GNU Linux-libre 5.4.200-gnu1
[releases.git] / sound / soc / stm / stm32_sai_sub.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/regmap.h>
16
17 #include <sound/asoundef.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21
22 #include "stm32_sai.h"
23
24 #define SAI_FREE_PROTOCOL       0x0
25 #define SAI_SPDIF_PROTOCOL      0x1
26
27 #define SAI_SLOT_SIZE_AUTO      0x0
28 #define SAI_SLOT_SIZE_16        0x1
29 #define SAI_SLOT_SIZE_32        0x2
30
31 #define SAI_DATASIZE_8          0x2
32 #define SAI_DATASIZE_10         0x3
33 #define SAI_DATASIZE_16         0x4
34 #define SAI_DATASIZE_20         0x5
35 #define SAI_DATASIZE_24         0x6
36 #define SAI_DATASIZE_32         0x7
37
38 #define STM_SAI_DAI_NAME_SIZE   15
39
40 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
41 #define STM_SAI_IS_CAPTURE(ip)  ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
42
43 #define STM_SAI_A_ID            0x0
44 #define STM_SAI_B_ID            0x1
45
46 #define STM_SAI_IS_SUB_A(x)     ((x)->id == STM_SAI_A_ID)
47 #define STM_SAI_IS_SUB_B(x)     ((x)->id == STM_SAI_B_ID)
48 #define STM_SAI_BLOCK_NAME(x)   (((x)->id == STM_SAI_A_ID) ? "A" : "B")
49
50 #define SAI_SYNC_NONE           0x0
51 #define SAI_SYNC_INTERNAL       0x1
52 #define SAI_SYNC_EXTERNAL       0x2
53
54 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)   ((ip)->spdif)
55 #define STM_SAI_HAS_SPDIF(x)    ((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_PDM(x)      ((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
58
59 #define SAI_IEC60958_BLOCK_FRAMES       192
60 #define SAI_IEC60958_STATUS_BYTES       24
61
62 #define SAI_MCLK_NAME_LEN               32
63 #define SAI_RATE_11K                    11025
64
65 /**
66  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
67  * @pdev: device data pointer
68  * @regmap: SAI register map pointer
69  * @regmap_config: SAI sub block register map configuration pointer
70  * @dma_params: dma configuration data for rx or tx channel
71  * @cpu_dai_drv: DAI driver data pointer
72  * @cpu_dai: DAI runtime data pointer
73  * @substream: PCM substream data pointer
74  * @pdata: SAI block parent data pointer
75  * @np_sync_provider: synchronization provider node
76  * @sai_ck: kernel clock feeding the SAI clock generator
77  * @sai_mclk: master clock from SAI mclk provider
78  * @phys_addr: SAI registers physical base address
79  * @mclk_rate: SAI block master clock frequency (Hz). set at init
80  * @id: SAI sub block id corresponding to sub-block A or B
81  * @dir: SAI block direction (playback or capture). set at init
82  * @master: SAI block mode flag. (true=master, false=slave) set at init
83  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
84  * @fmt: SAI block format. relevant only for custom protocols. set at init
85  * @sync: SAI block synchronization mode. (none, internal or external)
86  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
87  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
88  * @fs_length: frame synchronization length. depends on protocol settings
89  * @slots: rx or tx slot number
90  * @slot_width: rx or tx slot width in bits
91  * @slot_mask: rx or tx active slots mask. set at init or at runtime
92  * @data_size: PCM data width. corresponds to PCM substream width.
93  * @spdif_frm_cnt: S/PDIF playback frame counter
94  * @iec958: iec958 data
95  * @ctrl_lock: control lock
96  * @irq_lock: prevent race condition with IRQ
97  */
98 struct stm32_sai_sub_data {
99         struct platform_device *pdev;
100         struct regmap *regmap;
101         const struct regmap_config *regmap_config;
102         struct snd_dmaengine_dai_dma_data dma_params;
103         struct snd_soc_dai_driver cpu_dai_drv;
104         struct snd_soc_dai *cpu_dai;
105         struct snd_pcm_substream *substream;
106         struct stm32_sai_data *pdata;
107         struct device_node *np_sync_provider;
108         struct clk *sai_ck;
109         struct clk *sai_mclk;
110         dma_addr_t phys_addr;
111         unsigned int mclk_rate;
112         unsigned int id;
113         int dir;
114         bool master;
115         bool spdif;
116         int fmt;
117         int sync;
118         int synco;
119         int synci;
120         int fs_length;
121         int slots;
122         int slot_width;
123         int slot_mask;
124         int data_size;
125         unsigned int spdif_frm_cnt;
126         struct snd_aes_iec958 iec958;
127         struct mutex ctrl_lock; /* protect resources accessed by controls */
128         spinlock_t irq_lock; /* used to prevent race condition with IRQ */
129 };
130
131 enum stm32_sai_fifo_th {
132         STM_SAI_FIFO_TH_EMPTY,
133         STM_SAI_FIFO_TH_QUARTER,
134         STM_SAI_FIFO_TH_HALF,
135         STM_SAI_FIFO_TH_3_QUARTER,
136         STM_SAI_FIFO_TH_FULL,
137 };
138
139 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
140 {
141         switch (reg) {
142         case STM_SAI_CR1_REGX:
143         case STM_SAI_CR2_REGX:
144         case STM_SAI_FRCR_REGX:
145         case STM_SAI_SLOTR_REGX:
146         case STM_SAI_IMR_REGX:
147         case STM_SAI_SR_REGX:
148         case STM_SAI_CLRFR_REGX:
149         case STM_SAI_DR_REGX:
150         case STM_SAI_PDMCR_REGX:
151         case STM_SAI_PDMLY_REGX:
152                 return true;
153         default:
154                 return false;
155         }
156 }
157
158 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
159 {
160         switch (reg) {
161         case STM_SAI_DR_REGX:
162         case STM_SAI_SR_REGX:
163                 return true;
164         default:
165                 return false;
166         }
167 }
168
169 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
170 {
171         switch (reg) {
172         case STM_SAI_CR1_REGX:
173         case STM_SAI_CR2_REGX:
174         case STM_SAI_FRCR_REGX:
175         case STM_SAI_SLOTR_REGX:
176         case STM_SAI_IMR_REGX:
177         case STM_SAI_CLRFR_REGX:
178         case STM_SAI_DR_REGX:
179         case STM_SAI_PDMCR_REGX:
180         case STM_SAI_PDMLY_REGX:
181                 return true;
182         default:
183                 return false;
184         }
185 }
186
187 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
188                                 unsigned int reg, unsigned int mask,
189                                 unsigned int val)
190 {
191         int ret;
192
193         ret = clk_enable(sai->pdata->pclk);
194         if (ret < 0)
195                 return ret;
196
197         ret = regmap_update_bits(sai->regmap, reg, mask, val);
198
199         clk_disable(sai->pdata->pclk);
200
201         return ret;
202 }
203
204 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
205                                 unsigned int reg, unsigned int mask,
206                                 unsigned int val)
207 {
208         int ret;
209
210         ret = clk_enable(sai->pdata->pclk);
211         if (ret < 0)
212                 return ret;
213
214         ret = regmap_write_bits(sai->regmap, reg, mask, val);
215
216         clk_disable(sai->pdata->pclk);
217
218         return ret;
219 }
220
221 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
222                                 unsigned int reg, unsigned int *val)
223 {
224         int ret;
225
226         ret = clk_enable(sai->pdata->pclk);
227         if (ret < 0)
228                 return ret;
229
230         ret = regmap_read(sai->regmap, reg, val);
231
232         clk_disable(sai->pdata->pclk);
233
234         return ret;
235 }
236
237 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
238         .reg_bits = 32,
239         .reg_stride = 4,
240         .val_bits = 32,
241         .max_register = STM_SAI_DR_REGX,
242         .readable_reg = stm32_sai_sub_readable_reg,
243         .volatile_reg = stm32_sai_sub_volatile_reg,
244         .writeable_reg = stm32_sai_sub_writeable_reg,
245         .fast_io = true,
246         .cache_type = REGCACHE_FLAT,
247 };
248
249 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
250         .reg_bits = 32,
251         .reg_stride = 4,
252         .val_bits = 32,
253         .max_register = STM_SAI_PDMLY_REGX,
254         .readable_reg = stm32_sai_sub_readable_reg,
255         .volatile_reg = stm32_sai_sub_volatile_reg,
256         .writeable_reg = stm32_sai_sub_writeable_reg,
257         .fast_io = true,
258         .cache_type = REGCACHE_FLAT,
259 };
260
261 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
262                                struct snd_ctl_elem_info *uinfo)
263 {
264         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
265         uinfo->count = 1;
266
267         return 0;
268 }
269
270 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
271                               struct snd_ctl_elem_value *uctl)
272 {
273         struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
274
275         mutex_lock(&sai->ctrl_lock);
276         memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
277         mutex_unlock(&sai->ctrl_lock);
278
279         return 0;
280 }
281
282 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
283                               struct snd_ctl_elem_value *uctl)
284 {
285         struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
286
287         mutex_lock(&sai->ctrl_lock);
288         memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
289         mutex_unlock(&sai->ctrl_lock);
290
291         return 0;
292 }
293
294 static const struct snd_kcontrol_new iec958_ctls = {
295         .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
296                         SNDRV_CTL_ELEM_ACCESS_VOLATILE),
297         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
298         .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
299         .info = snd_pcm_iec958_info,
300         .get = snd_pcm_iec958_get,
301         .put = snd_pcm_iec958_put,
302 };
303
304 struct stm32_sai_mclk_data {
305         struct clk_hw hw;
306         unsigned long freq;
307         struct stm32_sai_sub_data *sai_data;
308 };
309
310 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
311 #define STM32_SAI_MAX_CLKS 1
312
313 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
314                                  unsigned long input_rate,
315                                  unsigned long output_rate)
316 {
317         int version = sai->pdata->conf.version;
318         int div;
319
320         div = DIV_ROUND_CLOSEST(input_rate, output_rate);
321         if (div > SAI_XCR1_MCKDIV_MAX(version)) {
322                 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
323                 return -EINVAL;
324         }
325         dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
326
327         if (input_rate % div)
328                 dev_dbg(&sai->pdev->dev,
329                         "Rate not accurate. requested (%ld), actual (%ld)\n",
330                         output_rate, input_rate / div);
331
332         return div;
333 }
334
335 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
336                                  unsigned int div)
337 {
338         int version = sai->pdata->conf.version;
339         int ret, cr1, mask;
340
341         if (div > SAI_XCR1_MCKDIV_MAX(version)) {
342                 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
343                 return -EINVAL;
344         }
345
346         mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
347         cr1 = SAI_XCR1_MCKDIV_SET(div);
348         ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
349         if (ret < 0)
350                 dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
351
352         return ret;
353 }
354
355 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
356                                       unsigned int rate)
357 {
358         struct platform_device *pdev = sai->pdev;
359         struct clk *parent_clk = sai->pdata->clk_x8k;
360         int ret;
361
362         if (!(rate % SAI_RATE_11K))
363                 parent_clk = sai->pdata->clk_x11k;
364
365         ret = clk_set_parent(sai->sai_ck, parent_clk);
366         if (ret)
367                 dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
368                         ret, ret == -EBUSY ?
369                         "Active stream rates conflict\n" : "\n");
370
371         return ret;
372 }
373
374 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
375                                       unsigned long *prate)
376 {
377         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
378         struct stm32_sai_sub_data *sai = mclk->sai_data;
379         int div;
380
381         div = stm32_sai_get_clk_div(sai, *prate, rate);
382         if (div < 0)
383                 return div;
384
385         mclk->freq = *prate / div;
386
387         return mclk->freq;
388 }
389
390 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
391                                                 unsigned long parent_rate)
392 {
393         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
394
395         return mclk->freq;
396 }
397
398 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
399                                    unsigned long parent_rate)
400 {
401         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
402         struct stm32_sai_sub_data *sai = mclk->sai_data;
403         int div, ret;
404
405         div = stm32_sai_get_clk_div(sai, parent_rate, rate);
406         if (div < 0)
407                 return div;
408
409         ret = stm32_sai_set_clk_div(sai, div);
410         if (ret)
411                 return ret;
412
413         mclk->freq = rate;
414
415         return 0;
416 }
417
418 static int stm32_sai_mclk_enable(struct clk_hw *hw)
419 {
420         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
421         struct stm32_sai_sub_data *sai = mclk->sai_data;
422
423         dev_dbg(&sai->pdev->dev, "Enable master clock\n");
424
425         return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
426                                     SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
427 }
428
429 static void stm32_sai_mclk_disable(struct clk_hw *hw)
430 {
431         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
432         struct stm32_sai_sub_data *sai = mclk->sai_data;
433
434         dev_dbg(&sai->pdev->dev, "Disable master clock\n");
435
436         stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
437 }
438
439 static const struct clk_ops mclk_ops = {
440         .enable = stm32_sai_mclk_enable,
441         .disable = stm32_sai_mclk_disable,
442         .recalc_rate = stm32_sai_mclk_recalc_rate,
443         .round_rate = stm32_sai_mclk_round_rate,
444         .set_rate = stm32_sai_mclk_set_rate,
445 };
446
447 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
448 {
449         struct clk_hw *hw;
450         struct stm32_sai_mclk_data *mclk;
451         struct device *dev = &sai->pdev->dev;
452         const char *pname = __clk_get_name(sai->sai_ck);
453         char *mclk_name, *p, *s = (char *)pname;
454         int ret, i = 0;
455
456         mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
457         if (!mclk)
458                 return -ENOMEM;
459
460         mclk_name = devm_kcalloc(dev, sizeof(char),
461                                  SAI_MCLK_NAME_LEN, GFP_KERNEL);
462         if (!mclk_name)
463                 return -ENOMEM;
464
465         /*
466          * Forge mclk clock name from parent clock name and suffix.
467          * String after "_" char is stripped in parent name.
468          */
469         p = mclk_name;
470         while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
471                 *p++ = *s++;
472                 i++;
473         }
474         STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
475
476         mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
477         mclk->sai_data = sai;
478         hw = &mclk->hw;
479
480         dev_dbg(dev, "Register master clock %s\n", mclk_name);
481         ret = devm_clk_hw_register(&sai->pdev->dev, hw);
482         if (ret) {
483                 dev_err(dev, "mclk register returned %d\n", ret);
484                 return ret;
485         }
486         sai->sai_mclk = hw->clk;
487
488         /* register mclk provider */
489         return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
490 }
491
492 static irqreturn_t stm32_sai_isr(int irq, void *devid)
493 {
494         struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
495         struct platform_device *pdev = sai->pdev;
496         unsigned int sr, imr, flags;
497         snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
498
499         stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
500         stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
501
502         flags = sr & imr;
503         if (!flags)
504                 return IRQ_NONE;
505
506         stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
507                              SAI_XCLRFR_MASK);
508
509         if (!sai->substream) {
510                 dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
511                 return IRQ_NONE;
512         }
513
514         if (flags & SAI_XIMR_OVRUDRIE) {
515                 dev_err(&pdev->dev, "IRQ %s\n",
516                         STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
517                 status = SNDRV_PCM_STATE_XRUN;
518         }
519
520         if (flags & SAI_XIMR_MUTEDETIE)
521                 dev_dbg(&pdev->dev, "IRQ mute detected\n");
522
523         if (flags & SAI_XIMR_WCKCFGIE) {
524                 dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
525                 status = SNDRV_PCM_STATE_DISCONNECTED;
526         }
527
528         if (flags & SAI_XIMR_CNRDYIE)
529                 dev_err(&pdev->dev, "IRQ Codec not ready\n");
530
531         if (flags & SAI_XIMR_AFSDETIE) {
532                 dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
533                 status = SNDRV_PCM_STATE_XRUN;
534         }
535
536         if (flags & SAI_XIMR_LFSDETIE) {
537                 dev_err(&pdev->dev, "IRQ Late frame synchro\n");
538                 status = SNDRV_PCM_STATE_XRUN;
539         }
540
541         spin_lock(&sai->irq_lock);
542         if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
543                 snd_pcm_stop_xrun(sai->substream);
544         spin_unlock(&sai->irq_lock);
545
546         return IRQ_HANDLED;
547 }
548
549 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
550                                 int clk_id, unsigned int freq, int dir)
551 {
552         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
553         int ret;
554
555         if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
556                 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
557                                            SAI_XCR1_NODIV,
558                                          freq ? 0 : SAI_XCR1_NODIV);
559                 if (ret < 0)
560                         return ret;
561
562                 /* Assume shutdown if requested frequency is 0Hz */
563                 if (!freq) {
564                         /* Release mclk rate only if rate was actually set */
565                         if (sai->mclk_rate) {
566                                 clk_rate_exclusive_put(sai->sai_mclk);
567                                 sai->mclk_rate = 0;
568                         }
569                         return 0;
570                 }
571
572                 /* If master clock is used, set parent clock now */
573                 ret = stm32_sai_set_parent_clock(sai, freq);
574                 if (ret)
575                         return ret;
576
577                 ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
578                 if (ret) {
579                         dev_err(cpu_dai->dev,
580                                 ret == -EBUSY ?
581                                 "Active streams have incompatible rates" :
582                                 "Could not set mclk rate\n");
583                         return ret;
584                 }
585
586                 dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
587                 sai->mclk_rate = freq;
588         }
589
590         return 0;
591 }
592
593 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
594                                       u32 rx_mask, int slots, int slot_width)
595 {
596         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
597         int slotr, slotr_mask, slot_size;
598
599         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
600                 dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
601                 return 0;
602         }
603
604         dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
605                 tx_mask, rx_mask, slots, slot_width);
606
607         switch (slot_width) {
608         case 16:
609                 slot_size = SAI_SLOT_SIZE_16;
610                 break;
611         case 32:
612                 slot_size = SAI_SLOT_SIZE_32;
613                 break;
614         default:
615                 slot_size = SAI_SLOT_SIZE_AUTO;
616                 break;
617         }
618
619         slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
620                 SAI_XSLOTR_NBSLOT_SET(slots - 1);
621         slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
622
623         /* tx/rx mask set in machine init, if slot number defined in DT */
624         if (STM_SAI_IS_PLAYBACK(sai)) {
625                 sai->slot_mask = tx_mask;
626                 slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
627         }
628
629         if (STM_SAI_IS_CAPTURE(sai)) {
630                 sai->slot_mask = rx_mask;
631                 slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
632         }
633
634         slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
635
636         stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
637
638         sai->slot_width = slot_width;
639         sai->slots = slots;
640
641         return 0;
642 }
643
644 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
645 {
646         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
647         int cr1, frcr = 0;
648         int cr1_mask, frcr_mask = 0;
649         int ret;
650
651         dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
652
653         /* Do not generate master by default */
654         cr1 = SAI_XCR1_NODIV;
655         cr1_mask = SAI_XCR1_NODIV;
656
657         cr1_mask |= SAI_XCR1_PRTCFG_MASK;
658         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
659                 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
660                 goto conf_update;
661         }
662
663         cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
664
665         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
666         /* SCK active high for all protocols */
667         case SND_SOC_DAIFMT_I2S:
668                 cr1 |= SAI_XCR1_CKSTR;
669                 frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
670                 break;
671         /* Left justified */
672         case SND_SOC_DAIFMT_MSB:
673                 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
674                 break;
675         /* Right justified */
676         case SND_SOC_DAIFMT_LSB:
677                 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
678                 break;
679         case SND_SOC_DAIFMT_DSP_A:
680                 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
681                 break;
682         case SND_SOC_DAIFMT_DSP_B:
683                 frcr |= SAI_XFRCR_FSPOL;
684                 break;
685         default:
686                 dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
687                         fmt & SND_SOC_DAIFMT_FORMAT_MASK);
688                 return -EINVAL;
689         }
690
691         cr1_mask |= SAI_XCR1_CKSTR;
692         frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
693                      SAI_XFRCR_FSDEF;
694
695         /* DAI clock strobing. Invert setting previously set */
696         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
697         case SND_SOC_DAIFMT_NB_NF:
698                 break;
699         case SND_SOC_DAIFMT_IB_NF:
700                 cr1 ^= SAI_XCR1_CKSTR;
701                 break;
702         case SND_SOC_DAIFMT_NB_IF:
703                 frcr ^= SAI_XFRCR_FSPOL;
704                 break;
705         case SND_SOC_DAIFMT_IB_IF:
706                 /* Invert fs & sck */
707                 cr1 ^= SAI_XCR1_CKSTR;
708                 frcr ^= SAI_XFRCR_FSPOL;
709                 break;
710         default:
711                 dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
712                         fmt & SND_SOC_DAIFMT_INV_MASK);
713                 return -EINVAL;
714         }
715         cr1_mask |= SAI_XCR1_CKSTR;
716         frcr_mask |= SAI_XFRCR_FSPOL;
717
718         stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
719
720         /* DAI clock master masks */
721         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
722         case SND_SOC_DAIFMT_CBM_CFM:
723                 /* codec is master */
724                 cr1 |= SAI_XCR1_SLAVE;
725                 sai->master = false;
726                 break;
727         case SND_SOC_DAIFMT_CBS_CFS:
728                 sai->master = true;
729                 break;
730         default:
731                 dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
732                         fmt & SND_SOC_DAIFMT_MASTER_MASK);
733                 return -EINVAL;
734         }
735
736         /* Set slave mode if sub-block is synchronized with another SAI */
737         if (sai->sync) {
738                 dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
739                 cr1 |= SAI_XCR1_SLAVE;
740                 sai->master = false;
741         }
742
743         cr1_mask |= SAI_XCR1_SLAVE;
744
745 conf_update:
746         ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
747         if (ret < 0) {
748                 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
749                 return ret;
750         }
751
752         sai->fmt = fmt;
753
754         return 0;
755 }
756
757 static int stm32_sai_startup(struct snd_pcm_substream *substream,
758                              struct snd_soc_dai *cpu_dai)
759 {
760         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
761         int imr, cr2, ret;
762         unsigned long flags;
763
764         spin_lock_irqsave(&sai->irq_lock, flags);
765         sai->substream = substream;
766         spin_unlock_irqrestore(&sai->irq_lock, flags);
767
768         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
769                 snd_pcm_hw_constraint_mask64(substream->runtime,
770                                              SNDRV_PCM_HW_PARAM_FORMAT,
771                                              SNDRV_PCM_FMTBIT_S32_LE);
772                 snd_pcm_hw_constraint_single(substream->runtime,
773                                              SNDRV_PCM_HW_PARAM_CHANNELS, 2);
774         }
775
776         ret = clk_prepare_enable(sai->sai_ck);
777         if (ret < 0) {
778                 dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
779                 return ret;
780         }
781
782         /* Enable ITs */
783         stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
784                              SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
785
786         imr = SAI_XIMR_OVRUDRIE;
787         if (STM_SAI_IS_CAPTURE(sai)) {
788                 stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
789                 if (cr2 & SAI_XCR2_MUTECNT_MASK)
790                         imr |= SAI_XIMR_MUTEDETIE;
791         }
792
793         if (sai->master)
794                 imr |= SAI_XIMR_WCKCFGIE;
795         else
796                 imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
797
798         stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
799                              SAI_XIMR_MASK, imr);
800
801         return 0;
802 }
803
804 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
805                                 struct snd_pcm_substream *substream,
806                                 struct snd_pcm_hw_params *params)
807 {
808         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
809         int cr1, cr1_mask, ret;
810
811         /*
812          * DMA bursts increment is set to 4 words.
813          * SAI fifo threshold is set to half fifo, to keep enough space
814          * for DMA incoming bursts.
815          */
816         stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
817                              SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
818                              SAI_XCR2_FFLUSH |
819                              SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
820
821         /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
822         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
823                 sai->spdif_frm_cnt = 0;
824                 return 0;
825         }
826
827         /* Mode, data format and channel config */
828         cr1_mask = SAI_XCR1_DS_MASK;
829         switch (params_format(params)) {
830         case SNDRV_PCM_FORMAT_S8:
831                 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
832                 break;
833         case SNDRV_PCM_FORMAT_S16_LE:
834                 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
835                 break;
836         case SNDRV_PCM_FORMAT_S32_LE:
837                 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
838                 break;
839         default:
840                 dev_err(cpu_dai->dev, "Data format not supported");
841                 return -EINVAL;
842         }
843
844         cr1_mask |= SAI_XCR1_MONO;
845         if ((sai->slots == 2) && (params_channels(params) == 1))
846                 cr1 |= SAI_XCR1_MONO;
847
848         ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
849         if (ret < 0) {
850                 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
851                 return ret;
852         }
853
854         return 0;
855 }
856
857 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
858 {
859         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
860         int slotr, slot_sz;
861
862         stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
863
864         /*
865          * If SLOTSZ is set to auto in SLOTR, align slot width on data size
866          * By default slot width = data size, if not forced from DT
867          */
868         slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
869         if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
870                 sai->slot_width = sai->data_size;
871
872         if (sai->slot_width < sai->data_size) {
873                 dev_err(cpu_dai->dev,
874                         "Data size %d larger than slot width\n",
875                         sai->data_size);
876                 return -EINVAL;
877         }
878
879         /* Slot number is set to 2, if not specified in DT */
880         if (!sai->slots)
881                 sai->slots = 2;
882
883         /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
884         stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
885                              SAI_XSLOTR_NBSLOT_MASK,
886                              SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
887
888         /* Set default slots mask if not already set from DT */
889         if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
890                 sai->slot_mask = (1 << sai->slots) - 1;
891                 stm32_sai_sub_reg_up(sai,
892                                      STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
893                                      SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
894         }
895
896         dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
897                 sai->slots, sai->slot_width);
898
899         return 0;
900 }
901
902 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
903 {
904         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
905         int fs_active, offset, format;
906         int frcr, frcr_mask;
907
908         format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
909         sai->fs_length = sai->slot_width * sai->slots;
910
911         fs_active = sai->fs_length / 2;
912         if ((format == SND_SOC_DAIFMT_DSP_A) ||
913             (format == SND_SOC_DAIFMT_DSP_B))
914                 fs_active = 1;
915
916         frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
917         frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
918         frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
919
920         dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
921                 sai->fs_length, fs_active);
922
923         stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
924
925         if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
926                 offset = sai->slot_width - sai->data_size;
927
928                 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
929                                      SAI_XSLOTR_FBOFF_MASK,
930                                      SAI_XSLOTR_FBOFF_SET(offset));
931         }
932 }
933
934 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
935 {
936         unsigned char *cs = sai->iec958.status;
937
938         cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
939         cs[1] = IEC958_AES1_CON_GENERAL;
940         cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
941         cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
942 }
943
944 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
945                                         struct snd_pcm_runtime *runtime)
946 {
947         if (!runtime)
948                 return;
949
950         /* Force the sample rate according to runtime rate */
951         mutex_lock(&sai->ctrl_lock);
952         switch (runtime->rate) {
953         case 22050:
954                 sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
955                 break;
956         case 44100:
957                 sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
958                 break;
959         case 88200:
960                 sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
961                 break;
962         case 176400:
963                 sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
964                 break;
965         case 24000:
966                 sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
967                 break;
968         case 48000:
969                 sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
970                 break;
971         case 96000:
972                 sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
973                 break;
974         case 192000:
975                 sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
976                 break;
977         case 32000:
978                 sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
979                 break;
980         default:
981                 sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
982                 break;
983         }
984         mutex_unlock(&sai->ctrl_lock);
985 }
986
987 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
988                                      struct snd_pcm_hw_params *params)
989 {
990         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
991         int div = 0, cr1 = 0;
992         int sai_clk_rate, mclk_ratio, den;
993         unsigned int rate = params_rate(params);
994         int ret;
995
996         if (!sai->sai_mclk) {
997                 ret = stm32_sai_set_parent_clock(sai, rate);
998                 if (ret)
999                         return ret;
1000         }
1001         sai_clk_rate = clk_get_rate(sai->sai_ck);
1002
1003         if (STM_SAI_IS_F4(sai->pdata)) {
1004                 /* mclk on (NODIV=0)
1005                  *   mclk_rate = 256 * fs
1006                  *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1007                  *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1008                  * mclk off (NODIV=1)
1009                  *   MCKDIV ignored. sck = sai_ck
1010                  */
1011                 if (!sai->mclk_rate)
1012                         return 0;
1013
1014                 if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1015                         div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1016                                                     2 * sai->mclk_rate);
1017                         if (div < 0)
1018                                 return div;
1019                 }
1020         } else {
1021                 /*
1022                  * TDM mode :
1023                  *   mclk on
1024                  *      MCKDIV = sai_ck / (ws x 256)    (NOMCK=0. OSR=0)
1025                  *      MCKDIV = sai_ck / (ws x 512)    (NOMCK=0. OSR=1)
1026                  *   mclk off
1027                  *      MCKDIV = sai_ck / (frl x ws)    (NOMCK=1)
1028                  * Note: NOMCK/NODIV correspond to same bit.
1029                  */
1030                 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1031                         div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1032                                                     rate * 128);
1033                         if (div < 0)
1034                                 return div;
1035                 } else {
1036                         if (sai->mclk_rate) {
1037                                 mclk_ratio = sai->mclk_rate / rate;
1038                                 if (mclk_ratio == 512) {
1039                                         cr1 = SAI_XCR1_OSR;
1040                                 } else if (mclk_ratio != 256) {
1041                                         dev_err(cpu_dai->dev,
1042                                                 "Wrong mclk ratio %d\n",
1043                                                 mclk_ratio);
1044                                         return -EINVAL;
1045                                 }
1046
1047                                 stm32_sai_sub_reg_up(sai,
1048                                                      STM_SAI_CR1_REGX,
1049                                                      SAI_XCR1_OSR, cr1);
1050
1051                                 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1052                                                             sai->mclk_rate);
1053                                 if (div < 0)
1054                                         return div;
1055                         } else {
1056                                 /* mclk-fs not set, master clock not active */
1057                                 den = sai->fs_length * params_rate(params);
1058                                 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1059                                                             den);
1060                                 if (div < 0)
1061                                         return div;
1062                         }
1063                 }
1064         }
1065
1066         return stm32_sai_set_clk_div(sai, div);
1067 }
1068
1069 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1070                                struct snd_pcm_hw_params *params,
1071                                struct snd_soc_dai *cpu_dai)
1072 {
1073         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1074         int ret;
1075
1076         sai->data_size = params_width(params);
1077
1078         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1079                 /* Rate not already set in runtime structure */
1080                 substream->runtime->rate = params_rate(params);
1081                 stm32_sai_set_iec958_status(sai, substream->runtime);
1082         } else {
1083                 ret = stm32_sai_set_slots(cpu_dai);
1084                 if (ret < 0)
1085                         return ret;
1086                 stm32_sai_set_frame(cpu_dai);
1087         }
1088
1089         ret = stm32_sai_set_config(cpu_dai, substream, params);
1090         if (ret)
1091                 return ret;
1092
1093         if (sai->master)
1094                 ret = stm32_sai_configure_clock(cpu_dai, params);
1095
1096         return ret;
1097 }
1098
1099 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1100                              struct snd_soc_dai *cpu_dai)
1101 {
1102         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1103         int ret;
1104
1105         switch (cmd) {
1106         case SNDRV_PCM_TRIGGER_START:
1107         case SNDRV_PCM_TRIGGER_RESUME:
1108         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1109                 dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1110
1111                 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1112                                      SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1113
1114                 /* Enable SAI */
1115                 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1116                                            SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1117                 if (ret < 0)
1118                         dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1119                 break;
1120         case SNDRV_PCM_TRIGGER_SUSPEND:
1121         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1122         case SNDRV_PCM_TRIGGER_STOP:
1123                 dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1124
1125                 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1126                                      SAI_XIMR_MASK, 0);
1127
1128                 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1129                                      SAI_XCR1_SAIEN,
1130                                      (unsigned int)~SAI_XCR1_SAIEN);
1131
1132                 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1133                                            SAI_XCR1_DMAEN,
1134                                            (unsigned int)~SAI_XCR1_DMAEN);
1135                 if (ret < 0)
1136                         dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1137
1138                 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1139                         sai->spdif_frm_cnt = 0;
1140                 break;
1141         default:
1142                 return -EINVAL;
1143         }
1144
1145         return ret;
1146 }
1147
1148 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1149                                struct snd_soc_dai *cpu_dai)
1150 {
1151         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1152         unsigned long flags;
1153
1154         stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1155
1156         clk_disable_unprepare(sai->sai_ck);
1157
1158         spin_lock_irqsave(&sai->irq_lock, flags);
1159         sai->substream = NULL;
1160         spin_unlock_irqrestore(&sai->irq_lock, flags);
1161 }
1162
1163 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1164                              struct snd_soc_dai *cpu_dai)
1165 {
1166         struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1167         struct snd_kcontrol_new knew = iec958_ctls;
1168
1169         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1170                 dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1171                 knew.device = rtd->pcm->device;
1172                 return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1173         }
1174
1175         return 0;
1176 }
1177
1178 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1179 {
1180         struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1181         int cr1 = 0, cr1_mask, ret;
1182
1183         sai->cpu_dai = cpu_dai;
1184
1185         sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1186         /*
1187          * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1188          * as it allows bytes, half-word and words transfers. (See DMA fifos
1189          * constraints).
1190          */
1191         sai->dma_params.maxburst = 4;
1192         if (sai->pdata->conf.fifo_size < 8)
1193                 sai->dma_params.maxburst = 1;
1194         /* Buswidth will be set by framework at runtime */
1195         sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1196
1197         if (STM_SAI_IS_PLAYBACK(sai))
1198                 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1199         else
1200                 snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1201
1202         /* Next settings are not relevant for spdif mode */
1203         if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1204                 return 0;
1205
1206         cr1_mask = SAI_XCR1_RX_TX;
1207         if (STM_SAI_IS_CAPTURE(sai))
1208                 cr1 |= SAI_XCR1_RX_TX;
1209
1210         /* Configure synchronization */
1211         if (sai->sync == SAI_SYNC_EXTERNAL) {
1212                 /* Configure synchro client and provider */
1213                 ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1214                                            sai->synco, sai->synci);
1215                 if (ret)
1216                         return ret;
1217         }
1218
1219         cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1220         cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1221
1222         return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1223 }
1224
1225 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1226         .set_sysclk     = stm32_sai_set_sysclk,
1227         .set_fmt        = stm32_sai_set_dai_fmt,
1228         .set_tdm_slot   = stm32_sai_set_dai_tdm_slot,
1229         .startup        = stm32_sai_startup,
1230         .hw_params      = stm32_sai_hw_params,
1231         .trigger        = stm32_sai_trigger,
1232         .shutdown       = stm32_sai_shutdown,
1233 };
1234
1235 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1236                                        int channel, unsigned long hwoff,
1237                                        void *buf, unsigned long bytes)
1238 {
1239         struct snd_pcm_runtime *runtime = substream->runtime;
1240         struct snd_soc_pcm_runtime *rtd = substream->private_data;
1241         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1242         struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1243         int *ptr = (int *)(runtime->dma_area + hwoff +
1244                            channel * (runtime->dma_bytes / runtime->channels));
1245         ssize_t cnt = bytes_to_samples(runtime, bytes);
1246         unsigned int frm_cnt = sai->spdif_frm_cnt;
1247         unsigned int byte;
1248         unsigned int mask;
1249
1250         do {
1251                 *ptr = ((*ptr >> 8) & 0x00ffffff);
1252
1253                 /* Set channel status bit */
1254                 byte = frm_cnt >> 3;
1255                 mask = 1 << (frm_cnt - (byte << 3));
1256                 if (sai->iec958.status[byte] & mask)
1257                         *ptr |= 0x04000000;
1258                 ptr++;
1259
1260                 if (!(cnt % 2))
1261                         frm_cnt++;
1262
1263                 if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1264                         frm_cnt = 0;
1265         } while (--cnt);
1266         sai->spdif_frm_cnt = frm_cnt;
1267
1268         return 0;
1269 }
1270
1271 /* No support of mmap in S/PDIF mode */
1272 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1273         .info = SNDRV_PCM_INFO_INTERLEAVED,
1274         .buffer_bytes_max = 8 * PAGE_SIZE,
1275         .period_bytes_min = 1024,
1276         .period_bytes_max = PAGE_SIZE,
1277         .periods_min = 2,
1278         .periods_max = 8,
1279 };
1280
1281 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1282         .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1283         .buffer_bytes_max = 8 * PAGE_SIZE,
1284         .period_bytes_min = 1024, /* 5ms at 48kHz */
1285         .period_bytes_max = PAGE_SIZE,
1286         .periods_min = 2,
1287         .periods_max = 8,
1288 };
1289
1290 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1291                 .probe = stm32_sai_dai_probe,
1292                 .pcm_new = stm32_sai_pcm_new,
1293                 .id = 1, /* avoid call to fmt_single_name() */
1294                 .playback = {
1295                         .channels_min = 1,
1296                         .channels_max = 2,
1297                         .rate_min = 8000,
1298                         .rate_max = 192000,
1299                         .rates = SNDRV_PCM_RATE_CONTINUOUS,
1300                         /* DMA does not support 24 bits transfers */
1301                         .formats =
1302                                 SNDRV_PCM_FMTBIT_S8 |
1303                                 SNDRV_PCM_FMTBIT_S16_LE |
1304                                 SNDRV_PCM_FMTBIT_S32_LE,
1305                 },
1306                 .ops = &stm32_sai_pcm_dai_ops,
1307 };
1308
1309 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1310                 .probe = stm32_sai_dai_probe,
1311                 .id = 1, /* avoid call to fmt_single_name() */
1312                 .capture = {
1313                         .channels_min = 1,
1314                         .channels_max = 2,
1315                         .rate_min = 8000,
1316                         .rate_max = 192000,
1317                         .rates = SNDRV_PCM_RATE_CONTINUOUS,
1318                         /* DMA does not support 24 bits transfers */
1319                         .formats =
1320                                 SNDRV_PCM_FMTBIT_S8 |
1321                                 SNDRV_PCM_FMTBIT_S16_LE |
1322                                 SNDRV_PCM_FMTBIT_S32_LE,
1323                 },
1324                 .ops = &stm32_sai_pcm_dai_ops,
1325 };
1326
1327 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1328         .pcm_hardware = &stm32_sai_pcm_hw,
1329         .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1330 };
1331
1332 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1333         .pcm_hardware = &stm32_sai_pcm_hw_spdif,
1334         .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1335         .process = stm32_sai_pcm_process_spdif,
1336 };
1337
1338 static const struct snd_soc_component_driver stm32_component = {
1339         .name = "stm32-sai",
1340 };
1341
1342 static const struct of_device_id stm32_sai_sub_ids[] = {
1343         { .compatible = "st,stm32-sai-sub-a",
1344           .data = (void *)STM_SAI_A_ID},
1345         { .compatible = "st,stm32-sai-sub-b",
1346           .data = (void *)STM_SAI_B_ID},
1347         {}
1348 };
1349 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1350
1351 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1352                                   struct stm32_sai_sub_data *sai)
1353 {
1354         struct device_node *np = pdev->dev.of_node;
1355         struct resource *res;
1356         void __iomem *base;
1357         struct of_phandle_args args;
1358         int ret;
1359
1360         if (!np)
1361                 return -ENODEV;
1362
1363         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364         base = devm_ioremap_resource(&pdev->dev, res);
1365         if (IS_ERR(base))
1366                 return PTR_ERR(base);
1367
1368         sai->phys_addr = res->start;
1369
1370         sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1371         /* Note: PDM registers not available for sub-block B */
1372         if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1373                 sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1374
1375         /*
1376          * Do not manage peripheral clock through regmap framework as this
1377          * can lead to circular locking issue with sai master clock provider.
1378          * Manage peripheral clock directly in driver instead.
1379          */
1380         sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1381                                             sai->regmap_config);
1382         if (IS_ERR(sai->regmap)) {
1383                 dev_err(&pdev->dev, "Failed to initialize MMIO\n");
1384                 return PTR_ERR(sai->regmap);
1385         }
1386
1387         /* Get direction property */
1388         if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1389                 sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1390         } else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1391                 sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1392         } else {
1393                 dev_err(&pdev->dev, "Unsupported direction\n");
1394                 return -EINVAL;
1395         }
1396
1397         /* Get spdif iec60958 property */
1398         sai->spdif = false;
1399         if (of_get_property(np, "st,iec60958", NULL)) {
1400                 if (!STM_SAI_HAS_SPDIF(sai) ||
1401                     sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1402                         dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1403                         return -EINVAL;
1404                 }
1405                 stm32_sai_init_iec958_status(sai);
1406                 sai->spdif = true;
1407                 sai->master = true;
1408         }
1409
1410         /* Get synchronization property */
1411         args.np = NULL;
1412         ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1413         if (ret < 0  && ret != -ENOENT) {
1414                 dev_err(&pdev->dev, "Failed to get st,sync property\n");
1415                 return ret;
1416         }
1417
1418         sai->sync = SAI_SYNC_NONE;
1419         if (args.np) {
1420                 if (args.np == np) {
1421                         dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1422                         of_node_put(args.np);
1423                         return -EINVAL;
1424                 }
1425
1426                 sai->np_sync_provider  = of_get_parent(args.np);
1427                 if (!sai->np_sync_provider) {
1428                         dev_err(&pdev->dev, "%pOFn parent node not found\n",
1429                                 np);
1430                         of_node_put(args.np);
1431                         return -ENODEV;
1432                 }
1433
1434                 sai->sync = SAI_SYNC_INTERNAL;
1435                 if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1436                         if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1437                                 dev_err(&pdev->dev,
1438                                         "External synchro not supported\n");
1439                                 of_node_put(args.np);
1440                                 return -EINVAL;
1441                         }
1442                         sai->sync = SAI_SYNC_EXTERNAL;
1443
1444                         sai->synci = args.args[0];
1445                         if (sai->synci < 1 ||
1446                             (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1447                                 dev_err(&pdev->dev, "Wrong SAI index\n");
1448                                 of_node_put(args.np);
1449                                 return -EINVAL;
1450                         }
1451
1452                         if (of_property_match_string(args.np, "compatible",
1453                                                      "st,stm32-sai-sub-a") >= 0)
1454                                 sai->synco = STM_SAI_SYNC_OUT_A;
1455
1456                         if (of_property_match_string(args.np, "compatible",
1457                                                      "st,stm32-sai-sub-b") >= 0)
1458                                 sai->synco = STM_SAI_SYNC_OUT_B;
1459
1460                         if (!sai->synco) {
1461                                 dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1462                                 of_node_put(args.np);
1463                                 return -EINVAL;
1464                         }
1465                 }
1466
1467                 dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1468                         pdev->name, args.np->full_name);
1469         }
1470
1471         of_node_put(args.np);
1472         sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1473         if (IS_ERR(sai->sai_ck)) {
1474                 dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
1475                 return PTR_ERR(sai->sai_ck);
1476         }
1477
1478         ret = clk_prepare(sai->pdata->pclk);
1479         if (ret < 0)
1480                 return ret;
1481
1482         if (STM_SAI_IS_F4(sai->pdata))
1483                 return 0;
1484
1485         /* Register mclk provider if requested */
1486         if (of_find_property(np, "#clock-cells", NULL)) {
1487                 ret = stm32_sai_add_mclk_provider(sai);
1488                 if (ret < 0)
1489                         return ret;
1490         } else {
1491                 sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1492                 if (IS_ERR(sai->sai_mclk)) {
1493                         if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1494                                 return PTR_ERR(sai->sai_mclk);
1495                         sai->sai_mclk = NULL;
1496                 }
1497         }
1498
1499         return 0;
1500 }
1501
1502 static int stm32_sai_sub_probe(struct platform_device *pdev)
1503 {
1504         struct stm32_sai_sub_data *sai;
1505         const struct of_device_id *of_id;
1506         const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1507         int ret;
1508
1509         sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1510         if (!sai)
1511                 return -ENOMEM;
1512
1513         of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1514         if (!of_id)
1515                 return -EINVAL;
1516         sai->id = (uintptr_t)of_id->data;
1517
1518         sai->pdev = pdev;
1519         mutex_init(&sai->ctrl_lock);
1520         spin_lock_init(&sai->irq_lock);
1521         platform_set_drvdata(pdev, sai);
1522
1523         sai->pdata = dev_get_drvdata(pdev->dev.parent);
1524         if (!sai->pdata) {
1525                 dev_err(&pdev->dev, "Parent device data not available\n");
1526                 return -EINVAL;
1527         }
1528
1529         ret = stm32_sai_sub_parse_of(pdev, sai);
1530         if (ret)
1531                 return ret;
1532
1533         if (STM_SAI_IS_PLAYBACK(sai))
1534                 sai->cpu_dai_drv = stm32_sai_playback_dai;
1535         else
1536                 sai->cpu_dai_drv = stm32_sai_capture_dai;
1537         sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1538
1539         ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1540                                IRQF_SHARED, dev_name(&pdev->dev), sai);
1541         if (ret) {
1542                 dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1543                 return ret;
1544         }
1545
1546         if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1547                 conf = &stm32_sai_pcm_config_spdif;
1548
1549         ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1550         if (ret) {
1551                 dev_err(&pdev->dev, "Could not register pcm dma\n");
1552                 return ret;
1553         }
1554
1555         ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1556                                          &sai->cpu_dai_drv, 1);
1557         if (ret)
1558                 snd_dmaengine_pcm_unregister(&pdev->dev);
1559
1560         return ret;
1561 }
1562
1563 static int stm32_sai_sub_remove(struct platform_device *pdev)
1564 {
1565         struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1566
1567         clk_unprepare(sai->pdata->pclk);
1568         snd_dmaengine_pcm_unregister(&pdev->dev);
1569         snd_soc_unregister_component(&pdev->dev);
1570
1571         return 0;
1572 }
1573
1574 #ifdef CONFIG_PM_SLEEP
1575 static int stm32_sai_sub_suspend(struct device *dev)
1576 {
1577         struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1578         int ret;
1579
1580         ret = clk_enable(sai->pdata->pclk);
1581         if (ret < 0)
1582                 return ret;
1583
1584         regcache_cache_only(sai->regmap, true);
1585         regcache_mark_dirty(sai->regmap);
1586
1587         clk_disable(sai->pdata->pclk);
1588
1589         return 0;
1590 }
1591
1592 static int stm32_sai_sub_resume(struct device *dev)
1593 {
1594         struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1595         int ret;
1596
1597         ret = clk_enable(sai->pdata->pclk);
1598         if (ret < 0)
1599                 return ret;
1600
1601         regcache_cache_only(sai->regmap, false);
1602         ret = regcache_sync(sai->regmap);
1603
1604         clk_disable(sai->pdata->pclk);
1605
1606         return ret;
1607 }
1608 #endif /* CONFIG_PM_SLEEP */
1609
1610 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1611         SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1612 };
1613
1614 static struct platform_driver stm32_sai_sub_driver = {
1615         .driver = {
1616                 .name = "st,stm32-sai-sub",
1617                 .of_match_table = stm32_sai_sub_ids,
1618                 .pm = &stm32_sai_sub_pm_ops,
1619         },
1620         .probe = stm32_sai_sub_probe,
1621         .remove = stm32_sai_sub_remove,
1622 };
1623
1624 module_platform_driver(stm32_sai_sub_driver);
1625
1626 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1627 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1628 MODULE_ALIAS("platform:st,stm32-sai-sub");
1629 MODULE_LICENSE("GPL v2");