9ec37cf10c010ed0fbf253e98fc0b818c84126fe
[releases.git] / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20
21 #define DRIVER_NAME "spi_stm32"
22
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1                 0x00
25 #define STM32F4_SPI_CR2                 0x04
26 #define STM32F4_SPI_SR                  0x08
27 #define STM32F4_SPI_DR                  0x0C
28 #define STM32F4_SPI_I2SCFGR             0x1C
29
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA            BIT(0)
32 #define STM32F4_SPI_CR1_CPOL            BIT(1)
33 #define STM32F4_SPI_CR1_MSTR            BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT        3
35 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE             BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
38 #define STM32F4_SPI_CR1_SSI             BIT(8)
39 #define STM32F4_SPI_CR1_SSM             BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
41 #define STM32F4_SPI_CR1_DFF             BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN          0
47 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
48
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
52 #define STM32F4_SPI_CR2_SSOE            BIT(2)
53 #define STM32F4_SPI_CR2_FRF             BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
57
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE             BIT(0)
60 #define STM32F4_SPI_SR_TXE              BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
62 #define STM32F4_SPI_SR_UDR              BIT(3)
63 #define STM32F4_SPI_SR_CRCERR           BIT(4)
64 #define STM32F4_SPI_SR_MODF             BIT(5)
65 #define STM32F4_SPI_SR_OVR              BIT(6)
66 #define STM32F4_SPI_SR_BSY              BIT(7)
67 #define STM32F4_SPI_SR_FRE              BIT(8)
68
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
71
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
75
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1                 0x00
78 #define STM32H7_SPI_CR2                 0x04
79 #define STM32H7_SPI_CFG1                0x08
80 #define STM32H7_SPI_CFG2                0x0C
81 #define STM32H7_SPI_IER                 0x10
82 #define STM32H7_SPI_SR                  0x14
83 #define STM32H7_SPI_IFCR                0x18
84 #define STM32H7_SPI_TXDR                0x20
85 #define STM32H7_SPI_RXDR                0x30
86 #define STM32H7_SPI_I2SCFGR             0x50
87
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE             BIT(0)
90 #define STM32H7_SPI_CR1_MASRX           BIT(8)
91 #define STM32H7_SPI_CR1_CSTART          BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
94 #define STM32H7_SPI_CR1_SSI             BIT(12)
95
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT     0
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT    0
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT    5
104 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN        0
110 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
111
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT     4
114 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT     17
116 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT       19
118 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
123 #define STM32H7_SPI_CFG2_SSM            BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
125
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE           BIT(0)
128 #define STM32H7_SPI_IER_TXPIE           BIT(1)
129 #define STM32H7_SPI_IER_DXPIE           BIT(2)
130 #define STM32H7_SPI_IER_EOTIE           BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
132 #define STM32H7_SPI_IER_OVRIE           BIT(6)
133 #define STM32H7_SPI_IER_MODFIE          BIT(9)
134 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
135
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP              BIT(0)
138 #define STM32H7_SPI_SR_TXP              BIT(1)
139 #define STM32H7_SPI_SR_EOT              BIT(3)
140 #define STM32H7_SPI_SR_OVR              BIT(6)
141 #define STM32H7_SPI_SR_MODF             BIT(9)
142 #define STM32H7_SPI_SR_SUSP             BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT     13
144 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE            BIT(15)
146
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
149
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
152
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX         0
159 #define STM32H7_SPI_SIMPLEX_TX          1
160 #define STM32H7_SPI_SIMPLEX_RX          2
161 #define STM32H7_SPI_HALF_DUPLEX         3
162
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX         0
165 #define SPI_SIMPLEX_TX          1
166 #define SPI_SIMPLEX_RX          2
167 #define SPI_3WIRE_TX            3
168 #define SPI_3WIRE_RX            4
169
170 #define SPI_1HZ_NS              1000000000
171
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES       16
177
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:                register offset
181  * @mask:               bitfield mask
182  * @shift:              left shift
183  */
184 struct stm32_spi_reg {
185         int reg;
186         int mask;
187         int shift;
188 };
189
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @br: baud rate register and bitfields
199  * @rx: SPI RX data register
200  * @tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203         const struct stm32_spi_reg en;
204         const struct stm32_spi_reg dma_rx_en;
205         const struct stm32_spi_reg dma_tx_en;
206         const struct stm32_spi_reg cpol;
207         const struct stm32_spi_reg cpha;
208         const struct stm32_spi_reg lsb_first;
209         const struct stm32_spi_reg br;
210         const struct stm32_spi_reg rx;
211         const struct stm32_spi_reg tx;
212 };
213
214 struct stm32_spi;
215
216 /**
217  * struct stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * @set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243         const struct stm32_spi_regspec *regs;
244         int (*get_fifo_size)(struct stm32_spi *spi);
245         int (*get_bpw_mask)(struct stm32_spi *spi);
246         void (*disable)(struct stm32_spi *spi);
247         int (*config)(struct stm32_spi *spi);
248         void (*set_bpw)(struct stm32_spi *spi);
249         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252         void (*transfer_one_dma_start)(struct stm32_spi *spi);
253         void (*dma_rx_cb)(void *data);
254         void (*dma_tx_cb)(void *data);
255         int (*transfer_one_irq)(struct stm32_spi *spi);
256         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258         unsigned int baud_rate_div_min;
259         unsigned int baud_rate_div_max;
260         bool has_fifo;
261 };
262
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291         struct device *dev;
292         struct spi_master *master;
293         const struct stm32_spi_cfg *cfg;
294         void __iomem *base;
295         struct clk *clk;
296         u32 clk_rate;
297         struct reset_control *rst;
298         spinlock_t lock; /* prevent I/O concurrent access */
299         int irq;
300         unsigned int fifo_size;
301
302         unsigned int cur_midi;
303         unsigned int cur_speed;
304         unsigned int cur_bpw;
305         unsigned int cur_fthlv;
306         unsigned int cur_comm;
307         unsigned int cur_xferlen;
308         bool cur_usedma;
309
310         const void *tx_buf;
311         void *rx_buf;
312         int tx_len;
313         int rx_len;
314         struct dma_chan *dma_tx;
315         struct dma_chan *dma_rx;
316         dma_addr_t phys_addr;
317 };
318
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330         .rx = { STM32F4_SPI_DR },
331         .tx = { STM32F4_SPI_DR },
332 };
333
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335         /* SPI data transfer is enabled but spi_ker_ck is idle.
336          * CFG1 and CFG2 registers are write protected when SPE is enabled.
337          */
338         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347                 STM32H7_SPI_CFG1_MBR_SHIFT },
348
349         .rx = { STM32H7_SPI_RXDR },
350         .tx = { STM32H7_SPI_TXDR },
351 };
352
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354                                       u32 offset, u32 bits)
355 {
356         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357                        spi->base + offset);
358 }
359
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361                                       u32 offset, u32 bits)
362 {
363         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364                        spi->base + offset);
365 }
366
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373         unsigned long flags;
374         u32 count = 0;
375
376         spin_lock_irqsave(&spi->lock, flags);
377
378         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385         spin_unlock_irqrestore(&spi->lock, flags);
386
387         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389         return count;
390 }
391
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408         unsigned long flags;
409         u32 cfg1, max_bpw;
410
411         spin_lock_irqsave(&spi->lock, flags);
412
413         /*
414          * The most significant bit at DSIZE bit field is reserved when the
415          * maximum data size of periperal instances is limited to 16-bit
416          */
417         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420         max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421                   STM32H7_SPI_CFG1_DSIZE_SHIFT;
422         max_bpw += 1;
423
424         spin_unlock_irqrestore(&spi->lock, flags);
425
426         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428         return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441                                  u32 min_div, u32 max_div)
442 {
443         u32 div, mbrdiv;
444
445         /* Ensure spi->clk_rate is even */
446         div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
447
448         /*
449          * SPI framework set xfer->speed_hz to master->max_speed_hz if
450          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452          * no need to check it there.
453          * However, we need to ensure the following calculations.
454          */
455         if ((div < min_div) || (div > max_div))
456                 return -EINVAL;
457
458         /* Determine the first power of 2 greater than or equal to div */
459         if (div & (div - 1))
460                 mbrdiv = fls(div);
461         else
462                 mbrdiv = fls(div) - 1;
463
464         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466         return mbrdiv - 1;
467 }
468
469 /**
470  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471  * @spi: pointer to the spi controller data structure
472  * @xfer_len: length of the message to be transferred
473  */
474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476         u32 fthlv, half_fifo, packet;
477
478         /* data packet should not exceed 1/2 of fifo space */
479         half_fifo = (spi->fifo_size / 2);
480
481         /* data_packet should not exceed transfer length */
482         if (half_fifo > xfer_len)
483                 packet = xfer_len;
484         else
485                 packet = half_fifo;
486
487         if (spi->cur_bpw <= 8)
488                 fthlv = packet;
489         else if (spi->cur_bpw <= 16)
490                 fthlv = packet / 2;
491         else
492                 fthlv = packet / 4;
493
494         /* align packet size with data registers access */
495         if (spi->cur_bpw > 8)
496                 fthlv += (fthlv % 2) ? 1 : 0;
497         else
498                 fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
499
500         if (!fthlv)
501                 fthlv = 1;
502
503         return fthlv;
504 }
505
506 /**
507  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516                                   STM32F4_SPI_SR_TXE)) {
517                 u32 offs = spi->cur_xferlen - spi->tx_len;
518
519                 if (spi->cur_bpw == 16) {
520                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523                         spi->tx_len -= sizeof(u16);
524                 } else {
525                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528                         spi->tx_len -= sizeof(u8);
529                 }
530         }
531
532         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534
535 /**
536  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537  * @spi: pointer to the spi controller data structure
538  *
539  * Read from tx_buf depends on remaining bytes to avoid to read beyond
540  * tx_buf end.
541  */
542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544         while ((spi->tx_len > 0) &&
545                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546                         STM32H7_SPI_SR_TXP)) {
547                 u32 offs = spi->cur_xferlen - spi->tx_len;
548
549                 if (spi->tx_len >= sizeof(u32)) {
550                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553                         spi->tx_len -= sizeof(u32);
554                 } else if (spi->tx_len >= sizeof(u16)) {
555                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558                         spi->tx_len -= sizeof(u16);
559                 } else {
560                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563                         spi->tx_len -= sizeof(u8);
564                 }
565         }
566
567         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569
570 /**
571  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580                                   STM32F4_SPI_SR_RXNE)) {
581                 u32 offs = spi->cur_xferlen - spi->rx_len;
582
583                 if (spi->cur_bpw == 16) {
584                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587                         spi->rx_len -= sizeof(u16);
588                 } else {
589                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592                         spi->rx_len -= sizeof(u8);
593                 }
594         }
595
596         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598
599 /**
600  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601  * @spi: pointer to the spi controller data structure
602  * @flush: boolean indicating that FIFO should be flushed
603  *
604  * Write in rx_buf depends on remaining bytes to avoid to write beyond
605  * rx_buf end.
606  */
607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610         u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611                      STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613         while ((spi->rx_len > 0) &&
614                ((sr & STM32H7_SPI_SR_RXP) ||
615                 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616                 u32 offs = spi->cur_xferlen - spi->rx_len;
617
618                 if ((spi->rx_len >= sizeof(u32)) ||
619                     (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623                         spi->rx_len -= sizeof(u32);
624                 } else if ((spi->rx_len >= sizeof(u16)) ||
625                            (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629                         spi->rx_len -= sizeof(u16);
630                 } else {
631                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634                         spi->rx_len -= sizeof(u8);
635                 }
636
637                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638                 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639                          STM32H7_SPI_SR_RXPLVL_SHIFT;
640         }
641
642         dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643                 flush ? "(flush)" : "", spi->rx_len);
644 }
645
646 /**
647  * stm32_spi_enable - Enable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652         dev_dbg(spi->dev, "enable controller\n");
653
654         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655                            spi->cfg->regs->en.mask);
656 }
657
658 /**
659  * stm32f4_spi_disable - Disable SPI controller
660  * @spi: pointer to the spi controller data structure
661  */
662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664         unsigned long flags;
665         u32 sr;
666
667         dev_dbg(spi->dev, "disable controller\n");
668
669         spin_lock_irqsave(&spi->lock, flags);
670
671         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672               STM32F4_SPI_CR1_SPE)) {
673                 spin_unlock_irqrestore(&spi->lock, flags);
674                 return;
675         }
676
677         /* Disable interrupts */
678         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679                                                  STM32F4_SPI_CR2_RXNEIE |
680                                                  STM32F4_SPI_CR2_ERRIE);
681
682         /* Wait until BSY = 0 */
683         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684                                               sr, !(sr & STM32F4_SPI_SR_BSY),
685                                               10, 100000) < 0) {
686                 dev_warn(spi->dev, "disabling condition timeout\n");
687         }
688
689         if (spi->cur_usedma && spi->dma_tx)
690                 dmaengine_terminate_all(spi->dma_tx);
691         if (spi->cur_usedma && spi->dma_rx)
692                 dmaengine_terminate_all(spi->dma_rx);
693
694         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697                                                  STM32F4_SPI_CR2_RXDMAEN);
698
699         /* Sequence to clear OVR flag */
700         readl_relaxed(spi->base + STM32F4_SPI_DR);
701         readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703         spin_unlock_irqrestore(&spi->lock, flags);
704 }
705
706 /**
707  * stm32h7_spi_disable - Disable SPI controller
708  * @spi: pointer to the spi controller data structure
709  *
710  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712  * RX-Fifo.
713  * Normally, if TSIZE has been configured, we should relax the hardware at the
714  * reception of the EOT interrupt. But in case of error, EOT will not be
715  * raised. So the subsystem unprepare_message call allows us to properly
716  * complete the transfer from an hardware point of view.
717  */
718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720         unsigned long flags;
721         u32 cr1, sr;
722
723         dev_dbg(spi->dev, "disable controller\n");
724
725         spin_lock_irqsave(&spi->lock, flags);
726
727         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730                 spin_unlock_irqrestore(&spi->lock, flags);
731                 return;
732         }
733
734         /* Wait on EOT or suspend the flow */
735         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736                                               sr, !(sr & STM32H7_SPI_SR_EOT),
737                                               10, 100000) < 0) {
738                 if (cr1 & STM32H7_SPI_CR1_CSTART) {
739                         writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740                                        spi->base + STM32H7_SPI_CR1);
741                         if (readl_relaxed_poll_timeout_atomic(
742                                                 spi->base + STM32H7_SPI_SR,
743                                                 sr, !(sr & STM32H7_SPI_SR_SUSP),
744                                                 10, 100000) < 0)
745                                 dev_warn(spi->dev,
746                                          "Suspend request timeout\n");
747                 }
748         }
749
750         if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751                 stm32h7_spi_read_rxfifo(spi, true);
752
753         if (spi->cur_usedma && spi->dma_tx)
754                 dmaengine_terminate_all(spi->dma_tx);
755         if (spi->cur_usedma && spi->dma_rx)
756                 dmaengine_terminate_all(spi->dma_rx);
757
758         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761                                                 STM32H7_SPI_CFG1_RXDMAEN);
762
763         /* Disable interrupts and clear status flags */
764         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767         spin_unlock_irqrestore(&spi->lock, flags);
768 }
769
770 /**
771  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772  * @master: controller master interface
773  * @spi_dev: pointer to the spi device
774  * @transfer: pointer to spi transfer
775  *
776  * If driver has fifo and the current transfer size is greater than fifo size,
777  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778  */
779 static bool stm32_spi_can_dma(struct spi_master *master,
780                               struct spi_device *spi_dev,
781                               struct spi_transfer *transfer)
782 {
783         unsigned int dma_size;
784         struct stm32_spi *spi = spi_master_get_devdata(master);
785
786         if (spi->cfg->has_fifo)
787                 dma_size = spi->fifo_size;
788         else
789                 dma_size = SPI_DMA_MIN_BYTES;
790
791         dev_dbg(spi->dev, "%s: %s\n", __func__,
792                 (transfer->len > dma_size) ? "true" : "false");
793
794         return (transfer->len > dma_size);
795 }
796
797 /**
798  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799  * @irq: interrupt line
800  * @dev_id: SPI controller master interface
801  */
802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804         struct spi_master *master = dev_id;
805         struct stm32_spi *spi = spi_master_get_devdata(master);
806         u32 sr, mask = 0;
807         bool end = false;
808
809         spin_lock(&spi->lock);
810
811         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812         /*
813          * BSY flag is not handled in interrupt but it is normal behavior when
814          * this flag is set.
815          */
816         sr &= ~STM32F4_SPI_SR_BSY;
817
818         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819                                  spi->cur_comm == SPI_3WIRE_TX)) {
820                 /* OVR flag shouldn't be handled for TX only mode */
821                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822                 mask |= STM32F4_SPI_SR_TXE;
823         }
824
825         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826                                 spi->cur_comm == SPI_SIMPLEX_RX ||
827                                 spi->cur_comm == SPI_3WIRE_RX)) {
828                 /* TXE flag is set and is handled when RXNE flag occurs */
829                 sr &= ~STM32F4_SPI_SR_TXE;
830                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831         }
832
833         if (!(sr & mask)) {
834                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835                 spin_unlock(&spi->lock);
836                 return IRQ_NONE;
837         }
838
839         if (sr & STM32F4_SPI_SR_OVR) {
840                 dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842                 /* Sequence to clear OVR flag */
843                 readl_relaxed(spi->base + STM32F4_SPI_DR);
844                 readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846                 /*
847                  * If overrun is detected, it means that something went wrong,
848                  * so stop the current transfer. Transfer can wait for next
849                  * RXNE but DR is already read and end never happens.
850                  */
851                 end = true;
852                 goto end_irq;
853         }
854
855         if (sr & STM32F4_SPI_SR_TXE) {
856                 if (spi->tx_buf)
857                         stm32f4_spi_write_tx(spi);
858                 if (spi->tx_len == 0)
859                         end = true;
860         }
861
862         if (sr & STM32F4_SPI_SR_RXNE) {
863                 stm32f4_spi_read_rx(spi);
864                 if (spi->rx_len == 0)
865                         end = true;
866                 else if (spi->tx_buf)/* Load data for discontinuous mode */
867                         stm32f4_spi_write_tx(spi);
868         }
869
870 end_irq:
871         if (end) {
872                 /* Immediately disable interrupts to do not generate new one */
873                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874                                         STM32F4_SPI_CR2_TXEIE |
875                                         STM32F4_SPI_CR2_RXNEIE |
876                                         STM32F4_SPI_CR2_ERRIE);
877                 spin_unlock(&spi->lock);
878                 return IRQ_WAKE_THREAD;
879         }
880
881         spin_unlock(&spi->lock);
882         return IRQ_HANDLED;
883 }
884
885 /**
886  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887  * @irq: interrupt line
888  * @dev_id: SPI controller master interface
889  */
890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892         struct spi_master *master = dev_id;
893         struct stm32_spi *spi = spi_master_get_devdata(master);
894
895         spi_finalize_current_transfer(master);
896         stm32f4_spi_disable(spi);
897
898         return IRQ_HANDLED;
899 }
900
901 /**
902  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903  * @irq: interrupt line
904  * @dev_id: SPI controller master interface
905  */
906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908         struct spi_master *master = dev_id;
909         struct stm32_spi *spi = spi_master_get_devdata(master);
910         u32 sr, ier, mask;
911         unsigned long flags;
912         bool end = false;
913
914         spin_lock_irqsave(&spi->lock, flags);
915
916         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919         mask = ier;
920         /*
921          * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
922          * SUSP to acknowledge it later. TXC is automatically cleared
923          */
924
925         mask |= STM32H7_SPI_SR_SUSP;
926         /*
927          * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
928          * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
929          */
930         if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
931                 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
932
933         if (!(sr & mask)) {
934                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
935                          sr, ier);
936                 spin_unlock_irqrestore(&spi->lock, flags);
937                 return IRQ_NONE;
938         }
939
940         if (sr & STM32H7_SPI_SR_SUSP) {
941                 static DEFINE_RATELIMIT_STATE(rs,
942                                               DEFAULT_RATELIMIT_INTERVAL * 10,
943                                               1);
944                 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
945                 if (__ratelimit(&rs))
946                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
947                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948                         stm32h7_spi_read_rxfifo(spi, false);
949                 /*
950                  * If communication is suspended while using DMA, it means
951                  * that something went wrong, so stop the current transfer
952                  */
953                 if (spi->cur_usedma)
954                         end = true;
955         }
956
957         if (sr & STM32H7_SPI_SR_MODF) {
958                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
959                 end = true;
960         }
961
962         if (sr & STM32H7_SPI_SR_OVR) {
963                 dev_err(spi->dev, "Overrun: RX data lost\n");
964                 end = true;
965         }
966
967         if (sr & STM32H7_SPI_SR_EOT) {
968                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
969                         stm32h7_spi_read_rxfifo(spi, true);
970                 end = true;
971         }
972
973         if (sr & STM32H7_SPI_SR_TXP)
974                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
975                         stm32h7_spi_write_txfifo(spi);
976
977         if (sr & STM32H7_SPI_SR_RXP)
978                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
979                         stm32h7_spi_read_rxfifo(spi, false);
980
981         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
982
983         spin_unlock_irqrestore(&spi->lock, flags);
984
985         if (end) {
986                 stm32h7_spi_disable(spi);
987                 spi_finalize_current_transfer(master);
988         }
989
990         return IRQ_HANDLED;
991 }
992
993 /**
994  * stm32_spi_prepare_msg - set up the controller to transfer a single message
995  * @master: controller master interface
996  * @msg: pointer to spi message
997  */
998 static int stm32_spi_prepare_msg(struct spi_master *master,
999                                  struct spi_message *msg)
1000 {
1001         struct stm32_spi *spi = spi_master_get_devdata(master);
1002         struct spi_device *spi_dev = msg->spi;
1003         struct device_node *np = spi_dev->dev.of_node;
1004         unsigned long flags;
1005         u32 clrb = 0, setb = 0;
1006
1007         /* SPI slave device may need time between data frames */
1008         spi->cur_midi = 0;
1009         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1010                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1011
1012         if (spi_dev->mode & SPI_CPOL)
1013                 setb |= spi->cfg->regs->cpol.mask;
1014         else
1015                 clrb |= spi->cfg->regs->cpol.mask;
1016
1017         if (spi_dev->mode & SPI_CPHA)
1018                 setb |= spi->cfg->regs->cpha.mask;
1019         else
1020                 clrb |= spi->cfg->regs->cpha.mask;
1021
1022         if (spi_dev->mode & SPI_LSB_FIRST)
1023                 setb |= spi->cfg->regs->lsb_first.mask;
1024         else
1025                 clrb |= spi->cfg->regs->lsb_first.mask;
1026
1027         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1028                 spi_dev->mode & SPI_CPOL,
1029                 spi_dev->mode & SPI_CPHA,
1030                 spi_dev->mode & SPI_LSB_FIRST,
1031                 spi_dev->mode & SPI_CS_HIGH);
1032
1033         spin_lock_irqsave(&spi->lock, flags);
1034
1035         /* CPOL, CPHA and LSB FIRST bits have common register */
1036         if (clrb || setb)
1037                 writel_relaxed(
1038                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1039                          ~clrb) | setb,
1040                         spi->base + spi->cfg->regs->cpol.reg);
1041
1042         spin_unlock_irqrestore(&spi->lock, flags);
1043
1044         return 0;
1045 }
1046
1047 /**
1048  * stm32f4_spi_dma_tx_cb - dma callback
1049  * @data: pointer to the spi controller data structure
1050  *
1051  * DMA callback is called when the transfer is complete for DMA TX channel.
1052  */
1053 static void stm32f4_spi_dma_tx_cb(void *data)
1054 {
1055         struct stm32_spi *spi = data;
1056
1057         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1058                 spi_finalize_current_transfer(spi->master);
1059                 stm32f4_spi_disable(spi);
1060         }
1061 }
1062
1063 /**
1064  * stm32f4_spi_dma_rx_cb - dma callback
1065  * @data: pointer to the spi controller data structure
1066  *
1067  * DMA callback is called when the transfer is complete for DMA RX channel.
1068  */
1069 static void stm32f4_spi_dma_rx_cb(void *data)
1070 {
1071         struct stm32_spi *spi = data;
1072
1073         spi_finalize_current_transfer(spi->master);
1074         stm32f4_spi_disable(spi);
1075 }
1076
1077 /**
1078  * stm32h7_spi_dma_cb - dma callback
1079  * @data: pointer to the spi controller data structure
1080  *
1081  * DMA callback is called when the transfer is complete or when an error
1082  * occurs. If the transfer is complete, EOT flag is raised.
1083  */
1084 static void stm32h7_spi_dma_cb(void *data)
1085 {
1086         struct stm32_spi *spi = data;
1087         unsigned long flags;
1088         u32 sr;
1089
1090         spin_lock_irqsave(&spi->lock, flags);
1091
1092         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1093
1094         spin_unlock_irqrestore(&spi->lock, flags);
1095
1096         if (!(sr & STM32H7_SPI_SR_EOT))
1097                 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1098
1099         /* Now wait for EOT, or SUSP or OVR in case of error */
1100 }
1101
1102 /**
1103  * stm32_spi_dma_config - configure dma slave channel depending on current
1104  *                        transfer bits_per_word.
1105  * @spi: pointer to the spi controller data structure
1106  * @dma_conf: pointer to the dma_slave_config structure
1107  * @dir: direction of the dma transfer
1108  */
1109 static void stm32_spi_dma_config(struct stm32_spi *spi,
1110                                  struct dma_slave_config *dma_conf,
1111                                  enum dma_transfer_direction dir)
1112 {
1113         enum dma_slave_buswidth buswidth;
1114         u32 maxburst;
1115
1116         if (spi->cur_bpw <= 8)
1117                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118         else if (spi->cur_bpw <= 16)
1119                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1120         else
1121                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1122
1123         if (spi->cfg->has_fifo) {
1124                 /* Valid for DMA Half or Full Fifo threshold */
1125                 if (spi->cur_fthlv == 2)
1126                         maxburst = 1;
1127                 else
1128                         maxburst = spi->cur_fthlv;
1129         } else {
1130                 maxburst = 1;
1131         }
1132
1133         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1134         dma_conf->direction = dir;
1135         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1136                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1137                 dma_conf->src_addr_width = buswidth;
1138                 dma_conf->src_maxburst = maxburst;
1139
1140                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1141                         buswidth, maxburst);
1142         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1143                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1144                 dma_conf->dst_addr_width = buswidth;
1145                 dma_conf->dst_maxburst = maxburst;
1146
1147                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1148                         buswidth, maxburst);
1149         }
1150 }
1151
1152 /**
1153  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1154  *                                interrupts
1155  * @spi: pointer to the spi controller data structure
1156  *
1157  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1158  * in progress.
1159  */
1160 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1161 {
1162         unsigned long flags;
1163         u32 cr2 = 0;
1164
1165         /* Enable the interrupts relative to the current communication mode */
1166         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1167                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1168         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1169                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1170                                 spi->cur_comm == SPI_3WIRE_RX) {
1171                 /* In transmit-only mode, the OVR flag is set in the SR register
1172                  * since the received data are never read. Therefore set OVR
1173                  * interrupt only when rx buffer is available.
1174                  */
1175                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1176         } else {
1177                 return -EINVAL;
1178         }
1179
1180         spin_lock_irqsave(&spi->lock, flags);
1181
1182         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1183
1184         stm32_spi_enable(spi);
1185
1186         /* starting data transfer when buffer is loaded */
1187         if (spi->tx_buf)
1188                 stm32f4_spi_write_tx(spi);
1189
1190         spin_unlock_irqrestore(&spi->lock, flags);
1191
1192         return 1;
1193 }
1194
1195 /**
1196  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1197  *                                interrupts
1198  * @spi: pointer to the spi controller data structure
1199  *
1200  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1201  * in progress.
1202  */
1203 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1204 {
1205         unsigned long flags;
1206         u32 ier = 0;
1207
1208         /* Enable the interrupts relative to the current communication mode */
1209         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1210                 ier |= STM32H7_SPI_IER_DXPIE;
1211         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1212                 ier |= STM32H7_SPI_IER_TXPIE;
1213         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1214                 ier |= STM32H7_SPI_IER_RXPIE;
1215
1216         /* Enable the interrupts relative to the end of transfer */
1217         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1218                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1219
1220         spin_lock_irqsave(&spi->lock, flags);
1221
1222         stm32_spi_enable(spi);
1223
1224         /* Be sure to have data in fifo before starting data transfer */
1225         if (spi->tx_buf)
1226                 stm32h7_spi_write_txfifo(spi);
1227
1228         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1229
1230         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1231
1232         spin_unlock_irqrestore(&spi->lock, flags);
1233
1234         return 1;
1235 }
1236
1237 /**
1238  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1239  *                                      transfer using DMA
1240  * @spi: pointer to the spi controller data structure
1241  */
1242 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1243 {
1244         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1245         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1246             spi->cur_comm == SPI_FULL_DUPLEX) {
1247                 /*
1248                  * In transmit-only mode, the OVR flag is set in the SR register
1249                  * since the received data are never read. Therefore set OVR
1250                  * interrupt only when rx buffer is available.
1251                  */
1252                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1253         }
1254
1255         stm32_spi_enable(spi);
1256 }
1257
1258 /**
1259  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1260  *                                      transfer using DMA
1261  * @spi: pointer to the spi controller data structure
1262  */
1263 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1264 {
1265         /* Enable the interrupts relative to the end of transfer */
1266         stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1267                                                  STM32H7_SPI_IER_TXTFIE |
1268                                                  STM32H7_SPI_IER_OVRIE |
1269                                                  STM32H7_SPI_IER_MODFIE);
1270
1271         stm32_spi_enable(spi);
1272
1273         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1274 }
1275
1276 /**
1277  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1278  * @spi: pointer to the spi controller data structure
1279  * @xfer: pointer to the spi_transfer structure
1280  *
1281  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1282  * in progress.
1283  */
1284 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1285                                       struct spi_transfer *xfer)
1286 {
1287         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1288         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1289         unsigned long flags;
1290
1291         spin_lock_irqsave(&spi->lock, flags);
1292
1293         rx_dma_desc = NULL;
1294         if (spi->rx_buf && spi->dma_rx) {
1295                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1296                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1297
1298                 /* Enable Rx DMA request */
1299                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1300                                    spi->cfg->regs->dma_rx_en.mask);
1301
1302                 rx_dma_desc = dmaengine_prep_slave_sg(
1303                                         spi->dma_rx, xfer->rx_sg.sgl,
1304                                         xfer->rx_sg.nents,
1305                                         rx_dma_conf.direction,
1306                                         DMA_PREP_INTERRUPT);
1307         }
1308
1309         tx_dma_desc = NULL;
1310         if (spi->tx_buf && spi->dma_tx) {
1311                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1312                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1313
1314                 tx_dma_desc = dmaengine_prep_slave_sg(
1315                                         spi->dma_tx, xfer->tx_sg.sgl,
1316                                         xfer->tx_sg.nents,
1317                                         tx_dma_conf.direction,
1318                                         DMA_PREP_INTERRUPT);
1319         }
1320
1321         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1322             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1323                 goto dma_desc_error;
1324
1325         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1326                 goto dma_desc_error;
1327
1328         if (rx_dma_desc) {
1329                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1330                 rx_dma_desc->callback_param = spi;
1331
1332                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1333                         dev_err(spi->dev, "Rx DMA submit failed\n");
1334                         goto dma_desc_error;
1335                 }
1336                 /* Enable Rx DMA channel */
1337                 dma_async_issue_pending(spi->dma_rx);
1338         }
1339
1340         if (tx_dma_desc) {
1341                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1342                     spi->cur_comm == SPI_3WIRE_TX) {
1343                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1344                         tx_dma_desc->callback_param = spi;
1345                 }
1346
1347                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1348                         dev_err(spi->dev, "Tx DMA submit failed\n");
1349                         goto dma_submit_error;
1350                 }
1351                 /* Enable Tx DMA channel */
1352                 dma_async_issue_pending(spi->dma_tx);
1353
1354                 /* Enable Tx DMA request */
1355                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1356                                    spi->cfg->regs->dma_tx_en.mask);
1357         }
1358
1359         spi->cfg->transfer_one_dma_start(spi);
1360
1361         spin_unlock_irqrestore(&spi->lock, flags);
1362
1363         return 1;
1364
1365 dma_submit_error:
1366         if (spi->dma_rx)
1367                 dmaengine_terminate_all(spi->dma_rx);
1368
1369 dma_desc_error:
1370         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1371                            spi->cfg->regs->dma_rx_en.mask);
1372
1373         spin_unlock_irqrestore(&spi->lock, flags);
1374
1375         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1376
1377         spi->cur_usedma = false;
1378         return spi->cfg->transfer_one_irq(spi);
1379 }
1380
1381 /**
1382  * stm32f4_spi_set_bpw - Configure bits per word
1383  * @spi: pointer to the spi controller data structure
1384  */
1385 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1386 {
1387         if (spi->cur_bpw == 16)
1388                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1389         else
1390                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1391 }
1392
1393 /**
1394  * stm32h7_spi_set_bpw - configure bits per word
1395  * @spi: pointer to the spi controller data structure
1396  */
1397 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1398 {
1399         u32 bpw, fthlv;
1400         u32 cfg1_clrb = 0, cfg1_setb = 0;
1401
1402         bpw = spi->cur_bpw - 1;
1403
1404         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1405         cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1406                      STM32H7_SPI_CFG1_DSIZE;
1407
1408         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1409         fthlv = spi->cur_fthlv - 1;
1410
1411         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1412         cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1413                      STM32H7_SPI_CFG1_FTHLV;
1414
1415         writel_relaxed(
1416                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1417                  ~cfg1_clrb) | cfg1_setb,
1418                 spi->base + STM32H7_SPI_CFG1);
1419 }
1420
1421 /**
1422  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1423  * @spi: pointer to the spi controller data structure
1424  * @mbrdiv: baud rate divisor value
1425  */
1426 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1427 {
1428         u32 clrb = 0, setb = 0;
1429
1430         clrb |= spi->cfg->regs->br.mask;
1431         setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1432                 spi->cfg->regs->br.mask;
1433
1434         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1435                         ~clrb) | setb,
1436                        spi->base + spi->cfg->regs->br.reg);
1437 }
1438
1439 /**
1440  * stm32_spi_communication_type - return transfer communication type
1441  * @spi_dev: pointer to the spi device
1442  * @transfer: pointer to spi transfer
1443  */
1444 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1445                                                  struct spi_transfer *transfer)
1446 {
1447         unsigned int type = SPI_FULL_DUPLEX;
1448
1449         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1450                 /*
1451                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1452                  * is forbidden and unvalidated by SPI subsystem so depending
1453                  * on the valid buffer, we can determine the direction of the
1454                  * transfer.
1455                  */
1456                 if (!transfer->tx_buf)
1457                         type = SPI_3WIRE_RX;
1458                 else
1459                         type = SPI_3WIRE_TX;
1460         } else {
1461                 if (!transfer->tx_buf)
1462                         type = SPI_SIMPLEX_RX;
1463                 else if (!transfer->rx_buf)
1464                         type = SPI_SIMPLEX_TX;
1465         }
1466
1467         return type;
1468 }
1469
1470 /**
1471  * stm32f4_spi_set_mode - configure communication mode
1472  * @spi: pointer to the spi controller data structure
1473  * @comm_type: type of communication to configure
1474  */
1475 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1476 {
1477         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1478                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1479                                         STM32F4_SPI_CR1_BIDIMODE |
1480                                         STM32F4_SPI_CR1_BIDIOE);
1481         } else if (comm_type == SPI_FULL_DUPLEX ||
1482                                 comm_type == SPI_SIMPLEX_RX) {
1483                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1484                                         STM32F4_SPI_CR1_BIDIMODE |
1485                                         STM32F4_SPI_CR1_BIDIOE);
1486         } else if (comm_type == SPI_3WIRE_RX) {
1487                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1488                                         STM32F4_SPI_CR1_BIDIMODE);
1489                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1490                                         STM32F4_SPI_CR1_BIDIOE);
1491         } else {
1492                 return -EINVAL;
1493         }
1494
1495         return 0;
1496 }
1497
1498 /**
1499  * stm32h7_spi_set_mode - configure communication mode
1500  * @spi: pointer to the spi controller data structure
1501  * @comm_type: type of communication to configure
1502  */
1503 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1504 {
1505         u32 mode;
1506         u32 cfg2_clrb = 0, cfg2_setb = 0;
1507
1508         if (comm_type == SPI_3WIRE_RX) {
1509                 mode = STM32H7_SPI_HALF_DUPLEX;
1510                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1511         } else if (comm_type == SPI_3WIRE_TX) {
1512                 mode = STM32H7_SPI_HALF_DUPLEX;
1513                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514         } else if (comm_type == SPI_SIMPLEX_RX) {
1515                 mode = STM32H7_SPI_SIMPLEX_RX;
1516         } else if (comm_type == SPI_SIMPLEX_TX) {
1517                 mode = STM32H7_SPI_SIMPLEX_TX;
1518         } else {
1519                 mode = STM32H7_SPI_FULL_DUPLEX;
1520         }
1521
1522         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1523         cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1524                      STM32H7_SPI_CFG2_COMM;
1525
1526         writel_relaxed(
1527                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1528                  ~cfg2_clrb) | cfg2_setb,
1529                 spi->base + STM32H7_SPI_CFG2);
1530
1531         return 0;
1532 }
1533
1534 /**
1535  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1536  *                             consecutive data frames in master mode
1537  * @spi: pointer to the spi controller data structure
1538  * @len: transfer len
1539  */
1540 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1541 {
1542         u32 cfg2_clrb = 0, cfg2_setb = 0;
1543
1544         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1545         if ((len > 1) && (spi->cur_midi > 0)) {
1546                 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1547                 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1548                                (u32)STM32H7_SPI_CFG2_MIDI >>
1549                                STM32H7_SPI_CFG2_MIDI_SHIFT);
1550
1551                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1552                         sck_period_ns, midi, midi * sck_period_ns);
1553                 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1554                              STM32H7_SPI_CFG2_MIDI;
1555         }
1556
1557         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1558                         ~cfg2_clrb) | cfg2_setb,
1559                        spi->base + STM32H7_SPI_CFG2);
1560 }
1561
1562 /**
1563  * stm32h7_spi_number_of_data - configure number of data at current transfer
1564  * @spi: pointer to the spi controller data structure
1565  * @nb_words: transfer length (in words)
1566  */
1567 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1568 {
1569         u32 cr2_clrb = 0, cr2_setb = 0;
1570
1571         if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1572                          STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1573                 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1574                 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1575                 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1576                                 ~cr2_clrb) | cr2_setb,
1577                                spi->base + STM32H7_SPI_CR2);
1578         } else {
1579                 return -EMSGSIZE;
1580         }
1581
1582         return 0;
1583 }
1584
1585 /**
1586  * stm32_spi_transfer_one_setup - common setup to transfer a single
1587  *                                spi_transfer either using DMA or
1588  *                                interrupts.
1589  * @spi: pointer to the spi controller data structure
1590  * @spi_dev: pointer to the spi device
1591  * @transfer: pointer to spi transfer
1592  */
1593 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1594                                         struct spi_device *spi_dev,
1595                                         struct spi_transfer *transfer)
1596 {
1597         unsigned long flags;
1598         unsigned int comm_type;
1599         int nb_words, ret = 0;
1600         int mbr;
1601
1602         spin_lock_irqsave(&spi->lock, flags);
1603
1604         spi->cur_xferlen = transfer->len;
1605
1606         spi->cur_bpw = transfer->bits_per_word;
1607         spi->cfg->set_bpw(spi);
1608
1609         /* Update spi->cur_speed with real clock speed */
1610         mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1611                                     spi->cfg->baud_rate_div_min,
1612                                     spi->cfg->baud_rate_div_max);
1613         if (mbr < 0) {
1614                 ret = mbr;
1615                 goto out;
1616         }
1617
1618         transfer->speed_hz = spi->cur_speed;
1619         stm32_spi_set_mbr(spi, mbr);
1620
1621         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1622         ret = spi->cfg->set_mode(spi, comm_type);
1623         if (ret < 0)
1624                 goto out;
1625
1626         spi->cur_comm = comm_type;
1627
1628         if (spi->cfg->set_data_idleness)
1629                 spi->cfg->set_data_idleness(spi, transfer->len);
1630
1631         if (spi->cur_bpw <= 8)
1632                 nb_words = transfer->len;
1633         else if (spi->cur_bpw <= 16)
1634                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1635         else
1636                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1637
1638         if (spi->cfg->set_number_of_data) {
1639                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1640                 if (ret < 0)
1641                         goto out;
1642         }
1643
1644         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1645                 spi->cur_comm);
1646         dev_dbg(spi->dev,
1647                 "data frame of %d-bit, data packet of %d data frames\n",
1648                 spi->cur_bpw, spi->cur_fthlv);
1649         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1650         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1651                 spi->cur_xferlen, nb_words);
1652         dev_dbg(spi->dev, "dma %s\n",
1653                 (spi->cur_usedma) ? "enabled" : "disabled");
1654
1655 out:
1656         spin_unlock_irqrestore(&spi->lock, flags);
1657
1658         return ret;
1659 }
1660
1661 /**
1662  * stm32_spi_transfer_one - transfer a single spi_transfer
1663  * @master: controller master interface
1664  * @spi_dev: pointer to the spi device
1665  * @transfer: pointer to spi transfer
1666  *
1667  * It must return 0 if the transfer is finished or 1 if the transfer is still
1668  * in progress.
1669  */
1670 static int stm32_spi_transfer_one(struct spi_master *master,
1671                                   struct spi_device *spi_dev,
1672                                   struct spi_transfer *transfer)
1673 {
1674         struct stm32_spi *spi = spi_master_get_devdata(master);
1675         int ret;
1676
1677         /* Don't do anything on 0 bytes transfers */
1678         if (transfer->len == 0)
1679                 return 0;
1680
1681         spi->tx_buf = transfer->tx_buf;
1682         spi->rx_buf = transfer->rx_buf;
1683         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1684         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1685
1686         spi->cur_usedma = (master->can_dma &&
1687                            master->can_dma(master, spi_dev, transfer));
1688
1689         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1690         if (ret) {
1691                 dev_err(spi->dev, "SPI transfer setup failed\n");
1692                 return ret;
1693         }
1694
1695         if (spi->cur_usedma)
1696                 return stm32_spi_transfer_one_dma(spi, transfer);
1697         else
1698                 return spi->cfg->transfer_one_irq(spi);
1699 }
1700
1701 /**
1702  * stm32_spi_unprepare_msg - relax the hardware
1703  * @master: controller master interface
1704  * @msg: pointer to the spi message
1705  */
1706 static int stm32_spi_unprepare_msg(struct spi_master *master,
1707                                    struct spi_message *msg)
1708 {
1709         struct stm32_spi *spi = spi_master_get_devdata(master);
1710
1711         spi->cfg->disable(spi);
1712
1713         return 0;
1714 }
1715
1716 /**
1717  * stm32f4_spi_config - Configure SPI controller as SPI master
1718  * @spi: pointer to the spi controller data structure
1719  */
1720 static int stm32f4_spi_config(struct stm32_spi *spi)
1721 {
1722         unsigned long flags;
1723
1724         spin_lock_irqsave(&spi->lock, flags);
1725
1726         /* Ensure I2SMOD bit is kept cleared */
1727         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1728                            STM32F4_SPI_I2SCFGR_I2SMOD);
1729
1730         /*
1731          * - SS input value high
1732          * - transmitter half duplex direction
1733          * - Set the master mode (default Motorola mode)
1734          * - Consider 1 master/n slaves configuration and
1735          *   SS input value is determined by the SSI bit
1736          */
1737         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1738                                                  STM32F4_SPI_CR1_BIDIOE |
1739                                                  STM32F4_SPI_CR1_MSTR |
1740                                                  STM32F4_SPI_CR1_SSM);
1741
1742         spin_unlock_irqrestore(&spi->lock, flags);
1743
1744         return 0;
1745 }
1746
1747 /**
1748  * stm32h7_spi_config - Configure SPI controller as SPI master
1749  * @spi: pointer to the spi controller data structure
1750  */
1751 static int stm32h7_spi_config(struct stm32_spi *spi)
1752 {
1753         unsigned long flags;
1754
1755         spin_lock_irqsave(&spi->lock, flags);
1756
1757         /* Ensure I2SMOD bit is kept cleared */
1758         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1759                            STM32H7_SPI_I2SCFGR_I2SMOD);
1760
1761         /*
1762          * - SS input value high
1763          * - transmitter half duplex direction
1764          * - automatic communication suspend when RX-Fifo is full
1765          */
1766         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1767                                                  STM32H7_SPI_CR1_HDDIR |
1768                                                  STM32H7_SPI_CR1_MASRX);
1769
1770         /*
1771          * - Set the master mode (default Motorola mode)
1772          * - Consider 1 master/n slaves configuration and
1773          *   SS input value is determined by the SSI bit
1774          * - keep control of all associated GPIOs
1775          */
1776         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1777                                                   STM32H7_SPI_CFG2_SSM |
1778                                                   STM32H7_SPI_CFG2_AFCNTR);
1779
1780         spin_unlock_irqrestore(&spi->lock, flags);
1781
1782         return 0;
1783 }
1784
1785 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1786         .regs = &stm32f4_spi_regspec,
1787         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1788         .disable = stm32f4_spi_disable,
1789         .config = stm32f4_spi_config,
1790         .set_bpw = stm32f4_spi_set_bpw,
1791         .set_mode = stm32f4_spi_set_mode,
1792         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1793         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1794         .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1795         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1796         .irq_handler_event = stm32f4_spi_irq_event,
1797         .irq_handler_thread = stm32f4_spi_irq_thread,
1798         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1799         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1800         .has_fifo = false,
1801 };
1802
1803 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1804         .regs = &stm32h7_spi_regspec,
1805         .get_fifo_size = stm32h7_spi_get_fifo_size,
1806         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1807         .disable = stm32h7_spi_disable,
1808         .config = stm32h7_spi_config,
1809         .set_bpw = stm32h7_spi_set_bpw,
1810         .set_mode = stm32h7_spi_set_mode,
1811         .set_data_idleness = stm32h7_spi_data_idleness,
1812         .set_number_of_data = stm32h7_spi_number_of_data,
1813         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1814         .dma_rx_cb = stm32h7_spi_dma_cb,
1815         .dma_tx_cb = stm32h7_spi_dma_cb,
1816         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1817         .irq_handler_thread = stm32h7_spi_irq_thread,
1818         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1819         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1820         .has_fifo = true,
1821 };
1822
1823 static const struct of_device_id stm32_spi_of_match[] = {
1824         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1826         {},
1827 };
1828 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1829
1830 static int stm32_spi_probe(struct platform_device *pdev)
1831 {
1832         struct spi_master *master;
1833         struct stm32_spi *spi;
1834         struct resource *res;
1835         int ret;
1836
1837         master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1838         if (!master) {
1839                 dev_err(&pdev->dev, "spi master allocation failed\n");
1840                 return -ENOMEM;
1841         }
1842         platform_set_drvdata(pdev, master);
1843
1844         spi = spi_master_get_devdata(master);
1845         spi->dev = &pdev->dev;
1846         spi->master = master;
1847         spin_lock_init(&spi->lock);
1848
1849         spi->cfg = (const struct stm32_spi_cfg *)
1850                 of_match_device(pdev->dev.driver->of_match_table,
1851                                 &pdev->dev)->data;
1852
1853         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854         spi->base = devm_ioremap_resource(&pdev->dev, res);
1855         if (IS_ERR(spi->base))
1856                 return PTR_ERR(spi->base);
1857
1858         spi->phys_addr = (dma_addr_t)res->start;
1859
1860         spi->irq = platform_get_irq(pdev, 0);
1861         if (spi->irq <= 0)
1862                 return dev_err_probe(&pdev->dev, spi->irq,
1863                                      "failed to get irq\n");
1864
1865         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1866                                         spi->cfg->irq_handler_event,
1867                                         spi->cfg->irq_handler_thread,
1868                                         IRQF_ONESHOT, pdev->name, master);
1869         if (ret) {
1870                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1871                         ret);
1872                 return ret;
1873         }
1874
1875         spi->clk = devm_clk_get(&pdev->dev, NULL);
1876         if (IS_ERR(spi->clk)) {
1877                 ret = PTR_ERR(spi->clk);
1878                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1879                 return ret;
1880         }
1881
1882         ret = clk_prepare_enable(spi->clk);
1883         if (ret) {
1884                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1885                 return ret;
1886         }
1887         spi->clk_rate = clk_get_rate(spi->clk);
1888         if (!spi->clk_rate) {
1889                 dev_err(&pdev->dev, "clk rate = 0\n");
1890                 ret = -EINVAL;
1891                 goto err_clk_disable;
1892         }
1893
1894         spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1895         if (!IS_ERR(spi->rst)) {
1896                 reset_control_assert(spi->rst);
1897                 udelay(2);
1898                 reset_control_deassert(spi->rst);
1899         }
1900
1901         if (spi->cfg->has_fifo)
1902                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1903
1904         ret = spi->cfg->config(spi);
1905         if (ret) {
1906                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1907                         ret);
1908                 goto err_clk_disable;
1909         }
1910
1911         master->dev.of_node = pdev->dev.of_node;
1912         master->auto_runtime_pm = true;
1913         master->bus_num = pdev->id;
1914         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1915                             SPI_3WIRE;
1916         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1917         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1918         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1919         master->use_gpio_descriptors = true;
1920         master->prepare_message = stm32_spi_prepare_msg;
1921         master->transfer_one = stm32_spi_transfer_one;
1922         master->unprepare_message = stm32_spi_unprepare_msg;
1923         master->flags = SPI_MASTER_MUST_TX;
1924
1925         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1926         if (IS_ERR(spi->dma_tx)) {
1927                 ret = PTR_ERR(spi->dma_tx);
1928                 spi->dma_tx = NULL;
1929                 if (ret == -EPROBE_DEFER)
1930                         goto err_clk_disable;
1931
1932                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1933         } else {
1934                 master->dma_tx = spi->dma_tx;
1935         }
1936
1937         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1938         if (IS_ERR(spi->dma_rx)) {
1939                 ret = PTR_ERR(spi->dma_rx);
1940                 spi->dma_rx = NULL;
1941                 if (ret == -EPROBE_DEFER)
1942                         goto err_dma_release;
1943
1944                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1945         } else {
1946                 master->dma_rx = spi->dma_rx;
1947         }
1948
1949         if (spi->dma_tx || spi->dma_rx)
1950                 master->can_dma = stm32_spi_can_dma;
1951
1952         pm_runtime_set_active(&pdev->dev);
1953         pm_runtime_get_noresume(&pdev->dev);
1954         pm_runtime_enable(&pdev->dev);
1955
1956         ret = spi_register_master(master);
1957         if (ret) {
1958                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1959                         ret);
1960                 goto err_pm_disable;
1961         }
1962
1963         if (!master->cs_gpiods) {
1964                 dev_err(&pdev->dev, "no CS gpios available\n");
1965                 ret = -EINVAL;
1966                 goto err_pm_disable;
1967         }
1968
1969         dev_info(&pdev->dev, "driver initialized\n");
1970
1971         return 0;
1972
1973 err_pm_disable:
1974         pm_runtime_disable(&pdev->dev);
1975         pm_runtime_put_noidle(&pdev->dev);
1976         pm_runtime_set_suspended(&pdev->dev);
1977 err_dma_release:
1978         if (spi->dma_tx)
1979                 dma_release_channel(spi->dma_tx);
1980         if (spi->dma_rx)
1981                 dma_release_channel(spi->dma_rx);
1982 err_clk_disable:
1983         clk_disable_unprepare(spi->clk);
1984
1985         return ret;
1986 }
1987
1988 static int stm32_spi_remove(struct platform_device *pdev)
1989 {
1990         struct spi_master *master = platform_get_drvdata(pdev);
1991         struct stm32_spi *spi = spi_master_get_devdata(master);
1992
1993         pm_runtime_get_sync(&pdev->dev);
1994
1995         spi_unregister_master(master);
1996         spi->cfg->disable(spi);
1997
1998         pm_runtime_disable(&pdev->dev);
1999         pm_runtime_put_noidle(&pdev->dev);
2000         pm_runtime_set_suspended(&pdev->dev);
2001         if (master->dma_tx)
2002                 dma_release_channel(master->dma_tx);
2003         if (master->dma_rx)
2004                 dma_release_channel(master->dma_rx);
2005
2006         clk_disable_unprepare(spi->clk);
2007
2008
2009         pinctrl_pm_select_sleep_state(&pdev->dev);
2010
2011         return 0;
2012 }
2013
2014 #ifdef CONFIG_PM
2015 static int stm32_spi_runtime_suspend(struct device *dev)
2016 {
2017         struct spi_master *master = dev_get_drvdata(dev);
2018         struct stm32_spi *spi = spi_master_get_devdata(master);
2019
2020         clk_disable_unprepare(spi->clk);
2021
2022         return pinctrl_pm_select_sleep_state(dev);
2023 }
2024
2025 static int stm32_spi_runtime_resume(struct device *dev)
2026 {
2027         struct spi_master *master = dev_get_drvdata(dev);
2028         struct stm32_spi *spi = spi_master_get_devdata(master);
2029         int ret;
2030
2031         ret = pinctrl_pm_select_default_state(dev);
2032         if (ret)
2033                 return ret;
2034
2035         return clk_prepare_enable(spi->clk);
2036 }
2037 #endif
2038
2039 #ifdef CONFIG_PM_SLEEP
2040 static int stm32_spi_suspend(struct device *dev)
2041 {
2042         struct spi_master *master = dev_get_drvdata(dev);
2043         int ret;
2044
2045         ret = spi_master_suspend(master);
2046         if (ret)
2047                 return ret;
2048
2049         return pm_runtime_force_suspend(dev);
2050 }
2051
2052 static int stm32_spi_resume(struct device *dev)
2053 {
2054         struct spi_master *master = dev_get_drvdata(dev);
2055         struct stm32_spi *spi = spi_master_get_devdata(master);
2056         int ret;
2057
2058         ret = pm_runtime_force_resume(dev);
2059         if (ret)
2060                 return ret;
2061
2062         ret = spi_master_resume(master);
2063         if (ret) {
2064                 clk_disable_unprepare(spi->clk);
2065                 return ret;
2066         }
2067
2068         ret = pm_runtime_get_sync(dev);
2069         if (ret < 0) {
2070                 pm_runtime_put_noidle(dev);
2071                 dev_err(dev, "Unable to power device:%d\n", ret);
2072                 return ret;
2073         }
2074
2075         spi->cfg->config(spi);
2076
2077         pm_runtime_mark_last_busy(dev);
2078         pm_runtime_put_autosuspend(dev);
2079
2080         return 0;
2081 }
2082 #endif
2083
2084 static const struct dev_pm_ops stm32_spi_pm_ops = {
2085         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2086         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2087                            stm32_spi_runtime_resume, NULL)
2088 };
2089
2090 static struct platform_driver stm32_spi_driver = {
2091         .probe = stm32_spi_probe,
2092         .remove = stm32_spi_remove,
2093         .driver = {
2094                 .name = DRIVER_NAME,
2095                 .pm = &stm32_spi_pm_ops,
2096                 .of_match_table = stm32_spi_of_match,
2097         },
2098 };
2099
2100 module_platform_driver(stm32_spi_driver);
2101
2102 MODULE_ALIAS("platform:" DRIVER_NAME);
2103 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2104 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2105 MODULE_LICENSE("GPL v2");