f6964212c6c8fbf375dade18f744eb61813f68d9
[releases.git] / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157         struct rb_node *rb = rb_first(&sis->swap_extent_root);
158         return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163         struct rb_node *rb = rb_next(&se->rb_node);
164         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173         struct swap_extent *se;
174         sector_t start_block;
175         sector_t nr_blocks;
176         int err = 0;
177
178         /* Do not discard the swap header page! */
179         se = first_se(si);
180         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182         if (nr_blocks) {
183                 err = blkdev_issue_discard(si->bdev, start_block,
184                                 nr_blocks, GFP_KERNEL, 0);
185                 if (err)
186                         return err;
187                 cond_resched();
188         }
189
190         for (se = next_se(se); se; se = next_se(se)) {
191                 start_block = se->start_block << (PAGE_SHIFT - 9);
192                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194                 err = blkdev_issue_discard(si->bdev, start_block,
195                                 nr_blocks, GFP_KERNEL, 0);
196                 if (err)
197                         break;
198
199                 cond_resched();
200         }
201         return err;             /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207         struct swap_extent *se;
208         struct rb_node *rb;
209
210         rb = sis->swap_extent_root.rb_node;
211         while (rb) {
212                 se = rb_entry(rb, struct swap_extent, rb_node);
213                 if (offset < se->start_page)
214                         rb = rb->rb_left;
215                 else if (offset >= se->start_page + se->nr_pages)
216                         rb = rb->rb_right;
217                 else
218                         return se;
219         }
220         /* It *must* be present */
221         BUG();
222 }
223
224 sector_t swap_page_sector(struct page *page)
225 {
226         struct swap_info_struct *sis = page_swap_info(page);
227         struct swap_extent *se;
228         sector_t sector;
229         pgoff_t offset;
230
231         offset = __page_file_index(page);
232         se = offset_to_swap_extent(sis, offset);
233         sector = se->start_block + (offset - se->start_page);
234         return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238  * swap allocation tell device that a cluster of swap can now be discarded,
239  * to allow the swap device to optimize its wear-levelling.
240  */
241 static void discard_swap_cluster(struct swap_info_struct *si,
242                                  pgoff_t start_page, pgoff_t nr_pages)
243 {
244         struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246         while (nr_pages) {
247                 pgoff_t offset = start_page - se->start_page;
248                 sector_t start_block = se->start_block + offset;
249                 sector_t nr_blocks = se->nr_pages - offset;
250
251                 if (nr_blocks > nr_pages)
252                         nr_blocks = nr_pages;
253                 start_page += nr_blocks;
254                 nr_pages -= nr_blocks;
255
256                 start_block <<= PAGE_SHIFT - 9;
257                 nr_blocks <<= PAGE_SHIFT - 9;
258                 if (blkdev_issue_discard(si->bdev, start_block,
259                                         nr_blocks, GFP_NOIO, 0))
260                         break;
261
262                 se = next_se(se);
263         }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
268
269 #define swap_entry_size(size)   (size)
270 #else
271 #define SWAPFILE_CLUSTER        256
272
273 /*
274  * Define swap_entry_size() as constant to let compiler to optimize
275  * out some code if !CONFIG_THP_SWAP
276  */
277 #define swap_entry_size(size)   1
278 #endif
279 #define LATENCY_LIMIT           256
280
281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282         unsigned int flag)
283 {
284         info->flags = flag;
285 }
286
287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289         return info->data;
290 }
291
292 static inline void cluster_set_count(struct swap_cluster_info *info,
293                                      unsigned int c)
294 {
295         info->data = c;
296 }
297
298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299                                          unsigned int c, unsigned int f)
300 {
301         info->flags = f;
302         info->data = c;
303 }
304
305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307         return info->data;
308 }
309
310 static inline void cluster_set_next(struct swap_cluster_info *info,
311                                     unsigned int n)
312 {
313         info->data = n;
314 }
315
316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317                                          unsigned int n, unsigned int f)
318 {
319         info->flags = f;
320         info->data = n;
321 }
322
323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325         return info->flags & CLUSTER_FLAG_FREE;
326 }
327
328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330         return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335         info->flags = CLUSTER_FLAG_NEXT_NULL;
336         info->data = 0;
337 }
338
339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341         if (IS_ENABLED(CONFIG_THP_SWAP))
342                 return info->flags & CLUSTER_FLAG_HUGE;
343         return false;
344 }
345
346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348         info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352                                                      unsigned long offset)
353 {
354         struct swap_cluster_info *ci;
355
356         ci = si->cluster_info;
357         if (ci) {
358                 ci += offset / SWAPFILE_CLUSTER;
359                 spin_lock(&ci->lock);
360         }
361         return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366         if (ci)
367                 spin_unlock(&ci->lock);
368 }
369
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375                 struct swap_info_struct *si, unsigned long offset)
376 {
377         struct swap_cluster_info *ci;
378
379         /* Try to use fine-grained SSD-style locking if available: */
380         ci = lock_cluster(si, offset);
381         /* Otherwise, fall back to traditional, coarse locking: */
382         if (!ci)
383                 spin_lock(&si->lock);
384
385         return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389                                                struct swap_cluster_info *ci)
390 {
391         if (ci)
392                 unlock_cluster(ci);
393         else
394                 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399         return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404         return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409         cluster_set_null(&list->head);
410         cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414                                   struct swap_cluster_info *ci,
415                                   unsigned int idx)
416 {
417         if (cluster_list_empty(list)) {
418                 cluster_set_next_flag(&list->head, idx, 0);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         } else {
421                 struct swap_cluster_info *ci_tail;
422                 unsigned int tail = cluster_next(&list->tail);
423
424                 /*
425                  * Nested cluster lock, but both cluster locks are
426                  * only acquired when we held swap_info_struct->lock
427                  */
428                 ci_tail = ci + tail;
429                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430                 cluster_set_next(ci_tail, idx);
431                 spin_unlock(&ci_tail->lock);
432                 cluster_set_next_flag(&list->tail, idx, 0);
433         }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437                                            struct swap_cluster_info *ci)
438 {
439         unsigned int idx;
440
441         idx = cluster_next(&list->head);
442         if (cluster_next(&list->tail) == idx) {
443                 cluster_set_null(&list->head);
444                 cluster_set_null(&list->tail);
445         } else
446                 cluster_set_next_flag(&list->head,
447                                       cluster_next(&ci[idx]), 0);
448
449         return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454                 unsigned int idx)
455 {
456         /*
457          * If scan_swap_map() can't find a free cluster, it will check
458          * si->swap_map directly. To make sure the discarding cluster isn't
459          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
460          * will be cleared after discard
461          */
462         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467         schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472         struct swap_cluster_info *ci = si->cluster_info;
473
474         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475         cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484         struct swap_cluster_info *info, *ci;
485         unsigned int idx;
486
487         info = si->cluster_info;
488
489         while (!cluster_list_empty(&si->discard_clusters)) {
490                 idx = cluster_list_del_first(&si->discard_clusters, info);
491                 spin_unlock(&si->lock);
492
493                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494                                 SWAPFILE_CLUSTER);
495
496                 spin_lock(&si->lock);
497                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498                 __free_cluster(si, idx);
499                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500                                 0, SWAPFILE_CLUSTER);
501                 unlock_cluster(ci);
502         }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507         struct swap_info_struct *si;
508
509         si = container_of(work, struct swap_info_struct, discard_work);
510
511         spin_lock(&si->lock);
512         swap_do_scheduled_discard(si);
513         spin_unlock(&si->lock);
514 }
515
516 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
517 {
518         struct swap_cluster_info *ci = si->cluster_info;
519
520         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
521         cluster_list_del_first(&si->free_clusters, ci);
522         cluster_set_count_flag(ci + idx, 0, 0);
523 }
524
525 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
526 {
527         struct swap_cluster_info *ci = si->cluster_info + idx;
528
529         VM_BUG_ON(cluster_count(ci) != 0);
530         /*
531          * If the swap is discardable, prepare discard the cluster
532          * instead of free it immediately. The cluster will be freed
533          * after discard.
534          */
535         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
536             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
537                 swap_cluster_schedule_discard(si, idx);
538                 return;
539         }
540
541         __free_cluster(si, idx);
542 }
543
544 /*
545  * The cluster corresponding to page_nr will be used. The cluster will be
546  * removed from free cluster list and its usage counter will be increased.
547  */
548 static void inc_cluster_info_page(struct swap_info_struct *p,
549         struct swap_cluster_info *cluster_info, unsigned long page_nr)
550 {
551         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
552
553         if (!cluster_info)
554                 return;
555         if (cluster_is_free(&cluster_info[idx]))
556                 alloc_cluster(p, idx);
557
558         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
559         cluster_set_count(&cluster_info[idx],
560                 cluster_count(&cluster_info[idx]) + 1);
561 }
562
563 /*
564  * The cluster corresponding to page_nr decreases one usage. If the usage
565  * counter becomes 0, which means no page in the cluster is in using, we can
566  * optionally discard the cluster and add it to free cluster list.
567  */
568 static void dec_cluster_info_page(struct swap_info_struct *p,
569         struct swap_cluster_info *cluster_info, unsigned long page_nr)
570 {
571         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
572
573         if (!cluster_info)
574                 return;
575
576         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
577         cluster_set_count(&cluster_info[idx],
578                 cluster_count(&cluster_info[idx]) - 1);
579
580         if (cluster_count(&cluster_info[idx]) == 0)
581                 free_cluster(p, idx);
582 }
583
584 /*
585  * It's possible scan_swap_map() uses a free cluster in the middle of free
586  * cluster list. Avoiding such abuse to avoid list corruption.
587  */
588 static bool
589 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
590         unsigned long offset)
591 {
592         struct percpu_cluster *percpu_cluster;
593         bool conflict;
594
595         offset /= SWAPFILE_CLUSTER;
596         conflict = !cluster_list_empty(&si->free_clusters) &&
597                 offset != cluster_list_first(&si->free_clusters) &&
598                 cluster_is_free(&si->cluster_info[offset]);
599
600         if (!conflict)
601                 return false;
602
603         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
604         cluster_set_null(&percpu_cluster->index);
605         return true;
606 }
607
608 /*
609  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
610  * might involve allocating a new cluster for current CPU too.
611  */
612 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
613         unsigned long *offset, unsigned long *scan_base)
614 {
615         struct percpu_cluster *cluster;
616         struct swap_cluster_info *ci;
617         bool found_free;
618         unsigned long tmp, max;
619
620 new_cluster:
621         cluster = this_cpu_ptr(si->percpu_cluster);
622         if (cluster_is_null(&cluster->index)) {
623                 if (!cluster_list_empty(&si->free_clusters)) {
624                         cluster->index = si->free_clusters.head;
625                         cluster->next = cluster_next(&cluster->index) *
626                                         SWAPFILE_CLUSTER;
627                 } else if (!cluster_list_empty(&si->discard_clusters)) {
628                         /*
629                          * we don't have free cluster but have some clusters in
630                          * discarding, do discard now and reclaim them
631                          */
632                         swap_do_scheduled_discard(si);
633                         *scan_base = *offset = si->cluster_next;
634                         goto new_cluster;
635                 } else
636                         return false;
637         }
638
639         found_free = false;
640
641         /*
642          * Other CPUs can use our cluster if they can't find a free cluster,
643          * check if there is still free entry in the cluster
644          */
645         tmp = cluster->next;
646         max = min_t(unsigned long, si->max,
647                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
648         if (tmp >= max) {
649                 cluster_set_null(&cluster->index);
650                 goto new_cluster;
651         }
652         ci = lock_cluster(si, tmp);
653         while (tmp < max) {
654                 if (!si->swap_map[tmp]) {
655                         found_free = true;
656                         break;
657                 }
658                 tmp++;
659         }
660         unlock_cluster(ci);
661         if (!found_free) {
662                 cluster_set_null(&cluster->index);
663                 goto new_cluster;
664         }
665         cluster->next = tmp + 1;
666         *offset = tmp;
667         *scan_base = tmp;
668         return found_free;
669 }
670
671 static void __del_from_avail_list(struct swap_info_struct *p)
672 {
673         int nid;
674
675         for_each_node(nid)
676                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
677 }
678
679 static void del_from_avail_list(struct swap_info_struct *p)
680 {
681         spin_lock(&swap_avail_lock);
682         __del_from_avail_list(p);
683         spin_unlock(&swap_avail_lock);
684 }
685
686 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
687                              unsigned int nr_entries)
688 {
689         unsigned int end = offset + nr_entries - 1;
690
691         if (offset == si->lowest_bit)
692                 si->lowest_bit += nr_entries;
693         if (end == si->highest_bit)
694                 si->highest_bit -= nr_entries;
695         si->inuse_pages += nr_entries;
696         if (si->inuse_pages == si->pages) {
697                 si->lowest_bit = si->max;
698                 si->highest_bit = 0;
699                 del_from_avail_list(si);
700         }
701 }
702
703 static void add_to_avail_list(struct swap_info_struct *p)
704 {
705         int nid;
706
707         spin_lock(&swap_avail_lock);
708         for_each_node(nid) {
709                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
710                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
711         }
712         spin_unlock(&swap_avail_lock);
713 }
714
715 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
716                             unsigned int nr_entries)
717 {
718         unsigned long end = offset + nr_entries - 1;
719         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
720
721         if (offset < si->lowest_bit)
722                 si->lowest_bit = offset;
723         if (end > si->highest_bit) {
724                 bool was_full = !si->highest_bit;
725
726                 si->highest_bit = end;
727                 if (was_full && (si->flags & SWP_WRITEOK))
728                         add_to_avail_list(si);
729         }
730         atomic_long_add(nr_entries, &nr_swap_pages);
731         si->inuse_pages -= nr_entries;
732         if (si->flags & SWP_BLKDEV)
733                 swap_slot_free_notify =
734                         si->bdev->bd_disk->fops->swap_slot_free_notify;
735         else
736                 swap_slot_free_notify = NULL;
737         while (offset <= end) {
738                 frontswap_invalidate_page(si->type, offset);
739                 if (swap_slot_free_notify)
740                         swap_slot_free_notify(si->bdev, offset);
741                 offset++;
742         }
743 }
744
745 static int scan_swap_map_slots(struct swap_info_struct *si,
746                                unsigned char usage, int nr,
747                                swp_entry_t slots[])
748 {
749         struct swap_cluster_info *ci;
750         unsigned long offset;
751         unsigned long scan_base;
752         unsigned long last_in_cluster = 0;
753         int latency_ration = LATENCY_LIMIT;
754         int n_ret = 0;
755
756         if (nr > SWAP_BATCH)
757                 nr = SWAP_BATCH;
758
759         /*
760          * We try to cluster swap pages by allocating them sequentially
761          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
762          * way, however, we resort to first-free allocation, starting
763          * a new cluster.  This prevents us from scattering swap pages
764          * all over the entire swap partition, so that we reduce
765          * overall disk seek times between swap pages.  -- sct
766          * But we do now try to find an empty cluster.  -Andrea
767          * And we let swap pages go all over an SSD partition.  Hugh
768          */
769
770         si->flags += SWP_SCANNING;
771         scan_base = offset = si->cluster_next;
772
773         /* SSD algorithm */
774         if (si->cluster_info) {
775                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
776                         goto checks;
777                 else
778                         goto scan;
779         }
780
781         if (unlikely(!si->cluster_nr--)) {
782                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
783                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
784                         goto checks;
785                 }
786
787                 spin_unlock(&si->lock);
788
789                 /*
790                  * If seek is expensive, start searching for new cluster from
791                  * start of partition, to minimize the span of allocated swap.
792                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
793                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
794                  */
795                 scan_base = offset = si->lowest_bit;
796                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
797
798                 /* Locate the first empty (unaligned) cluster */
799                 for (; last_in_cluster <= si->highest_bit; offset++) {
800                         if (si->swap_map[offset])
801                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
802                         else if (offset == last_in_cluster) {
803                                 spin_lock(&si->lock);
804                                 offset -= SWAPFILE_CLUSTER - 1;
805                                 si->cluster_next = offset;
806                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
807                                 goto checks;
808                         }
809                         if (unlikely(--latency_ration < 0)) {
810                                 cond_resched();
811                                 latency_ration = LATENCY_LIMIT;
812                         }
813                 }
814
815                 offset = scan_base;
816                 spin_lock(&si->lock);
817                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
818         }
819
820 checks:
821         if (si->cluster_info) {
822                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
823                 /* take a break if we already got some slots */
824                         if (n_ret)
825                                 goto done;
826                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
827                                                         &scan_base))
828                                 goto scan;
829                 }
830         }
831         if (!(si->flags & SWP_WRITEOK))
832                 goto no_page;
833         if (!si->highest_bit)
834                 goto no_page;
835         if (offset > si->highest_bit)
836                 scan_base = offset = si->lowest_bit;
837
838         ci = lock_cluster(si, offset);
839         /* reuse swap entry of cache-only swap if not busy. */
840         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
841                 int swap_was_freed;
842                 unlock_cluster(ci);
843                 spin_unlock(&si->lock);
844                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
845                 spin_lock(&si->lock);
846                 /* entry was freed successfully, try to use this again */
847                 if (swap_was_freed)
848                         goto checks;
849                 goto scan; /* check next one */
850         }
851
852         if (si->swap_map[offset]) {
853                 unlock_cluster(ci);
854                 if (!n_ret)
855                         goto scan;
856                 else
857                         goto done;
858         }
859         si->swap_map[offset] = usage;
860         inc_cluster_info_page(si, si->cluster_info, offset);
861         unlock_cluster(ci);
862
863         swap_range_alloc(si, offset, 1);
864         si->cluster_next = offset + 1;
865         slots[n_ret++] = swp_entry(si->type, offset);
866
867         /* got enough slots or reach max slots? */
868         if ((n_ret == nr) || (offset >= si->highest_bit))
869                 goto done;
870
871         /* search for next available slot */
872
873         /* time to take a break? */
874         if (unlikely(--latency_ration < 0)) {
875                 if (n_ret)
876                         goto done;
877                 spin_unlock(&si->lock);
878                 cond_resched();
879                 spin_lock(&si->lock);
880                 latency_ration = LATENCY_LIMIT;
881         }
882
883         /* try to get more slots in cluster */
884         if (si->cluster_info) {
885                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
886                         goto checks;
887                 else
888                         goto done;
889         }
890         /* non-ssd case */
891         ++offset;
892
893         /* non-ssd case, still more slots in cluster? */
894         if (si->cluster_nr && !si->swap_map[offset]) {
895                 --si->cluster_nr;
896                 goto checks;
897         }
898
899 done:
900         si->flags -= SWP_SCANNING;
901         return n_ret;
902
903 scan:
904         spin_unlock(&si->lock);
905         while (++offset <= si->highest_bit) {
906                 if (!si->swap_map[offset]) {
907                         spin_lock(&si->lock);
908                         goto checks;
909                 }
910                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
911                         spin_lock(&si->lock);
912                         goto checks;
913                 }
914                 if (unlikely(--latency_ration < 0)) {
915                         cond_resched();
916                         latency_ration = LATENCY_LIMIT;
917                 }
918         }
919         offset = si->lowest_bit;
920         while (offset < scan_base) {
921                 if (!si->swap_map[offset]) {
922                         spin_lock(&si->lock);
923                         goto checks;
924                 }
925                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
926                         spin_lock(&si->lock);
927                         goto checks;
928                 }
929                 if (unlikely(--latency_ration < 0)) {
930                         cond_resched();
931                         latency_ration = LATENCY_LIMIT;
932                 }
933                 offset++;
934         }
935         spin_lock(&si->lock);
936
937 no_page:
938         si->flags -= SWP_SCANNING;
939         return n_ret;
940 }
941
942 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
943 {
944         unsigned long idx;
945         struct swap_cluster_info *ci;
946         unsigned long offset, i;
947         unsigned char *map;
948
949         /*
950          * Should not even be attempting cluster allocations when huge
951          * page swap is disabled.  Warn and fail the allocation.
952          */
953         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
954                 VM_WARN_ON_ONCE(1);
955                 return 0;
956         }
957
958         if (cluster_list_empty(&si->free_clusters))
959                 return 0;
960
961         idx = cluster_list_first(&si->free_clusters);
962         offset = idx * SWAPFILE_CLUSTER;
963         ci = lock_cluster(si, offset);
964         alloc_cluster(si, idx);
965         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
966
967         map = si->swap_map + offset;
968         for (i = 0; i < SWAPFILE_CLUSTER; i++)
969                 map[i] = SWAP_HAS_CACHE;
970         unlock_cluster(ci);
971         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
972         *slot = swp_entry(si->type, offset);
973
974         return 1;
975 }
976
977 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
978 {
979         unsigned long offset = idx * SWAPFILE_CLUSTER;
980         struct swap_cluster_info *ci;
981
982         ci = lock_cluster(si, offset);
983         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
984         cluster_set_count_flag(ci, 0, 0);
985         free_cluster(si, idx);
986         unlock_cluster(ci);
987         swap_range_free(si, offset, SWAPFILE_CLUSTER);
988 }
989
990 static unsigned long scan_swap_map(struct swap_info_struct *si,
991                                    unsigned char usage)
992 {
993         swp_entry_t entry;
994         int n_ret;
995
996         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
997
998         if (n_ret)
999                 return swp_offset(entry);
1000         else
1001                 return 0;
1002
1003 }
1004
1005 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1006 {
1007         unsigned long size = swap_entry_size(entry_size);
1008         struct swap_info_struct *si, *next;
1009         long avail_pgs;
1010         int n_ret = 0;
1011         int node;
1012
1013         /* Only single cluster request supported */
1014         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1015
1016         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1017         if (avail_pgs <= 0)
1018                 goto noswap;
1019
1020         if (n_goal > SWAP_BATCH)
1021                 n_goal = SWAP_BATCH;
1022
1023         if (n_goal > avail_pgs)
1024                 n_goal = avail_pgs;
1025
1026         atomic_long_sub(n_goal * size, &nr_swap_pages);
1027
1028         spin_lock(&swap_avail_lock);
1029
1030 start_over:
1031         node = numa_node_id();
1032         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1033                 /* requeue si to after same-priority siblings */
1034                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1035                 spin_unlock(&swap_avail_lock);
1036                 spin_lock(&si->lock);
1037                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1038                         spin_lock(&swap_avail_lock);
1039                         if (plist_node_empty(&si->avail_lists[node])) {
1040                                 spin_unlock(&si->lock);
1041                                 goto nextsi;
1042                         }
1043                         WARN(!si->highest_bit,
1044                              "swap_info %d in list but !highest_bit\n",
1045                              si->type);
1046                         WARN(!(si->flags & SWP_WRITEOK),
1047                              "swap_info %d in list but !SWP_WRITEOK\n",
1048                              si->type);
1049                         __del_from_avail_list(si);
1050                         spin_unlock(&si->lock);
1051                         goto nextsi;
1052                 }
1053                 if (size == SWAPFILE_CLUSTER) {
1054                         if (si->flags & SWP_BLKDEV)
1055                                 n_ret = swap_alloc_cluster(si, swp_entries);
1056                 } else
1057                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1058                                                     n_goal, swp_entries);
1059                 spin_unlock(&si->lock);
1060                 if (n_ret || size == SWAPFILE_CLUSTER)
1061                         goto check_out;
1062                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1063                         si->type);
1064
1065                 spin_lock(&swap_avail_lock);
1066 nextsi:
1067                 /*
1068                  * if we got here, it's likely that si was almost full before,
1069                  * and since scan_swap_map() can drop the si->lock, multiple
1070                  * callers probably all tried to get a page from the same si
1071                  * and it filled up before we could get one; or, the si filled
1072                  * up between us dropping swap_avail_lock and taking si->lock.
1073                  * Since we dropped the swap_avail_lock, the swap_avail_head
1074                  * list may have been modified; so if next is still in the
1075                  * swap_avail_head list then try it, otherwise start over
1076                  * if we have not gotten any slots.
1077                  */
1078                 if (plist_node_empty(&next->avail_lists[node]))
1079                         goto start_over;
1080         }
1081
1082         spin_unlock(&swap_avail_lock);
1083
1084 check_out:
1085         if (n_ret < n_goal)
1086                 atomic_long_add((long)(n_goal - n_ret) * size,
1087                                 &nr_swap_pages);
1088 noswap:
1089         return n_ret;
1090 }
1091
1092 /* The only caller of this function is now suspend routine */
1093 swp_entry_t get_swap_page_of_type(int type)
1094 {
1095         struct swap_info_struct *si = swap_type_to_swap_info(type);
1096         pgoff_t offset;
1097
1098         if (!si)
1099                 goto fail;
1100
1101         spin_lock(&si->lock);
1102         if (si->flags & SWP_WRITEOK) {
1103                 atomic_long_dec(&nr_swap_pages);
1104                 /* This is called for allocating swap entry, not cache */
1105                 offset = scan_swap_map(si, 1);
1106                 if (offset) {
1107                         spin_unlock(&si->lock);
1108                         return swp_entry(type, offset);
1109                 }
1110                 atomic_long_inc(&nr_swap_pages);
1111         }
1112         spin_unlock(&si->lock);
1113 fail:
1114         return (swp_entry_t) {0};
1115 }
1116
1117 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1118 {
1119         struct swap_info_struct *p;
1120         unsigned long offset;
1121
1122         if (!entry.val)
1123                 goto out;
1124         p = swp_swap_info(entry);
1125         if (!p)
1126                 goto bad_nofile;
1127         if (!(p->flags & SWP_USED))
1128                 goto bad_device;
1129         offset = swp_offset(entry);
1130         if (offset >= p->max)
1131                 goto bad_offset;
1132         return p;
1133
1134 bad_offset:
1135         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1136         goto out;
1137 bad_device:
1138         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1139         goto out;
1140 bad_nofile:
1141         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1142 out:
1143         return NULL;
1144 }
1145
1146 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1147 {
1148         struct swap_info_struct *p;
1149
1150         p = __swap_info_get(entry);
1151         if (!p)
1152                 goto out;
1153         if (!p->swap_map[swp_offset(entry)])
1154                 goto bad_free;
1155         return p;
1156
1157 bad_free:
1158         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1159         goto out;
1160 out:
1161         return NULL;
1162 }
1163
1164 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1165 {
1166         struct swap_info_struct *p;
1167
1168         p = _swap_info_get(entry);
1169         if (p)
1170                 spin_lock(&p->lock);
1171         return p;
1172 }
1173
1174 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1175                                         struct swap_info_struct *q)
1176 {
1177         struct swap_info_struct *p;
1178
1179         p = _swap_info_get(entry);
1180
1181         if (p != q) {
1182                 if (q != NULL)
1183                         spin_unlock(&q->lock);
1184                 if (p != NULL)
1185                         spin_lock(&p->lock);
1186         }
1187         return p;
1188 }
1189
1190 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1191                                               unsigned long offset,
1192                                               unsigned char usage)
1193 {
1194         unsigned char count;
1195         unsigned char has_cache;
1196
1197         count = p->swap_map[offset];
1198
1199         has_cache = count & SWAP_HAS_CACHE;
1200         count &= ~SWAP_HAS_CACHE;
1201
1202         if (usage == SWAP_HAS_CACHE) {
1203                 VM_BUG_ON(!has_cache);
1204                 has_cache = 0;
1205         } else if (count == SWAP_MAP_SHMEM) {
1206                 /*
1207                  * Or we could insist on shmem.c using a special
1208                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1209                  */
1210                 count = 0;
1211         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1212                 if (count == COUNT_CONTINUED) {
1213                         if (swap_count_continued(p, offset, count))
1214                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1215                         else
1216                                 count = SWAP_MAP_MAX;
1217                 } else
1218                         count--;
1219         }
1220
1221         usage = count | has_cache;
1222         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1223
1224         return usage;
1225 }
1226
1227 /*
1228  * Check whether swap entry is valid in the swap device.  If so,
1229  * return pointer to swap_info_struct, and keep the swap entry valid
1230  * via preventing the swap device from being swapoff, until
1231  * put_swap_device() is called.  Otherwise return NULL.
1232  *
1233  * The entirety of the RCU read critical section must come before the
1234  * return from or after the call to synchronize_rcu() in
1235  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1236  * true, the si->map, si->cluster_info, etc. must be valid in the
1237  * critical section.
1238  *
1239  * Notice that swapoff or swapoff+swapon can still happen before the
1240  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1241  * in put_swap_device() if there isn't any other way to prevent
1242  * swapoff, such as page lock, page table lock, etc.  The caller must
1243  * be prepared for that.  For example, the following situation is
1244  * possible.
1245  *
1246  *   CPU1                               CPU2
1247  *   do_swap_page()
1248  *     ...                              swapoff+swapon
1249  *     __read_swap_cache_async()
1250  *       swapcache_prepare()
1251  *         __swap_duplicate()
1252  *           // check swap_map
1253  *     // verify PTE not changed
1254  *
1255  * In __swap_duplicate(), the swap_map need to be checked before
1256  * changing partly because the specified swap entry may be for another
1257  * swap device which has been swapoff.  And in do_swap_page(), after
1258  * the page is read from the swap device, the PTE is verified not
1259  * changed with the page table locked to check whether the swap device
1260  * has been swapoff or swapoff+swapon.
1261  */
1262 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1263 {
1264         struct swap_info_struct *si;
1265         unsigned long offset;
1266
1267         if (!entry.val)
1268                 goto out;
1269         si = swp_swap_info(entry);
1270         if (!si)
1271                 goto bad_nofile;
1272
1273         rcu_read_lock();
1274         if (!(si->flags & SWP_VALID))
1275                 goto unlock_out;
1276         offset = swp_offset(entry);
1277         if (offset >= si->max)
1278                 goto unlock_out;
1279
1280         return si;
1281 bad_nofile:
1282         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284         return NULL;
1285 unlock_out:
1286         rcu_read_unlock();
1287         return NULL;
1288 }
1289
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291                                        swp_entry_t entry, unsigned char usage)
1292 {
1293         struct swap_cluster_info *ci;
1294         unsigned long offset = swp_offset(entry);
1295
1296         ci = lock_cluster_or_swap_info(p, offset);
1297         usage = __swap_entry_free_locked(p, offset, usage);
1298         unlock_cluster_or_swap_info(p, ci);
1299         if (!usage)
1300                 free_swap_slot(entry);
1301
1302         return usage;
1303 }
1304
1305 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1306 {
1307         struct swap_cluster_info *ci;
1308         unsigned long offset = swp_offset(entry);
1309         unsigned char count;
1310
1311         ci = lock_cluster(p, offset);
1312         count = p->swap_map[offset];
1313         VM_BUG_ON(count != SWAP_HAS_CACHE);
1314         p->swap_map[offset] = 0;
1315         dec_cluster_info_page(p, p->cluster_info, offset);
1316         unlock_cluster(ci);
1317
1318         mem_cgroup_uncharge_swap(entry, 1);
1319         swap_range_free(p, offset, 1);
1320 }
1321
1322 /*
1323  * Caller has made sure that the swap device corresponding to entry
1324  * is still around or has not been recycled.
1325  */
1326 void swap_free(swp_entry_t entry)
1327 {
1328         struct swap_info_struct *p;
1329
1330         p = _swap_info_get(entry);
1331         if (p)
1332                 __swap_entry_free(p, entry, 1);
1333 }
1334
1335 /*
1336  * Called after dropping swapcache to decrease refcnt to swap entries.
1337  */
1338 void put_swap_page(struct page *page, swp_entry_t entry)
1339 {
1340         unsigned long offset = swp_offset(entry);
1341         unsigned long idx = offset / SWAPFILE_CLUSTER;
1342         struct swap_cluster_info *ci;
1343         struct swap_info_struct *si;
1344         unsigned char *map;
1345         unsigned int i, free_entries = 0;
1346         unsigned char val;
1347         int size = swap_entry_size(hpage_nr_pages(page));
1348
1349         si = _swap_info_get(entry);
1350         if (!si)
1351                 return;
1352
1353         ci = lock_cluster_or_swap_info(si, offset);
1354         if (size == SWAPFILE_CLUSTER) {
1355                 VM_BUG_ON(!cluster_is_huge(ci));
1356                 map = si->swap_map + offset;
1357                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1358                         val = map[i];
1359                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1360                         if (val == SWAP_HAS_CACHE)
1361                                 free_entries++;
1362                 }
1363                 cluster_clear_huge(ci);
1364                 if (free_entries == SWAPFILE_CLUSTER) {
1365                         unlock_cluster_or_swap_info(si, ci);
1366                         spin_lock(&si->lock);
1367                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1368                         swap_free_cluster(si, idx);
1369                         spin_unlock(&si->lock);
1370                         return;
1371                 }
1372         }
1373         for (i = 0; i < size; i++, entry.val++) {
1374                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1375                         unlock_cluster_or_swap_info(si, ci);
1376                         free_swap_slot(entry);
1377                         if (i == size - 1)
1378                                 return;
1379                         lock_cluster_or_swap_info(si, offset);
1380                 }
1381         }
1382         unlock_cluster_or_swap_info(si, ci);
1383 }
1384
1385 #ifdef CONFIG_THP_SWAP
1386 int split_swap_cluster(swp_entry_t entry)
1387 {
1388         struct swap_info_struct *si;
1389         struct swap_cluster_info *ci;
1390         unsigned long offset = swp_offset(entry);
1391
1392         si = _swap_info_get(entry);
1393         if (!si)
1394                 return -EBUSY;
1395         ci = lock_cluster(si, offset);
1396         cluster_clear_huge(ci);
1397         unlock_cluster(ci);
1398         return 0;
1399 }
1400 #endif
1401
1402 static int swp_entry_cmp(const void *ent1, const void *ent2)
1403 {
1404         const swp_entry_t *e1 = ent1, *e2 = ent2;
1405
1406         return (int)swp_type(*e1) - (int)swp_type(*e2);
1407 }
1408
1409 void swapcache_free_entries(swp_entry_t *entries, int n)
1410 {
1411         struct swap_info_struct *p, *prev;
1412         int i;
1413
1414         if (n <= 0)
1415                 return;
1416
1417         prev = NULL;
1418         p = NULL;
1419
1420         /*
1421          * Sort swap entries by swap device, so each lock is only taken once.
1422          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1423          * so low that it isn't necessary to optimize further.
1424          */
1425         if (nr_swapfiles > 1)
1426                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1427         for (i = 0; i < n; ++i) {
1428                 p = swap_info_get_cont(entries[i], prev);
1429                 if (p)
1430                         swap_entry_free(p, entries[i]);
1431                 prev = p;
1432         }
1433         if (p)
1434                 spin_unlock(&p->lock);
1435 }
1436
1437 /*
1438  * How many references to page are currently swapped out?
1439  * This does not give an exact answer when swap count is continued,
1440  * but does include the high COUNT_CONTINUED flag to allow for that.
1441  */
1442 int page_swapcount(struct page *page)
1443 {
1444         int count = 0;
1445         struct swap_info_struct *p;
1446         struct swap_cluster_info *ci;
1447         swp_entry_t entry;
1448         unsigned long offset;
1449
1450         entry.val = page_private(page);
1451         p = _swap_info_get(entry);
1452         if (p) {
1453                 offset = swp_offset(entry);
1454                 ci = lock_cluster_or_swap_info(p, offset);
1455                 count = swap_count(p->swap_map[offset]);
1456                 unlock_cluster_or_swap_info(p, ci);
1457         }
1458         return count;
1459 }
1460
1461 int __swap_count(swp_entry_t entry)
1462 {
1463         struct swap_info_struct *si;
1464         pgoff_t offset = swp_offset(entry);
1465         int count = 0;
1466
1467         si = get_swap_device(entry);
1468         if (si) {
1469                 count = swap_count(si->swap_map[offset]);
1470                 put_swap_device(si);
1471         }
1472         return count;
1473 }
1474
1475 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1476 {
1477         int count = 0;
1478         pgoff_t offset = swp_offset(entry);
1479         struct swap_cluster_info *ci;
1480
1481         ci = lock_cluster_or_swap_info(si, offset);
1482         count = swap_count(si->swap_map[offset]);
1483         unlock_cluster_or_swap_info(si, ci);
1484         return count;
1485 }
1486
1487 /*
1488  * How many references to @entry are currently swapped out?
1489  * This does not give an exact answer when swap count is continued,
1490  * but does include the high COUNT_CONTINUED flag to allow for that.
1491  */
1492 int __swp_swapcount(swp_entry_t entry)
1493 {
1494         int count = 0;
1495         struct swap_info_struct *si;
1496
1497         si = get_swap_device(entry);
1498         if (si) {
1499                 count = swap_swapcount(si, entry);
1500                 put_swap_device(si);
1501         }
1502         return count;
1503 }
1504
1505 /*
1506  * How many references to @entry are currently swapped out?
1507  * This considers COUNT_CONTINUED so it returns exact answer.
1508  */
1509 int swp_swapcount(swp_entry_t entry)
1510 {
1511         int count, tmp_count, n;
1512         struct swap_info_struct *p;
1513         struct swap_cluster_info *ci;
1514         struct page *page;
1515         pgoff_t offset;
1516         unsigned char *map;
1517
1518         p = _swap_info_get(entry);
1519         if (!p)
1520                 return 0;
1521
1522         offset = swp_offset(entry);
1523
1524         ci = lock_cluster_or_swap_info(p, offset);
1525
1526         count = swap_count(p->swap_map[offset]);
1527         if (!(count & COUNT_CONTINUED))
1528                 goto out;
1529
1530         count &= ~COUNT_CONTINUED;
1531         n = SWAP_MAP_MAX + 1;
1532
1533         page = vmalloc_to_page(p->swap_map + offset);
1534         offset &= ~PAGE_MASK;
1535         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1536
1537         do {
1538                 page = list_next_entry(page, lru);
1539                 map = kmap_atomic(page);
1540                 tmp_count = map[offset];
1541                 kunmap_atomic(map);
1542
1543                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1544                 n *= (SWAP_CONT_MAX + 1);
1545         } while (tmp_count & COUNT_CONTINUED);
1546 out:
1547         unlock_cluster_or_swap_info(p, ci);
1548         return count;
1549 }
1550
1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1552                                          swp_entry_t entry)
1553 {
1554         struct swap_cluster_info *ci;
1555         unsigned char *map = si->swap_map;
1556         unsigned long roffset = swp_offset(entry);
1557         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1558         int i;
1559         bool ret = false;
1560
1561         ci = lock_cluster_or_swap_info(si, offset);
1562         if (!ci || !cluster_is_huge(ci)) {
1563                 if (swap_count(map[roffset]))
1564                         ret = true;
1565                 goto unlock_out;
1566         }
1567         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1568                 if (swap_count(map[offset + i])) {
1569                         ret = true;
1570                         break;
1571                 }
1572         }
1573 unlock_out:
1574         unlock_cluster_or_swap_info(si, ci);
1575         return ret;
1576 }
1577
1578 static bool page_swapped(struct page *page)
1579 {
1580         swp_entry_t entry;
1581         struct swap_info_struct *si;
1582
1583         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1584                 return page_swapcount(page) != 0;
1585
1586         page = compound_head(page);
1587         entry.val = page_private(page);
1588         si = _swap_info_get(entry);
1589         if (si)
1590                 return swap_page_trans_huge_swapped(si, entry);
1591         return false;
1592 }
1593
1594 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1595                                          int *total_swapcount)
1596 {
1597         int i, map_swapcount, _total_mapcount, _total_swapcount;
1598         unsigned long offset = 0;
1599         struct swap_info_struct *si;
1600         struct swap_cluster_info *ci = NULL;
1601         unsigned char *map = NULL;
1602         int mapcount, swapcount = 0;
1603
1604         /* hugetlbfs shouldn't call it */
1605         VM_BUG_ON_PAGE(PageHuge(page), page);
1606
1607         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1608                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1609                 if (PageSwapCache(page))
1610                         swapcount = page_swapcount(page);
1611                 if (total_swapcount)
1612                         *total_swapcount = swapcount;
1613                 return mapcount + swapcount;
1614         }
1615
1616         page = compound_head(page);
1617
1618         _total_mapcount = _total_swapcount = map_swapcount = 0;
1619         if (PageSwapCache(page)) {
1620                 swp_entry_t entry;
1621
1622                 entry.val = page_private(page);
1623                 si = _swap_info_get(entry);
1624                 if (si) {
1625                         map = si->swap_map;
1626                         offset = swp_offset(entry);
1627                 }
1628         }
1629         if (map)
1630                 ci = lock_cluster(si, offset);
1631         for (i = 0; i < HPAGE_PMD_NR; i++) {
1632                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1633                 _total_mapcount += mapcount;
1634                 if (map) {
1635                         swapcount = swap_count(map[offset + i]);
1636                         _total_swapcount += swapcount;
1637                 }
1638                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1639         }
1640         unlock_cluster(ci);
1641         if (PageDoubleMap(page)) {
1642                 map_swapcount -= 1;
1643                 _total_mapcount -= HPAGE_PMD_NR;
1644         }
1645         mapcount = compound_mapcount(page);
1646         map_swapcount += mapcount;
1647         _total_mapcount += mapcount;
1648         if (total_mapcount)
1649                 *total_mapcount = _total_mapcount;
1650         if (total_swapcount)
1651                 *total_swapcount = _total_swapcount;
1652
1653         return map_swapcount;
1654 }
1655
1656 /*
1657  * We can write to an anon page without COW if there are no other references
1658  * to it.  And as a side-effect, free up its swap: because the old content
1659  * on disk will never be read, and seeking back there to write new content
1660  * later would only waste time away from clustering.
1661  *
1662  * NOTE: total_map_swapcount should not be relied upon by the caller if
1663  * reuse_swap_page() returns false, but it may be always overwritten
1664  * (see the other implementation for CONFIG_SWAP=n).
1665  */
1666 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1667 {
1668         int count, total_mapcount, total_swapcount;
1669
1670         VM_BUG_ON_PAGE(!PageLocked(page), page);
1671         if (unlikely(PageKsm(page)))
1672                 return false;
1673         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1674                                               &total_swapcount);
1675         if (total_map_swapcount)
1676                 *total_map_swapcount = total_mapcount + total_swapcount;
1677         if (count == 1 && PageSwapCache(page) &&
1678             (likely(!PageTransCompound(page)) ||
1679              /* The remaining swap count will be freed soon */
1680              total_swapcount == page_swapcount(page))) {
1681                 if (!PageWriteback(page)) {
1682                         page = compound_head(page);
1683                         delete_from_swap_cache(page);
1684                         SetPageDirty(page);
1685                 } else {
1686                         swp_entry_t entry;
1687                         struct swap_info_struct *p;
1688
1689                         entry.val = page_private(page);
1690                         p = swap_info_get(entry);
1691                         if (p->flags & SWP_STABLE_WRITES) {
1692                                 spin_unlock(&p->lock);
1693                                 return false;
1694                         }
1695                         spin_unlock(&p->lock);
1696                 }
1697         }
1698
1699         return count <= 1;
1700 }
1701
1702 /*
1703  * If swap is getting full, or if there are no more mappings of this page,
1704  * then try_to_free_swap is called to free its swap space.
1705  */
1706 int try_to_free_swap(struct page *page)
1707 {
1708         VM_BUG_ON_PAGE(!PageLocked(page), page);
1709
1710         if (!PageSwapCache(page))
1711                 return 0;
1712         if (PageWriteback(page))
1713                 return 0;
1714         if (page_swapped(page))
1715                 return 0;
1716
1717         /*
1718          * Once hibernation has begun to create its image of memory,
1719          * there's a danger that one of the calls to try_to_free_swap()
1720          * - most probably a call from __try_to_reclaim_swap() while
1721          * hibernation is allocating its own swap pages for the image,
1722          * but conceivably even a call from memory reclaim - will free
1723          * the swap from a page which has already been recorded in the
1724          * image as a clean swapcache page, and then reuse its swap for
1725          * another page of the image.  On waking from hibernation, the
1726          * original page might be freed under memory pressure, then
1727          * later read back in from swap, now with the wrong data.
1728          *
1729          * Hibernation suspends storage while it is writing the image
1730          * to disk so check that here.
1731          */
1732         if (pm_suspended_storage())
1733                 return 0;
1734
1735         page = compound_head(page);
1736         delete_from_swap_cache(page);
1737         SetPageDirty(page);
1738         return 1;
1739 }
1740
1741 /*
1742  * Free the swap entry like above, but also try to
1743  * free the page cache entry if it is the last user.
1744  */
1745 int free_swap_and_cache(swp_entry_t entry)
1746 {
1747         struct swap_info_struct *p;
1748         unsigned char count;
1749
1750         if (non_swap_entry(entry))
1751                 return 1;
1752
1753         p = _swap_info_get(entry);
1754         if (p) {
1755                 count = __swap_entry_free(p, entry, 1);
1756                 if (count == SWAP_HAS_CACHE &&
1757                     !swap_page_trans_huge_swapped(p, entry))
1758                         __try_to_reclaim_swap(p, swp_offset(entry),
1759                                               TTRS_UNMAPPED | TTRS_FULL);
1760         }
1761         return p != NULL;
1762 }
1763
1764 #ifdef CONFIG_HIBERNATION
1765 /*
1766  * Find the swap type that corresponds to given device (if any).
1767  *
1768  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1769  * from 0, in which the swap header is expected to be located.
1770  *
1771  * This is needed for the suspend to disk (aka swsusp).
1772  */
1773 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1774 {
1775         struct block_device *bdev = NULL;
1776         int type;
1777
1778         if (device)
1779                 bdev = bdget(device);
1780
1781         spin_lock(&swap_lock);
1782         for (type = 0; type < nr_swapfiles; type++) {
1783                 struct swap_info_struct *sis = swap_info[type];
1784
1785                 if (!(sis->flags & SWP_WRITEOK))
1786                         continue;
1787
1788                 if (!bdev) {
1789                         if (bdev_p)
1790                                 *bdev_p = bdgrab(sis->bdev);
1791
1792                         spin_unlock(&swap_lock);
1793                         return type;
1794                 }
1795                 if (bdev == sis->bdev) {
1796                         struct swap_extent *se = first_se(sis);
1797
1798                         if (se->start_block == offset) {
1799                                 if (bdev_p)
1800                                         *bdev_p = bdgrab(sis->bdev);
1801
1802                                 spin_unlock(&swap_lock);
1803                                 bdput(bdev);
1804                                 return type;
1805                         }
1806                 }
1807         }
1808         spin_unlock(&swap_lock);
1809         if (bdev)
1810                 bdput(bdev);
1811
1812         return -ENODEV;
1813 }
1814
1815 /*
1816  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1817  * corresponding to given index in swap_info (swap type).
1818  */
1819 sector_t swapdev_block(int type, pgoff_t offset)
1820 {
1821         struct block_device *bdev;
1822         struct swap_info_struct *si = swap_type_to_swap_info(type);
1823
1824         if (!si || !(si->flags & SWP_WRITEOK))
1825                 return 0;
1826         return map_swap_entry(swp_entry(type, offset), &bdev);
1827 }
1828
1829 /*
1830  * Return either the total number of swap pages of given type, or the number
1831  * of free pages of that type (depending on @free)
1832  *
1833  * This is needed for software suspend
1834  */
1835 unsigned int count_swap_pages(int type, int free)
1836 {
1837         unsigned int n = 0;
1838
1839         spin_lock(&swap_lock);
1840         if ((unsigned int)type < nr_swapfiles) {
1841                 struct swap_info_struct *sis = swap_info[type];
1842
1843                 spin_lock(&sis->lock);
1844                 if (sis->flags & SWP_WRITEOK) {
1845                         n = sis->pages;
1846                         if (free)
1847                                 n -= sis->inuse_pages;
1848                 }
1849                 spin_unlock(&sis->lock);
1850         }
1851         spin_unlock(&swap_lock);
1852         return n;
1853 }
1854 #endif /* CONFIG_HIBERNATION */
1855
1856 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1857 {
1858         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1859 }
1860
1861 /*
1862  * No need to decide whether this PTE shares the swap entry with others,
1863  * just let do_wp_page work it out if a write is requested later - to
1864  * force COW, vm_page_prot omits write permission from any private vma.
1865  */
1866 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1867                 unsigned long addr, swp_entry_t entry, struct page *page)
1868 {
1869         struct page *swapcache;
1870         struct mem_cgroup *memcg;
1871         spinlock_t *ptl;
1872         pte_t *pte;
1873         int ret = 1;
1874
1875         swapcache = page;
1876         page = ksm_might_need_to_copy(page, vma, addr);
1877         if (unlikely(!page))
1878                 return -ENOMEM;
1879
1880         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1881                                 &memcg, false)) {
1882                 ret = -ENOMEM;
1883                 goto out_nolock;
1884         }
1885
1886         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1887         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1888                 mem_cgroup_cancel_charge(page, memcg, false);
1889                 ret = 0;
1890                 goto out;
1891         }
1892
1893         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1894         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1895         get_page(page);
1896         set_pte_at(vma->vm_mm, addr, pte,
1897                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1898         if (page == swapcache) {
1899                 page_add_anon_rmap(page, vma, addr, false);
1900                 mem_cgroup_commit_charge(page, memcg, true, false);
1901         } else { /* ksm created a completely new copy */
1902                 page_add_new_anon_rmap(page, vma, addr, false);
1903                 mem_cgroup_commit_charge(page, memcg, false, false);
1904                 lru_cache_add_active_or_unevictable(page, vma);
1905         }
1906         swap_free(entry);
1907         /*
1908          * Move the page to the active list so it is not
1909          * immediately swapped out again after swapon.
1910          */
1911         activate_page(page);
1912 out:
1913         pte_unmap_unlock(pte, ptl);
1914 out_nolock:
1915         if (page != swapcache) {
1916                 unlock_page(page);
1917                 put_page(page);
1918         }
1919         return ret;
1920 }
1921
1922 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1923                         unsigned long addr, unsigned long end,
1924                         unsigned int type, bool frontswap,
1925                         unsigned long *fs_pages_to_unuse)
1926 {
1927         struct page *page;
1928         swp_entry_t entry;
1929         pte_t *pte;
1930         struct swap_info_struct *si;
1931         unsigned long offset;
1932         int ret = 0;
1933         volatile unsigned char *swap_map;
1934
1935         si = swap_info[type];
1936         pte = pte_offset_map(pmd, addr);
1937         do {
1938                 struct vm_fault vmf;
1939
1940                 if (!is_swap_pte(*pte))
1941                         continue;
1942
1943                 entry = pte_to_swp_entry(*pte);
1944                 if (swp_type(entry) != type)
1945                         continue;
1946
1947                 offset = swp_offset(entry);
1948                 if (frontswap && !frontswap_test(si, offset))
1949                         continue;
1950
1951                 pte_unmap(pte);
1952                 swap_map = &si->swap_map[offset];
1953                 vmf.vma = vma;
1954                 vmf.address = addr;
1955                 vmf.pmd = pmd;
1956                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1957                 if (!page) {
1958                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1959                                 goto try_next;
1960                         return -ENOMEM;
1961                 }
1962
1963                 lock_page(page);
1964                 wait_on_page_writeback(page);
1965                 ret = unuse_pte(vma, pmd, addr, entry, page);
1966                 if (ret < 0) {
1967                         unlock_page(page);
1968                         put_page(page);
1969                         goto out;
1970                 }
1971
1972                 try_to_free_swap(page);
1973                 unlock_page(page);
1974                 put_page(page);
1975
1976                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1977                         ret = FRONTSWAP_PAGES_UNUSED;
1978                         goto out;
1979                 }
1980 try_next:
1981                 pte = pte_offset_map(pmd, addr);
1982         } while (pte++, addr += PAGE_SIZE, addr != end);
1983         pte_unmap(pte - 1);
1984
1985         ret = 0;
1986 out:
1987         return ret;
1988 }
1989
1990 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1991                                 unsigned long addr, unsigned long end,
1992                                 unsigned int type, bool frontswap,
1993                                 unsigned long *fs_pages_to_unuse)
1994 {
1995         pmd_t *pmd;
1996         unsigned long next;
1997         int ret;
1998
1999         pmd = pmd_offset(pud, addr);
2000         do {
2001                 cond_resched();
2002                 next = pmd_addr_end(addr, end);
2003                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2004                         continue;
2005                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2006                                       frontswap, fs_pages_to_unuse);
2007                 if (ret)
2008                         return ret;
2009         } while (pmd++, addr = next, addr != end);
2010         return 0;
2011 }
2012
2013 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2014                                 unsigned long addr, unsigned long end,
2015                                 unsigned int type, bool frontswap,
2016                                 unsigned long *fs_pages_to_unuse)
2017 {
2018         pud_t *pud;
2019         unsigned long next;
2020         int ret;
2021
2022         pud = pud_offset(p4d, addr);
2023         do {
2024                 next = pud_addr_end(addr, end);
2025                 if (pud_none_or_clear_bad(pud))
2026                         continue;
2027                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2028                                       frontswap, fs_pages_to_unuse);
2029                 if (ret)
2030                         return ret;
2031         } while (pud++, addr = next, addr != end);
2032         return 0;
2033 }
2034
2035 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2036                                 unsigned long addr, unsigned long end,
2037                                 unsigned int type, bool frontswap,
2038                                 unsigned long *fs_pages_to_unuse)
2039 {
2040         p4d_t *p4d;
2041         unsigned long next;
2042         int ret;
2043
2044         p4d = p4d_offset(pgd, addr);
2045         do {
2046                 next = p4d_addr_end(addr, end);
2047                 if (p4d_none_or_clear_bad(p4d))
2048                         continue;
2049                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2050                                       frontswap, fs_pages_to_unuse);
2051                 if (ret)
2052                         return ret;
2053         } while (p4d++, addr = next, addr != end);
2054         return 0;
2055 }
2056
2057 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2058                      bool frontswap, unsigned long *fs_pages_to_unuse)
2059 {
2060         pgd_t *pgd;
2061         unsigned long addr, end, next;
2062         int ret;
2063
2064         addr = vma->vm_start;
2065         end = vma->vm_end;
2066
2067         pgd = pgd_offset(vma->vm_mm, addr);
2068         do {
2069                 next = pgd_addr_end(addr, end);
2070                 if (pgd_none_or_clear_bad(pgd))
2071                         continue;
2072                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2073                                       frontswap, fs_pages_to_unuse);
2074                 if (ret)
2075                         return ret;
2076         } while (pgd++, addr = next, addr != end);
2077         return 0;
2078 }
2079
2080 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2081                     bool frontswap, unsigned long *fs_pages_to_unuse)
2082 {
2083         struct vm_area_struct *vma;
2084         int ret = 0;
2085
2086         down_read(&mm->mmap_sem);
2087         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2088                 if (vma->anon_vma) {
2089                         ret = unuse_vma(vma, type, frontswap,
2090                                         fs_pages_to_unuse);
2091                         if (ret)
2092                                 break;
2093                 }
2094                 cond_resched();
2095         }
2096         up_read(&mm->mmap_sem);
2097         return ret;
2098 }
2099
2100 /*
2101  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2102  * from current position to next entry still in use. Return 0
2103  * if there are no inuse entries after prev till end of the map.
2104  */
2105 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2106                                         unsigned int prev, bool frontswap)
2107 {
2108         unsigned int i;
2109         unsigned char count;
2110
2111         /*
2112          * No need for swap_lock here: we're just looking
2113          * for whether an entry is in use, not modifying it; false
2114          * hits are okay, and sys_swapoff() has already prevented new
2115          * allocations from this area (while holding swap_lock).
2116          */
2117         for (i = prev + 1; i < si->max; i++) {
2118                 count = READ_ONCE(si->swap_map[i]);
2119                 if (count && swap_count(count) != SWAP_MAP_BAD)
2120                         if (!frontswap || frontswap_test(si, i))
2121                                 break;
2122                 if ((i % LATENCY_LIMIT) == 0)
2123                         cond_resched();
2124         }
2125
2126         if (i == si->max)
2127                 i = 0;
2128
2129         return i;
2130 }
2131
2132 /*
2133  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2134  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2135  */
2136 int try_to_unuse(unsigned int type, bool frontswap,
2137                  unsigned long pages_to_unuse)
2138 {
2139         struct mm_struct *prev_mm;
2140         struct mm_struct *mm;
2141         struct list_head *p;
2142         int retval = 0;
2143         struct swap_info_struct *si = swap_info[type];
2144         struct page *page;
2145         swp_entry_t entry;
2146         unsigned int i;
2147
2148         if (!READ_ONCE(si->inuse_pages))
2149                 return 0;
2150
2151         if (!frontswap)
2152                 pages_to_unuse = 0;
2153
2154 retry:
2155         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2156         if (retval)
2157                 goto out;
2158
2159         prev_mm = &init_mm;
2160         mmget(prev_mm);
2161
2162         spin_lock(&mmlist_lock);
2163         p = &init_mm.mmlist;
2164         while (READ_ONCE(si->inuse_pages) &&
2165                !signal_pending(current) &&
2166                (p = p->next) != &init_mm.mmlist) {
2167
2168                 mm = list_entry(p, struct mm_struct, mmlist);
2169                 if (!mmget_not_zero(mm))
2170                         continue;
2171                 spin_unlock(&mmlist_lock);
2172                 mmput(prev_mm);
2173                 prev_mm = mm;
2174                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2175
2176                 if (retval) {
2177                         mmput(prev_mm);
2178                         goto out;
2179                 }
2180
2181                 /*
2182                  * Make sure that we aren't completely killing
2183                  * interactive performance.
2184                  */
2185                 cond_resched();
2186                 spin_lock(&mmlist_lock);
2187         }
2188         spin_unlock(&mmlist_lock);
2189
2190         mmput(prev_mm);
2191
2192         i = 0;
2193         while (READ_ONCE(si->inuse_pages) &&
2194                !signal_pending(current) &&
2195                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2196
2197                 entry = swp_entry(type, i);
2198                 page = find_get_page(swap_address_space(entry), i);
2199                 if (!page)
2200                         continue;
2201
2202                 /*
2203                  * It is conceivable that a racing task removed this page from
2204                  * swap cache just before we acquired the page lock. The page
2205                  * might even be back in swap cache on another swap area. But
2206                  * that is okay, try_to_free_swap() only removes stale pages.
2207                  */
2208                 lock_page(page);
2209                 wait_on_page_writeback(page);
2210                 try_to_free_swap(page);
2211                 unlock_page(page);
2212                 put_page(page);
2213
2214                 /*
2215                  * For frontswap, we just need to unuse pages_to_unuse, if
2216                  * it was specified. Need not check frontswap again here as
2217                  * we already zeroed out pages_to_unuse if not frontswap.
2218                  */
2219                 if (pages_to_unuse && --pages_to_unuse == 0)
2220                         goto out;
2221         }
2222
2223         /*
2224          * Lets check again to see if there are still swap entries in the map.
2225          * If yes, we would need to do retry the unuse logic again.
2226          * Under global memory pressure, swap entries can be reinserted back
2227          * into process space after the mmlist loop above passes over them.
2228          *
2229          * Limit the number of retries? No: when mmget_not_zero() above fails,
2230          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2231          * at its own independent pace; and even shmem_writepage() could have
2232          * been preempted after get_swap_page(), temporarily hiding that swap.
2233          * It's easy and robust (though cpu-intensive) just to keep retrying.
2234          */
2235         if (READ_ONCE(si->inuse_pages)) {
2236                 if (!signal_pending(current))
2237                         goto retry;
2238                 retval = -EINTR;
2239         }
2240 out:
2241         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2242 }
2243
2244 /*
2245  * After a successful try_to_unuse, if no swap is now in use, we know
2246  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2247  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2248  * added to the mmlist just after page_duplicate - before would be racy.
2249  */
2250 static void drain_mmlist(void)
2251 {
2252         struct list_head *p, *next;
2253         unsigned int type;
2254
2255         for (type = 0; type < nr_swapfiles; type++)
2256                 if (swap_info[type]->inuse_pages)
2257                         return;
2258         spin_lock(&mmlist_lock);
2259         list_for_each_safe(p, next, &init_mm.mmlist)
2260                 list_del_init(p);
2261         spin_unlock(&mmlist_lock);
2262 }
2263
2264 /*
2265  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2266  * corresponds to page offset for the specified swap entry.
2267  * Note that the type of this function is sector_t, but it returns page offset
2268  * into the bdev, not sector offset.
2269  */
2270 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2271 {
2272         struct swap_info_struct *sis;
2273         struct swap_extent *se;
2274         pgoff_t offset;
2275
2276         sis = swp_swap_info(entry);
2277         *bdev = sis->bdev;
2278
2279         offset = swp_offset(entry);
2280         se = offset_to_swap_extent(sis, offset);
2281         return se->start_block + (offset - se->start_page);
2282 }
2283
2284 /*
2285  * Returns the page offset into bdev for the specified page's swap entry.
2286  */
2287 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2288 {
2289         swp_entry_t entry;
2290         entry.val = page_private(page);
2291         return map_swap_entry(entry, bdev);
2292 }
2293
2294 /*
2295  * Free all of a swapdev's extent information
2296  */
2297 static void destroy_swap_extents(struct swap_info_struct *sis)
2298 {
2299         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2300                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2301                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2302
2303                 rb_erase(rb, &sis->swap_extent_root);
2304                 kfree(se);
2305         }
2306
2307         if (sis->flags & SWP_ACTIVATED) {
2308                 struct file *swap_file = sis->swap_file;
2309                 struct address_space *mapping = swap_file->f_mapping;
2310
2311                 sis->flags &= ~SWP_ACTIVATED;
2312                 if (mapping->a_ops->swap_deactivate)
2313                         mapping->a_ops->swap_deactivate(swap_file);
2314         }
2315 }
2316
2317 /*
2318  * Add a block range (and the corresponding page range) into this swapdev's
2319  * extent tree.
2320  *
2321  * This function rather assumes that it is called in ascending page order.
2322  */
2323 int
2324 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2325                 unsigned long nr_pages, sector_t start_block)
2326 {
2327         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2328         struct swap_extent *se;
2329         struct swap_extent *new_se;
2330
2331         /*
2332          * place the new node at the right most since the
2333          * function is called in ascending page order.
2334          */
2335         while (*link) {
2336                 parent = *link;
2337                 link = &parent->rb_right;
2338         }
2339
2340         if (parent) {
2341                 se = rb_entry(parent, struct swap_extent, rb_node);
2342                 BUG_ON(se->start_page + se->nr_pages != start_page);
2343                 if (se->start_block + se->nr_pages == start_block) {
2344                         /* Merge it */
2345                         se->nr_pages += nr_pages;
2346                         return 0;
2347                 }
2348         }
2349
2350         /* No merge, insert a new extent. */
2351         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2352         if (new_se == NULL)
2353                 return -ENOMEM;
2354         new_se->start_page = start_page;
2355         new_se->nr_pages = nr_pages;
2356         new_se->start_block = start_block;
2357
2358         rb_link_node(&new_se->rb_node, parent, link);
2359         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2360         return 1;
2361 }
2362 EXPORT_SYMBOL_GPL(add_swap_extent);
2363
2364 /*
2365  * A `swap extent' is a simple thing which maps a contiguous range of pages
2366  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2367  * is built at swapon time and is then used at swap_writepage/swap_readpage
2368  * time for locating where on disk a page belongs.
2369  *
2370  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2371  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2372  * swap files identically.
2373  *
2374  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2375  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2376  * swapfiles are handled *identically* after swapon time.
2377  *
2378  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2379  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2380  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2381  * requirements, they are simply tossed out - we will never use those blocks
2382  * for swapping.
2383  *
2384  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2385  * prevents users from writing to the swap device, which will corrupt memory.
2386  *
2387  * The amount of disk space which a single swap extent represents varies.
2388  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2389  * extents in the list.  To avoid much list walking, we cache the previous
2390  * search location in `curr_swap_extent', and start new searches from there.
2391  * This is extremely effective.  The average number of iterations in
2392  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2393  */
2394 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2395 {
2396         struct file *swap_file = sis->swap_file;
2397         struct address_space *mapping = swap_file->f_mapping;
2398         struct inode *inode = mapping->host;
2399         int ret;
2400
2401         if (S_ISBLK(inode->i_mode)) {
2402                 ret = add_swap_extent(sis, 0, sis->max, 0);
2403                 *span = sis->pages;
2404                 return ret;
2405         }
2406
2407         if (mapping->a_ops->swap_activate) {
2408                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2409                 if (ret >= 0)
2410                         sis->flags |= SWP_ACTIVATED;
2411                 if (!ret) {
2412                         sis->flags |= SWP_FS;
2413                         ret = add_swap_extent(sis, 0, sis->max, 0);
2414                         *span = sis->pages;
2415                 }
2416                 return ret;
2417         }
2418
2419         return generic_swapfile_activate(sis, swap_file, span);
2420 }
2421
2422 static int swap_node(struct swap_info_struct *p)
2423 {
2424         struct block_device *bdev;
2425
2426         if (p->bdev)
2427                 bdev = p->bdev;
2428         else
2429                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2430
2431         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2432 }
2433
2434 static void setup_swap_info(struct swap_info_struct *p, int prio,
2435                             unsigned char *swap_map,
2436                             struct swap_cluster_info *cluster_info)
2437 {
2438         int i;
2439
2440         if (prio >= 0)
2441                 p->prio = prio;
2442         else
2443                 p->prio = --least_priority;
2444         /*
2445          * the plist prio is negated because plist ordering is
2446          * low-to-high, while swap ordering is high-to-low
2447          */
2448         p->list.prio = -p->prio;
2449         for_each_node(i) {
2450                 if (p->prio >= 0)
2451                         p->avail_lists[i].prio = -p->prio;
2452                 else {
2453                         if (swap_node(p) == i)
2454                                 p->avail_lists[i].prio = 1;
2455                         else
2456                                 p->avail_lists[i].prio = -p->prio;
2457                 }
2458         }
2459         p->swap_map = swap_map;
2460         p->cluster_info = cluster_info;
2461 }
2462
2463 static void _enable_swap_info(struct swap_info_struct *p)
2464 {
2465         p->flags |= SWP_WRITEOK | SWP_VALID;
2466         atomic_long_add(p->pages, &nr_swap_pages);
2467         total_swap_pages += p->pages;
2468
2469         assert_spin_locked(&swap_lock);
2470         /*
2471          * both lists are plists, and thus priority ordered.
2472          * swap_active_head needs to be priority ordered for swapoff(),
2473          * which on removal of any swap_info_struct with an auto-assigned
2474          * (i.e. negative) priority increments the auto-assigned priority
2475          * of any lower-priority swap_info_structs.
2476          * swap_avail_head needs to be priority ordered for get_swap_page(),
2477          * which allocates swap pages from the highest available priority
2478          * swap_info_struct.
2479          */
2480         plist_add(&p->list, &swap_active_head);
2481         add_to_avail_list(p);
2482 }
2483
2484 static void enable_swap_info(struct swap_info_struct *p, int prio,
2485                                 unsigned char *swap_map,
2486                                 struct swap_cluster_info *cluster_info,
2487                                 unsigned long *frontswap_map)
2488 {
2489         frontswap_init(p->type, frontswap_map);
2490         spin_lock(&swap_lock);
2491         spin_lock(&p->lock);
2492         setup_swap_info(p, prio, swap_map, cluster_info);
2493         spin_unlock(&p->lock);
2494         spin_unlock(&swap_lock);
2495         /*
2496          * Guarantee swap_map, cluster_info, etc. fields are valid
2497          * between get/put_swap_device() if SWP_VALID bit is set
2498          */
2499         synchronize_rcu();
2500         spin_lock(&swap_lock);
2501         spin_lock(&p->lock);
2502         _enable_swap_info(p);
2503         spin_unlock(&p->lock);
2504         spin_unlock(&swap_lock);
2505 }
2506
2507 static void reinsert_swap_info(struct swap_info_struct *p)
2508 {
2509         spin_lock(&swap_lock);
2510         spin_lock(&p->lock);
2511         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2512         _enable_swap_info(p);
2513         spin_unlock(&p->lock);
2514         spin_unlock(&swap_lock);
2515 }
2516
2517 bool has_usable_swap(void)
2518 {
2519         bool ret = true;
2520
2521         spin_lock(&swap_lock);
2522         if (plist_head_empty(&swap_active_head))
2523                 ret = false;
2524         spin_unlock(&swap_lock);
2525         return ret;
2526 }
2527
2528 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2529 {
2530         struct swap_info_struct *p = NULL;
2531         unsigned char *swap_map;
2532         struct swap_cluster_info *cluster_info;
2533         unsigned long *frontswap_map;
2534         struct file *swap_file, *victim;
2535         struct address_space *mapping;
2536         struct inode *inode;
2537         struct filename *pathname;
2538         int err, found = 0;
2539         unsigned int old_block_size;
2540
2541         if (!capable(CAP_SYS_ADMIN))
2542                 return -EPERM;
2543
2544         BUG_ON(!current->mm);
2545
2546         pathname = getname(specialfile);
2547         if (IS_ERR(pathname))
2548                 return PTR_ERR(pathname);
2549
2550         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2551         err = PTR_ERR(victim);
2552         if (IS_ERR(victim))
2553                 goto out;
2554
2555         mapping = victim->f_mapping;
2556         spin_lock(&swap_lock);
2557         plist_for_each_entry(p, &swap_active_head, list) {
2558                 if (p->flags & SWP_WRITEOK) {
2559                         if (p->swap_file->f_mapping == mapping) {
2560                                 found = 1;
2561                                 break;
2562                         }
2563                 }
2564         }
2565         if (!found) {
2566                 err = -EINVAL;
2567                 spin_unlock(&swap_lock);
2568                 goto out_dput;
2569         }
2570         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2571                 vm_unacct_memory(p->pages);
2572         else {
2573                 err = -ENOMEM;
2574                 spin_unlock(&swap_lock);
2575                 goto out_dput;
2576         }
2577         del_from_avail_list(p);
2578         spin_lock(&p->lock);
2579         if (p->prio < 0) {
2580                 struct swap_info_struct *si = p;
2581                 int nid;
2582
2583                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2584                         si->prio++;
2585                         si->list.prio--;
2586                         for_each_node(nid) {
2587                                 if (si->avail_lists[nid].prio != 1)
2588                                         si->avail_lists[nid].prio--;
2589                         }
2590                 }
2591                 least_priority++;
2592         }
2593         plist_del(&p->list, &swap_active_head);
2594         atomic_long_sub(p->pages, &nr_swap_pages);
2595         total_swap_pages -= p->pages;
2596         p->flags &= ~SWP_WRITEOK;
2597         spin_unlock(&p->lock);
2598         spin_unlock(&swap_lock);
2599
2600         disable_swap_slots_cache_lock();
2601
2602         set_current_oom_origin();
2603         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2604         clear_current_oom_origin();
2605
2606         if (err) {
2607                 /* re-insert swap space back into swap_list */
2608                 reinsert_swap_info(p);
2609                 reenable_swap_slots_cache_unlock();
2610                 goto out_dput;
2611         }
2612
2613         reenable_swap_slots_cache_unlock();
2614
2615         spin_lock(&swap_lock);
2616         spin_lock(&p->lock);
2617         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2618         spin_unlock(&p->lock);
2619         spin_unlock(&swap_lock);
2620         /*
2621          * wait for swap operations protected by get/put_swap_device()
2622          * to complete
2623          */
2624         synchronize_rcu();
2625
2626         flush_work(&p->discard_work);
2627
2628         destroy_swap_extents(p);
2629         if (p->flags & SWP_CONTINUED)
2630                 free_swap_count_continuations(p);
2631
2632         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2633                 atomic_dec(&nr_rotate_swap);
2634
2635         mutex_lock(&swapon_mutex);
2636         spin_lock(&swap_lock);
2637         spin_lock(&p->lock);
2638         drain_mmlist();
2639
2640         /* wait for anyone still in scan_swap_map */
2641         p->highest_bit = 0;             /* cuts scans short */
2642         while (p->flags >= SWP_SCANNING) {
2643                 spin_unlock(&p->lock);
2644                 spin_unlock(&swap_lock);
2645                 schedule_timeout_uninterruptible(1);
2646                 spin_lock(&swap_lock);
2647                 spin_lock(&p->lock);
2648         }
2649
2650         swap_file = p->swap_file;
2651         old_block_size = p->old_block_size;
2652         p->swap_file = NULL;
2653         p->max = 0;
2654         swap_map = p->swap_map;
2655         p->swap_map = NULL;
2656         cluster_info = p->cluster_info;
2657         p->cluster_info = NULL;
2658         frontswap_map = frontswap_map_get(p);
2659         spin_unlock(&p->lock);
2660         spin_unlock(&swap_lock);
2661         frontswap_invalidate_area(p->type);
2662         frontswap_map_set(p, NULL);
2663         mutex_unlock(&swapon_mutex);
2664         free_percpu(p->percpu_cluster);
2665         p->percpu_cluster = NULL;
2666         vfree(swap_map);
2667         kvfree(cluster_info);
2668         kvfree(frontswap_map);
2669         /* Destroy swap account information */
2670         swap_cgroup_swapoff(p->type);
2671         exit_swap_address_space(p->type);
2672
2673         inode = mapping->host;
2674         if (S_ISBLK(inode->i_mode)) {
2675                 struct block_device *bdev = I_BDEV(inode);
2676
2677                 set_blocksize(bdev, old_block_size);
2678                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2679         }
2680
2681         inode_lock(inode);
2682         inode->i_flags &= ~S_SWAPFILE;
2683         inode_unlock(inode);
2684         filp_close(swap_file, NULL);
2685
2686         /*
2687          * Clear the SWP_USED flag after all resources are freed so that swapon
2688          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2689          * not hold p->lock after we cleared its SWP_WRITEOK.
2690          */
2691         spin_lock(&swap_lock);
2692         p->flags = 0;
2693         spin_unlock(&swap_lock);
2694
2695         err = 0;
2696         atomic_inc(&proc_poll_event);
2697         wake_up_interruptible(&proc_poll_wait);
2698
2699 out_dput:
2700         filp_close(victim, NULL);
2701 out:
2702         putname(pathname);
2703         return err;
2704 }
2705
2706 #ifdef CONFIG_PROC_FS
2707 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2708 {
2709         struct seq_file *seq = file->private_data;
2710
2711         poll_wait(file, &proc_poll_wait, wait);
2712
2713         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2714                 seq->poll_event = atomic_read(&proc_poll_event);
2715                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2716         }
2717
2718         return EPOLLIN | EPOLLRDNORM;
2719 }
2720
2721 /* iterator */
2722 static void *swap_start(struct seq_file *swap, loff_t *pos)
2723 {
2724         struct swap_info_struct *si;
2725         int type;
2726         loff_t l = *pos;
2727
2728         mutex_lock(&swapon_mutex);
2729
2730         if (!l)
2731                 return SEQ_START_TOKEN;
2732
2733         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2734                 if (!(si->flags & SWP_USED) || !si->swap_map)
2735                         continue;
2736                 if (!--l)
2737                         return si;
2738         }
2739
2740         return NULL;
2741 }
2742
2743 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2744 {
2745         struct swap_info_struct *si = v;
2746         int type;
2747
2748         if (v == SEQ_START_TOKEN)
2749                 type = 0;
2750         else
2751                 type = si->type + 1;
2752
2753         ++(*pos);
2754         for (; (si = swap_type_to_swap_info(type)); type++) {
2755                 if (!(si->flags & SWP_USED) || !si->swap_map)
2756                         continue;
2757                 return si;
2758         }
2759
2760         return NULL;
2761 }
2762
2763 static void swap_stop(struct seq_file *swap, void *v)
2764 {
2765         mutex_unlock(&swapon_mutex);
2766 }
2767
2768 static int swap_show(struct seq_file *swap, void *v)
2769 {
2770         struct swap_info_struct *si = v;
2771         struct file *file;
2772         int len;
2773
2774         if (si == SEQ_START_TOKEN) {
2775                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2776                 return 0;
2777         }
2778
2779         file = si->swap_file;
2780         len = seq_file_path(swap, file, " \t\n\\");
2781         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2782                         len < 40 ? 40 - len : 1, " ",
2783                         S_ISBLK(file_inode(file)->i_mode) ?
2784                                 "partition" : "file\t",
2785                         si->pages << (PAGE_SHIFT - 10),
2786                         si->inuse_pages << (PAGE_SHIFT - 10),
2787                         si->prio);
2788         return 0;
2789 }
2790
2791 static const struct seq_operations swaps_op = {
2792         .start =        swap_start,
2793         .next =         swap_next,
2794         .stop =         swap_stop,
2795         .show =         swap_show
2796 };
2797
2798 static int swaps_open(struct inode *inode, struct file *file)
2799 {
2800         struct seq_file *seq;
2801         int ret;
2802
2803         ret = seq_open(file, &swaps_op);
2804         if (ret)
2805                 return ret;
2806
2807         seq = file->private_data;
2808         seq->poll_event = atomic_read(&proc_poll_event);
2809         return 0;
2810 }
2811
2812 static const struct file_operations proc_swaps_operations = {
2813         .open           = swaps_open,
2814         .read           = seq_read,
2815         .llseek         = seq_lseek,
2816         .release        = seq_release,
2817         .poll           = swaps_poll,
2818 };
2819
2820 static int __init procswaps_init(void)
2821 {
2822         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2823         return 0;
2824 }
2825 __initcall(procswaps_init);
2826 #endif /* CONFIG_PROC_FS */
2827
2828 #ifdef MAX_SWAPFILES_CHECK
2829 static int __init max_swapfiles_check(void)
2830 {
2831         MAX_SWAPFILES_CHECK();
2832         return 0;
2833 }
2834 late_initcall(max_swapfiles_check);
2835 #endif
2836
2837 static struct swap_info_struct *alloc_swap_info(void)
2838 {
2839         struct swap_info_struct *p;
2840         struct swap_info_struct *defer = NULL;
2841         unsigned int type;
2842         int i;
2843
2844         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2845         if (!p)
2846                 return ERR_PTR(-ENOMEM);
2847
2848         spin_lock(&swap_lock);
2849         for (type = 0; type < nr_swapfiles; type++) {
2850                 if (!(swap_info[type]->flags & SWP_USED))
2851                         break;
2852         }
2853         if (type >= MAX_SWAPFILES) {
2854                 spin_unlock(&swap_lock);
2855                 kvfree(p);
2856                 return ERR_PTR(-EPERM);
2857         }
2858         if (type >= nr_swapfiles) {
2859                 p->type = type;
2860                 WRITE_ONCE(swap_info[type], p);
2861                 /*
2862                  * Write swap_info[type] before nr_swapfiles, in case a
2863                  * racing procfs swap_start() or swap_next() is reading them.
2864                  * (We never shrink nr_swapfiles, we never free this entry.)
2865                  */
2866                 smp_wmb();
2867                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2868         } else {
2869                 defer = p;
2870                 p = swap_info[type];
2871                 /*
2872                  * Do not memset this entry: a racing procfs swap_next()
2873                  * would be relying on p->type to remain valid.
2874                  */
2875         }
2876         p->swap_extent_root = RB_ROOT;
2877         plist_node_init(&p->list, 0);
2878         for_each_node(i)
2879                 plist_node_init(&p->avail_lists[i], 0);
2880         p->flags = SWP_USED;
2881         spin_unlock(&swap_lock);
2882         kvfree(defer);
2883         spin_lock_init(&p->lock);
2884         spin_lock_init(&p->cont_lock);
2885
2886         return p;
2887 }
2888
2889 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2890 {
2891         int error;
2892
2893         if (S_ISBLK(inode->i_mode)) {
2894                 p->bdev = bdgrab(I_BDEV(inode));
2895                 error = blkdev_get(p->bdev,
2896                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2897                 if (error < 0) {
2898                         p->bdev = NULL;
2899                         return error;
2900                 }
2901                 p->old_block_size = block_size(p->bdev);
2902                 error = set_blocksize(p->bdev, PAGE_SIZE);
2903                 if (error < 0)
2904                         return error;
2905                 p->flags |= SWP_BLKDEV;
2906         } else if (S_ISREG(inode->i_mode)) {
2907                 p->bdev = inode->i_sb->s_bdev;
2908         }
2909
2910         return 0;
2911 }
2912
2913
2914 /*
2915  * Find out how many pages are allowed for a single swap device. There
2916  * are two limiting factors:
2917  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2918  * 2) the number of bits in the swap pte, as defined by the different
2919  * architectures.
2920  *
2921  * In order to find the largest possible bit mask, a swap entry with
2922  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2923  * decoded to a swp_entry_t again, and finally the swap offset is
2924  * extracted.
2925  *
2926  * This will mask all the bits from the initial ~0UL mask that can't
2927  * be encoded in either the swp_entry_t or the architecture definition
2928  * of a swap pte.
2929  */
2930 unsigned long generic_max_swapfile_size(void)
2931 {
2932         return swp_offset(pte_to_swp_entry(
2933                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2934 }
2935
2936 /* Can be overridden by an architecture for additional checks. */
2937 __weak unsigned long max_swapfile_size(void)
2938 {
2939         return generic_max_swapfile_size();
2940 }
2941
2942 static unsigned long read_swap_header(struct swap_info_struct *p,
2943                                         union swap_header *swap_header,
2944                                         struct inode *inode)
2945 {
2946         int i;
2947         unsigned long maxpages;
2948         unsigned long swapfilepages;
2949         unsigned long last_page;
2950
2951         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2952                 pr_err("Unable to find swap-space signature\n");
2953                 return 0;
2954         }
2955
2956         /* swap partition endianess hack... */
2957         if (swab32(swap_header->info.version) == 1) {
2958                 swab32s(&swap_header->info.version);
2959                 swab32s(&swap_header->info.last_page);
2960                 swab32s(&swap_header->info.nr_badpages);
2961                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2962                         return 0;
2963                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2964                         swab32s(&swap_header->info.badpages[i]);
2965         }
2966         /* Check the swap header's sub-version */
2967         if (swap_header->info.version != 1) {
2968                 pr_warn("Unable to handle swap header version %d\n",
2969                         swap_header->info.version);
2970                 return 0;
2971         }
2972
2973         p->lowest_bit  = 1;
2974         p->cluster_next = 1;
2975         p->cluster_nr = 0;
2976
2977         maxpages = max_swapfile_size();
2978         last_page = swap_header->info.last_page;
2979         if (!last_page) {
2980                 pr_warn("Empty swap-file\n");
2981                 return 0;
2982         }
2983         if (last_page > maxpages) {
2984                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2985                         maxpages << (PAGE_SHIFT - 10),
2986                         last_page << (PAGE_SHIFT - 10));
2987         }
2988         if (maxpages > last_page) {
2989                 maxpages = last_page + 1;
2990                 /* p->max is an unsigned int: don't overflow it */
2991                 if ((unsigned int)maxpages == 0)
2992                         maxpages = UINT_MAX;
2993         }
2994         p->highest_bit = maxpages - 1;
2995
2996         if (!maxpages)
2997                 return 0;
2998         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2999         if (swapfilepages && maxpages > swapfilepages) {
3000                 pr_warn("Swap area shorter than signature indicates\n");
3001                 return 0;
3002         }
3003         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3004                 return 0;
3005         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3006                 return 0;
3007
3008         return maxpages;
3009 }
3010
3011 #define SWAP_CLUSTER_INFO_COLS                                          \
3012         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3013 #define SWAP_CLUSTER_SPACE_COLS                                         \
3014         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3015 #define SWAP_CLUSTER_COLS                                               \
3016         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3017
3018 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3019                                         union swap_header *swap_header,
3020                                         unsigned char *swap_map,
3021                                         struct swap_cluster_info *cluster_info,
3022                                         unsigned long maxpages,
3023                                         sector_t *span)
3024 {
3025         unsigned int j, k;
3026         unsigned int nr_good_pages;
3027         int nr_extents;
3028         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3029         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3030         unsigned long i, idx;
3031
3032         nr_good_pages = maxpages - 1;   /* omit header page */
3033
3034         cluster_list_init(&p->free_clusters);
3035         cluster_list_init(&p->discard_clusters);
3036
3037         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3038                 unsigned int page_nr = swap_header->info.badpages[i];
3039                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3040                         return -EINVAL;
3041                 if (page_nr < maxpages) {
3042                         swap_map[page_nr] = SWAP_MAP_BAD;
3043                         nr_good_pages--;
3044                         /*
3045                          * Haven't marked the cluster free yet, no list
3046                          * operation involved
3047                          */
3048                         inc_cluster_info_page(p, cluster_info, page_nr);
3049                 }
3050         }
3051
3052         /* Haven't marked the cluster free yet, no list operation involved */
3053         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3054                 inc_cluster_info_page(p, cluster_info, i);
3055
3056         if (nr_good_pages) {
3057                 swap_map[0] = SWAP_MAP_BAD;
3058                 /*
3059                  * Not mark the cluster free yet, no list
3060                  * operation involved
3061                  */
3062                 inc_cluster_info_page(p, cluster_info, 0);
3063                 p->max = maxpages;
3064                 p->pages = nr_good_pages;
3065                 nr_extents = setup_swap_extents(p, span);
3066                 if (nr_extents < 0)
3067                         return nr_extents;
3068                 nr_good_pages = p->pages;
3069         }
3070         if (!nr_good_pages) {
3071                 pr_warn("Empty swap-file\n");
3072                 return -EINVAL;
3073         }
3074
3075         if (!cluster_info)
3076                 return nr_extents;
3077
3078
3079         /*
3080          * Reduce false cache line sharing between cluster_info and
3081          * sharing same address space.
3082          */
3083         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3084                 j = (k + col) % SWAP_CLUSTER_COLS;
3085                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3086                         idx = i * SWAP_CLUSTER_COLS + j;
3087                         if (idx >= nr_clusters)
3088                                 continue;
3089                         if (cluster_count(&cluster_info[idx]))
3090                                 continue;
3091                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3092                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3093                                               idx);
3094                 }
3095         }
3096         return nr_extents;
3097 }
3098
3099 /*
3100  * Helper to sys_swapon determining if a given swap
3101  * backing device queue supports DISCARD operations.
3102  */
3103 static bool swap_discardable(struct swap_info_struct *si)
3104 {
3105         struct request_queue *q = bdev_get_queue(si->bdev);
3106
3107         if (!q || !blk_queue_discard(q))
3108                 return false;
3109
3110         return true;
3111 }
3112
3113 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3114 {
3115         struct swap_info_struct *p;
3116         struct filename *name;
3117         struct file *swap_file = NULL;
3118         struct address_space *mapping;
3119         int prio;
3120         int error;
3121         union swap_header *swap_header;
3122         int nr_extents;
3123         sector_t span;
3124         unsigned long maxpages;
3125         unsigned char *swap_map = NULL;
3126         struct swap_cluster_info *cluster_info = NULL;
3127         unsigned long *frontswap_map = NULL;
3128         struct page *page = NULL;
3129         struct inode *inode = NULL;
3130         bool inced_nr_rotate_swap = false;
3131
3132         if (swap_flags & ~SWAP_FLAGS_VALID)
3133                 return -EINVAL;
3134
3135         if (!capable(CAP_SYS_ADMIN))
3136                 return -EPERM;
3137
3138         if (!swap_avail_heads)
3139                 return -ENOMEM;
3140
3141         p = alloc_swap_info();
3142         if (IS_ERR(p))
3143                 return PTR_ERR(p);
3144
3145         INIT_WORK(&p->discard_work, swap_discard_work);
3146
3147         name = getname(specialfile);
3148         if (IS_ERR(name)) {
3149                 error = PTR_ERR(name);
3150                 name = NULL;
3151                 goto bad_swap;
3152         }
3153         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3154         if (IS_ERR(swap_file)) {
3155                 error = PTR_ERR(swap_file);
3156                 swap_file = NULL;
3157                 goto bad_swap;
3158         }
3159
3160         p->swap_file = swap_file;
3161         mapping = swap_file->f_mapping;
3162         inode = mapping->host;
3163
3164         error = claim_swapfile(p, inode);
3165         if (unlikely(error))
3166                 goto bad_swap;
3167
3168         inode_lock(inode);
3169         if (IS_SWAPFILE(inode)) {
3170                 error = -EBUSY;
3171                 goto bad_swap_unlock_inode;
3172         }
3173
3174         /*
3175          * Read the swap header.
3176          */
3177         if (!mapping->a_ops->readpage) {
3178                 error = -EINVAL;
3179                 goto bad_swap_unlock_inode;
3180         }
3181         page = read_mapping_page(mapping, 0, swap_file);
3182         if (IS_ERR(page)) {
3183                 error = PTR_ERR(page);
3184                 goto bad_swap;
3185         }
3186         swap_header = kmap(page);
3187
3188         maxpages = read_swap_header(p, swap_header, inode);
3189         if (unlikely(!maxpages)) {
3190                 error = -EINVAL;
3191                 goto bad_swap_unlock_inode;
3192         }
3193
3194         /* OK, set up the swap map and apply the bad block list */
3195         swap_map = vzalloc(maxpages);
3196         if (!swap_map) {
3197                 error = -ENOMEM;
3198                 goto bad_swap_unlock_inode;
3199         }
3200
3201         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3202                 p->flags |= SWP_STABLE_WRITES;
3203
3204         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3205                 p->flags |= SWP_SYNCHRONOUS_IO;
3206
3207         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3208                 int cpu;
3209                 unsigned long ci, nr_cluster;
3210
3211                 p->flags |= SWP_SOLIDSTATE;
3212                 /*
3213                  * select a random position to start with to help wear leveling
3214                  * SSD
3215                  */
3216                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3217                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3218
3219                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3220                                         GFP_KERNEL);
3221                 if (!cluster_info) {
3222                         error = -ENOMEM;
3223                         goto bad_swap_unlock_inode;
3224                 }
3225
3226                 for (ci = 0; ci < nr_cluster; ci++)
3227                         spin_lock_init(&((cluster_info + ci)->lock));
3228
3229                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3230                 if (!p->percpu_cluster) {
3231                         error = -ENOMEM;
3232                         goto bad_swap_unlock_inode;
3233                 }
3234                 for_each_possible_cpu(cpu) {
3235                         struct percpu_cluster *cluster;
3236                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3237                         cluster_set_null(&cluster->index);
3238                 }
3239         } else {
3240                 atomic_inc(&nr_rotate_swap);
3241                 inced_nr_rotate_swap = true;
3242         }
3243
3244         error = swap_cgroup_swapon(p->type, maxpages);
3245         if (error)
3246                 goto bad_swap_unlock_inode;
3247
3248         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3249                 cluster_info, maxpages, &span);
3250         if (unlikely(nr_extents < 0)) {
3251                 error = nr_extents;
3252                 goto bad_swap_unlock_inode;
3253         }
3254         /* frontswap enabled? set up bit-per-page map for frontswap */
3255         if (IS_ENABLED(CONFIG_FRONTSWAP))
3256                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3257                                          sizeof(long),
3258                                          GFP_KERNEL);
3259
3260         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3261                 /*
3262                  * When discard is enabled for swap with no particular
3263                  * policy flagged, we set all swap discard flags here in
3264                  * order to sustain backward compatibility with older
3265                  * swapon(8) releases.
3266                  */
3267                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3268                              SWP_PAGE_DISCARD);
3269
3270                 /*
3271                  * By flagging sys_swapon, a sysadmin can tell us to
3272                  * either do single-time area discards only, or to just
3273                  * perform discards for released swap page-clusters.
3274                  * Now it's time to adjust the p->flags accordingly.
3275                  */
3276                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3277                         p->flags &= ~SWP_PAGE_DISCARD;
3278                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3279                         p->flags &= ~SWP_AREA_DISCARD;
3280
3281                 /* issue a swapon-time discard if it's still required */
3282                 if (p->flags & SWP_AREA_DISCARD) {
3283                         int err = discard_swap(p);
3284                         if (unlikely(err))
3285                                 pr_err("swapon: discard_swap(%p): %d\n",
3286                                         p, err);
3287                 }
3288         }
3289
3290         error = init_swap_address_space(p->type, maxpages);
3291         if (error)
3292                 goto bad_swap_unlock_inode;
3293
3294         /*
3295          * Flush any pending IO and dirty mappings before we start using this
3296          * swap device.
3297          */
3298         inode->i_flags |= S_SWAPFILE;
3299         error = inode_drain_writes(inode);
3300         if (error) {
3301                 inode->i_flags &= ~S_SWAPFILE;
3302                 goto free_swap_address_space;
3303         }
3304
3305         mutex_lock(&swapon_mutex);
3306         prio = -1;
3307         if (swap_flags & SWAP_FLAG_PREFER)
3308                 prio =
3309                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3310         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3311
3312         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3313                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3314                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3315                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3316                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3317                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3318                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3319                 (frontswap_map) ? "FS" : "");
3320
3321         mutex_unlock(&swapon_mutex);
3322         atomic_inc(&proc_poll_event);
3323         wake_up_interruptible(&proc_poll_wait);
3324
3325         error = 0;
3326         goto out;
3327 free_swap_address_space:
3328         exit_swap_address_space(p->type);
3329 bad_swap_unlock_inode:
3330         inode_unlock(inode);
3331 bad_swap:
3332         free_percpu(p->percpu_cluster);
3333         p->percpu_cluster = NULL;
3334         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3335                 set_blocksize(p->bdev, p->old_block_size);
3336                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3337         }
3338         inode = NULL;
3339         destroy_swap_extents(p);
3340         swap_cgroup_swapoff(p->type);
3341         spin_lock(&swap_lock);
3342         p->swap_file = NULL;
3343         p->flags = 0;
3344         spin_unlock(&swap_lock);
3345         vfree(swap_map);
3346         kvfree(cluster_info);
3347         kvfree(frontswap_map);
3348         if (inced_nr_rotate_swap)
3349                 atomic_dec(&nr_rotate_swap);
3350         if (swap_file)
3351                 filp_close(swap_file, NULL);
3352 out:
3353         if (page && !IS_ERR(page)) {
3354                 kunmap(page);
3355                 put_page(page);
3356         }
3357         if (name)
3358                 putname(name);
3359         if (inode)
3360                 inode_unlock(inode);
3361         if (!error)
3362                 enable_swap_slots_cache();
3363         return error;
3364 }
3365
3366 void si_swapinfo(struct sysinfo *val)
3367 {
3368         unsigned int type;
3369         unsigned long nr_to_be_unused = 0;
3370
3371         spin_lock(&swap_lock);
3372         for (type = 0; type < nr_swapfiles; type++) {
3373                 struct swap_info_struct *si = swap_info[type];
3374
3375                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3376                         nr_to_be_unused += si->inuse_pages;
3377         }
3378         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3379         val->totalswap = total_swap_pages + nr_to_be_unused;
3380         spin_unlock(&swap_lock);
3381 }
3382
3383 /*
3384  * Verify that a swap entry is valid and increment its swap map count.
3385  *
3386  * Returns error code in following case.
3387  * - success -> 0
3388  * - swp_entry is invalid -> EINVAL
3389  * - swp_entry is migration entry -> EINVAL
3390  * - swap-cache reference is requested but there is already one. -> EEXIST
3391  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3392  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3393  */
3394 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3395 {
3396         struct swap_info_struct *p;
3397         struct swap_cluster_info *ci;
3398         unsigned long offset;
3399         unsigned char count;
3400         unsigned char has_cache;
3401         int err = -EINVAL;
3402
3403         p = get_swap_device(entry);
3404         if (!p)
3405                 goto out;
3406
3407         offset = swp_offset(entry);
3408         ci = lock_cluster_or_swap_info(p, offset);
3409
3410         count = p->swap_map[offset];
3411
3412         /*
3413          * swapin_readahead() doesn't check if a swap entry is valid, so the
3414          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3415          */
3416         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3417                 err = -ENOENT;
3418                 goto unlock_out;
3419         }
3420
3421         has_cache = count & SWAP_HAS_CACHE;
3422         count &= ~SWAP_HAS_CACHE;
3423         err = 0;
3424
3425         if (usage == SWAP_HAS_CACHE) {
3426
3427                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3428                 if (!has_cache && count)
3429                         has_cache = SWAP_HAS_CACHE;
3430                 else if (has_cache)             /* someone else added cache */
3431                         err = -EEXIST;
3432                 else                            /* no users remaining */
3433                         err = -ENOENT;
3434
3435         } else if (count || has_cache) {
3436
3437                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3438                         count += usage;
3439                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3440                         err = -EINVAL;
3441                 else if (swap_count_continued(p, offset, count))
3442                         count = COUNT_CONTINUED;
3443                 else
3444                         err = -ENOMEM;
3445         } else
3446                 err = -ENOENT;                  /* unused swap entry */
3447
3448         p->swap_map[offset] = count | has_cache;
3449
3450 unlock_out:
3451         unlock_cluster_or_swap_info(p, ci);
3452 out:
3453         if (p)
3454                 put_swap_device(p);
3455         return err;
3456 }
3457
3458 /*
3459  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3460  * (in which case its reference count is never incremented).
3461  */
3462 void swap_shmem_alloc(swp_entry_t entry)
3463 {
3464         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3465 }
3466
3467 /*
3468  * Increase reference count of swap entry by 1.
3469  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3470  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3471  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3472  * might occur if a page table entry has got corrupted.
3473  */
3474 int swap_duplicate(swp_entry_t entry)
3475 {
3476         int err = 0;
3477
3478         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3479                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3480         return err;
3481 }
3482
3483 /*
3484  * @entry: swap entry for which we allocate swap cache.
3485  *
3486  * Called when allocating swap cache for existing swap entry,
3487  * This can return error codes. Returns 0 at success.
3488  * -EBUSY means there is a swap cache.
3489  * Note: return code is different from swap_duplicate().
3490  */
3491 int swapcache_prepare(swp_entry_t entry)
3492 {
3493         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3494 }
3495
3496 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3497 {
3498         return swap_type_to_swap_info(swp_type(entry));
3499 }
3500
3501 struct swap_info_struct *page_swap_info(struct page *page)
3502 {
3503         swp_entry_t entry = { .val = page_private(page) };
3504         return swp_swap_info(entry);
3505 }
3506
3507 /*
3508  * out-of-line __page_file_ methods to avoid include hell.
3509  */
3510 struct address_space *__page_file_mapping(struct page *page)
3511 {
3512         return page_swap_info(page)->swap_file->f_mapping;
3513 }
3514 EXPORT_SYMBOL_GPL(__page_file_mapping);
3515
3516 pgoff_t __page_file_index(struct page *page)
3517 {
3518         swp_entry_t swap = { .val = page_private(page) };
3519         return swp_offset(swap);
3520 }
3521 EXPORT_SYMBOL_GPL(__page_file_index);
3522
3523 /*
3524  * add_swap_count_continuation - called when a swap count is duplicated
3525  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3526  * page of the original vmalloc'ed swap_map, to hold the continuation count
3527  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3528  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3529  *
3530  * These continuation pages are seldom referenced: the common paths all work
3531  * on the original swap_map, only referring to a continuation page when the
3532  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3533  *
3534  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3535  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3536  * can be called after dropping locks.
3537  */
3538 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3539 {
3540         struct swap_info_struct *si;
3541         struct swap_cluster_info *ci;
3542         struct page *head;
3543         struct page *page;
3544         struct page *list_page;
3545         pgoff_t offset;
3546         unsigned char count;
3547         int ret = 0;
3548
3549         /*
3550          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3551          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3552          */
3553         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3554
3555         si = get_swap_device(entry);
3556         if (!si) {
3557                 /*
3558                  * An acceptable race has occurred since the failing
3559                  * __swap_duplicate(): the swap device may be swapoff
3560                  */
3561                 goto outer;
3562         }
3563         spin_lock(&si->lock);
3564
3565         offset = swp_offset(entry);
3566
3567         ci = lock_cluster(si, offset);
3568
3569         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3570
3571         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3572                 /*
3573                  * The higher the swap count, the more likely it is that tasks
3574                  * will race to add swap count continuation: we need to avoid
3575                  * over-provisioning.
3576                  */
3577                 goto out;
3578         }
3579
3580         if (!page) {
3581                 ret = -ENOMEM;
3582                 goto out;
3583         }
3584
3585         /*
3586          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3587          * no architecture is using highmem pages for kernel page tables: so it
3588          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3589          */
3590         head = vmalloc_to_page(si->swap_map + offset);
3591         offset &= ~PAGE_MASK;
3592
3593         spin_lock(&si->cont_lock);
3594         /*
3595          * Page allocation does not initialize the page's lru field,
3596          * but it does always reset its private field.
3597          */
3598         if (!page_private(head)) {
3599                 BUG_ON(count & COUNT_CONTINUED);
3600                 INIT_LIST_HEAD(&head->lru);
3601                 set_page_private(head, SWP_CONTINUED);
3602                 si->flags |= SWP_CONTINUED;
3603         }
3604
3605         list_for_each_entry(list_page, &head->lru, lru) {
3606                 unsigned char *map;
3607
3608                 /*
3609                  * If the previous map said no continuation, but we've found
3610                  * a continuation page, free our allocation and use this one.
3611                  */
3612                 if (!(count & COUNT_CONTINUED))
3613                         goto out_unlock_cont;
3614
3615                 map = kmap_atomic(list_page) + offset;
3616                 count = *map;
3617                 kunmap_atomic(map);
3618
3619                 /*
3620                  * If this continuation count now has some space in it,
3621                  * free our allocation and use this one.
3622                  */
3623                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3624                         goto out_unlock_cont;
3625         }
3626
3627         list_add_tail(&page->lru, &head->lru);
3628         page = NULL;                    /* now it's attached, don't free it */
3629 out_unlock_cont:
3630         spin_unlock(&si->cont_lock);
3631 out:
3632         unlock_cluster(ci);
3633         spin_unlock(&si->lock);
3634         put_swap_device(si);
3635 outer:
3636         if (page)
3637                 __free_page(page);
3638         return ret;
3639 }
3640
3641 /*
3642  * swap_count_continued - when the original swap_map count is incremented
3643  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3644  * into, carry if so, or else fail until a new continuation page is allocated;
3645  * when the original swap_map count is decremented from 0 with continuation,
3646  * borrow from the continuation and report whether it still holds more.
3647  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3648  * lock.
3649  */
3650 static bool swap_count_continued(struct swap_info_struct *si,
3651                                  pgoff_t offset, unsigned char count)
3652 {
3653         struct page *head;
3654         struct page *page;
3655         unsigned char *map;
3656         bool ret;
3657
3658         head = vmalloc_to_page(si->swap_map + offset);
3659         if (page_private(head) != SWP_CONTINUED) {
3660                 BUG_ON(count & COUNT_CONTINUED);
3661                 return false;           /* need to add count continuation */
3662         }
3663
3664         spin_lock(&si->cont_lock);
3665         offset &= ~PAGE_MASK;
3666         page = list_entry(head->lru.next, struct page, lru);
3667         map = kmap_atomic(page) + offset;
3668
3669         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3670                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3671
3672         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3673                 /*
3674                  * Think of how you add 1 to 999
3675                  */
3676                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3677                         kunmap_atomic(map);
3678                         page = list_entry(page->lru.next, struct page, lru);
3679                         BUG_ON(page == head);
3680                         map = kmap_atomic(page) + offset;
3681                 }
3682                 if (*map == SWAP_CONT_MAX) {
3683                         kunmap_atomic(map);
3684                         page = list_entry(page->lru.next, struct page, lru);
3685                         if (page == head) {
3686                                 ret = false;    /* add count continuation */
3687                                 goto out;
3688                         }
3689                         map = kmap_atomic(page) + offset;
3690 init_map:               *map = 0;               /* we didn't zero the page */
3691                 }
3692                 *map += 1;
3693                 kunmap_atomic(map);
3694                 page = list_entry(page->lru.prev, struct page, lru);
3695                 while (page != head) {
3696                         map = kmap_atomic(page) + offset;
3697                         *map = COUNT_CONTINUED;
3698                         kunmap_atomic(map);
3699                         page = list_entry(page->lru.prev, struct page, lru);
3700                 }
3701                 ret = true;                     /* incremented */
3702
3703         } else {                                /* decrementing */
3704                 /*
3705                  * Think of how you subtract 1 from 1000
3706                  */
3707                 BUG_ON(count != COUNT_CONTINUED);
3708                 while (*map == COUNT_CONTINUED) {
3709                         kunmap_atomic(map);
3710                         page = list_entry(page->lru.next, struct page, lru);
3711                         BUG_ON(page == head);
3712                         map = kmap_atomic(page) + offset;
3713                 }
3714                 BUG_ON(*map == 0);
3715                 *map -= 1;
3716                 if (*map == 0)
3717                         count = 0;
3718                 kunmap_atomic(map);
3719                 page = list_entry(page->lru.prev, struct page, lru);
3720                 while (page != head) {
3721                         map = kmap_atomic(page) + offset;
3722                         *map = SWAP_CONT_MAX | count;
3723                         count = COUNT_CONTINUED;
3724                         kunmap_atomic(map);
3725                         page = list_entry(page->lru.prev, struct page, lru);
3726                 }
3727                 ret = count == COUNT_CONTINUED;
3728         }
3729 out:
3730         spin_unlock(&si->cont_lock);
3731         return ret;
3732 }
3733
3734 /*
3735  * free_swap_count_continuations - swapoff free all the continuation pages
3736  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3737  */
3738 static void free_swap_count_continuations(struct swap_info_struct *si)
3739 {
3740         pgoff_t offset;
3741
3742         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3743                 struct page *head;
3744                 head = vmalloc_to_page(si->swap_map + offset);
3745                 if (page_private(head)) {
3746                         struct page *page, *next;
3747
3748                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3749                                 list_del(&page->lru);
3750                                 __free_page(page);
3751                         }
3752                 }
3753         }
3754 }
3755
3756 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3757 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3758                                   gfp_t gfp_mask)
3759 {
3760         struct swap_info_struct *si, *next;
3761         if (!(gfp_mask & __GFP_IO) || !memcg)
3762                 return;
3763
3764         if (!blk_cgroup_congested())
3765                 return;
3766
3767         /*
3768          * We've already scheduled a throttle, avoid taking the global swap
3769          * lock.
3770          */
3771         if (current->throttle_queue)
3772                 return;
3773
3774         spin_lock(&swap_avail_lock);
3775         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3776                                   avail_lists[node]) {
3777                 if (si->bdev) {
3778                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3779                                                 true);
3780                         break;
3781                 }
3782         }
3783         spin_unlock(&swap_avail_lock);
3784 }
3785 #endif
3786
3787 static int __init swapfile_init(void)
3788 {
3789         int nid;
3790
3791         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3792                                          GFP_KERNEL);
3793         if (!swap_avail_heads) {
3794                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3795                 return -ENOMEM;
3796         }
3797
3798         for_each_node(nid)
3799                 plist_head_init(&swap_avail_heads[nid]);
3800
3801         return 0;
3802 }
3803 subsys_initcall(swapfile_init);