dfaa1d79a78be04e1f8cc4c45b765d7ee95a8ea8
[releases.git] / spi-topcliff-pch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI bus driver for the Topcliff PCH used by Intel SoCs
4  *
5  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6  */
7
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
21
22 /* Register offsets */
23 #define PCH_SPCR                0x00    /* SPI control register */
24 #define PCH_SPBRR               0x04    /* SPI baud rate register */
25 #define PCH_SPSR                0x08    /* SPI status register */
26 #define PCH_SPDWR               0x0C    /* SPI write data register */
27 #define PCH_SPDRR               0x10    /* SPI read data register */
28 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
29 #define PCH_SRST                0x1C    /* SPI reset register */
30 #define PCH_ADDRESS_SIZE        0x20
31
32 #define PCH_SPSR_TFD            0x000007C0
33 #define PCH_SPSR_RFD            0x0000F800
34
35 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
37
38 #define PCH_RX_THOLD            7
39 #define PCH_RX_THOLD_MAX        15
40
41 #define PCH_TX_THOLD            2
42
43 #define PCH_MAX_BAUDRATE        5000000
44 #define PCH_MAX_FIFO_DEPTH      16
45
46 #define STATUS_RUNNING          1
47 #define STATUS_EXITING          2
48 #define PCH_SLEEP_TIME          10
49
50 #define SSN_LOW                 0x02U
51 #define SSN_HIGH                0x03U
52 #define SSN_NO_CONTROL          0x00U
53 #define PCH_MAX_CS              0xFF
54 #define PCI_DEVICE_ID_GE_SPI    0x8816
55
56 #define SPCR_SPE_BIT            (1 << 0)
57 #define SPCR_MSTR_BIT           (1 << 1)
58 #define SPCR_LSBF_BIT           (1 << 4)
59 #define SPCR_CPHA_BIT           (1 << 5)
60 #define SPCR_CPOL_BIT           (1 << 6)
61 #define SPCR_TFIE_BIT           (1 << 8)
62 #define SPCR_RFIE_BIT           (1 << 9)
63 #define SPCR_FIE_BIT            (1 << 10)
64 #define SPCR_ORIE_BIT           (1 << 11)
65 #define SPCR_MDFIE_BIT          (1 << 12)
66 #define SPCR_FICLR_BIT          (1 << 24)
67 #define SPSR_TFI_BIT            (1 << 0)
68 #define SPSR_RFI_BIT            (1 << 1)
69 #define SPSR_FI_BIT             (1 << 2)
70 #define SPSR_ORF_BIT            (1 << 3)
71 #define SPBRR_SIZE_BIT          (1 << 10)
72
73 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76 #define SPCR_RFIC_FIELD         20
77 #define SPCR_TFIC_FIELD         16
78
79 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
82
83 #define PCH_CLOCK_HZ            50000000
84 #define PCH_MAX_SPBR            1023
85
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
90
91 /*
92  * Set the number of SPI instance max
93  * Intel EG20T PCH :            1ch
94  * LAPIS Semiconductor ML7213 IOH :     2ch
95  * LAPIS Semiconductor ML7223 IOH :     1ch
96  * LAPIS Semiconductor ML7831 IOH :     1ch
97 */
98 #define PCH_SPI_MAX_DEV                 2
99
100 #define PCH_BUF_SIZE            4096
101 #define PCH_DMA_TRANS_SIZE      12
102
103 static int use_dma = 1;
104
105 struct pch_spi_dma_ctrl {
106         struct pci_dev          *dma_dev;
107         struct dma_async_tx_descriptor  *desc_tx;
108         struct dma_async_tx_descriptor  *desc_rx;
109         struct pch_dma_slave            param_tx;
110         struct pch_dma_slave            param_rx;
111         struct dma_chan         *chan_tx;
112         struct dma_chan         *chan_rx;
113         struct scatterlist              *sg_tx_p;
114         struct scatterlist              *sg_rx_p;
115         struct scatterlist              sg_tx;
116         struct scatterlist              sg_rx;
117         int                             nent;
118         void                            *tx_buf_virt;
119         void                            *rx_buf_virt;
120         dma_addr_t                      tx_buf_dma;
121         dma_addr_t                      rx_buf_dma;
122 };
123 /**
124  * struct pch_spi_data - Holds the SPI channel specific details
125  * @io_remap_addr:              The remapped PCI base address
126  * @io_base_addr:               Base address
127  * @master:                     Pointer to the SPI master structure
128  * @work:                       Reference to work queue handler
129  * @wait:                       Wait queue for waking up upon receiving an
130  *                              interrupt.
131  * @transfer_complete:          Status of SPI Transfer
132  * @bcurrent_msg_processing:    Status flag for message processing
133  * @lock:                       Lock for protecting this structure
134  * @queue:                      SPI Message queue
135  * @status:                     Status of the SPI driver
136  * @bpw_len:                    Length of data to be transferred in bits per
137  *                              word
138  * @transfer_active:            Flag showing active transfer
139  * @tx_index:                   Transmit data count; for bookkeeping during
140  *                              transfer
141  * @rx_index:                   Receive data count; for bookkeeping during
142  *                              transfer
143  * @pkt_tx_buff:                Buffer for data to be transmitted
144  * @pkt_rx_buff:                Buffer for received data
145  * @n_curnt_chip:               The chip number that this SPI driver currently
146  *                              operates on
147  * @current_chip:               Reference to the current chip that this SPI
148  *                              driver currently operates on
149  * @current_msg:                The current message that this SPI driver is
150  *                              handling
151  * @cur_trans:                  The current transfer that this SPI driver is
152  *                              handling
153  * @board_dat:                  Reference to the SPI device data structure
154  * @plat_dev:                   platform_device structure
155  * @ch:                         SPI channel number
156  * @dma:                        Local DMA information
157  * @use_dma:                    True if DMA is to be used
158  * @irq_reg_sts:                Status of IRQ registration
159  * @save_total_len:             Save length while data is being transferred
160  */
161 struct pch_spi_data {
162         void __iomem *io_remap_addr;
163         unsigned long io_base_addr;
164         struct spi_master *master;
165         struct work_struct work;
166         wait_queue_head_t wait;
167         u8 transfer_complete;
168         u8 bcurrent_msg_processing;
169         spinlock_t lock;
170         struct list_head queue;
171         u8 status;
172         u32 bpw_len;
173         u8 transfer_active;
174         u32 tx_index;
175         u32 rx_index;
176         u16 *pkt_tx_buff;
177         u16 *pkt_rx_buff;
178         u8 n_curnt_chip;
179         struct spi_device *current_chip;
180         struct spi_message *current_msg;
181         struct spi_transfer *cur_trans;
182         struct pch_spi_board_data *board_dat;
183         struct platform_device  *plat_dev;
184         int ch;
185         struct pch_spi_dma_ctrl dma;
186         int use_dma;
187         u8 irq_reg_sts;
188         int save_total_len;
189 };
190
191 /**
192  * struct pch_spi_board_data - Holds the SPI device specific details
193  * @pdev:               Pointer to the PCI device
194  * @suspend_sts:        Status of suspend
195  * @num:                The number of SPI device instance
196  */
197 struct pch_spi_board_data {
198         struct pci_dev *pdev;
199         u8 suspend_sts;
200         int num;
201 };
202
203 struct pch_pd_dev_save {
204         int num;
205         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
206         struct pch_spi_board_data *board_dat;
207 };
208
209 static const struct pci_device_id pch_spi_pcidev_id[] = {
210         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
211         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
212         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
213         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
214         { }
215 };
216
217 /**
218  * pch_spi_writereg() - Performs  register writes
219  * @master:     Pointer to struct spi_master.
220  * @idx:        Register offset.
221  * @val:        Value to be written to register.
222  */
223 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
224 {
225         struct pch_spi_data *data = spi_master_get_devdata(master);
226         iowrite32(val, (data->io_remap_addr + idx));
227 }
228
229 /**
230  * pch_spi_readreg() - Performs register reads
231  * @master:     Pointer to struct spi_master.
232  * @idx:        Register offset.
233  */
234 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
235 {
236         struct pch_spi_data *data = spi_master_get_devdata(master);
237         return ioread32(data->io_remap_addr + idx);
238 }
239
240 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
241                                       u32 set, u32 clr)
242 {
243         u32 tmp = pch_spi_readreg(master, idx);
244         tmp = (tmp & ~clr) | set;
245         pch_spi_writereg(master, idx, tmp);
246 }
247
248 static void pch_spi_set_master_mode(struct spi_master *master)
249 {
250         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
251 }
252
253 /**
254  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
255  * @master:     Pointer to struct spi_master.
256  */
257 static void pch_spi_clear_fifo(struct spi_master *master)
258 {
259         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
260         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
261 }
262
263 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
264                                 void __iomem *io_remap_addr)
265 {
266         u32 n_read, tx_index, rx_index, bpw_len;
267         u16 *pkt_rx_buffer, *pkt_tx_buff;
268         int read_cnt;
269         u32 reg_spcr_val;
270         void __iomem *spsr;
271         void __iomem *spdrr;
272         void __iomem *spdwr;
273
274         spsr = io_remap_addr + PCH_SPSR;
275         iowrite32(reg_spsr_val, spsr);
276
277         if (data->transfer_active) {
278                 rx_index = data->rx_index;
279                 tx_index = data->tx_index;
280                 bpw_len = data->bpw_len;
281                 pkt_rx_buffer = data->pkt_rx_buff;
282                 pkt_tx_buff = data->pkt_tx_buff;
283
284                 spdrr = io_remap_addr + PCH_SPDRR;
285                 spdwr = io_remap_addr + PCH_SPDWR;
286
287                 n_read = PCH_READABLE(reg_spsr_val);
288
289                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
290                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
291                         if (tx_index < bpw_len)
292                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
293                 }
294
295                 /* disable RFI if not needed */
296                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
297                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
298                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
299
300                         /* reset rx threshold */
301                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
302                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
303
304                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
305                 }
306
307                 /* update counts */
308                 data->tx_index = tx_index;
309                 data->rx_index = rx_index;
310
311                 /* if transfer complete interrupt */
312                 if (reg_spsr_val & SPSR_FI_BIT) {
313                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
314                                 /* disable interrupts */
315                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
316                                                    PCH_ALL);
317
318                                 /* transfer is completed;
319                                    inform pch_spi_process_messages */
320                                 data->transfer_complete = true;
321                                 data->transfer_active = false;
322                                 wake_up(&data->wait);
323                         } else {
324                                 dev_vdbg(&data->master->dev,
325                                         "%s : Transfer is not completed",
326                                         __func__);
327                         }
328                 }
329         }
330 }
331
332 /**
333  * pch_spi_handler() - Interrupt handler
334  * @irq:        The interrupt number.
335  * @dev_id:     Pointer to struct pch_spi_board_data.
336  */
337 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
338 {
339         u32 reg_spsr_val;
340         void __iomem *spsr;
341         void __iomem *io_remap_addr;
342         irqreturn_t ret = IRQ_NONE;
343         struct pch_spi_data *data = dev_id;
344         struct pch_spi_board_data *board_dat = data->board_dat;
345
346         if (board_dat->suspend_sts) {
347                 dev_dbg(&board_dat->pdev->dev,
348                         "%s returning due to suspend\n", __func__);
349                 return IRQ_NONE;
350         }
351
352         io_remap_addr = data->io_remap_addr;
353         spsr = io_remap_addr + PCH_SPSR;
354
355         reg_spsr_val = ioread32(spsr);
356
357         if (reg_spsr_val & SPSR_ORF_BIT) {
358                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
359                 if (data->current_msg->complete) {
360                         data->transfer_complete = true;
361                         data->current_msg->status = -EIO;
362                         data->current_msg->complete(data->current_msg->context);
363                         data->bcurrent_msg_processing = false;
364                         data->current_msg = NULL;
365                         data->cur_trans = NULL;
366                 }
367         }
368
369         if (data->use_dma)
370                 return IRQ_NONE;
371
372         /* Check if the interrupt is for SPI device */
373         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
374                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
375                 ret = IRQ_HANDLED;
376         }
377
378         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
379                 __func__, ret);
380
381         return ret;
382 }
383
384 /**
385  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
386  * @master:     Pointer to struct spi_master.
387  * @speed_hz:   Baud rate.
388  */
389 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
390 {
391         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
392
393         /* if baud rate is less than we can support limit it */
394         if (n_spbr > PCH_MAX_SPBR)
395                 n_spbr = PCH_MAX_SPBR;
396
397         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
398 }
399
400 /**
401  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
402  * @master:             Pointer to struct spi_master.
403  * @bits_per_word:      Bits per word for SPI transfer.
404  */
405 static void pch_spi_set_bits_per_word(struct spi_master *master,
406                                       u8 bits_per_word)
407 {
408         if (bits_per_word == 8)
409                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
410         else
411                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
412 }
413
414 /**
415  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
416  * @spi:        Pointer to struct spi_device.
417  */
418 static void pch_spi_setup_transfer(struct spi_device *spi)
419 {
420         u32 flags = 0;
421
422         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
423                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
424                 spi->max_speed_hz);
425         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
426
427         /* set bits per word */
428         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
429
430         if (!(spi->mode & SPI_LSB_FIRST))
431                 flags |= SPCR_LSBF_BIT;
432         if (spi->mode & SPI_CPOL)
433                 flags |= SPCR_CPOL_BIT;
434         if (spi->mode & SPI_CPHA)
435                 flags |= SPCR_CPHA_BIT;
436         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
437                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
438
439         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
440         pch_spi_clear_fifo(spi->master);
441 }
442
443 /**
444  * pch_spi_reset() - Clears SPI registers
445  * @master:     Pointer to struct spi_master.
446  */
447 static void pch_spi_reset(struct spi_master *master)
448 {
449         /* write 1 to reset SPI */
450         pch_spi_writereg(master, PCH_SRST, 0x1);
451
452         /* clear reset */
453         pch_spi_writereg(master, PCH_SRST, 0x0);
454 }
455
456 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
457 {
458
459         struct spi_transfer *transfer;
460         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
461         int retval;
462         unsigned long flags;
463
464         spin_lock_irqsave(&data->lock, flags);
465         /* validate Tx/Rx buffers and Transfer length */
466         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
467                 if (!transfer->tx_buf && !transfer->rx_buf) {
468                         dev_err(&pspi->dev,
469                                 "%s Tx and Rx buffer NULL\n", __func__);
470                         retval = -EINVAL;
471                         goto err_return_spinlock;
472                 }
473
474                 if (!transfer->len) {
475                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
476                                 __func__);
477                         retval = -EINVAL;
478                         goto err_return_spinlock;
479                 }
480
481                 dev_dbg(&pspi->dev,
482                         "%s Tx/Rx buffer valid. Transfer length valid\n",
483                         __func__);
484         }
485         spin_unlock_irqrestore(&data->lock, flags);
486
487         /* We won't process any messages if we have been asked to terminate */
488         if (data->status == STATUS_EXITING) {
489                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
490                 retval = -ESHUTDOWN;
491                 goto err_out;
492         }
493
494         /* If suspended ,return -EINVAL */
495         if (data->board_dat->suspend_sts) {
496                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
497                 retval = -EINVAL;
498                 goto err_out;
499         }
500
501         /* set status of message */
502         pmsg->actual_length = 0;
503         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
504
505         pmsg->status = -EINPROGRESS;
506         spin_lock_irqsave(&data->lock, flags);
507         /* add message to queue */
508         list_add_tail(&pmsg->queue, &data->queue);
509         spin_unlock_irqrestore(&data->lock, flags);
510
511         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
512
513         schedule_work(&data->work);
514         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
515
516         retval = 0;
517
518 err_out:
519         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
520         return retval;
521 err_return_spinlock:
522         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
523         spin_unlock_irqrestore(&data->lock, flags);
524         return retval;
525 }
526
527 static inline void pch_spi_select_chip(struct pch_spi_data *data,
528                                        struct spi_device *pspi)
529 {
530         if (data->current_chip != NULL) {
531                 if (pspi->chip_select != data->n_curnt_chip) {
532                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
533                         data->current_chip = NULL;
534                 }
535         }
536
537         data->current_chip = pspi;
538
539         data->n_curnt_chip = data->current_chip->chip_select;
540
541         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
542         pch_spi_setup_transfer(pspi);
543 }
544
545 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
546 {
547         int size;
548         u32 n_writes;
549         int j;
550         struct spi_message *pmsg, *tmp;
551         const u8 *tx_buf;
552         const u16 *tx_sbuf;
553
554         /* set baud rate if needed */
555         if (data->cur_trans->speed_hz) {
556                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
557                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
558         }
559
560         /* set bits per word if needed */
561         if (data->cur_trans->bits_per_word &&
562             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
563                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
564                 pch_spi_set_bits_per_word(data->master,
565                                           data->cur_trans->bits_per_word);
566                 *bpw = data->cur_trans->bits_per_word;
567         } else {
568                 *bpw = data->current_msg->spi->bits_per_word;
569         }
570
571         /* reset Tx/Rx index */
572         data->tx_index = 0;
573         data->rx_index = 0;
574
575         data->bpw_len = data->cur_trans->len / (*bpw / 8);
576
577         /* find alloc size */
578         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
579
580         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
581         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
582         if (data->pkt_tx_buff != NULL) {
583                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
584                 if (!data->pkt_rx_buff) {
585                         kfree(data->pkt_tx_buff);
586                         data->pkt_tx_buff = NULL;
587                 }
588         }
589
590         if (!data->pkt_rx_buff) {
591                 /* flush queue and set status of all transfers to -ENOMEM */
592                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
593                         pmsg->status = -ENOMEM;
594
595                         if (pmsg->complete)
596                                 pmsg->complete(pmsg->context);
597
598                         /* delete from queue */
599                         list_del_init(&pmsg->queue);
600                 }
601                 return;
602         }
603
604         /* copy Tx Data */
605         if (data->cur_trans->tx_buf != NULL) {
606                 if (*bpw == 8) {
607                         tx_buf = data->cur_trans->tx_buf;
608                         for (j = 0; j < data->bpw_len; j++)
609                                 data->pkt_tx_buff[j] = *tx_buf++;
610                 } else {
611                         tx_sbuf = data->cur_trans->tx_buf;
612                         for (j = 0; j < data->bpw_len; j++)
613                                 data->pkt_tx_buff[j] = *tx_sbuf++;
614                 }
615         }
616
617         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
618         n_writes = data->bpw_len;
619         if (n_writes > PCH_MAX_FIFO_DEPTH)
620                 n_writes = PCH_MAX_FIFO_DEPTH;
621
622         dev_dbg(&data->master->dev,
623                 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
624                 __func__);
625         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
626
627         for (j = 0; j < n_writes; j++)
628                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
629
630         /* update tx_index */
631         data->tx_index = j;
632
633         /* reset transfer complete flag */
634         data->transfer_complete = false;
635         data->transfer_active = true;
636 }
637
638 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
639 {
640         struct spi_message *pmsg, *tmp;
641         dev_dbg(&data->master->dev, "%s called\n", __func__);
642         /* Invoke complete callback
643          * [To the spi core..indicating end of transfer] */
644         data->current_msg->status = 0;
645
646         if (data->current_msg->complete) {
647                 dev_dbg(&data->master->dev,
648                         "%s:Invoking callback of SPI core\n", __func__);
649                 data->current_msg->complete(data->current_msg->context);
650         }
651
652         /* update status in global variable */
653         data->bcurrent_msg_processing = false;
654
655         dev_dbg(&data->master->dev,
656                 "%s:data->bcurrent_msg_processing = false\n", __func__);
657
658         data->current_msg = NULL;
659         data->cur_trans = NULL;
660
661         /* check if we have items in list and not suspending
662          * return 1 if list empty */
663         if ((list_empty(&data->queue) == 0) &&
664             (!data->board_dat->suspend_sts) &&
665             (data->status != STATUS_EXITING)) {
666                 /* We have some more work to do (either there is more tranint
667                  * bpw;sfer requests in the current message or there are
668                  *more messages)
669                  */
670                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
671                 schedule_work(&data->work);
672         } else if (data->board_dat->suspend_sts ||
673                    data->status == STATUS_EXITING) {
674                 dev_dbg(&data->master->dev,
675                         "%s suspend/remove initiated, flushing queue\n",
676                         __func__);
677                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
678                         pmsg->status = -EIO;
679
680                         if (pmsg->complete)
681                                 pmsg->complete(pmsg->context);
682
683                         /* delete from queue */
684                         list_del_init(&pmsg->queue);
685                 }
686         }
687 }
688
689 static void pch_spi_set_ir(struct pch_spi_data *data)
690 {
691         /* enable interrupts, set threshold, enable SPI */
692         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
693                 /* set receive threshold to PCH_RX_THOLD */
694                 pch_spi_setclr_reg(data->master, PCH_SPCR,
695                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
696                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
697                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
698                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
699         else
700                 /* set receive threshold to maximum */
701                 pch_spi_setclr_reg(data->master, PCH_SPCR,
702                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
703                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
704                                    SPCR_SPE_BIT,
705                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
706
707         /* Wait until the transfer completes; go to sleep after
708                                  initiating the transfer. */
709         dev_dbg(&data->master->dev,
710                 "%s:waiting for transfer to get over\n", __func__);
711
712         wait_event_interruptible(data->wait, data->transfer_complete);
713
714         /* clear all interrupts */
715         pch_spi_writereg(data->master, PCH_SPSR,
716                          pch_spi_readreg(data->master, PCH_SPSR));
717         /* Disable interrupts and SPI transfer */
718         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
719         /* clear FIFO */
720         pch_spi_clear_fifo(data->master);
721 }
722
723 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
724 {
725         int j;
726         u8 *rx_buf;
727         u16 *rx_sbuf;
728
729         /* copy Rx Data */
730         if (!data->cur_trans->rx_buf)
731                 return;
732
733         if (bpw == 8) {
734                 rx_buf = data->cur_trans->rx_buf;
735                 for (j = 0; j < data->bpw_len; j++)
736                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
737         } else {
738                 rx_sbuf = data->cur_trans->rx_buf;
739                 for (j = 0; j < data->bpw_len; j++)
740                         *rx_sbuf++ = data->pkt_rx_buff[j];
741         }
742 }
743
744 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
745 {
746         int j;
747         u8 *rx_buf;
748         u16 *rx_sbuf;
749         const u8 *rx_dma_buf;
750         const u16 *rx_dma_sbuf;
751
752         /* copy Rx Data */
753         if (!data->cur_trans->rx_buf)
754                 return;
755
756         if (bpw == 8) {
757                 rx_buf = data->cur_trans->rx_buf;
758                 rx_dma_buf = data->dma.rx_buf_virt;
759                 for (j = 0; j < data->bpw_len; j++)
760                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
761                 data->cur_trans->rx_buf = rx_buf;
762         } else {
763                 rx_sbuf = data->cur_trans->rx_buf;
764                 rx_dma_sbuf = data->dma.rx_buf_virt;
765                 for (j = 0; j < data->bpw_len; j++)
766                         *rx_sbuf++ = *rx_dma_sbuf++;
767                 data->cur_trans->rx_buf = rx_sbuf;
768         }
769 }
770
771 static int pch_spi_start_transfer(struct pch_spi_data *data)
772 {
773         struct pch_spi_dma_ctrl *dma;
774         unsigned long flags;
775         int rtn;
776
777         dma = &data->dma;
778
779         spin_lock_irqsave(&data->lock, flags);
780
781         /* disable interrupts, SPI set enable */
782         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
783
784         spin_unlock_irqrestore(&data->lock, flags);
785
786         /* Wait until the transfer completes; go to sleep after
787                                  initiating the transfer. */
788         dev_dbg(&data->master->dev,
789                 "%s:waiting for transfer to get over\n", __func__);
790         rtn = wait_event_interruptible_timeout(data->wait,
791                                                data->transfer_complete,
792                                                msecs_to_jiffies(2 * HZ));
793         if (!rtn)
794                 dev_err(&data->master->dev,
795                         "%s wait-event timeout\n", __func__);
796
797         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
798                             DMA_FROM_DEVICE);
799
800         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
801                             DMA_FROM_DEVICE);
802         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
803
804         async_tx_ack(dma->desc_rx);
805         async_tx_ack(dma->desc_tx);
806         kfree(dma->sg_tx_p);
807         kfree(dma->sg_rx_p);
808
809         spin_lock_irqsave(&data->lock, flags);
810
811         /* clear fifo threshold, disable interrupts, disable SPI transfer */
812         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
813                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
814                            SPCR_SPE_BIT);
815         /* clear all interrupts */
816         pch_spi_writereg(data->master, PCH_SPSR,
817                          pch_spi_readreg(data->master, PCH_SPSR));
818         /* clear FIFO */
819         pch_spi_clear_fifo(data->master);
820
821         spin_unlock_irqrestore(&data->lock, flags);
822
823         return rtn;
824 }
825
826 static void pch_dma_rx_complete(void *arg)
827 {
828         struct pch_spi_data *data = arg;
829
830         /* transfer is completed;inform pch_spi_process_messages_dma */
831         data->transfer_complete = true;
832         wake_up_interruptible(&data->wait);
833 }
834
835 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
836 {
837         struct pch_dma_slave *param = slave;
838
839         if ((chan->chan_id == param->chan_id) &&
840             (param->dma_dev == chan->device->dev)) {
841                 chan->private = param;
842                 return true;
843         } else {
844                 return false;
845         }
846 }
847
848 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
849 {
850         dma_cap_mask_t mask;
851         struct dma_chan *chan;
852         struct pci_dev *dma_dev;
853         struct pch_dma_slave *param;
854         struct pch_spi_dma_ctrl *dma;
855         unsigned int width;
856
857         if (bpw == 8)
858                 width = PCH_DMA_WIDTH_1_BYTE;
859         else
860                 width = PCH_DMA_WIDTH_2_BYTES;
861
862         dma = &data->dma;
863         dma_cap_zero(mask);
864         dma_cap_set(DMA_SLAVE, mask);
865
866         /* Get DMA's dev information */
867         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
868                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
869
870         /* Set Tx DMA */
871         param = &dma->param_tx;
872         param->dma_dev = &dma_dev->dev;
873         param->chan_id = data->ch * 2; /* Tx = 0, 2 */
874         param->tx_reg = data->io_base_addr + PCH_SPDWR;
875         param->width = width;
876         chan = dma_request_channel(mask, pch_spi_filter, param);
877         if (!chan) {
878                 dev_err(&data->master->dev,
879                         "ERROR: dma_request_channel FAILS(Tx)\n");
880                 goto out;
881         }
882         dma->chan_tx = chan;
883
884         /* Set Rx DMA */
885         param = &dma->param_rx;
886         param->dma_dev = &dma_dev->dev;
887         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
888         param->rx_reg = data->io_base_addr + PCH_SPDRR;
889         param->width = width;
890         chan = dma_request_channel(mask, pch_spi_filter, param);
891         if (!chan) {
892                 dev_err(&data->master->dev,
893                         "ERROR: dma_request_channel FAILS(Rx)\n");
894                 dma_release_channel(dma->chan_tx);
895                 dma->chan_tx = NULL;
896                 goto out;
897         }
898         dma->chan_rx = chan;
899
900         dma->dma_dev = dma_dev;
901         return;
902 out:
903         pci_dev_put(dma_dev);
904         data->use_dma = 0;
905 }
906
907 static void pch_spi_release_dma(struct pch_spi_data *data)
908 {
909         struct pch_spi_dma_ctrl *dma;
910
911         dma = &data->dma;
912         if (dma->chan_tx) {
913                 dma_release_channel(dma->chan_tx);
914                 dma->chan_tx = NULL;
915         }
916         if (dma->chan_rx) {
917                 dma_release_channel(dma->chan_rx);
918                 dma->chan_rx = NULL;
919         }
920
921         pci_dev_put(dma->dma_dev);
922 }
923
924 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
925 {
926         const u8 *tx_buf;
927         const u16 *tx_sbuf;
928         u8 *tx_dma_buf;
929         u16 *tx_dma_sbuf;
930         struct scatterlist *sg;
931         struct dma_async_tx_descriptor *desc_tx;
932         struct dma_async_tx_descriptor *desc_rx;
933         int num;
934         int i;
935         int size;
936         int rem;
937         int head;
938         unsigned long flags;
939         struct pch_spi_dma_ctrl *dma;
940
941         dma = &data->dma;
942
943         /* set baud rate if needed */
944         if (data->cur_trans->speed_hz) {
945                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
946                 spin_lock_irqsave(&data->lock, flags);
947                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
948                 spin_unlock_irqrestore(&data->lock, flags);
949         }
950
951         /* set bits per word if needed */
952         if (data->cur_trans->bits_per_word &&
953             (data->current_msg->spi->bits_per_word !=
954              data->cur_trans->bits_per_word)) {
955                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
956                 spin_lock_irqsave(&data->lock, flags);
957                 pch_spi_set_bits_per_word(data->master,
958                                           data->cur_trans->bits_per_word);
959                 spin_unlock_irqrestore(&data->lock, flags);
960                 *bpw = data->cur_trans->bits_per_word;
961         } else {
962                 *bpw = data->current_msg->spi->bits_per_word;
963         }
964         data->bpw_len = data->cur_trans->len / (*bpw / 8);
965
966         if (data->bpw_len > PCH_BUF_SIZE) {
967                 data->bpw_len = PCH_BUF_SIZE;
968                 data->cur_trans->len -= PCH_BUF_SIZE;
969         }
970
971         /* copy Tx Data */
972         if (data->cur_trans->tx_buf != NULL) {
973                 if (*bpw == 8) {
974                         tx_buf = data->cur_trans->tx_buf;
975                         tx_dma_buf = dma->tx_buf_virt;
976                         for (i = 0; i < data->bpw_len; i++)
977                                 *tx_dma_buf++ = *tx_buf++;
978                 } else {
979                         tx_sbuf = data->cur_trans->tx_buf;
980                         tx_dma_sbuf = dma->tx_buf_virt;
981                         for (i = 0; i < data->bpw_len; i++)
982                                 *tx_dma_sbuf++ = *tx_sbuf++;
983                 }
984         }
985
986         /* Calculate Rx parameter for DMA transmitting */
987         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
988                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
989                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
990                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
991                 } else {
992                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
993                         rem = PCH_DMA_TRANS_SIZE;
994                 }
995                 size = PCH_DMA_TRANS_SIZE;
996         } else {
997                 num = 1;
998                 size = data->bpw_len;
999                 rem = data->bpw_len;
1000         }
1001         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1002                 __func__, num, size, rem);
1003         spin_lock_irqsave(&data->lock, flags);
1004
1005         /* set receive fifo threshold and transmit fifo threshold */
1006         pch_spi_setclr_reg(data->master, PCH_SPCR,
1007                            ((size - 1) << SPCR_RFIC_FIELD) |
1008                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1009                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1010
1011         spin_unlock_irqrestore(&data->lock, flags);
1012
1013         /* RX */
1014         dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1015         if (!dma->sg_rx_p)
1016                 return;
1017
1018         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1019         /* offset, length setting */
1020         sg = dma->sg_rx_p;
1021         for (i = 0; i < num; i++, sg++) {
1022                 if (i == (num - 2)) {
1023                         sg->offset = size * i;
1024                         sg->offset = sg->offset * (*bpw / 8);
1025                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1026                                     sg->offset);
1027                         sg_dma_len(sg) = rem;
1028                 } else if (i == (num - 1)) {
1029                         sg->offset = size * (i - 1) + rem;
1030                         sg->offset = sg->offset * (*bpw / 8);
1031                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1032                                     sg->offset);
1033                         sg_dma_len(sg) = size;
1034                 } else {
1035                         sg->offset = size * i;
1036                         sg->offset = sg->offset * (*bpw / 8);
1037                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1038                                     sg->offset);
1039                         sg_dma_len(sg) = size;
1040                 }
1041                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1042         }
1043         sg = dma->sg_rx_p;
1044         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1045                                         num, DMA_DEV_TO_MEM,
1046                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1047         if (!desc_rx) {
1048                 dev_err(&data->master->dev,
1049                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1050                 return;
1051         }
1052         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1053         desc_rx->callback = pch_dma_rx_complete;
1054         desc_rx->callback_param = data;
1055         dma->nent = num;
1056         dma->desc_rx = desc_rx;
1057
1058         /* Calculate Tx parameter for DMA transmitting */
1059         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1060                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1061                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1062                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1063                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1064                 } else {
1065                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1066                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1067                               PCH_DMA_TRANS_SIZE - head;
1068                 }
1069                 size = PCH_DMA_TRANS_SIZE;
1070         } else {
1071                 num = 1;
1072                 size = data->bpw_len;
1073                 rem = data->bpw_len;
1074                 head = 0;
1075         }
1076
1077         dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1078         if (!dma->sg_tx_p)
1079                 return;
1080
1081         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1082         /* offset, length setting */
1083         sg = dma->sg_tx_p;
1084         for (i = 0; i < num; i++, sg++) {
1085                 if (i == 0) {
1086                         sg->offset = 0;
1087                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1088                                     sg->offset);
1089                         sg_dma_len(sg) = size + head;
1090                 } else if (i == (num - 1)) {
1091                         sg->offset = head + size * i;
1092                         sg->offset = sg->offset * (*bpw / 8);
1093                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1094                                     sg->offset);
1095                         sg_dma_len(sg) = rem;
1096                 } else {
1097                         sg->offset = head + size * i;
1098                         sg->offset = sg->offset * (*bpw / 8);
1099                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1100                                     sg->offset);
1101                         sg_dma_len(sg) = size;
1102                 }
1103                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1104         }
1105         sg = dma->sg_tx_p;
1106         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1107                                         sg, num, DMA_MEM_TO_DEV,
1108                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1109         if (!desc_tx) {
1110                 dev_err(&data->master->dev,
1111                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1112                 return;
1113         }
1114         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1115         desc_tx->callback = NULL;
1116         desc_tx->callback_param = data;
1117         dma->nent = num;
1118         dma->desc_tx = desc_tx;
1119
1120         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1121
1122         spin_lock_irqsave(&data->lock, flags);
1123         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1124         desc_rx->tx_submit(desc_rx);
1125         desc_tx->tx_submit(desc_tx);
1126         spin_unlock_irqrestore(&data->lock, flags);
1127
1128         /* reset transfer complete flag */
1129         data->transfer_complete = false;
1130 }
1131
1132 static void pch_spi_process_messages(struct work_struct *pwork)
1133 {
1134         struct spi_message *pmsg, *tmp;
1135         struct pch_spi_data *data;
1136         int bpw;
1137
1138         data = container_of(pwork, struct pch_spi_data, work);
1139         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1140
1141         spin_lock(&data->lock);
1142         /* check if suspend has been initiated;if yes flush queue */
1143         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1144                 dev_dbg(&data->master->dev,
1145                         "%s suspend/remove initiated, flushing queue\n", __func__);
1146                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1147                         pmsg->status = -EIO;
1148
1149                         if (pmsg->complete) {
1150                                 spin_unlock(&data->lock);
1151                                 pmsg->complete(pmsg->context);
1152                                 spin_lock(&data->lock);
1153                         }
1154
1155                         /* delete from queue */
1156                         list_del_init(&pmsg->queue);
1157                 }
1158
1159                 spin_unlock(&data->lock);
1160                 return;
1161         }
1162
1163         data->bcurrent_msg_processing = true;
1164         dev_dbg(&data->master->dev,
1165                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1166
1167         /* Get the message from the queue and delete it from there. */
1168         data->current_msg = list_entry(data->queue.next, struct spi_message,
1169                                         queue);
1170
1171         list_del_init(&data->current_msg->queue);
1172
1173         data->current_msg->status = 0;
1174
1175         pch_spi_select_chip(data, data->current_msg->spi);
1176
1177         spin_unlock(&data->lock);
1178
1179         if (data->use_dma)
1180                 pch_spi_request_dma(data,
1181                                     data->current_msg->spi->bits_per_word);
1182         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1183         do {
1184                 int cnt;
1185                 /* If we are already processing a message get the next
1186                 transfer structure from the message otherwise retrieve
1187                 the 1st transfer request from the message. */
1188                 spin_lock(&data->lock);
1189                 if (data->cur_trans == NULL) {
1190                         data->cur_trans =
1191                                 list_entry(data->current_msg->transfers.next,
1192                                            struct spi_transfer, transfer_list);
1193                         dev_dbg(&data->master->dev,
1194                                 "%s :Getting 1st transfer message\n",
1195                                 __func__);
1196                 } else {
1197                         data->cur_trans =
1198                                 list_entry(data->cur_trans->transfer_list.next,
1199                                            struct spi_transfer, transfer_list);
1200                         dev_dbg(&data->master->dev,
1201                                 "%s :Getting next transfer message\n",
1202                                 __func__);
1203                 }
1204                 spin_unlock(&data->lock);
1205
1206                 if (!data->cur_trans->len)
1207                         goto out;
1208                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1209                 data->save_total_len = data->cur_trans->len;
1210                 if (data->use_dma) {
1211                         int i;
1212                         char *save_rx_buf = data->cur_trans->rx_buf;
1213
1214                         for (i = 0; i < cnt; i++) {
1215                                 pch_spi_handle_dma(data, &bpw);
1216                                 if (!pch_spi_start_transfer(data)) {
1217                                         data->transfer_complete = true;
1218                                         data->current_msg->status = -EIO;
1219                                         data->current_msg->complete
1220                                                    (data->current_msg->context);
1221                                         data->bcurrent_msg_processing = false;
1222                                         data->current_msg = NULL;
1223                                         data->cur_trans = NULL;
1224                                         goto out;
1225                                 }
1226                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1227                         }
1228                         data->cur_trans->rx_buf = save_rx_buf;
1229                 } else {
1230                         pch_spi_set_tx(data, &bpw);
1231                         pch_spi_set_ir(data);
1232                         pch_spi_copy_rx_data(data, bpw);
1233                         kfree(data->pkt_rx_buff);
1234                         data->pkt_rx_buff = NULL;
1235                         kfree(data->pkt_tx_buff);
1236                         data->pkt_tx_buff = NULL;
1237                 }
1238                 /* increment message count */
1239                 data->cur_trans->len = data->save_total_len;
1240                 data->current_msg->actual_length += data->cur_trans->len;
1241
1242                 dev_dbg(&data->master->dev,
1243                         "%s:data->current_msg->actual_length=%d\n",
1244                         __func__, data->current_msg->actual_length);
1245
1246                 spi_transfer_delay_exec(data->cur_trans);
1247
1248                 spin_lock(&data->lock);
1249
1250                 /* No more transfer in this message. */
1251                 if ((data->cur_trans->transfer_list.next) ==
1252                     &(data->current_msg->transfers)) {
1253                         pch_spi_nomore_transfer(data);
1254                 }
1255
1256                 spin_unlock(&data->lock);
1257
1258         } while (data->cur_trans != NULL);
1259
1260 out:
1261         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1262         if (data->use_dma)
1263                 pch_spi_release_dma(data);
1264 }
1265
1266 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1267                                    struct pch_spi_data *data)
1268 {
1269         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1270
1271         flush_work(&data->work);
1272 }
1273
1274 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1275                                  struct pch_spi_data *data)
1276 {
1277         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1278
1279         /* reset PCH SPI h/w */
1280         pch_spi_reset(data->master);
1281         dev_dbg(&board_dat->pdev->dev,
1282                 "%s pch_spi_reset invoked successfully\n", __func__);
1283
1284         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1285
1286         return 0;
1287 }
1288
1289 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1290                              struct pch_spi_data *data)
1291 {
1292         struct pch_spi_dma_ctrl *dma;
1293
1294         dma = &data->dma;
1295         if (dma->tx_buf_dma)
1296                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1297                                   dma->tx_buf_virt, dma->tx_buf_dma);
1298         if (dma->rx_buf_dma)
1299                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1300                                   dma->rx_buf_virt, dma->rx_buf_dma);
1301 }
1302
1303 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1304                               struct pch_spi_data *data)
1305 {
1306         struct pch_spi_dma_ctrl *dma;
1307         int ret;
1308
1309         dma = &data->dma;
1310         ret = 0;
1311         /* Get Consistent memory for Tx DMA */
1312         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1313                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1314         if (!dma->tx_buf_virt)
1315                 ret = -ENOMEM;
1316
1317         /* Get Consistent memory for Rx DMA */
1318         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1319                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1320         if (!dma->rx_buf_virt)
1321                 ret = -ENOMEM;
1322
1323         return ret;
1324 }
1325
1326 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1327 {
1328         int ret;
1329         struct spi_master *master;
1330         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1331         struct pch_spi_data *data;
1332
1333         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1334
1335         master = spi_alloc_master(&board_dat->pdev->dev,
1336                                   sizeof(struct pch_spi_data));
1337         if (!master) {
1338                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1339                         plat_dev->id);
1340                 return -ENOMEM;
1341         }
1342
1343         data = spi_master_get_devdata(master);
1344         data->master = master;
1345
1346         platform_set_drvdata(plat_dev, data);
1347
1348         /* baseaddress + address offset) */
1349         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1350                                          PCH_ADDRESS_SIZE * plat_dev->id;
1351         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1352         if (!data->io_remap_addr) {
1353                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1354                 ret = -ENOMEM;
1355                 goto err_pci_iomap;
1356         }
1357         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1358
1359         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1360                 plat_dev->id, data->io_remap_addr);
1361
1362         /* initialize members of SPI master */
1363         master->num_chipselect = PCH_MAX_CS;
1364         master->transfer = pch_spi_transfer;
1365         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1366         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1367         master->max_speed_hz = PCH_MAX_BAUDRATE;
1368
1369         data->board_dat = board_dat;
1370         data->plat_dev = plat_dev;
1371         data->n_curnt_chip = 255;
1372         data->status = STATUS_RUNNING;
1373         data->ch = plat_dev->id;
1374         data->use_dma = use_dma;
1375
1376         INIT_LIST_HEAD(&data->queue);
1377         spin_lock_init(&data->lock);
1378         INIT_WORK(&data->work, pch_spi_process_messages);
1379         init_waitqueue_head(&data->wait);
1380
1381         ret = pch_spi_get_resources(board_dat, data);
1382         if (ret) {
1383                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1384                 goto err_spi_get_resources;
1385         }
1386
1387         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1388                           IRQF_SHARED, KBUILD_MODNAME, data);
1389         if (ret) {
1390                 dev_err(&plat_dev->dev,
1391                         "%s request_irq failed\n", __func__);
1392                 goto err_request_irq;
1393         }
1394         data->irq_reg_sts = true;
1395
1396         pch_spi_set_master_mode(master);
1397
1398         if (use_dma) {
1399                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1400                 ret = pch_alloc_dma_buf(board_dat, data);
1401                 if (ret)
1402                         goto err_spi_register_master;
1403         }
1404
1405         ret = spi_register_master(master);
1406         if (ret != 0) {
1407                 dev_err(&plat_dev->dev,
1408                         "%s spi_register_master FAILED\n", __func__);
1409                 goto err_spi_register_master;
1410         }
1411
1412         return 0;
1413
1414 err_spi_register_master:
1415         pch_free_dma_buf(board_dat, data);
1416         free_irq(board_dat->pdev->irq, data);
1417 err_request_irq:
1418         pch_spi_free_resources(board_dat, data);
1419 err_spi_get_resources:
1420         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1421 err_pci_iomap:
1422         spi_master_put(master);
1423
1424         return ret;
1425 }
1426
1427 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1428 {
1429         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1430         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1431         int count;
1432         unsigned long flags;
1433
1434         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1435                 __func__, plat_dev->id, board_dat->pdev->irq);
1436
1437         if (use_dma)
1438                 pch_free_dma_buf(board_dat, data);
1439
1440         /* check for any pending messages; no action is taken if the queue
1441          * is still full; but at least we tried.  Unload anyway */
1442         count = 500;
1443         spin_lock_irqsave(&data->lock, flags);
1444         data->status = STATUS_EXITING;
1445         while ((list_empty(&data->queue) == 0) && --count) {
1446                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1447                         __func__);
1448                 spin_unlock_irqrestore(&data->lock, flags);
1449                 msleep(PCH_SLEEP_TIME);
1450                 spin_lock_irqsave(&data->lock, flags);
1451         }
1452         spin_unlock_irqrestore(&data->lock, flags);
1453
1454         pch_spi_free_resources(board_dat, data);
1455         /* disable interrupts & free IRQ */
1456         if (data->irq_reg_sts) {
1457                 /* disable interrupts */
1458                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1459                 data->irq_reg_sts = false;
1460                 free_irq(board_dat->pdev->irq, data);
1461         }
1462
1463         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1464         spi_unregister_master(data->master);
1465
1466         return 0;
1467 }
1468 #ifdef CONFIG_PM
1469 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1470                               pm_message_t state)
1471 {
1472         u8 count;
1473         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1474         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1475
1476         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1477
1478         if (!board_dat) {
1479                 dev_err(&pd_dev->dev,
1480                         "%s pci_get_drvdata returned NULL\n", __func__);
1481                 return -EFAULT;
1482         }
1483
1484         /* check if the current message is processed:
1485            Only after thats done the transfer will be suspended */
1486         count = 255;
1487         while ((--count) > 0) {
1488                 if (!(data->bcurrent_msg_processing))
1489                         break;
1490                 msleep(PCH_SLEEP_TIME);
1491         }
1492
1493         /* Free IRQ */
1494         if (data->irq_reg_sts) {
1495                 /* disable all interrupts */
1496                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1497                 pch_spi_reset(data->master);
1498                 free_irq(board_dat->pdev->irq, data);
1499
1500                 data->irq_reg_sts = false;
1501                 dev_dbg(&pd_dev->dev,
1502                         "%s free_irq invoked successfully.\n", __func__);
1503         }
1504
1505         return 0;
1506 }
1507
1508 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1509 {
1510         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1511         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1512         int retval;
1513
1514         if (!board_dat) {
1515                 dev_err(&pd_dev->dev,
1516                         "%s pci_get_drvdata returned NULL\n", __func__);
1517                 return -EFAULT;
1518         }
1519
1520         if (!data->irq_reg_sts) {
1521                 /* register IRQ */
1522                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1523                                      IRQF_SHARED, KBUILD_MODNAME, data);
1524                 if (retval < 0) {
1525                         dev_err(&pd_dev->dev,
1526                                 "%s request_irq failed\n", __func__);
1527                         return retval;
1528                 }
1529
1530                 /* reset PCH SPI h/w */
1531                 pch_spi_reset(data->master);
1532                 pch_spi_set_master_mode(data->master);
1533                 data->irq_reg_sts = true;
1534         }
1535         return 0;
1536 }
1537 #else
1538 #define pch_spi_pd_suspend NULL
1539 #define pch_spi_pd_resume NULL
1540 #endif
1541
1542 static struct platform_driver pch_spi_pd_driver = {
1543         .driver = {
1544                 .name = "pch-spi",
1545         },
1546         .probe = pch_spi_pd_probe,
1547         .remove = pch_spi_pd_remove,
1548         .suspend = pch_spi_pd_suspend,
1549         .resume = pch_spi_pd_resume
1550 };
1551
1552 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1553 {
1554         struct pch_spi_board_data *board_dat;
1555         struct platform_device *pd_dev = NULL;
1556         int retval;
1557         int i;
1558         struct pch_pd_dev_save *pd_dev_save;
1559
1560         pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1561         if (!pd_dev_save)
1562                 return -ENOMEM;
1563
1564         board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1565         if (!board_dat) {
1566                 retval = -ENOMEM;
1567                 goto err_no_mem;
1568         }
1569
1570         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1571         if (retval) {
1572                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1573                 goto pci_request_regions;
1574         }
1575
1576         board_dat->pdev = pdev;
1577         board_dat->num = id->driver_data;
1578         pd_dev_save->num = id->driver_data;
1579         pd_dev_save->board_dat = board_dat;
1580
1581         retval = pci_enable_device(pdev);
1582         if (retval) {
1583                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1584                 goto pci_enable_device;
1585         }
1586
1587         for (i = 0; i < board_dat->num; i++) {
1588                 pd_dev = platform_device_alloc("pch-spi", i);
1589                 if (!pd_dev) {
1590                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1591                         retval = -ENOMEM;
1592                         goto err_platform_device;
1593                 }
1594                 pd_dev_save->pd_save[i] = pd_dev;
1595                 pd_dev->dev.parent = &pdev->dev;
1596
1597                 retval = platform_device_add_data(pd_dev, board_dat,
1598                                                   sizeof(*board_dat));
1599                 if (retval) {
1600                         dev_err(&pdev->dev,
1601                                 "platform_device_add_data failed\n");
1602                         platform_device_put(pd_dev);
1603                         goto err_platform_device;
1604                 }
1605
1606                 retval = platform_device_add(pd_dev);
1607                 if (retval) {
1608                         dev_err(&pdev->dev, "platform_device_add failed\n");
1609                         platform_device_put(pd_dev);
1610                         goto err_platform_device;
1611                 }
1612         }
1613
1614         pci_set_drvdata(pdev, pd_dev_save);
1615
1616         return 0;
1617
1618 err_platform_device:
1619         while (--i >= 0)
1620                 platform_device_unregister(pd_dev_save->pd_save[i]);
1621         pci_disable_device(pdev);
1622 pci_enable_device:
1623         pci_release_regions(pdev);
1624 pci_request_regions:
1625         kfree(board_dat);
1626 err_no_mem:
1627         kfree(pd_dev_save);
1628
1629         return retval;
1630 }
1631
1632 static void pch_spi_remove(struct pci_dev *pdev)
1633 {
1634         int i;
1635         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1636
1637         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1638
1639         for (i = 0; i < pd_dev_save->num; i++)
1640                 platform_device_unregister(pd_dev_save->pd_save[i]);
1641
1642         pci_disable_device(pdev);
1643         pci_release_regions(pdev);
1644         kfree(pd_dev_save->board_dat);
1645         kfree(pd_dev_save);
1646 }
1647
1648 static int __maybe_unused pch_spi_suspend(struct device *dev)
1649 {
1650         struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1651
1652         dev_dbg(dev, "%s ENTRY\n", __func__);
1653
1654         pd_dev_save->board_dat->suspend_sts = true;
1655
1656         return 0;
1657 }
1658
1659 static int __maybe_unused pch_spi_resume(struct device *dev)
1660 {
1661         struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1662
1663         dev_dbg(dev, "%s ENTRY\n", __func__);
1664
1665         /* set suspend status to false */
1666         pd_dev_save->board_dat->suspend_sts = false;
1667
1668         return 0;
1669 }
1670
1671 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1672
1673 static struct pci_driver pch_spi_pcidev_driver = {
1674         .name = "pch_spi",
1675         .id_table = pch_spi_pcidev_id,
1676         .probe = pch_spi_probe,
1677         .remove = pch_spi_remove,
1678         .driver.pm = &pch_spi_pm_ops,
1679 };
1680
1681 static int __init pch_spi_init(void)
1682 {
1683         int ret;
1684         ret = platform_driver_register(&pch_spi_pd_driver);
1685         if (ret)
1686                 return ret;
1687
1688         ret = pci_register_driver(&pch_spi_pcidev_driver);
1689         if (ret) {
1690                 platform_driver_unregister(&pch_spi_pd_driver);
1691                 return ret;
1692         }
1693
1694         return 0;
1695 }
1696 module_init(pch_spi_init);
1697
1698 static void __exit pch_spi_exit(void)
1699 {
1700         pci_unregister_driver(&pch_spi_pcidev_driver);
1701         platform_driver_unregister(&pch_spi_pd_driver);
1702 }
1703 module_exit(pch_spi_exit);
1704
1705 module_param(use_dma, int, 0644);
1706 MODULE_PARM_DESC(use_dma,
1707                  "to use DMA for data transfers pass 1 else 0; default 1");
1708
1709 MODULE_LICENSE("GPL");
1710 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1711 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1712