
1100                         dev_err(dev, "invalid region info %s\n", region->name);
1101                         devm_kfree(dev, region);
1102                         continue;
1103                 }
1104
1105                 if (!of_get_property(child, "link-index", NULL)) {
1106                         dev_err(dev, "No link info for %s\n", region->name);
1107                         devm_kfree(dev, region);
1108                         continue;
1109                 }
1110                 ret = of_property_read_u32(child, "link-index",
1111                                            &region->link_index);
1112                 if (ret) {
1113                         dev_err(dev, "link index not found for %s\n",
1114                                 region->name);
1115                         devm_kfree(dev, region);
1116                         continue;
1117                 }
1118
1119                 INIT_LIST_HEAD(&region->pools);
1120                 list_add_tail(&region->list, &kdev->regions);
1121         }
1122         if (list_empty(&kdev->regions)) {
1123                 dev_err(dev, "no valid region information found\n");
1124                 return -ENODEV;
1125         }
1126
1127         /* Next, we run through the regions and set things up */
1128         for_each_region(kdev, region)
1129                 knav_queue_setup_region(kdev, region);
1130
1131         return 0;
1132 }
1133
1134 static int knav_get_link_ram(struct knav_device *kdev,
1135                                        const char *name,
1136                                        struct knav_link_ram_block *block)
1137 {
1138         struct platform_device *pdev = to_platform_device(kdev->dev);
1139         struct device_node *node = pdev->dev.of_node;
1140         u32 temp[2];
1141
1142         /*
1143          * Note: link ram resources are specified in "entry" sized units. In
1144          * reality, although entries are ~40bits in hardware, we treat them as
1145          * 64-bit entities here.
1146          *
1147          * For example, to specify the internal link ram for Keystone-I class
1148          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149          *
1150          * This gets a bit weird when other link rams are used.  For example,
1151          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153          * which accounts for 64-bits per entry, for 16K entries.
1154          */
1155         if (!of_property_read_u32_array(node, name , temp, 2)) {
1156                 if (temp[0]) {
1157                         /*
1158                          * queue_base specified => using internal or onchip
1159                          * link ram WARNING - we do not "reserve" this block
1160                          */
1161                         block->dma = (dma_addr_t)temp[0];
1162                         block->virt = NULL;
1163                         block->size = temp[1];
1164                 } else {
1165                         block->size = temp[1];
1166                         /* queue_base not specific => allocate requested size */
1167                         block->virt = dmam_alloc_coherent(kdev->dev,
1168                                                   8 * block->size, &block->dma,
1169                                                   GFP_KERNEL);
1170                         if (!block->virt) {
1171                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1172                                 return -ENOMEM;
1173                         }
1174                 }
1175         } else {
1176                 return -ENODEV;
1177         }
1178         return 0;
1179 }
1180
1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183         struct knav_link_ram_block *block;
1184         struct knav_qmgr_info *qmgr;
1185
1186         for_each_qmgr(kdev, qmgr) {
1187                 block = &kdev->link_rams[0];
1188                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189                         &block->dma, block->virt, block->size);
1190                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191                 if (kdev->version == QMSS_66AK2G)
1192                         writel_relaxed(block->size,
1193                                        &qmgr->reg_config->link_ram_size0);
1194                 else
1195                         writel_relaxed(block->size - 1,
1196                                        &qmgr->reg_config->link_ram_size0);
1197                 block++;
1198                 if (!block->size)
1199                         continue;
1200
1201                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202                         &block->dma, block->virt, block->size);
1203                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204         }
1205
1206         return 0;
1207 }
1208
1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210                                         struct device_node *node)
1211 {
1212         struct device *dev = kdev->dev;
1213         struct knav_range_info *range;
1214         struct knav_qmgr_info *qmgr;
1215         u32 temp[2], start, end, id, index;
1216         int ret, i;
1217
1218         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219         if (!range) {
1220                 dev_err(dev, "out of memory allocating range\n");
1221                 return -ENOMEM;
1222         }
1223
1224         range->kdev = kdev;
1225         range->name = knav_queue_find_name(node);
1226         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227         if (!ret) {
1228                 range->queue_base = temp[0] - kdev->base_id;
1229                 range->num_queues = temp[1];
1230         } else {
1231                 dev_err(dev, "invalid queue range %s\n", range->name);
1232                 devm_kfree(dev, range);
1233                 return -EINVAL;
1234         }
1235
1236         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237                 struct of_phandle_args oirq;
1238
1239                 if (of_irq_parse_one(node, i, &oirq))
1240                         break;
1241
1242                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243                 if (range->irqs[i].irq == IRQ_NONE)
1244                         break;
1245
1246                 range->num_irqs++;
1247
1248                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249                         unsigned long mask;
1250                         int bit;
1251
1252                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253                                                                cpumask_size(), GFP_KERNEL);
1254                         if (!range->irqs[i].cpu_mask)
1255                                 return -ENOMEM;
1256
1257                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260                 }
1261         }
1262
1263         range->num_irqs = min(range->num_irqs, range->num_queues);
1264         if (range->num_irqs)
1265                 range->flags |= RANGE_HAS_IRQ;
1266
1267         if (of_get_property(node, "qalloc-by-id", NULL))
1268                 range->flags |= RANGE_RESERVED;
1269
1270         if (of_get_property(node, "accumulator", NULL)) {
1271                 ret = knav_init_acc_range(kdev, node, range);
1272                 if (ret < 0) {
1273                         devm_kfree(dev, range);
1274                         return ret;
1275                 }
1276         } else {
1277                 range->ops = &knav_gp_range_ops;
1278         }
1279
1280         /* set threshold to 1, and flush out the queues */
1281         for_each_qmgr(kdev, qmgr) {
1282                 start = max(qmgr->start_queue, range->queue_base);
1283                 end   = min(qmgr->start_queue + qmgr->num_queues,
1284                             range->queue_base + range->num_queues);
1285                 for (id = start; id < end; id++) {
1286                         index = id - qmgr->start_queue;
1287                         writel_relaxed(THRESH_GTE | 1,
1288                                        &qmgr->reg_peek[index].ptr_size_thresh);
1289                         writel_relaxed(0,
1290                                        &qmgr->reg_push[index].ptr_size_thresh);
1291                 }
1292         }
1293
1294         list_add_tail(&range->list, &kdev->queue_ranges);
1295         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296                 range->name, range->queue_base,
1297                 range->queue_base + range->num_queues - 1,
1298                 range->num_irqs,
1299                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302         kdev->num_queues_in_use += range->num_queues;
1303         return 0;
1304 }
1305
1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307                                    struct device_node *queue_pools)
1308 {
1309         struct device_node *type, *range;
1310         int ret;
1311
1312         for_each_child_of_node(queue_pools, type) {
1313                 for_each_child_of_node(type, range) {
1314                         ret = knav_setup_queue_range(kdev, range);
1315                         /* return value ignored, we init the rest... */
1316                 }
1317         }
1318
1319         /* ... and barf if they all failed! */
1320         if (list_empty(&kdev->queue_ranges)) {
1321                 dev_err(kdev->dev, "no valid queue range found\n");
1322                 return -ENODEV;
1323         }
1324         return 0;
1325 }
1326
1327 static void knav_free_queue_range(struct knav_device *kdev,
1328                                   struct knav_range_info *range)
1329 {
1330         if (range->ops && range->ops->free_range)
1331                 range->ops->free_range(range);
1332         list_del(&range->list);
1333         devm_kfree(kdev->dev, range);
1334 }
1335
1336 static void knav_free_queue_ranges(struct knav_device *kdev)
1337 {
1338         struct knav_range_info *range;
1339
1340         for (;;) {
1341                 range = first_queue_range(kdev);
1342                 if (!range)
1343                         break;
1344                 knav_free_queue_range(kdev, range);
1345         }
1346 }
1347
1348 static void knav_queue_free_regions(struct knav_device *kdev)
1349 {
1350         struct knav_region *region;
1351         struct knav_pool *pool, *tmp;
1352         unsigned size;
1353
1354         for (;;) {
1355                 region = first_region(kdev);
1356                 if (!region)
1357                         break;
1358                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1359                         knav_pool_destroy(pool);
1360
1361                 size = region->virt_end - region->virt_start;
1362                 if (size)
1363                         free_pages_exact(region->virt_start, size);
1364                 list_del(&region->list);
1365                 devm_kfree(kdev->dev, region);
1366         }
1367 }
1368
1369 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1370                                         struct device_node *node, int index)
1371 {
1372         struct resource res;
1373         void __iomem *regs;
1374         int ret;
1375
1376         ret = of_address_to_resource(node, index, &res);
1377         if (ret) {
1378                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1379                         node, index);
1380                 return ERR_PTR(ret);
1381         }
1382
1383         regs = devm_ioremap_resource(kdev->dev, &res);
1384         if (IS_ERR(regs))
1385                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1386                         index, node);
1387         return regs;
1388 }
1389
1390 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1391                                         struct device_node *qmgrs)
1392 {
1393         struct device *dev = kdev->dev;
1394         struct knav_qmgr_info *qmgr;
1395         struct device_node *child;
1396         u32 temp[2];
1397         int ret;
1398
1399         for_each_child_of_node(qmgrs, child) {
1400                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1401                 if (!qmgr) {
1402                         dev_err(dev, "out of memory allocating qmgr\n");
1403                         return -ENOMEM;
1404                 }
1405
1406                 ret = of_property_read_u32_array(child, "managed-queues",
1407                                                  temp, 2);
1408                 if (!ret) {
1409                         qmgr->start_queue = temp[0];
1410                         qmgr->num_queues = temp[1];
1411                 } else {
1412                         dev_err(dev, "invalid qmgr queue range\n");
1413                         devm_kfree(dev, qmgr);
1414                         continue;
1415                 }
1416
1417                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1418                          qmgr->start_queue, qmgr->num_queues);
1419
1420                 qmgr->reg_peek =
1421                         knav_queue_map_reg(kdev, child,
1422                                            KNAV_QUEUE_PEEK_REG_INDEX);
1423
1424                 if (kdev->version == QMSS) {
1425                         qmgr->reg_status =
1426                                 knav_queue_map_reg(kdev, child,
1427                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1428                 }
1429
1430                 qmgr->reg_config =
1431                         knav_queue_map_reg(kdev, child,
1432                                            (kdev->version == QMSS_66AK2G) ?
1433                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1434                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1435                 qmgr->reg_region =
1436                         knav_queue_map_reg(kdev, child,
1437                                            (kdev->version == QMSS_66AK2G) ?
1438                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1439                                            KNAV_QUEUE_REGION_REG_INDEX);
1440
1441                 qmgr->reg_push =
1442                         knav_queue_map_reg(kdev, child,
1443                                            (kdev->version == QMSS_66AK2G) ?
1444                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1445                                             KNAV_QUEUE_PUSH_REG_INDEX);
1446
1447                 if (kdev->version == QMSS) {
1448                         qmgr->reg_pop =
1449                                 knav_queue_map_reg(kdev, child,
1450                                                    KNAV_QUEUE_POP_REG_INDEX);
1451                 }
1452
1453                 if (IS_ERR(qmgr->reg_peek) ||
1454                     ((kdev->version == QMSS) &&
1455                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1456                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1457                     IS_ERR(qmgr->reg_push)) {
1458                         dev_err(dev, "failed to map qmgr regs\n");
1459                         if (kdev->version == QMSS) {
1460                                 if (!IS_ERR(qmgr->reg_status))
1461                                         devm_iounmap(dev, qmgr->reg_status);
1462                                 if (!IS_ERR(qmgr->reg_pop))
1463                                         devm_iounmap(dev, qmgr->reg_pop);
1464                         }
1465                         if (!IS_ERR(qmgr->reg_peek))
1466                                 devm_iounmap(dev, qmgr->reg_peek);
1467                         if (!IS_ERR(qmgr->reg_config))
1468                                 devm_iounmap(dev, qmgr->reg_config);
1469                         if (!IS_ERR(qmgr->reg_region))
1470                                 devm_iounmap(dev, qmgr->reg_region);
1471                         if (!IS_ERR(qmgr->reg_push))
1472                                 devm_iounmap(dev, qmgr->reg_push);
1473                         devm_kfree(dev, qmgr);
1474                         continue;
1475                 }
1476
1477                 /* Use same push register for pop as well */
1478                 if (kdev->version == QMSS_66AK2G)
1479                         qmgr->reg_pop = qmgr->reg_push;
1480
1481                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1482                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1483                          qmgr->start_queue, qmgr->num_queues,
1484                          qmgr->reg_peek, qmgr->reg_status,
1485                          qmgr->reg_config, qmgr->reg_region,
1486                          qmgr->reg_push, qmgr->reg_pop);
1487         }
1488         return 0;
1489 }
1490
1491 static int knav_queue_init_pdsps(struct knav_device *kdev,
1492                                         struct device_node *pdsps)
1493 {
1494         struct device *dev = kdev->dev;
1495         struct knav_pdsp_info *pdsp;
1496         struct device_node *child;
1497
1498         for_each_child_of_node(pdsps, child) {
1499                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1500                 if (!pdsp) {
1501                         dev_err(dev, "out of memory allocating pdsp\n");
1502                         return -ENOMEM;
1503                 }
1504                 pdsp->name = knav_queue_find_name(child);
1505                 pdsp->iram =
1506                         knav_queue_map_reg(kdev, child,
1507                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1508                 pdsp->regs =
1509                         knav_queue_map_reg(kdev, child,
1510                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1511                 pdsp->intd =
1512                         knav_queue_map_reg(kdev, child,
1513                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1514                 pdsp->command =
1515                         knav_queue_map_reg(kdev, child,
1516                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1517
1518                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1519                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1520                         dev_err(dev, "failed to map pdsp %s regs\n",
1521                                 pdsp->name);
1522                         if (!IS_ERR(pdsp->command))
1523                                 devm_iounmap(dev, pdsp->command);
1524                         if (!IS_ERR(pdsp->iram))
1525                                 devm_iounmap(dev, pdsp->iram);
1526                         if (!IS_ERR(pdsp->regs))
1527                                 devm_iounmap(dev, pdsp->regs);
1528                         if (!IS_ERR(pdsp->intd))
1529                                 devm_iounmap(dev, pdsp->intd);
1530                         devm_kfree(dev, pdsp);
1531                         continue;
1532                 }
1533                 of_property_read_u32(child, "id", &pdsp->id);
1534                 list_add_tail(&pdsp->list, &kdev->pdsps);
1535                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1536                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1537                         pdsp->intd);
1538         }
1539         return 0;
1540 }
1541
1542 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1543                           struct knav_pdsp_info *pdsp)
1544 {
1545         u32 val, timeout = 1000;
1546         int ret;
1547
1548         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1549         writel_relaxed(val, &pdsp->regs->control);
1550         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1551                                         PDSP_CTRL_RUNNING);
1552         if (ret < 0) {
1553                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1554                 return ret;
1555         }
1556         pdsp->loaded = false;
1557         pdsp->started = false;
1558         return 0;
1559 }
1560
1561 static int knav_queue_load_pdsp(struct knav_device *kdev,
1562                           struct knav_pdsp_info *pdsp)
1563 {
1564         int i, ret, fwlen;
1565         const struct firmware *fw;
1566         bool found = false;
1567         u32 *fwdata;
1568
1569         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1570                 if (knav_acc_firmwares[i]) {
1571                         ret = reject_firmware_direct(&fw,
1572                                                       knav_acc_firmwares[i],
1573                                                       kdev->dev);
1574                         if (!ret) {
1575                                 found = true;
1576                                 break;
1577                         }
1578                 }
1579         }
1580
1581         if (!found) {
1582                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1583                 return -ENODEV;
1584         }
1585
1586         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1587                  knav_acc_firmwares[i]);
1588
1589         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1590         /* download the firmware */
1591         fwdata = (u32 *)fw->data;
1592         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1593         for (i = 0; i < fwlen; i++)
1594                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1595
1596         release_firmware(fw);
1597         return 0;
1598 }
1599
1600 static int knav_queue_start_pdsp(struct knav_device *kdev,
1601                            struct knav_pdsp_info *pdsp)
1602 {
1603         u32 val, timeout = 1000;
1604         int ret;
1605
1606         /* write a command for sync */
1607         writel_relaxed(0xffffffff, pdsp->command);
1608         while (readl_relaxed(pdsp->command) != 0xffffffff)
1609                 cpu_relax();
1610
1611         /* soft reset the PDSP */
1612         val  = readl_relaxed(&pdsp->regs->control);
1613         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1614         writel_relaxed(val, &pdsp->regs->control);
1615
1616         /* enable pdsp */
1617         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1618         writel_relaxed(val, &pdsp->regs->control);
1619
1620         /* wait for command register to clear */
1621         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1622         if (ret < 0) {
1623                 dev_err(kdev->dev,
1624                         "timed out on pdsp %s command register wait\n",
1625                         pdsp->name);
1626                 return ret;
1627         }
1628         return 0;
1629 }
1630
1631 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1632 {
1633         struct knav_pdsp_info *pdsp;
1634
1635         /* disable all pdsps */
1636         for_each_pdsp(kdev, pdsp)
1637                 knav_queue_stop_pdsp(kdev, pdsp);
1638 }
1639
1640 static int knav_queue_start_pdsps(struct knav_device *kdev)
1641 {
1642         struct knav_pdsp_info *pdsp;
1643         int ret;
1644
1645         knav_queue_stop_pdsps(kdev);
1646         /* now load them all. We return success even if pdsp
1647          * is not loaded as acc channels are optional on having
1648          * firmware availability in the system. We set the loaded
1649          * and stated flag and when initialize the acc range, check
1650          * it and init the range only if pdsp is started.
1651          */
1652         for_each_pdsp(kdev, pdsp) {
1653                 ret = knav_queue_load_pdsp(kdev, pdsp);
1654                 if (!ret)
1655                         pdsp->loaded = true;
1656         }
1657
1658         for_each_pdsp(kdev, pdsp) {
1659                 if (pdsp->loaded) {
1660                         ret = knav_queue_start_pdsp(kdev, pdsp);
1661                         if (!ret)
1662                                 pdsp->started = true;
1663                 }
1664         }
1665         return 0;
1666 }
1667
1668 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1669 {
1670         struct knav_qmgr_info *qmgr;
1671
1672         for_each_qmgr(kdev, qmgr) {
1673                 if ((id >= qmgr->start_queue) &&
1674                     (id < qmgr->start_queue + qmgr->num_queues))
1675                         return qmgr;
1676         }
1677         return NULL;
1678 }
1679
1680 static int knav_queue_init_queue(struct knav_device *kdev,
1681                                         struct knav_range_info *range,
1682                                         struct knav_queue_inst *inst,
1683                                         unsigned id)
1684 {
1685         char irq_name[KNAV_NAME_SIZE];
1686         inst->qmgr = knav_find_qmgr(id);
1687         if (!inst->qmgr)
1688                 return -1;
1689
1690         INIT_LIST_HEAD(&inst->handles);
1691         inst->kdev = kdev;
1692         inst->range = range;
1693         inst->irq_num = -1;
1694         inst->id = id;
1695         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1696         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1697
1698         if (range->ops && range->ops->init_queue)
1699                 return range->ops->init_queue(range, inst);
1700         else
1701                 return 0;
1702 }
1703
1704 static int knav_queue_init_queues(struct knav_device *kdev)
1705 {
1706         struct knav_range_info *range;
1707         int size, id, base_idx;
1708         int idx = 0, ret = 0;
1709
1710         /* how much do we need for instance data? */
1711         size = sizeof(struct knav_queue_inst);
1712
1713         /* round this up to a power of 2, keep the index to instance
1714          * arithmetic fast.
1715          * */
1716         kdev->inst_shift = order_base_2(size);
1717         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1718         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1719         if (!kdev->instances)
1720                 return -ENOMEM;
1721
1722         for_each_queue_range(kdev, range) {
1723                 if (range->ops && range->ops->init_range)
1724                         range->ops->init_range(range);
1725                 base_idx = idx;
1726                 for (id = range->queue_base;
1727                      id < range->queue_base + range->num_queues; id++, idx++) {
1728                         ret = knav_queue_init_queue(kdev, range,
1729                                         knav_queue_idx_to_inst(kdev, idx), id);
1730                         if (ret < 0)
1731                                 return ret;
1732                 }
1733                 range->queue_base_inst =
1734                         knav_queue_idx_to_inst(kdev, base_idx);
1735         }
1736         return 0;
1737 }
1738
1739 /* Match table for of_platform binding */
1740 static const struct of_device_id keystone_qmss_of_match[] = {
1741         {
1742                 .compatible = "ti,keystone-navigator-qmss",
1743         },
1744         {
1745                 .compatible = "ti,66ak2g-navss-qm",
1746                 .data   = (void *)QMSS_66AK2G,
1747         },
1748         {},
1749 };
1750 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1751
1752 static int knav_queue_probe(struct platform_device *pdev)
1753 {
1754         struct device_node *node = pdev->dev.of_node;
1755         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1756         const struct of_device_id *match;
1757         struct device *dev = &pdev->dev;
1758         u32 temp[2];
1759         int ret;
1760
1761         if (!node) {
1762                 dev_err(dev, "device tree info unavailable\n");
1763                 return -ENODEV;
1764         }
1765
1766         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1767         if (!kdev) {
1768                 dev_err(dev, "memory allocation failed\n");
1769                 return -ENOMEM;
1770         }
1771
1772         match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1773         if (match && match->data)
1774                 kdev->version = QMSS_66AK2G;
1775
1776         platform_set_drvdata(pdev, kdev);
1777         kdev->dev = dev;
1778         INIT_LIST_HEAD(&kdev->queue_ranges);
1779         INIT_LIST_HEAD(&kdev->qmgrs);
1780         INIT_LIST_HEAD(&kdev->pools);
1781         INIT_LIST_HEAD(&kdev->regions);
1782         INIT_LIST_HEAD(&kdev->pdsps);
1783
1784         pm_runtime_enable(&pdev->dev);
1785         ret = pm_runtime_resume_and_get(&pdev->dev);
1786         if (ret < 0) {
1787                 pm_runtime_disable(&pdev->dev);
1788                 dev_err(dev, "Failed to enable QMSS\n");
1789                 return ret;
1790         }
1791
1792         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1793                 dev_err(dev, "queue-range not specified\n");
1794                 ret = -ENODEV;
1795                 goto err;
1796         }
1797         kdev->base_id    = temp[0];
1798         kdev->num_queues = temp[1];
1799
1800         /* Initialize queue managers using device tree configuration */
1801         qmgrs =  of_get_child_by_name(node, "qmgrs");
1802         if (!qmgrs) {
1803                 dev_err(dev, "queue manager info not specified\n");
1804                 ret = -ENODEV;
1805                 goto err;
1806         }
1807         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1808         of_node_put(qmgrs);
1809         if (ret)
1810                 goto err;
1811
1812         /* get pdsp configuration values from device tree */
1813         pdsps =  of_get_child_by_name(node, "pdsps");
1814         if (pdsps) {
1815                 ret = knav_queue_init_pdsps(kdev, pdsps);
1816                 if (ret)
1817                         goto err;
1818
1819                 ret = knav_queue_start_pdsps(kdev);
1820                 if (ret)
1821                         goto err;
1822         }
1823         of_node_put(pdsps);
1824
1825         /* get usable queue range values from device tree */
1826         queue_pools = of_get_child_by_name(node, "queue-pools");
1827         if (!queue_pools) {
1828                 dev_err(dev, "queue-pools not specified\n");
1829                 ret = -ENODEV;
1830                 goto err;
1831         }
1832         ret = knav_setup_queue_pools(kdev, queue_pools);
1833         of_node_put(queue_pools);
1834         if (ret)
1835                 goto err;
1836
1837         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1838         if (ret) {
1839                 dev_err(kdev->dev, "could not setup linking ram\n");
1840                 goto err;
1841         }
1842
1843         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1844         if (ret) {
1845                 /*
1846                  * nothing really, we have one linking ram already, so we just
1847                  * live within our means
1848                  */
1849         }
1850
1851         ret = knav_queue_setup_link_ram(kdev);
1852         if (ret)
1853                 goto err;
1854
1855         regions = of_get_child_by_name(node, "descriptor-regions");
1856         if (!regions) {
1857                 dev_err(dev, "descriptor-regions not specified\n");
1858                 ret = -ENODEV;
1859                 goto err;
1860         }
1861         ret = knav_queue_setup_regions(kdev, regions);
1862         of_node_put(regions);
1863         if (ret)
1864                 goto err;
1865
1866         ret = knav_queue_init_queues(kdev);
1867         if (ret < 0) {
1868                 dev_err(dev, "hwqueue initialization failed\n");
1869                 goto err;
1870         }
1871
1872         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873                             &knav_queue_debug_fops);
1874         device_ready = true;
1875         return 0;
1876
1877 err:
1878         knav_queue_stop_pdsps(kdev);
1879         knav_queue_free_regions(kdev);
1880         knav_free_queue_ranges(kdev);
1881         pm_runtime_put_sync(&pdev->dev);
1882         pm_runtime_disable(&pdev->dev);
1883         return ret;
1884 }
1885
1886 static int knav_queue_remove(struct platform_device *pdev)
1887 {
1888         /* TODO: Free resources */
1889         pm_runtime_put_sync(&pdev->dev);
1890         pm_runtime_disable(&pdev->dev);
1891         return 0;
1892 }
1893
1894 static struct platform_driver keystone_qmss_driver = {
1895         .probe          = knav_queue_probe,
1896         .remove         = knav_queue_remove,
1897         .driver         = {
1898                 .name   = "keystone-navigator-qmss",
1899                 .of_match_table = keystone_qmss_of_match,
1900         },
1901 };
1902 module_platform_driver(keystone_qmss_driver);
1903
1904 MODULE_LICENSE("GPL v2");
1905 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1906 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1907 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");