5 * Super block routines for the OSTA-UDF(tm) filesystem.
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
88 enum { UDF_MAX_LINKS = 0xffff };
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
108 if (!UDF_SB(sb)->s_lvid_bh)
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
118 /* UDF filesystem type */
119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
125 static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
132 MODULE_ALIAS_FS("udf");
134 static struct kmem_cache *udf_inode_cachep;
136 static struct inode *udf_alloc_inode(struct super_block *sb)
138 struct udf_inode_info *ei;
139 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154 inode_set_iversion(&ei->vfs_inode, 1);
156 return &ei->vfs_inode;
159 static void udf_free_in_core_inode(struct inode *inode)
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
164 static void init_once(void *foo)
166 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
169 inode_init_once(&ei->vfs_inode);
172 static int __init init_inodecache(void)
174 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
175 sizeof(struct udf_inode_info),
176 0, (SLAB_RECLAIM_ACCOUNT |
180 if (!udf_inode_cachep)
185 static void destroy_inodecache(void)
188 * Make sure all delayed rcu free inodes are flushed before we
192 kmem_cache_destroy(udf_inode_cachep);
195 /* Superblock operations */
196 static const struct super_operations udf_sb_ops = {
197 .alloc_inode = udf_alloc_inode,
198 .free_inode = udf_free_in_core_inode,
199 .write_inode = udf_write_inode,
200 .evict_inode = udf_evict_inode,
201 .put_super = udf_put_super,
202 .sync_fs = udf_sync_fs,
203 .statfs = udf_statfs,
204 .remount_fs = udf_remount_fs,
205 .show_options = udf_show_options,
210 unsigned int blocksize;
211 unsigned int session;
212 unsigned int lastblock;
220 struct nls_table *nls_map;
223 static int __init init_udf_fs(void)
227 err = init_inodecache();
230 err = register_filesystem(&udf_fstype);
237 destroy_inodecache();
243 static void __exit exit_udf_fs(void)
245 unregister_filesystem(&udf_fstype);
246 destroy_inodecache();
249 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
251 struct udf_sb_info *sbi = UDF_SB(sb);
253 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
254 if (!sbi->s_partmaps) {
255 sbi->s_partitions = 0;
259 sbi->s_partitions = count;
263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
266 int nr_groups = bitmap->s_nr_groups;
268 for (i = 0; i < nr_groups; i++)
269 brelse(bitmap->s_block_bitmap[i]);
274 static void udf_free_partition(struct udf_part_map *map)
277 struct udf_meta_data *mdata;
279 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
280 iput(map->s_uspace.s_table);
281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 if (map->s_partition_type == UDF_SPARABLE_MAP15)
284 for (i = 0; i < 4; i++)
285 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
286 else if (map->s_partition_type == UDF_METADATA_MAP25) {
287 mdata = &map->s_type_specific.s_metadata;
288 iput(mdata->s_metadata_fe);
289 mdata->s_metadata_fe = NULL;
291 iput(mdata->s_mirror_fe);
292 mdata->s_mirror_fe = NULL;
294 iput(mdata->s_bitmap_fe);
295 mdata->s_bitmap_fe = NULL;
299 static void udf_sb_free_partitions(struct super_block *sb)
301 struct udf_sb_info *sbi = UDF_SB(sb);
304 if (!sbi->s_partmaps)
306 for (i = 0; i < sbi->s_partitions; i++)
307 udf_free_partition(&sbi->s_partmaps[i]);
308 kfree(sbi->s_partmaps);
309 sbi->s_partmaps = NULL;
312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
314 struct super_block *sb = root->d_sb;
315 struct udf_sb_info *sbi = UDF_SB(sb);
317 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 seq_puts(seq, ",nostrict");
319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 seq_puts(seq, ",unhide");
323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 seq_puts(seq, ",undelete");
325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 seq_puts(seq, ",noadinicb");
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 seq_puts(seq, ",shortad");
329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 seq_puts(seq, ",uid=forget");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
332 seq_puts(seq, ",gid=forget");
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
334 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
336 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
337 if (sbi->s_umask != 0)
338 seq_printf(seq, ",umask=%ho", sbi->s_umask);
339 if (sbi->s_fmode != UDF_INVALID_MODE)
340 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
341 if (sbi->s_dmode != UDF_INVALID_MODE)
342 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
344 seq_printf(seq, ",session=%d", sbi->s_session);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
346 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
347 if (sbi->s_anchor != 0)
348 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
350 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
352 seq_puts(seq, ",iocharset=utf8");
361 * Parse mount options.
364 * The following mount options are supported:
366 * gid= Set the default group.
367 * umask= Set the default umask.
368 * mode= Set the default file permissions.
369 * dmode= Set the default directory permissions.
370 * uid= Set the default user.
371 * bs= Set the block size.
372 * unhide Show otherwise hidden files.
373 * undelete Show deleted files in lists.
374 * adinicb Embed data in the inode (default)
375 * noadinicb Don't embed data in the inode
376 * shortad Use short ad's
377 * longad Use long ad's (default)
378 * nostrict Unset strict conformance
379 * iocharset= Set the NLS character set
381 * The remaining are for debugging and disaster recovery:
383 * novrs Skip volume sequence recognition
385 * The following expect a offset from 0.
387 * session= Set the CDROM session (default= last session)
388 * anchor= Override standard anchor location. (default= 256)
389 * volume= Override the VolumeDesc location. (unused)
390 * partition= Override the PartitionDesc location. (unused)
391 * lastblock= Set the last block of the filesystem/
393 * The following expect a offset from the partition root.
395 * fileset= Override the fileset block location. (unused)
396 * rootdir= Override the root directory location. (unused)
397 * WARNING: overriding the rootdir to a non-directory may
398 * yield highly unpredictable results.
401 * options Pointer to mount options string.
402 * uopts Pointer to mount options variable.
405 * <return> 1 Mount options parsed okay.
406 * <return> 0 Error parsing mount options.
409 * July 1, 1997 - Andrew E. Mileski
410 * Written, tested, and released.
414 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
415 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
416 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
417 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
418 Opt_rootdir, Opt_utf8, Opt_iocharset,
419 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 static const match_table_t tokens = {
424 {Opt_novrs, "novrs"},
425 {Opt_nostrict, "nostrict"},
427 {Opt_unhide, "unhide"},
428 {Opt_undelete, "undelete"},
429 {Opt_noadinicb, "noadinicb"},
430 {Opt_adinicb, "adinicb"},
431 {Opt_shortad, "shortad"},
432 {Opt_longad, "longad"},
433 {Opt_uforget, "uid=forget"},
434 {Opt_uignore, "uid=ignore"},
435 {Opt_gforget, "gid=forget"},
436 {Opt_gignore, "gid=ignore"},
439 {Opt_umask, "umask=%o"},
440 {Opt_session, "session=%u"},
441 {Opt_lastblock, "lastblock=%u"},
442 {Opt_anchor, "anchor=%u"},
443 {Opt_volume, "volume=%u"},
444 {Opt_partition, "partition=%u"},
445 {Opt_fileset, "fileset=%u"},
446 {Opt_rootdir, "rootdir=%u"},
448 {Opt_iocharset, "iocharset=%s"},
449 {Opt_fmode, "mode=%o"},
450 {Opt_dmode, "dmode=%o"},
454 static int udf_parse_options(char *options, struct udf_options *uopt,
462 uopt->session = 0xFFFFFFFF;
469 while ((p = strsep(&options, ",")) != NULL) {
470 substring_t args[MAX_OPT_ARGS];
476 token = match_token(p, tokens, args);
482 if (match_int(&args[0], &option))
485 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509 if (match_uint(args, &uv))
511 uopt->gid = make_kgid(current_user_ns(), uv);
512 if (!gid_valid(uopt->gid))
514 uopt->flags |= (1 << UDF_FLAG_GID_SET);
517 if (match_uint(args, &uv))
519 uopt->uid = make_kuid(current_user_ns(), uv);
520 if (!uid_valid(uopt->uid))
522 uopt->flags |= (1 << UDF_FLAG_UID_SET);
525 if (match_octal(args, &option))
527 uopt->umask = option;
530 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533 if (match_int(args, &option))
535 uopt->session = option;
537 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540 if (match_int(args, &option))
542 uopt->lastblock = option;
544 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547 if (match_int(args, &option))
549 uopt->anchor = option;
555 /* Ignored (never implemented properly) */
559 unload_nls(uopt->nls_map);
560 uopt->nls_map = NULL;
565 unload_nls(uopt->nls_map);
566 uopt->nls_map = NULL;
568 /* When nls_map is not loaded then UTF-8 is used */
569 if (!remount && strcmp(args[0].from, "utf8") != 0) {
570 uopt->nls_map = load_nls(args[0].from);
571 if (!uopt->nls_map) {
572 pr_err("iocharset %s not found\n",
579 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
583 /* These options are superseeded by uid=<number> */
586 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
589 if (match_octal(args, &option))
591 uopt->fmode = option & 0777;
594 if (match_octal(args, &option))
596 uopt->dmode = option & 0777;
599 pr_err("bad mount option \"%s\" or missing value\n", p);
606 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 struct udf_options uopt;
609 struct udf_sb_info *sbi = UDF_SB(sb);
612 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
617 uopt.flags = sbi->s_flags;
618 uopt.uid = sbi->s_uid;
619 uopt.gid = sbi->s_gid;
620 uopt.umask = sbi->s_umask;
621 uopt.fmode = sbi->s_fmode;
622 uopt.dmode = sbi->s_dmode;
625 if (!udf_parse_options(options, &uopt, true))
628 write_lock(&sbi->s_cred_lock);
629 sbi->s_flags = uopt.flags;
630 sbi->s_uid = uopt.uid;
631 sbi->s_gid = uopt.gid;
632 sbi->s_umask = uopt.umask;
633 sbi->s_fmode = uopt.fmode;
634 sbi->s_dmode = uopt.dmode;
635 write_unlock(&sbi->s_cred_lock);
637 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
640 if (*flags & SB_RDONLY)
650 * Check VSD descriptor. Returns -1 in case we are at the end of volume
651 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
652 * we found one of NSR descriptors we are looking for.
654 static int identify_vsd(const struct volStructDesc *vsd)
658 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
659 switch (vsd->structType) {
661 udf_debug("ISO9660 Boot Record found\n");
664 udf_debug("ISO9660 Primary Volume Descriptor found\n");
667 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
670 udf_debug("ISO9660 Volume Partition Descriptor found\n");
673 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
676 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
679 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
681 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
683 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
687 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
690 /* TEA01 or invalid id : end of volume recognition area */
698 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
699 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
700 * @return 1 if NSR02 or NSR03 found,
701 * -1 if first sector read error, 0 otherwise
703 static int udf_check_vsd(struct super_block *sb)
705 struct volStructDesc *vsd = NULL;
706 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
708 struct buffer_head *bh = NULL;
710 struct udf_sb_info *sbi;
711 loff_t session_offset;
714 if (sb->s_blocksize < sizeof(struct volStructDesc))
715 sectorsize = sizeof(struct volStructDesc);
717 sectorsize = sb->s_blocksize;
719 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
720 sector += session_offset;
722 udf_debug("Starting at sector %u (%lu byte sectors)\n",
723 (unsigned int)(sector >> sb->s_blocksize_bits),
725 /* Process the sequence (if applicable). The hard limit on the sector
726 * offset is arbitrary, hopefully large enough so that all valid UDF
727 * filesystems will be recognised. There is no mention of an upper
728 * bound to the size of the volume recognition area in the standard.
729 * The limit will prevent the code to read all the sectors of a
730 * specially crafted image (like a bluray disc full of CD001 sectors),
731 * potentially causing minutes or even hours of uninterruptible I/O
732 * activity. This actually happened with uninitialised SSD partitions
733 * (all 0xFF) before the check for the limit and all valid IDs were
735 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
737 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
741 vsd = (struct volStructDesc *)(bh->b_data +
742 (sector & (sb->s_blocksize - 1)));
743 nsr = identify_vsd(vsd);
744 /* Found NSR or end? */
750 * Special handling for improperly formatted VRS (e.g., Win10)
751 * where components are separated by 2048 bytes even though
754 if (sb->s_blocksize == 4096) {
755 nsr = identify_vsd(vsd + 1);
756 /* Ignore unknown IDs... */
765 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
771 static int udf_verify_domain_identifier(struct super_block *sb,
772 struct regid *ident, char *dname)
774 struct domainIdentSuffix *suffix;
776 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
777 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
780 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
781 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
785 suffix = (struct domainIdentSuffix *)ident->identSuffix;
786 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
787 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
788 if (!sb_rdonly(sb)) {
789 udf_warn(sb, "Descriptor for %s marked write protected."
790 " Forcing read only mount.\n", dname);
799 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
803 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
804 struct kernel_lb_addr *root)
808 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
812 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
813 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
815 udf_debug("Rootdir at block=%u, partition=%u\n",
816 root->logicalBlockNum, root->partitionReferenceNum);
820 static int udf_find_fileset(struct super_block *sb,
821 struct kernel_lb_addr *fileset,
822 struct kernel_lb_addr *root)
824 struct buffer_head *bh = NULL;
828 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF)
832 bh = udf_read_ptagged(sb, fileset, 0, &ident);
835 if (ident != TAG_IDENT_FSD) {
840 udf_debug("Fileset at block=%u, partition=%u\n",
841 fileset->logicalBlockNum, fileset->partitionReferenceNum);
843 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
844 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
850 * Load primary Volume Descriptor Sequence
852 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
855 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
857 struct primaryVolDesc *pvoldesc;
859 struct buffer_head *bh;
862 struct timestamp *ts;
864 outstr = kmalloc(128, GFP_NOFS);
868 bh = udf_read_tagged(sb, block, block, &ident);
874 if (ident != TAG_IDENT_PVD) {
879 pvoldesc = (struct primaryVolDesc *)bh->b_data;
881 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
882 pvoldesc->recordingDateAndTime);
883 ts = &pvoldesc->recordingDateAndTime;
884 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
885 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
886 ts->minute, le16_to_cpu(ts->typeAndTimezone));
888 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
890 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
891 pr_warn("incorrect volume identification, setting to "
894 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
896 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
898 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
904 udf_debug("volSetIdent[] = '%s'\n", outstr);
914 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
915 u32 meta_file_loc, u32 partition_ref)
917 struct kernel_lb_addr addr;
918 struct inode *metadata_fe;
920 addr.logicalBlockNum = meta_file_loc;
921 addr.partitionReferenceNum = partition_ref;
923 metadata_fe = udf_iget_special(sb, &addr);
925 if (IS_ERR(metadata_fe)) {
926 udf_warn(sb, "metadata inode efe not found\n");
929 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
930 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
932 return ERR_PTR(-EIO);
938 static int udf_load_metadata_files(struct super_block *sb, int partition,
941 struct udf_sb_info *sbi = UDF_SB(sb);
942 struct udf_part_map *map;
943 struct udf_meta_data *mdata;
944 struct kernel_lb_addr addr;
947 map = &sbi->s_partmaps[partition];
948 mdata = &map->s_type_specific.s_metadata;
949 mdata->s_phys_partition_ref = type1_index;
951 /* metadata address */
952 udf_debug("Metadata file location: block = %u part = %u\n",
953 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
955 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
956 mdata->s_phys_partition_ref);
958 /* mirror file entry */
959 udf_debug("Mirror metadata file location: block = %u part = %u\n",
960 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
962 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
963 mdata->s_phys_partition_ref);
966 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
969 mdata->s_mirror_fe = fe;
971 mdata->s_metadata_fe = fe;
977 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
979 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
980 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
981 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
983 udf_debug("Bitmap file location: block = %u part = %u\n",
984 addr.logicalBlockNum, addr.partitionReferenceNum);
986 fe = udf_iget_special(sb, &addr);
989 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
991 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995 mdata->s_bitmap_fe = fe;
998 udf_debug("udf_load_metadata_files Ok\n");
1002 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1004 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1005 return DIV_ROUND_UP(map->s_partition_len +
1006 (sizeof(struct spaceBitmapDesc) << 3),
1007 sb->s_blocksize * 8);
1010 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1012 struct udf_bitmap *bitmap;
1013 int nr_groups = udf_compute_nr_groups(sb, index);
1015 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1020 bitmap->s_nr_groups = nr_groups;
1024 static int check_partition_desc(struct super_block *sb,
1025 struct partitionDesc *p,
1026 struct udf_part_map *map)
1028 bool umap, utable, fmap, ftable;
1029 struct partitionHeaderDesc *phd;
1031 switch (le32_to_cpu(p->accessType)) {
1032 case PD_ACCESS_TYPE_READ_ONLY:
1033 case PD_ACCESS_TYPE_WRITE_ONCE:
1034 case PD_ACCESS_TYPE_NONE:
1038 /* No Partition Header Descriptor? */
1039 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1040 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1043 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1044 utable = phd->unallocSpaceTable.extLength;
1045 umap = phd->unallocSpaceBitmap.extLength;
1046 ftable = phd->freedSpaceTable.extLength;
1047 fmap = phd->freedSpaceBitmap.extLength;
1049 /* No allocation info? */
1050 if (!utable && !umap && !ftable && !fmap)
1053 /* We don't support blocks that require erasing before overwrite */
1056 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1060 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1061 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1062 map->s_partition_type == UDF_METADATA_MAP25)
1069 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073 static int udf_fill_partdesc_info(struct super_block *sb,
1074 struct partitionDesc *p, int p_index)
1076 struct udf_part_map *map;
1077 struct udf_sb_info *sbi = UDF_SB(sb);
1078 struct partitionHeaderDesc *phd;
1081 map = &sbi->s_partmaps[p_index];
1083 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1084 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1086 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1087 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1089 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1091 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1093 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1095 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1096 p_index, map->s_partition_type,
1097 map->s_partition_root, map->s_partition_len);
1099 err = check_partition_desc(sb, p, map);
1104 * Skip loading allocation info it we cannot ever write to the fs.
1105 * This is a correctness thing as we may have decided to force ro mount
1106 * to avoid allocation info we don't support.
1108 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1111 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1112 if (phd->unallocSpaceTable.extLength) {
1113 struct kernel_lb_addr loc = {
1114 .logicalBlockNum = le32_to_cpu(
1115 phd->unallocSpaceTable.extPosition),
1116 .partitionReferenceNum = p_index,
1118 struct inode *inode;
1120 inode = udf_iget_special(sb, &loc);
1121 if (IS_ERR(inode)) {
1122 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124 return PTR_ERR(inode);
1126 map->s_uspace.s_table = inode;
1127 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1128 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1129 p_index, map->s_uspace.s_table->i_ino);
1132 if (phd->unallocSpaceBitmap.extLength) {
1133 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136 map->s_uspace.s_bitmap = bitmap;
1137 bitmap->s_extPosition = le32_to_cpu(
1138 phd->unallocSpaceBitmap.extPosition);
1139 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1140 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1141 p_index, bitmap->s_extPosition);
1147 static void udf_find_vat_block(struct super_block *sb, int p_index,
1148 int type1_index, sector_t start_block)
1150 struct udf_sb_info *sbi = UDF_SB(sb);
1151 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1153 struct kernel_lb_addr ino;
1154 struct inode *inode;
1157 * VAT file entry is in the last recorded block. Some broken disks have
1158 * it a few blocks before so try a bit harder...
1160 ino.partitionReferenceNum = type1_index;
1161 for (vat_block = start_block;
1162 vat_block >= map->s_partition_root &&
1163 vat_block >= start_block - 3; vat_block--) {
1164 ino.logicalBlockNum = vat_block - map->s_partition_root;
1165 inode = udf_iget_special(sb, &ino);
1166 if (!IS_ERR(inode)) {
1167 sbi->s_vat_inode = inode;
1173 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1175 struct udf_sb_info *sbi = UDF_SB(sb);
1176 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1177 struct buffer_head *bh = NULL;
1178 struct udf_inode_info *vati;
1180 struct virtualAllocationTable20 *vat20;
1181 sector_t blocks = sb_bdev_nr_blocks(sb);
1183 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1184 if (!sbi->s_vat_inode &&
1185 sbi->s_last_block != blocks - 1) {
1186 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1187 (unsigned long)sbi->s_last_block,
1188 (unsigned long)blocks - 1);
1189 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1191 if (!sbi->s_vat_inode)
1194 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1195 map->s_type_specific.s_virtual.s_start_offset = 0;
1196 map->s_type_specific.s_virtual.s_num_entries =
1197 (sbi->s_vat_inode->i_size - 36) >> 2;
1198 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1199 vati = UDF_I(sbi->s_vat_inode);
1200 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1201 pos = udf_block_map(sbi->s_vat_inode, 0);
1202 bh = sb_bread(sb, pos);
1205 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1207 vat20 = (struct virtualAllocationTable20 *)
1211 map->s_type_specific.s_virtual.s_start_offset =
1212 le16_to_cpu(vat20->lengthHeader);
1213 map->s_type_specific.s_virtual.s_num_entries =
1214 (sbi->s_vat_inode->i_size -
1215 map->s_type_specific.s_virtual.
1216 s_start_offset) >> 2;
1223 * Load partition descriptor block
1225 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1228 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1230 struct buffer_head *bh;
1231 struct partitionDesc *p;
1232 struct udf_part_map *map;
1233 struct udf_sb_info *sbi = UDF_SB(sb);
1235 uint16_t partitionNumber;
1239 bh = udf_read_tagged(sb, block, block, &ident);
1242 if (ident != TAG_IDENT_PD) {
1247 p = (struct partitionDesc *)bh->b_data;
1248 partitionNumber = le16_to_cpu(p->partitionNumber);
1250 /* First scan for TYPE1 and SPARABLE partitions */
1251 for (i = 0; i < sbi->s_partitions; i++) {
1252 map = &sbi->s_partmaps[i];
1253 udf_debug("Searching map: (%u == %u)\n",
1254 map->s_partition_num, partitionNumber);
1255 if (map->s_partition_num == partitionNumber &&
1256 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1257 map->s_partition_type == UDF_SPARABLE_MAP15))
1261 if (i >= sbi->s_partitions) {
1262 udf_debug("Partition (%u) not found in partition map\n",
1268 ret = udf_fill_partdesc_info(sb, p, i);
1273 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1274 * PHYSICAL partitions are already set up
1277 map = NULL; /* supress 'maybe used uninitialized' warning */
1278 for (i = 0; i < sbi->s_partitions; i++) {
1279 map = &sbi->s_partmaps[i];
1281 if (map->s_partition_num == partitionNumber &&
1282 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1283 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1284 map->s_partition_type == UDF_METADATA_MAP25))
1288 if (i >= sbi->s_partitions) {
1293 ret = udf_fill_partdesc_info(sb, p, i);
1297 if (map->s_partition_type == UDF_METADATA_MAP25) {
1298 ret = udf_load_metadata_files(sb, i, type1_idx);
1300 udf_err(sb, "error loading MetaData partition map %d\n",
1306 * If we have a partition with virtual map, we don't handle
1307 * writing to it (we overwrite blocks instead of relocating
1310 if (!sb_rdonly(sb)) {
1314 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1315 ret = udf_load_vat(sb, i, type1_idx);
1321 /* In case loading failed, we handle cleanup in udf_fill_super */
1326 static int udf_load_sparable_map(struct super_block *sb,
1327 struct udf_part_map *map,
1328 struct sparablePartitionMap *spm)
1332 struct sparingTable *st;
1333 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1335 struct buffer_head *bh;
1337 map->s_partition_type = UDF_SPARABLE_MAP15;
1338 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1339 if (!is_power_of_2(sdata->s_packet_len)) {
1340 udf_err(sb, "error loading logical volume descriptor: "
1341 "Invalid packet length %u\n",
1342 (unsigned)sdata->s_packet_len);
1345 if (spm->numSparingTables > 4) {
1346 udf_err(sb, "error loading logical volume descriptor: "
1347 "Too many sparing tables (%d)\n",
1348 (int)spm->numSparingTables);
1351 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1352 udf_err(sb, "error loading logical volume descriptor: "
1353 "Too big sparing table size (%u)\n",
1354 le32_to_cpu(spm->sizeSparingTable));
1358 for (i = 0; i < spm->numSparingTables; i++) {
1359 loc = le32_to_cpu(spm->locSparingTable[i]);
1360 bh = udf_read_tagged(sb, loc, loc, &ident);
1364 st = (struct sparingTable *)bh->b_data;
1366 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1367 strlen(UDF_ID_SPARING)) ||
1368 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1374 sdata->s_spar_map[i] = bh;
1376 map->s_partition_func = udf_get_pblock_spar15;
1380 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1381 struct kernel_lb_addr *fileset)
1383 struct logicalVolDesc *lvd;
1386 struct udf_sb_info *sbi = UDF_SB(sb);
1387 struct genericPartitionMap *gpm;
1389 struct buffer_head *bh;
1390 unsigned int table_len;
1393 bh = udf_read_tagged(sb, block, block, &ident);
1396 BUG_ON(ident != TAG_IDENT_LVD);
1397 lvd = (struct logicalVolDesc *)bh->b_data;
1398 table_len = le32_to_cpu(lvd->mapTableLength);
1399 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1400 udf_err(sb, "error loading logical volume descriptor: "
1401 "Partition table too long (%u > %lu)\n", table_len,
1402 sb->s_blocksize - sizeof(*lvd));
1407 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1411 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1415 for (i = 0, offset = 0;
1416 i < sbi->s_partitions && offset < table_len;
1417 i++, offset += gpm->partitionMapLength) {
1418 struct udf_part_map *map = &sbi->s_partmaps[i];
1419 gpm = (struct genericPartitionMap *)
1420 &(lvd->partitionMaps[offset]);
1421 type = gpm->partitionMapType;
1423 struct genericPartitionMap1 *gpm1 =
1424 (struct genericPartitionMap1 *)gpm;
1425 map->s_partition_type = UDF_TYPE1_MAP15;
1426 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1427 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1428 map->s_partition_func = NULL;
1429 } else if (type == 2) {
1430 struct udfPartitionMap2 *upm2 =
1431 (struct udfPartitionMap2 *)gpm;
1432 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1433 strlen(UDF_ID_VIRTUAL))) {
1435 le16_to_cpu(((__le16 *)upm2->partIdent.
1438 map->s_partition_type =
1440 map->s_partition_func =
1441 udf_get_pblock_virt15;
1443 map->s_partition_type =
1445 map->s_partition_func =
1446 udf_get_pblock_virt20;
1448 } else if (!strncmp(upm2->partIdent.ident,
1450 strlen(UDF_ID_SPARABLE))) {
1451 ret = udf_load_sparable_map(sb, map,
1452 (struct sparablePartitionMap *)gpm);
1455 } else if (!strncmp(upm2->partIdent.ident,
1457 strlen(UDF_ID_METADATA))) {
1458 struct udf_meta_data *mdata =
1459 &map->s_type_specific.s_metadata;
1460 struct metadataPartitionMap *mdm =
1461 (struct metadataPartitionMap *)
1462 &(lvd->partitionMaps[offset]);
1463 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1464 i, type, UDF_ID_METADATA);
1466 map->s_partition_type = UDF_METADATA_MAP25;
1467 map->s_partition_func = udf_get_pblock_meta25;
1469 mdata->s_meta_file_loc =
1470 le32_to_cpu(mdm->metadataFileLoc);
1471 mdata->s_mirror_file_loc =
1472 le32_to_cpu(mdm->metadataMirrorFileLoc);
1473 mdata->s_bitmap_file_loc =
1474 le32_to_cpu(mdm->metadataBitmapFileLoc);
1475 mdata->s_alloc_unit_size =
1476 le32_to_cpu(mdm->allocUnitSize);
1477 mdata->s_align_unit_size =
1478 le16_to_cpu(mdm->alignUnitSize);
1479 if (mdm->flags & 0x01)
1480 mdata->s_flags |= MF_DUPLICATE_MD;
1482 udf_debug("Metadata Ident suffix=0x%x\n",
1483 le16_to_cpu(*(__le16 *)
1484 mdm->partIdent.identSuffix));
1485 udf_debug("Metadata part num=%u\n",
1486 le16_to_cpu(mdm->partitionNum));
1487 udf_debug("Metadata part alloc unit size=%u\n",
1488 le32_to_cpu(mdm->allocUnitSize));
1489 udf_debug("Metadata file loc=%u\n",
1490 le32_to_cpu(mdm->metadataFileLoc));
1491 udf_debug("Mirror file loc=%u\n",
1492 le32_to_cpu(mdm->metadataMirrorFileLoc));
1493 udf_debug("Bitmap file loc=%u\n",
1494 le32_to_cpu(mdm->metadataBitmapFileLoc));
1495 udf_debug("Flags: %d %u\n",
1496 mdata->s_flags, mdm->flags);
1498 udf_debug("Unknown ident: %s\n",
1499 upm2->partIdent.ident);
1502 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1503 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1505 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1506 i, map->s_partition_num, type, map->s_volumeseqnum);
1510 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1512 *fileset = lelb_to_cpu(la->extLocation);
1513 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1514 fileset->logicalBlockNum,
1515 fileset->partitionReferenceNum);
1517 if (lvd->integritySeqExt.extLength)
1518 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1521 if (!sbi->s_lvid_bh) {
1522 /* We can't generate unique IDs without a valid LVID */
1523 if (sb_rdonly(sb)) {
1524 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1526 udf_warn(sb, "Damaged or missing LVID, forcing "
1527 "readonly mount\n");
1537 * Find the prevailing Logical Volume Integrity Descriptor.
1539 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1541 struct buffer_head *bh, *final_bh;
1543 struct udf_sb_info *sbi = UDF_SB(sb);
1544 struct logicalVolIntegrityDesc *lvid;
1545 int indirections = 0;
1546 u32 parts, impuselen;
1548 while (++indirections <= UDF_MAX_LVID_NESTING) {
1550 while (loc.extLength > 0 &&
1551 (bh = udf_read_tagged(sb, loc.extLocation,
1552 loc.extLocation, &ident))) {
1553 if (ident != TAG_IDENT_LVID) {
1561 loc.extLength -= sb->s_blocksize;
1568 brelse(sbi->s_lvid_bh);
1569 sbi->s_lvid_bh = final_bh;
1571 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1572 if (lvid->nextIntegrityExt.extLength == 0)
1575 loc = leea_to_cpu(lvid->nextIntegrityExt);
1578 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1579 UDF_MAX_LVID_NESTING);
1581 brelse(sbi->s_lvid_bh);
1582 sbi->s_lvid_bh = NULL;
1585 parts = le32_to_cpu(lvid->numOfPartitions);
1586 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1587 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1588 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1589 2 * parts * sizeof(u32) > sb->s_blocksize) {
1590 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1591 "ignoring.\n", parts, impuselen);
1597 * Step for reallocation of table of partition descriptor sequence numbers.
1598 * Must be power of 2.
1600 #define PART_DESC_ALLOC_STEP 32
1602 struct part_desc_seq_scan_data {
1603 struct udf_vds_record rec;
1607 struct desc_seq_scan_data {
1608 struct udf_vds_record vds[VDS_POS_LENGTH];
1609 unsigned int size_part_descs;
1610 unsigned int num_part_descs;
1611 struct part_desc_seq_scan_data *part_descs_loc;
1614 static struct udf_vds_record *handle_partition_descriptor(
1615 struct buffer_head *bh,
1616 struct desc_seq_scan_data *data)
1618 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1622 partnum = le16_to_cpu(desc->partitionNumber);
1623 for (i = 0; i < data->num_part_descs; i++)
1624 if (partnum == data->part_descs_loc[i].partnum)
1625 return &(data->part_descs_loc[i].rec);
1626 if (data->num_part_descs >= data->size_part_descs) {
1627 struct part_desc_seq_scan_data *new_loc;
1628 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1630 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1632 return ERR_PTR(-ENOMEM);
1633 memcpy(new_loc, data->part_descs_loc,
1634 data->size_part_descs * sizeof(*new_loc));
1635 kfree(data->part_descs_loc);
1636 data->part_descs_loc = new_loc;
1637 data->size_part_descs = new_size;
1639 return &(data->part_descs_loc[data->num_part_descs++].rec);
1643 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1644 struct buffer_head *bh, struct desc_seq_scan_data *data)
1647 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1648 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1651 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1652 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1653 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1654 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1655 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1656 return handle_partition_descriptor(bh, data);
1662 * Process a main/reserve volume descriptor sequence.
1663 * @block First block of first extent of the sequence.
1664 * @lastblock Lastblock of first extent of the sequence.
1665 * @fileset There we store extent containing root fileset
1667 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1670 static noinline int udf_process_sequence(
1671 struct super_block *sb,
1672 sector_t block, sector_t lastblock,
1673 struct kernel_lb_addr *fileset)
1675 struct buffer_head *bh = NULL;
1676 struct udf_vds_record *curr;
1677 struct generic_desc *gd;
1678 struct volDescPtr *vdp;
1683 unsigned int indirections = 0;
1684 struct desc_seq_scan_data data;
1687 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1688 data.size_part_descs = PART_DESC_ALLOC_STEP;
1689 data.num_part_descs = 0;
1690 data.part_descs_loc = kcalloc(data.size_part_descs,
1691 sizeof(*data.part_descs_loc),
1693 if (!data.part_descs_loc)
1697 * Read the main descriptor sequence and find which descriptors
1700 for (; (!done && block <= lastblock); block++) {
1701 bh = udf_read_tagged(sb, block, block, &ident);
1705 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1706 gd = (struct generic_desc *)bh->b_data;
1707 vdsn = le32_to_cpu(gd->volDescSeqNum);
1709 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1710 if (++indirections > UDF_MAX_TD_NESTING) {
1711 udf_err(sb, "too many Volume Descriptor "
1712 "Pointers (max %u supported)\n",
1713 UDF_MAX_TD_NESTING);
1719 vdp = (struct volDescPtr *)bh->b_data;
1720 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1721 lastblock = le32_to_cpu(
1722 vdp->nextVolDescSeqExt.extLength) >>
1723 sb->s_blocksize_bits;
1724 lastblock += block - 1;
1725 /* For loop is going to increment 'block' again */
1728 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1729 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1730 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1731 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1732 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1733 curr = get_volume_descriptor_record(ident, bh, &data);
1736 ret = PTR_ERR(curr);
1739 /* Descriptor we don't care about? */
1742 if (vdsn >= curr->volDescSeqNum) {
1743 curr->volDescSeqNum = vdsn;
1744 curr->block = block;
1747 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1754 * Now read interesting descriptors again and process them
1755 * in a suitable order
1757 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1758 udf_err(sb, "Primary Volume Descriptor not found!\n");
1762 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1766 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1767 ret = udf_load_logicalvol(sb,
1768 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1774 /* Now handle prevailing Partition Descriptors */
1775 for (i = 0; i < data.num_part_descs; i++) {
1776 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1782 kfree(data.part_descs_loc);
1787 * Load Volume Descriptor Sequence described by anchor in bh
1789 * Returns <0 on error, 0 on success
1791 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1792 struct kernel_lb_addr *fileset)
1794 struct anchorVolDescPtr *anchor;
1795 sector_t main_s, main_e, reserve_s, reserve_e;
1798 anchor = (struct anchorVolDescPtr *)bh->b_data;
1800 /* Locate the main sequence */
1801 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1802 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1803 main_e = main_e >> sb->s_blocksize_bits;
1804 main_e += main_s - 1;
1806 /* Locate the reserve sequence */
1807 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1808 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1809 reserve_e = reserve_e >> sb->s_blocksize_bits;
1810 reserve_e += reserve_s - 1;
1812 /* Process the main & reserve sequences */
1813 /* responsible for finding the PartitionDesc(s) */
1814 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1817 udf_sb_free_partitions(sb);
1818 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1820 udf_sb_free_partitions(sb);
1821 /* No sequence was OK, return -EIO */
1829 * Check whether there is an anchor block in the given block and
1830 * load Volume Descriptor Sequence if so.
1832 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1835 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1836 struct kernel_lb_addr *fileset)
1838 struct buffer_head *bh;
1842 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1843 udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1846 bh = udf_read_tagged(sb, block, block, &ident);
1849 if (ident != TAG_IDENT_AVDP) {
1853 ret = udf_load_sequence(sb, bh, fileset);
1859 * Search for an anchor volume descriptor pointer.
1861 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1865 struct kernel_lb_addr *fileset)
1869 struct udf_sb_info *sbi = UDF_SB(sb);
1873 /* First try user provided anchor */
1874 if (sbi->s_anchor) {
1875 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1880 * according to spec, anchor is in either:
1884 * however, if the disc isn't closed, it could be 512.
1886 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1890 * The trouble is which block is the last one. Drives often misreport
1891 * this so we try various possibilities.
1893 last[last_count++] = *lastblock;
1894 if (*lastblock >= 1)
1895 last[last_count++] = *lastblock - 1;
1896 last[last_count++] = *lastblock + 1;
1897 if (*lastblock >= 2)
1898 last[last_count++] = *lastblock - 2;
1899 if (*lastblock >= 150)
1900 last[last_count++] = *lastblock - 150;
1901 if (*lastblock >= 152)
1902 last[last_count++] = *lastblock - 152;
1904 for (i = 0; i < last_count; i++) {
1905 if (last[i] >= sb_bdev_nr_blocks(sb))
1907 ret = udf_check_anchor_block(sb, last[i], fileset);
1908 if (ret != -EAGAIN) {
1910 *lastblock = last[i];
1915 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916 if (ret != -EAGAIN) {
1918 *lastblock = last[i];
1923 /* Finally try block 512 in case media is open */
1924 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1928 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929 * area specified by it. The function expects sbi->s_lastblock to be the last
1930 * block on the media.
1932 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1935 static int udf_find_anchor(struct super_block *sb,
1936 struct kernel_lb_addr *fileset)
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 sector_t lastblock = sbi->s_last_block;
1942 ret = udf_scan_anchors(sb, &lastblock, fileset);
1946 /* No anchor found? Try VARCONV conversion of block numbers */
1947 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949 /* Firstly, we try to not convert number of the last block */
1950 ret = udf_scan_anchors(sb, &lastblock, fileset);
1954 lastblock = sbi->s_last_block;
1955 /* Secondly, we try with converted number of the last block */
1956 ret = udf_scan_anchors(sb, &lastblock, fileset);
1958 /* VARCONV didn't help. Clear it. */
1959 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1963 sbi->s_last_block = lastblock;
1968 * Check Volume Structure Descriptor, find Anchor block and load Volume
1969 * Descriptor Sequence.
1971 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972 * block was not found.
1974 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975 int silent, struct kernel_lb_addr *fileset)
1977 struct udf_sb_info *sbi = UDF_SB(sb);
1981 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1983 udf_warn(sb, "Bad block size\n");
1986 sbi->s_last_block = uopt->lastblock;
1988 /* Check that it is NSR02 compliant */
1989 nsr = udf_check_vsd(sb);
1992 udf_warn(sb, "No VRS found\n");
1996 udf_debug("Failed to read sector at offset %d. "
1997 "Assuming open disc. Skipping validity "
1998 "check\n", VSD_FIRST_SECTOR_OFFSET);
1999 if (!sbi->s_last_block)
2000 sbi->s_last_block = udf_get_last_block(sb);
2002 udf_debug("Validity check skipped because of novrs option\n");
2005 /* Look for anchor block and load Volume Descriptor Sequence */
2006 sbi->s_anchor = uopt->anchor;
2007 ret = udf_find_anchor(sb, fileset);
2009 if (!silent && ret == -EAGAIN)
2010 udf_warn(sb, "No anchor found\n");
2016 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2018 struct timespec64 ts;
2020 ktime_get_real_ts64(&ts);
2021 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022 lvid->descTag.descCRC = cpu_to_le16(
2023 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024 le16_to_cpu(lvid->descTag.descCRCLength)));
2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2028 static void udf_open_lvid(struct super_block *sb)
2030 struct udf_sb_info *sbi = UDF_SB(sb);
2031 struct buffer_head *bh = sbi->s_lvid_bh;
2032 struct logicalVolIntegrityDesc *lvid;
2033 struct logicalVolIntegrityDescImpUse *lvidiu;
2037 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038 lvidiu = udf_sb_lvidiu(sb);
2042 mutex_lock(&sbi->s_alloc_mutex);
2043 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2048 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2050 udf_finalize_lvid(lvid);
2051 mark_buffer_dirty(bh);
2052 sbi->s_lvid_dirty = 0;
2053 mutex_unlock(&sbi->s_alloc_mutex);
2054 /* Make opening of filesystem visible on the media immediately */
2055 sync_dirty_buffer(bh);
2058 static void udf_close_lvid(struct super_block *sb)
2060 struct udf_sb_info *sbi = UDF_SB(sb);
2061 struct buffer_head *bh = sbi->s_lvid_bh;
2062 struct logicalVolIntegrityDesc *lvid;
2063 struct logicalVolIntegrityDescImpUse *lvidiu;
2067 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 lvidiu = udf_sb_lvidiu(sb);
2072 mutex_lock(&sbi->s_alloc_mutex);
2073 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2085 * We set buffer uptodate unconditionally here to avoid spurious
2086 * warnings from mark_buffer_dirty() when previous EIO has marked
2087 * the buffer as !uptodate
2089 set_buffer_uptodate(bh);
2090 udf_finalize_lvid(lvid);
2091 mark_buffer_dirty(bh);
2092 sbi->s_lvid_dirty = 0;
2093 mutex_unlock(&sbi->s_alloc_mutex);
2094 /* Make closing of filesystem visible on the media immediately */
2095 sync_dirty_buffer(bh);
2098 u64 lvid_get_unique_id(struct super_block *sb)
2100 struct buffer_head *bh;
2101 struct udf_sb_info *sbi = UDF_SB(sb);
2102 struct logicalVolIntegrityDesc *lvid;
2103 struct logicalVolHeaderDesc *lvhd;
2107 bh = sbi->s_lvid_bh;
2111 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2114 mutex_lock(&sbi->s_alloc_mutex);
2115 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116 if (!(++uniqueID & 0xFFFFFFFF))
2118 lvhd->uniqueID = cpu_to_le64(uniqueID);
2119 udf_updated_lvid(sb);
2120 mutex_unlock(&sbi->s_alloc_mutex);
2125 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2128 struct inode *inode = NULL;
2129 struct udf_options uopt;
2130 struct kernel_lb_addr rootdir, fileset;
2131 struct udf_sb_info *sbi;
2132 bool lvid_open = false;
2134 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2139 uopt.fmode = UDF_INVALID_MODE;
2140 uopt.dmode = UDF_INVALID_MODE;
2141 uopt.nls_map = NULL;
2143 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2147 sb->s_fs_info = sbi;
2149 mutex_init(&sbi->s_alloc_mutex);
2151 if (!udf_parse_options((char *)options, &uopt, false))
2152 goto parse_options_failure;
2154 fileset.logicalBlockNum = 0xFFFFFFFF;
2155 fileset.partitionReferenceNum = 0xFFFF;
2157 sbi->s_flags = uopt.flags;
2158 sbi->s_uid = uopt.uid;
2159 sbi->s_gid = uopt.gid;
2160 sbi->s_umask = uopt.umask;
2161 sbi->s_fmode = uopt.fmode;
2162 sbi->s_dmode = uopt.dmode;
2163 sbi->s_nls_map = uopt.nls_map;
2164 rwlock_init(&sbi->s_cred_lock);
2166 if (uopt.session == 0xFFFFFFFF)
2167 sbi->s_session = udf_get_last_session(sb);
2169 sbi->s_session = uopt.session;
2171 udf_debug("Multi-session=%d\n", sbi->s_session);
2173 /* Fill in the rest of the superblock */
2174 sb->s_op = &udf_sb_ops;
2175 sb->s_export_op = &udf_export_ops;
2177 sb->s_magic = UDF_SUPER_MAGIC;
2178 sb->s_time_gran = 1000;
2180 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184 while (uopt.blocksize <= 4096) {
2185 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2187 if (!silent && ret != -EACCES) {
2188 pr_notice("Scanning with blocksize %u failed\n",
2191 brelse(sbi->s_lvid_bh);
2192 sbi->s_lvid_bh = NULL;
2194 * EACCES is special - we want to propagate to
2195 * upper layers that we cannot handle RW mount.
2202 uopt.blocksize <<= 1;
2206 if (ret == -EAGAIN) {
2207 udf_warn(sb, "No partition found (1)\n");
2213 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2215 if (sbi->s_lvid_bh) {
2216 struct logicalVolIntegrityDescImpUse *lvidiu =
2218 uint16_t minUDFReadRev;
2219 uint16_t minUDFWriteRev;
2225 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2230 UDF_MAX_READ_VERSION);
2233 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234 if (!sb_rdonly(sb)) {
2238 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2241 sbi->s_udfrev = minUDFWriteRev;
2243 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2249 if (!sbi->s_partitions) {
2250 udf_warn(sb, "No partition found (2)\n");
2255 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256 UDF_PART_FLAG_READ_ONLY) {
2257 if (!sb_rdonly(sb)) {
2261 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2264 ret = udf_find_fileset(sb, &fileset, &rootdir);
2266 udf_warn(sb, "No fileset found\n");
2271 struct timestamp ts;
2272 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274 sbi->s_volume_ident,
2275 le16_to_cpu(ts.year), ts.month, ts.day,
2276 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2278 if (!sb_rdonly(sb)) {
2283 /* Assign the root inode */
2284 /* assign inodes by physical block number */
2285 /* perhaps it's not extensible enough, but for now ... */
2286 inode = udf_iget(sb, &rootdir);
2287 if (IS_ERR(inode)) {
2288 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290 ret = PTR_ERR(inode);
2294 /* Allocate a dentry for the root inode */
2295 sb->s_root = d_make_root(inode);
2297 udf_err(sb, "Couldn't allocate root dentry\n");
2301 sb->s_maxbytes = MAX_LFS_FILESIZE;
2302 sb->s_max_links = UDF_MAX_LINKS;
2306 iput(sbi->s_vat_inode);
2307 parse_options_failure:
2308 unload_nls(uopt.nls_map);
2311 brelse(sbi->s_lvid_bh);
2312 udf_sb_free_partitions(sb);
2314 sb->s_fs_info = NULL;
2319 void _udf_err(struct super_block *sb, const char *function,
2320 const char *fmt, ...)
2322 struct va_format vaf;
2325 va_start(args, fmt);
2330 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2335 void _udf_warn(struct super_block *sb, const char *function,
2336 const char *fmt, ...)
2338 struct va_format vaf;
2341 va_start(args, fmt);
2346 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2351 static void udf_put_super(struct super_block *sb)
2353 struct udf_sb_info *sbi;
2357 iput(sbi->s_vat_inode);
2358 unload_nls(sbi->s_nls_map);
2361 brelse(sbi->s_lvid_bh);
2362 udf_sb_free_partitions(sb);
2363 mutex_destroy(&sbi->s_alloc_mutex);
2364 kfree(sb->s_fs_info);
2365 sb->s_fs_info = NULL;
2368 static int udf_sync_fs(struct super_block *sb, int wait)
2370 struct udf_sb_info *sbi = UDF_SB(sb);
2372 mutex_lock(&sbi->s_alloc_mutex);
2373 if (sbi->s_lvid_dirty) {
2374 struct buffer_head *bh = sbi->s_lvid_bh;
2375 struct logicalVolIntegrityDesc *lvid;
2377 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 udf_finalize_lvid(lvid);
2381 * Blockdevice will be synced later so we don't have to submit
2384 mark_buffer_dirty(bh);
2385 sbi->s_lvid_dirty = 0;
2387 mutex_unlock(&sbi->s_alloc_mutex);
2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2394 struct super_block *sb = dentry->d_sb;
2395 struct udf_sb_info *sbi = UDF_SB(sb);
2396 struct logicalVolIntegrityDescImpUse *lvidiu;
2397 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2399 lvidiu = udf_sb_lvidiu(sb);
2400 buf->f_type = UDF_SUPER_MAGIC;
2401 buf->f_bsize = sb->s_blocksize;
2402 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 buf->f_bfree = udf_count_free(sb);
2404 buf->f_bavail = buf->f_bfree;
2406 * Let's pretend each free block is also a free 'inode' since UDF does
2407 * not have separate preallocated table of inodes.
2409 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 le32_to_cpu(lvidiu->numDirs)) : 0)
2412 buf->f_ffree = buf->f_bfree;
2413 buf->f_namelen = UDF_NAME_LEN;
2414 buf->f_fsid = u64_to_fsid(id);
2419 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420 struct udf_bitmap *bitmap)
2422 struct buffer_head *bh = NULL;
2423 unsigned int accum = 0;
2425 udf_pblk_t block = 0, newblock;
2426 struct kernel_lb_addr loc;
2430 struct spaceBitmapDesc *bm;
2432 loc.logicalBlockNum = bitmap->s_extPosition;
2433 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2437 udf_err(sb, "udf_count_free failed\n");
2439 } else if (ident != TAG_IDENT_SBD) {
2441 udf_err(sb, "udf_count_free failed\n");
2445 bm = (struct spaceBitmapDesc *)bh->b_data;
2446 bytes = le32_to_cpu(bm->numOfBytes);
2447 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448 ptr = (uint8_t *)bh->b_data;
2451 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452 accum += bitmap_weight((const unsigned long *)(ptr + index),
2457 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458 bh = udf_tread(sb, newblock);
2460 udf_debug("read failed\n");
2464 ptr = (uint8_t *)bh->b_data;
2472 static unsigned int udf_count_free_table(struct super_block *sb,
2473 struct inode *table)
2475 unsigned int accum = 0;
2477 struct kernel_lb_addr eloc;
2478 struct extent_position epos;
2480 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2481 epos.block = UDF_I(table)->i_location;
2482 epos.offset = sizeof(struct unallocSpaceEntry);
2485 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2486 accum += (elen >> table->i_sb->s_blocksize_bits);
2489 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2494 static unsigned int udf_count_free(struct super_block *sb)
2496 unsigned int accum = 0;
2497 struct udf_sb_info *sbi = UDF_SB(sb);
2498 struct udf_part_map *map;
2499 unsigned int part = sbi->s_partition;
2500 int ptype = sbi->s_partmaps[part].s_partition_type;
2502 if (ptype == UDF_METADATA_MAP25) {
2503 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2504 s_phys_partition_ref;
2505 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2507 * Filesystems with VAT are append-only and we cannot write to
2508 * them. Let's just report 0 here.
2513 if (sbi->s_lvid_bh) {
2514 struct logicalVolIntegrityDesc *lvid =
2515 (struct logicalVolIntegrityDesc *)
2516 sbi->s_lvid_bh->b_data;
2517 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2518 accum = le32_to_cpu(
2519 lvid->freeSpaceTable[part]);
2520 if (accum == 0xFFFFFFFF)
2528 map = &sbi->s_partmaps[part];
2529 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2530 accum += udf_count_free_bitmap(sb,
2531 map->s_uspace.s_bitmap);
2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2537 accum += udf_count_free_table(sb,
2538 map->s_uspace.s_table);
2543 MODULE_AUTHOR("Ben Fennema");
2544 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2545 MODULE_LICENSE("GPL");
2546 module_init(init_udf_fs)
2547 module_exit(exit_udf_fs)