GNU Linux-libre 5.19-rc6-gnu
[releases.git] / sound / soc / codecs / sta350.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4  *
5  * Copyright: 2014 Raumfeld GmbH
6  * Author: Sven Brandau <info@brandau.biz>
7  *
8  * based on code from:
9  *      Raumfeld GmbH
10  *        Johannes Stezenbach <js@sig21.net>
11  *      Wolfson Microelectronics PLC.
12  *        Mark Brown <broonie@opensource.wolfsonmicro.com>
13  *      Freescale Semiconductor, Inc.
14  *        Timur Tabi <timur@freescale.com>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/pm.h>
24 #include <linux/i2c.h>
25 #include <linux/of_device.h>
26 #include <linux/of_gpio.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/slab.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38
39 #include <sound/sta350.h>
40 #include "sta350.h"
41
42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43                       SNDRV_PCM_RATE_44100 | \
44                       SNDRV_PCM_RATE_48000 | \
45                       SNDRV_PCM_RATE_88200 | \
46                       SNDRV_PCM_RATE_96000 | \
47                       SNDRV_PCM_RATE_176400 | \
48                       SNDRV_PCM_RATE_192000)
49
50 #define STA350_FORMATS \
51         (SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
52          SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
53          SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S32_LE)
54
55 /* Power-up register defaults */
56 static const struct reg_default sta350_regs[] = {
57         {  0x0, 0x63 },
58         {  0x1, 0x80 },
59         {  0x2, 0xdf },
60         {  0x3, 0x40 },
61         {  0x4, 0xc2 },
62         {  0x5, 0x5c },
63         {  0x6, 0x00 },
64         {  0x7, 0xff },
65         {  0x8, 0x60 },
66         {  0x9, 0x60 },
67         {  0xa, 0x60 },
68         {  0xb, 0x00 },
69         {  0xc, 0x00 },
70         {  0xd, 0x00 },
71         {  0xe, 0x00 },
72         {  0xf, 0x40 },
73         { 0x10, 0x80 },
74         { 0x11, 0x77 },
75         { 0x12, 0x6a },
76         { 0x13, 0x69 },
77         { 0x14, 0x6a },
78         { 0x15, 0x69 },
79         { 0x16, 0x00 },
80         { 0x17, 0x00 },
81         { 0x18, 0x00 },
82         { 0x19, 0x00 },
83         { 0x1a, 0x00 },
84         { 0x1b, 0x00 },
85         { 0x1c, 0x00 },
86         { 0x1d, 0x00 },
87         { 0x1e, 0x00 },
88         { 0x1f, 0x00 },
89         { 0x20, 0x00 },
90         { 0x21, 0x00 },
91         { 0x22, 0x00 },
92         { 0x23, 0x00 },
93         { 0x24, 0x00 },
94         { 0x25, 0x00 },
95         { 0x26, 0x00 },
96         { 0x27, 0x2a },
97         { 0x28, 0xc0 },
98         { 0x29, 0xf3 },
99         { 0x2a, 0x33 },
100         { 0x2b, 0x00 },
101         { 0x2c, 0x0c },
102         { 0x31, 0x00 },
103         { 0x36, 0x00 },
104         { 0x37, 0x00 },
105         { 0x38, 0x00 },
106         { 0x39, 0x01 },
107         { 0x3a, 0xee },
108         { 0x3b, 0xff },
109         { 0x3c, 0x7e },
110         { 0x3d, 0xc0 },
111         { 0x3e, 0x26 },
112         { 0x3f, 0x00 },
113         { 0x48, 0x00 },
114         { 0x49, 0x00 },
115         { 0x4a, 0x00 },
116         { 0x4b, 0x04 },
117         { 0x4c, 0x00 },
118 };
119
120 static const struct regmap_range sta350_write_regs_range[] = {
121         regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
122         regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
123         regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
124         regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
125 };
126
127 static const struct regmap_range sta350_read_regs_range[] = {
128         regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
129         regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
130         regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
131         regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132 };
133
134 static const struct regmap_range sta350_volatile_regs_range[] = {
135         regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
136         regmap_reg_range(STA350_STATUS,  STA350_STATUS),
137 };
138
139 static const struct regmap_access_table sta350_write_regs = {
140         .yes_ranges =   sta350_write_regs_range,
141         .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
142 };
143
144 static const struct regmap_access_table sta350_read_regs = {
145         .yes_ranges =   sta350_read_regs_range,
146         .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
147 };
148
149 static const struct regmap_access_table sta350_volatile_regs = {
150         .yes_ranges =   sta350_volatile_regs_range,
151         .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
152 };
153
154 /* regulator power supply names */
155 static const char * const sta350_supply_names[] = {
156         "vdd-dig",      /* digital supply, 3.3V */
157         "vdd-pll",      /* pll supply, 3.3V */
158         "vcc"           /* power amp supply, 5V - 26V */
159 };
160
161 /* codec private data */
162 struct sta350_priv {
163         struct regmap *regmap;
164         struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
165         struct sta350_platform_data *pdata;
166
167         unsigned int mclk;
168         unsigned int format;
169
170         u32 coef_shadow[STA350_COEF_COUNT];
171         int shutdown;
172
173         struct gpio_desc *gpiod_nreset;
174         struct gpio_desc *gpiod_power_down;
175
176         struct mutex coeff_lock;
177 };
178
179 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
180 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
181 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
182
183 static const char * const sta350_drc_ac[] = {
184         "Anti-Clipping", "Dynamic Range Compression"
185 };
186 static const char * const sta350_auto_gc_mode[] = {
187         "User", "AC no clipping", "AC limited clipping (10%)",
188         "DRC nighttime listening mode"
189 };
190 static const char * const sta350_auto_xo_mode[] = {
191         "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
192         "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
193         "340Hz", "360Hz"
194 };
195 static const char * const sta350_binary_output[] = {
196         "FFX 3-state output - normal operation", "Binary output"
197 };
198 static const char * const sta350_limiter_select[] = {
199         "Limiter Disabled", "Limiter #1", "Limiter #2"
200 };
201 static const char * const sta350_limiter_attack_rate[] = {
202         "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
203         "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
204         "0.0645", "0.0564", "0.0501", "0.0451"
205 };
206 static const char * const sta350_limiter_release_rate[] = {
207         "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
208         "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
209         "0.0134", "0.0117", "0.0110", "0.0104"
210 };
211 static const char * const sta350_noise_shaper_type[] = {
212         "Third order", "Fourth order"
213 };
214
215 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
216         0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
217         8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
218 );
219
220 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
221         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
222         1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
223         2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
224         3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
225         8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
226 );
227
228 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
229         0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
230         8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
231         14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
232 );
233
234 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
235         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
236         1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
237         3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
238         5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
239         13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
240 );
241
242 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
243                             STA350_CONFD, STA350_CONFD_DRC_SHIFT,
244                             sta350_drc_ac);
245 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
246                             STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
247                             sta350_noise_shaper_type);
248 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
249                             STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
250                             sta350_auto_gc_mode);
251 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
252                             STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
253                             sta350_auto_xo_mode);
254 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
255                             STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
256                             sta350_binary_output);
257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
258                             STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
259                             sta350_binary_output);
260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
261                             STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
262                             sta350_binary_output);
263 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
264                             STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
265                             sta350_limiter_select);
266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
267                             STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
268                             sta350_limiter_select);
269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
270                             STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
271                             sta350_limiter_select);
272 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
273                             STA350_L1AR, STA350_LxA_SHIFT,
274                             sta350_limiter_attack_rate);
275 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
276                             STA350_L2AR, STA350_LxA_SHIFT,
277                             sta350_limiter_attack_rate);
278 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
279                             STA350_L1AR, STA350_LxR_SHIFT,
280                             sta350_limiter_release_rate);
281 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
282                             STA350_L2AR, STA350_LxR_SHIFT,
283                             sta350_limiter_release_rate);
284
285 /*
286  * byte array controls for setting biquad, mixer, scaling coefficients;
287  * for biquads all five coefficients need to be set in one go,
288  * mixer and pre/postscale coefs can be set individually;
289  * each coef is 24bit, the bytes are ordered in the same way
290  * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
291  */
292
293 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
294                                    struct snd_ctl_elem_info *uinfo)
295 {
296         int numcoef = kcontrol->private_value >> 16;
297         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
298         uinfo->count = 3 * numcoef;
299         return 0;
300 }
301
302 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
303                                   struct snd_ctl_elem_value *ucontrol)
304 {
305         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
306         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
307         int numcoef = kcontrol->private_value >> 16;
308         int index = kcontrol->private_value & 0xffff;
309         unsigned int cfud, val;
310         int i, ret = 0;
311
312         mutex_lock(&sta350->coeff_lock);
313
314         /* preserve reserved bits in STA350_CFUD */
315         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
316         cfud &= 0xf0;
317         /*
318          * chip documentation does not say if the bits are self clearing,
319          * so do it explicitly
320          */
321         regmap_write(sta350->regmap, STA350_CFUD, cfud);
322
323         regmap_write(sta350->regmap, STA350_CFADDR2, index);
324         if (numcoef == 1) {
325                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
326         } else if (numcoef == 5) {
327                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
328         } else {
329                 ret = -EINVAL;
330                 goto exit_unlock;
331         }
332
333         for (i = 0; i < 3 * numcoef; i++) {
334                 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
335                 ucontrol->value.bytes.data[i] = val;
336         }
337
338 exit_unlock:
339         mutex_unlock(&sta350->coeff_lock);
340
341         return ret;
342 }
343
344 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
345                                   struct snd_ctl_elem_value *ucontrol)
346 {
347         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
348         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
349         int numcoef = kcontrol->private_value >> 16;
350         int index = kcontrol->private_value & 0xffff;
351         unsigned int cfud;
352         int i;
353
354         /* preserve reserved bits in STA350_CFUD */
355         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
356         cfud &= 0xf0;
357         /*
358          * chip documentation does not say if the bits are self clearing,
359          * so do it explicitly
360          */
361         regmap_write(sta350->regmap, STA350_CFUD, cfud);
362
363         regmap_write(sta350->regmap, STA350_CFADDR2, index);
364         for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
365                 sta350->coef_shadow[index + i] =
366                           (ucontrol->value.bytes.data[3 * i] << 16)
367                         | (ucontrol->value.bytes.data[3 * i + 1] << 8)
368                         | (ucontrol->value.bytes.data[3 * i + 2]);
369         for (i = 0; i < 3 * numcoef; i++)
370                 regmap_write(sta350->regmap, STA350_B1CF1 + i,
371                              ucontrol->value.bytes.data[i]);
372         if (numcoef == 1)
373                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
374         else if (numcoef == 5)
375                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
376         else
377                 return -EINVAL;
378
379         return 0;
380 }
381
382 static int sta350_sync_coef_shadow(struct snd_soc_component *component)
383 {
384         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
385         unsigned int cfud;
386         int i;
387
388         /* preserve reserved bits in STA350_CFUD */
389         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
390         cfud &= 0xf0;
391
392         for (i = 0; i < STA350_COEF_COUNT; i++) {
393                 regmap_write(sta350->regmap, STA350_CFADDR2, i);
394                 regmap_write(sta350->regmap, STA350_B1CF1,
395                              (sta350->coef_shadow[i] >> 16) & 0xff);
396                 regmap_write(sta350->regmap, STA350_B1CF2,
397                              (sta350->coef_shadow[i] >> 8) & 0xff);
398                 regmap_write(sta350->regmap, STA350_B1CF3,
399                              (sta350->coef_shadow[i]) & 0xff);
400                 /*
401                  * chip documentation does not say if the bits are
402                  * self-clearing, so do it explicitly
403                  */
404                 regmap_write(sta350->regmap, STA350_CFUD, cfud);
405                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
406         }
407         return 0;
408 }
409
410 static int sta350_cache_sync(struct snd_soc_component *component)
411 {
412         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
413         unsigned int mute;
414         int rc;
415
416         /* mute during register sync */
417         regmap_read(sta350->regmap, STA350_CFUD, &mute);
418         regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
419         sta350_sync_coef_shadow(component);
420         rc = regcache_sync(sta350->regmap);
421         regmap_write(sta350->regmap, STA350_MMUTE, mute);
422         return rc;
423 }
424
425 #define SINGLE_COEF(xname, index) \
426 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
427         .info = sta350_coefficient_info, \
428         .get = sta350_coefficient_get,\
429         .put = sta350_coefficient_put, \
430         .private_value = index | (1 << 16) }
431
432 #define BIQUAD_COEFS(xname, index) \
433 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434         .info = sta350_coefficient_info, \
435         .get = sta350_coefficient_get,\
436         .put = sta350_coefficient_put, \
437         .private_value = index | (5 << 16) }
438
439 static const struct snd_kcontrol_new sta350_snd_controls[] = {
440 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
441 /* VOL */
442 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
443 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
444 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
445 /* CONFD */
446 SOC_SINGLE("High Pass Filter Bypass Switch",
447            STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
448 SOC_SINGLE("De-emphasis Filter Switch",
449            STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
450 SOC_SINGLE("DSP Bypass Switch",
451            STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
452 SOC_SINGLE("Post-scale Link Switch",
453            STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
454 SOC_SINGLE("Biquad Coefficient Link Switch",
455            STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
456 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
457 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
458 SOC_SINGLE("Zero-detect Mute Enable Switch",
459            STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
460 SOC_SINGLE("Submix Mode Switch",
461            STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
462 /* CONFE */
463 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
464 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
465 /* MUTE */
466 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
467 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
468 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
469 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
470 /* AUTOx */
471 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
472 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
473 /* CxCFG */
474 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
475            STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
476 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
477            STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
478 SOC_SINGLE("Ch1 EQ Bypass Switch",
479            STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
480 SOC_SINGLE("Ch2 EQ Bypass Switch",
481            STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
482 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
483            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
484 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
485            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
486 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
487            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
488 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
489 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
490 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
491 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
492 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
493 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
494 /* TONE */
495 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
496                      STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
497 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
498                      STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
499 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
500 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
501 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
502 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
503
504 /*
505  * depending on mode, the attack/release thresholds have
506  * two different enum definitions; provide both
507  */
508 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
509                STA350_L1ATRT, STA350_LxA_SHIFT,
510                16, 0, sta350_limiter_ac_attack_tlv),
511 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
512                STA350_L2ATRT, STA350_LxA_SHIFT,
513                16, 0, sta350_limiter_ac_attack_tlv),
514 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
515                STA350_L1ATRT, STA350_LxR_SHIFT,
516                16, 0, sta350_limiter_ac_release_tlv),
517 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
518                STA350_L2ATRT, STA350_LxR_SHIFT,
519                16, 0, sta350_limiter_ac_release_tlv),
520 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
521                STA350_L1ATRT, STA350_LxA_SHIFT,
522                16, 0, sta350_limiter_drc_attack_tlv),
523 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
524                STA350_L2ATRT, STA350_LxA_SHIFT,
525                16, 0, sta350_limiter_drc_attack_tlv),
526 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
527                STA350_L1ATRT, STA350_LxR_SHIFT,
528                16, 0, sta350_limiter_drc_release_tlv),
529 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
530                STA350_L2ATRT, STA350_LxR_SHIFT,
531                16, 0, sta350_limiter_drc_release_tlv),
532
533 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
534 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
535 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
536 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
537 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
538 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
539 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
540 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
541 BIQUAD_COEFS("High-pass", 40),
542 BIQUAD_COEFS("Low-pass", 45),
543 SINGLE_COEF("Ch1 - Prescale", 50),
544 SINGLE_COEF("Ch2 - Prescale", 51),
545 SINGLE_COEF("Ch1 - Postscale", 52),
546 SINGLE_COEF("Ch2 - Postscale", 53),
547 SINGLE_COEF("Ch3 - Postscale", 54),
548 SINGLE_COEF("Thermal warning - Postscale", 55),
549 SINGLE_COEF("Ch1 - Mix 1", 56),
550 SINGLE_COEF("Ch1 - Mix 2", 57),
551 SINGLE_COEF("Ch2 - Mix 1", 58),
552 SINGLE_COEF("Ch2 - Mix 2", 59),
553 SINGLE_COEF("Ch3 - Mix 1", 60),
554 SINGLE_COEF("Ch3 - Mix 2", 61),
555 };
556
557 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
558 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
559 SND_SOC_DAPM_OUTPUT("LEFT"),
560 SND_SOC_DAPM_OUTPUT("RIGHT"),
561 SND_SOC_DAPM_OUTPUT("SUB"),
562 };
563
564 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
565         { "LEFT", NULL, "DAC" },
566         { "RIGHT", NULL, "DAC" },
567         { "SUB", NULL, "DAC" },
568         { "DAC", NULL, "Playback" },
569 };
570
571 /* MCLK interpolation ratio per fs */
572 static struct {
573         int fs;
574         int ir;
575 } interpolation_ratios[] = {
576         { 32000, 0 },
577         { 44100, 0 },
578         { 48000, 0 },
579         { 88200, 1 },
580         { 96000, 1 },
581         { 176400, 2 },
582         { 192000, 2 },
583 };
584
585 /* MCLK to fs clock ratios */
586 static int mcs_ratio_table[3][6] = {
587         { 768, 512, 384, 256, 128, 576 },
588         { 384, 256, 192, 128,  64,   0 },
589         { 192, 128,  96,  64,  32,   0 },
590 };
591
592 /**
593  * sta350_set_dai_sysclk - configure MCLK
594  * @codec_dai: the codec DAI
595  * @clk_id: the clock ID (ignored)
596  * @freq: the MCLK input frequency
597  * @dir: the clock direction (ignored)
598  *
599  * The value of MCLK is used to determine which sample rates are supported
600  * by the STA350, based on the mcs_ratio_table.
601  *
602  * This function must be called by the machine driver's 'startup' function,
603  * otherwise the list of supported sample rates will not be available in
604  * time for ALSA.
605  */
606 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
607                                  int clk_id, unsigned int freq, int dir)
608 {
609         struct snd_soc_component *component = codec_dai->component;
610         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
611
612         dev_dbg(component->dev, "mclk=%u\n", freq);
613         sta350->mclk = freq;
614
615         return 0;
616 }
617
618 /**
619  * sta350_set_dai_fmt - configure the codec for the selected audio format
620  * @codec_dai: the codec DAI
621  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
622  *
623  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
624  * codec accordingly.
625  */
626 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
627                               unsigned int fmt)
628 {
629         struct snd_soc_component *component = codec_dai->component;
630         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
631         unsigned int confb = 0;
632
633         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
634         case SND_SOC_DAIFMT_CBS_CFS:
635                 break;
636         default:
637                 return -EINVAL;
638         }
639
640         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
641         case SND_SOC_DAIFMT_I2S:
642         case SND_SOC_DAIFMT_RIGHT_J:
643         case SND_SOC_DAIFMT_LEFT_J:
644                 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
645                 break;
646         default:
647                 return -EINVAL;
648         }
649
650         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
651         case SND_SOC_DAIFMT_NB_NF:
652                 confb |= STA350_CONFB_C2IM;
653                 break;
654         case SND_SOC_DAIFMT_NB_IF:
655                 confb |= STA350_CONFB_C1IM;
656                 break;
657         default:
658                 return -EINVAL;
659         }
660
661         return regmap_update_bits(sta350->regmap, STA350_CONFB,
662                                   STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
663 }
664
665 /**
666  * sta350_hw_params - program the STA350 with the given hardware parameters.
667  * @substream: the audio stream
668  * @params: the hardware parameters to set
669  * @dai: the SOC DAI (ignored)
670  *
671  * This function programs the hardware with the values provided.
672  * Specifically, the sample rate and the data format.
673  */
674 static int sta350_hw_params(struct snd_pcm_substream *substream,
675                             struct snd_pcm_hw_params *params,
676                             struct snd_soc_dai *dai)
677 {
678         struct snd_soc_component *component = dai->component;
679         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
680         int i, mcs = -EINVAL, ir = -EINVAL;
681         unsigned int confa, confb;
682         unsigned int rate, ratio;
683         int ret;
684
685         if (!sta350->mclk) {
686                 dev_err(component->dev,
687                         "sta350->mclk is unset. Unable to determine ratio\n");
688                 return -EIO;
689         }
690
691         rate = params_rate(params);
692         ratio = sta350->mclk / rate;
693         dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
694
695         for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
696                 if (interpolation_ratios[i].fs == rate) {
697                         ir = interpolation_ratios[i].ir;
698                         break;
699                 }
700         }
701
702         if (ir < 0) {
703                 dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
704                 return -EINVAL;
705         }
706
707         for (i = 0; i < 6; i++) {
708                 if (mcs_ratio_table[ir][i] == ratio) {
709                         mcs = i;
710                         break;
711                 }
712         }
713
714         if (mcs < 0) {
715                 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
716                 return -EINVAL;
717         }
718
719         confa = (ir << STA350_CONFA_IR_SHIFT) |
720                 (mcs << STA350_CONFA_MCS_SHIFT);
721         confb = 0;
722
723         switch (params_width(params)) {
724         case 24:
725                 dev_dbg(component->dev, "24bit\n");
726                 fallthrough;
727         case 32:
728                 dev_dbg(component->dev, "24bit or 32bit\n");
729                 switch (sta350->format) {
730                 case SND_SOC_DAIFMT_I2S:
731                         confb |= 0x0;
732                         break;
733                 case SND_SOC_DAIFMT_LEFT_J:
734                         confb |= 0x1;
735                         break;
736                 case SND_SOC_DAIFMT_RIGHT_J:
737                         confb |= 0x2;
738                         break;
739                 }
740
741                 break;
742         case 20:
743                 dev_dbg(component->dev, "20bit\n");
744                 switch (sta350->format) {
745                 case SND_SOC_DAIFMT_I2S:
746                         confb |= 0x4;
747                         break;
748                 case SND_SOC_DAIFMT_LEFT_J:
749                         confb |= 0x5;
750                         break;
751                 case SND_SOC_DAIFMT_RIGHT_J:
752                         confb |= 0x6;
753                         break;
754                 }
755
756                 break;
757         case 18:
758                 dev_dbg(component->dev, "18bit\n");
759                 switch (sta350->format) {
760                 case SND_SOC_DAIFMT_I2S:
761                         confb |= 0x8;
762                         break;
763                 case SND_SOC_DAIFMT_LEFT_J:
764                         confb |= 0x9;
765                         break;
766                 case SND_SOC_DAIFMT_RIGHT_J:
767                         confb |= 0xa;
768                         break;
769                 }
770
771                 break;
772         case 16:
773                 dev_dbg(component->dev, "16bit\n");
774                 switch (sta350->format) {
775                 case SND_SOC_DAIFMT_I2S:
776                         confb |= 0x0;
777                         break;
778                 case SND_SOC_DAIFMT_LEFT_J:
779                         confb |= 0xd;
780                         break;
781                 case SND_SOC_DAIFMT_RIGHT_J:
782                         confb |= 0xe;
783                         break;
784                 }
785
786                 break;
787         default:
788                 return -EINVAL;
789         }
790
791         ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
792                                  STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
793                                  confa);
794         if (ret < 0)
795                 return ret;
796
797         ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
798                                  STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
799                                  confb);
800         if (ret < 0)
801                 return ret;
802
803         return 0;
804 }
805
806 static int sta350_startup_sequence(struct sta350_priv *sta350)
807 {
808         if (sta350->gpiod_power_down)
809                 gpiod_set_value(sta350->gpiod_power_down, 1);
810
811         if (sta350->gpiod_nreset) {
812                 gpiod_set_value(sta350->gpiod_nreset, 0);
813                 mdelay(1);
814                 gpiod_set_value(sta350->gpiod_nreset, 1);
815                 mdelay(1);
816         }
817
818         return 0;
819 }
820
821 /**
822  * sta350_set_bias_level - DAPM callback
823  * @component: the component device
824  * @level: DAPM power level
825  *
826  * This is called by ALSA to put the component into low power mode
827  * or to wake it up.  If the component is powered off completely
828  * all registers must be restored after power on.
829  */
830 static int sta350_set_bias_level(struct snd_soc_component *component,
831                                  enum snd_soc_bias_level level)
832 {
833         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
834         int ret;
835
836         dev_dbg(component->dev, "level = %d\n", level);
837         switch (level) {
838         case SND_SOC_BIAS_ON:
839                 break;
840
841         case SND_SOC_BIAS_PREPARE:
842                 /* Full power on */
843                 regmap_update_bits(sta350->regmap, STA350_CONFF,
844                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD,
845                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD);
846                 break;
847
848         case SND_SOC_BIAS_STANDBY:
849                 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
850                         ret = regulator_bulk_enable(
851                                 ARRAY_SIZE(sta350->supplies),
852                                 sta350->supplies);
853                         if (ret < 0) {
854                                 dev_err(component->dev,
855                                         "Failed to enable supplies: %d\n",
856                                         ret);
857                                 return ret;
858                         }
859                         sta350_startup_sequence(sta350);
860                         sta350_cache_sync(component);
861                 }
862
863                 /* Power down */
864                 regmap_update_bits(sta350->regmap, STA350_CONFF,
865                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD,
866                                    0);
867
868                 break;
869
870         case SND_SOC_BIAS_OFF:
871                 /* The chip runs through the power down sequence for us */
872                 regmap_update_bits(sta350->regmap, STA350_CONFF,
873                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
874
875                 /* power down: low */
876                 if (sta350->gpiod_power_down)
877                         gpiod_set_value(sta350->gpiod_power_down, 0);
878
879                 if (sta350->gpiod_nreset)
880                         gpiod_set_value(sta350->gpiod_nreset, 0);
881
882                 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
883                                        sta350->supplies);
884                 break;
885         }
886         return 0;
887 }
888
889 static const struct snd_soc_dai_ops sta350_dai_ops = {
890         .hw_params      = sta350_hw_params,
891         .set_sysclk     = sta350_set_dai_sysclk,
892         .set_fmt        = sta350_set_dai_fmt,
893 };
894
895 static struct snd_soc_dai_driver sta350_dai = {
896         .name = "sta350-hifi",
897         .playback = {
898                 .stream_name = "Playback",
899                 .channels_min = 2,
900                 .channels_max = 2,
901                 .rates = STA350_RATES,
902                 .formats = STA350_FORMATS,
903         },
904         .ops = &sta350_dai_ops,
905 };
906
907 static int sta350_probe(struct snd_soc_component *component)
908 {
909         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
910         struct sta350_platform_data *pdata = sta350->pdata;
911         int i, ret = 0, thermal = 0;
912
913         ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
914                                     sta350->supplies);
915         if (ret < 0) {
916                 dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
917                 return ret;
918         }
919
920         ret = sta350_startup_sequence(sta350);
921         if (ret < 0) {
922                 dev_err(component->dev, "Failed to startup device\n");
923                 return ret;
924         }
925
926         /* CONFA */
927         if (!pdata->thermal_warning_recovery)
928                 thermal |= STA350_CONFA_TWAB;
929         if (!pdata->thermal_warning_adjustment)
930                 thermal |= STA350_CONFA_TWRB;
931         if (!pdata->fault_detect_recovery)
932                 thermal |= STA350_CONFA_FDRB;
933         regmap_update_bits(sta350->regmap, STA350_CONFA,
934                            STA350_CONFA_TWAB | STA350_CONFA_TWRB |
935                            STA350_CONFA_FDRB,
936                            thermal);
937
938         /* CONFC */
939         regmap_update_bits(sta350->regmap, STA350_CONFC,
940                            STA350_CONFC_OM_MASK,
941                            pdata->ffx_power_output_mode
942                                 << STA350_CONFC_OM_SHIFT);
943         regmap_update_bits(sta350->regmap, STA350_CONFC,
944                            STA350_CONFC_CSZ_MASK,
945                            pdata->drop_compensation_ns
946                                 << STA350_CONFC_CSZ_SHIFT);
947         regmap_update_bits(sta350->regmap,
948                            STA350_CONFC,
949                            STA350_CONFC_OCRB,
950                            pdata->oc_warning_adjustment ?
951                                 STA350_CONFC_OCRB : 0);
952
953         /* CONFE */
954         regmap_update_bits(sta350->regmap, STA350_CONFE,
955                            STA350_CONFE_MPCV,
956                            pdata->max_power_use_mpcc ?
957                                 STA350_CONFE_MPCV : 0);
958         regmap_update_bits(sta350->regmap, STA350_CONFE,
959                            STA350_CONFE_MPC,
960                            pdata->max_power_correction ?
961                                 STA350_CONFE_MPC : 0);
962         regmap_update_bits(sta350->regmap, STA350_CONFE,
963                            STA350_CONFE_AME,
964                            pdata->am_reduction_mode ?
965                                 STA350_CONFE_AME : 0);
966         regmap_update_bits(sta350->regmap, STA350_CONFE,
967                            STA350_CONFE_PWMS,
968                            pdata->odd_pwm_speed_mode ?
969                                 STA350_CONFE_PWMS : 0);
970         regmap_update_bits(sta350->regmap, STA350_CONFE,
971                            STA350_CONFE_DCCV,
972                            pdata->distortion_compensation ?
973                                 STA350_CONFE_DCCV : 0);
974         /*  CONFF */
975         regmap_update_bits(sta350->regmap, STA350_CONFF,
976                            STA350_CONFF_IDE,
977                            pdata->invalid_input_detect_mute ?
978                                 STA350_CONFF_IDE : 0);
979         regmap_update_bits(sta350->regmap, STA350_CONFF,
980                            STA350_CONFF_OCFG_MASK,
981                            pdata->output_conf
982                                 << STA350_CONFF_OCFG_SHIFT);
983
984         /* channel to output mapping */
985         regmap_update_bits(sta350->regmap, STA350_C1CFG,
986                            STA350_CxCFG_OM_MASK,
987                            pdata->ch1_output_mapping
988                                 << STA350_CxCFG_OM_SHIFT);
989         regmap_update_bits(sta350->regmap, STA350_C2CFG,
990                            STA350_CxCFG_OM_MASK,
991                            pdata->ch2_output_mapping
992                                 << STA350_CxCFG_OM_SHIFT);
993         regmap_update_bits(sta350->regmap, STA350_C3CFG,
994                            STA350_CxCFG_OM_MASK,
995                            pdata->ch3_output_mapping
996                                 << STA350_CxCFG_OM_SHIFT);
997
998         /* miscellaneous registers */
999         regmap_update_bits(sta350->regmap, STA350_MISC1,
1000                            STA350_MISC1_CPWMEN,
1001                            pdata->activate_mute_output ?
1002                                 STA350_MISC1_CPWMEN : 0);
1003         regmap_update_bits(sta350->regmap, STA350_MISC1,
1004                            STA350_MISC1_BRIDGOFF,
1005                            pdata->bridge_immediate_off ?
1006                                 STA350_MISC1_BRIDGOFF : 0);
1007         regmap_update_bits(sta350->regmap, STA350_MISC1,
1008                            STA350_MISC1_NSHHPEN,
1009                            pdata->noise_shape_dc_cut ?
1010                                 STA350_MISC1_NSHHPEN : 0);
1011         regmap_update_bits(sta350->regmap, STA350_MISC1,
1012                            STA350_MISC1_RPDNEN,
1013                            pdata->powerdown_master_vol ?
1014                                 STA350_MISC1_RPDNEN: 0);
1015
1016         regmap_update_bits(sta350->regmap, STA350_MISC2,
1017                            STA350_MISC2_PNDLSL_MASK,
1018                            pdata->powerdown_delay_divider
1019                                 << STA350_MISC2_PNDLSL_SHIFT);
1020
1021         /* initialize coefficient shadow RAM with reset values */
1022         for (i = 4; i <= 49; i += 5)
1023                 sta350->coef_shadow[i] = 0x400000;
1024         for (i = 50; i <= 54; i++)
1025                 sta350->coef_shadow[i] = 0x7fffff;
1026         sta350->coef_shadow[55] = 0x5a9df7;
1027         sta350->coef_shadow[56] = 0x7fffff;
1028         sta350->coef_shadow[59] = 0x7fffff;
1029         sta350->coef_shadow[60] = 0x400000;
1030         sta350->coef_shadow[61] = 0x400000;
1031
1032         snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1033         /* Bias level configuration will have done an extra enable */
1034         regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1035
1036         return 0;
1037 }
1038
1039 static void sta350_remove(struct snd_soc_component *component)
1040 {
1041         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1042
1043         regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1044 }
1045
1046 static const struct snd_soc_component_driver sta350_component = {
1047         .probe                  = sta350_probe,
1048         .remove                 = sta350_remove,
1049         .set_bias_level         = sta350_set_bias_level,
1050         .controls               = sta350_snd_controls,
1051         .num_controls           = ARRAY_SIZE(sta350_snd_controls),
1052         .dapm_widgets           = sta350_dapm_widgets,
1053         .num_dapm_widgets       = ARRAY_SIZE(sta350_dapm_widgets),
1054         .dapm_routes            = sta350_dapm_routes,
1055         .num_dapm_routes        = ARRAY_SIZE(sta350_dapm_routes),
1056         .suspend_bias_off       = 1,
1057         .idle_bias_on           = 1,
1058         .use_pmdown_time        = 1,
1059         .endianness             = 1,
1060         .non_legacy_dai_naming  = 1,
1061 };
1062
1063 static const struct regmap_config sta350_regmap = {
1064         .reg_bits =             8,
1065         .val_bits =             8,
1066         .max_register =         STA350_MISC2,
1067         .reg_defaults =         sta350_regs,
1068         .num_reg_defaults =     ARRAY_SIZE(sta350_regs),
1069         .cache_type =           REGCACHE_RBTREE,
1070         .wr_table =             &sta350_write_regs,
1071         .rd_table =             &sta350_read_regs,
1072         .volatile_table =       &sta350_volatile_regs,
1073 };
1074
1075 #ifdef CONFIG_OF
1076 static const struct of_device_id st350_dt_ids[] = {
1077         { .compatible = "st,sta350", },
1078         { }
1079 };
1080 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1081
1082 static const char * const sta350_ffx_modes[] = {
1083         [STA350_FFX_PM_DROP_COMP]               = "drop-compensation",
1084         [STA350_FFX_PM_TAPERED_COMP]            = "tapered-compensation",
1085         [STA350_FFX_PM_FULL_POWER]              = "full-power-mode",
1086         [STA350_FFX_PM_VARIABLE_DROP_COMP]      = "variable-drop-compensation",
1087 };
1088
1089 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1090 {
1091         struct device_node *np = dev->of_node;
1092         struct sta350_platform_data *pdata;
1093         const char *ffx_power_mode;
1094         u16 tmp;
1095         u8 tmp8;
1096
1097         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1098         if (!pdata)
1099                 return -ENOMEM;
1100
1101         of_property_read_u8(np, "st,output-conf",
1102                             &pdata->output_conf);
1103         of_property_read_u8(np, "st,ch1-output-mapping",
1104                             &pdata->ch1_output_mapping);
1105         of_property_read_u8(np, "st,ch2-output-mapping",
1106                             &pdata->ch2_output_mapping);
1107         of_property_read_u8(np, "st,ch3-output-mapping",
1108                             &pdata->ch3_output_mapping);
1109
1110         if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1111                 pdata->thermal_warning_recovery = 1;
1112         if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1113                 pdata->thermal_warning_adjustment = 1;
1114         if (of_get_property(np, "st,fault-detect-recovery", NULL))
1115                 pdata->fault_detect_recovery = 1;
1116
1117         pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1118         if (!of_property_read_string(np, "st,ffx-power-output-mode",
1119                                      &ffx_power_mode)) {
1120                 int i, mode = -EINVAL;
1121
1122                 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1123                         if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1124                                 mode = i;
1125
1126                 if (mode < 0)
1127                         dev_warn(dev, "Unsupported ffx output mode: %s\n",
1128                                  ffx_power_mode);
1129                 else
1130                         pdata->ffx_power_output_mode = mode;
1131         }
1132
1133         tmp = 140;
1134         of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1135         pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1136
1137         if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1138                 pdata->oc_warning_adjustment = 1;
1139
1140         /* CONFE */
1141         if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1142                 pdata->max_power_use_mpcc = 1;
1143
1144         if (of_get_property(np, "st,max-power-correction", NULL))
1145                 pdata->max_power_correction = 1;
1146
1147         if (of_get_property(np, "st,am-reduction-mode", NULL))
1148                 pdata->am_reduction_mode = 1;
1149
1150         if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1151                 pdata->odd_pwm_speed_mode = 1;
1152
1153         if (of_get_property(np, "st,distortion-compensation", NULL))
1154                 pdata->distortion_compensation = 1;
1155
1156         /* CONFF */
1157         if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1158                 pdata->invalid_input_detect_mute = 1;
1159
1160         /* MISC */
1161         if (of_get_property(np, "st,activate-mute-output", NULL))
1162                 pdata->activate_mute_output = 1;
1163
1164         if (of_get_property(np, "st,bridge-immediate-off", NULL))
1165                 pdata->bridge_immediate_off = 1;
1166
1167         if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1168                 pdata->noise_shape_dc_cut = 1;
1169
1170         if (of_get_property(np, "st,powerdown-master-volume", NULL))
1171                 pdata->powerdown_master_vol = 1;
1172
1173         if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1174                 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1175                         pdata->powerdown_delay_divider = ilog2(tmp8);
1176                 else
1177                         dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1178                                  tmp8);
1179         }
1180
1181         sta350->pdata = pdata;
1182
1183         return 0;
1184 }
1185 #endif
1186
1187 static int sta350_i2c_probe(struct i2c_client *i2c)
1188 {
1189         struct device *dev = &i2c->dev;
1190         struct sta350_priv *sta350;
1191         int ret, i;
1192
1193         sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1194         if (!sta350)
1195                 return -ENOMEM;
1196
1197         mutex_init(&sta350->coeff_lock);
1198         sta350->pdata = dev_get_platdata(dev);
1199
1200 #ifdef CONFIG_OF
1201         if (dev->of_node) {
1202                 ret = sta350_probe_dt(dev, sta350);
1203                 if (ret < 0)
1204                         return ret;
1205         }
1206 #endif
1207
1208         /* GPIOs */
1209         sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1210                                                        GPIOD_OUT_LOW);
1211         if (IS_ERR(sta350->gpiod_nreset))
1212                 return PTR_ERR(sta350->gpiod_nreset);
1213
1214         sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1215                                                            GPIOD_OUT_LOW);
1216         if (IS_ERR(sta350->gpiod_power_down))
1217                 return PTR_ERR(sta350->gpiod_power_down);
1218
1219         /* regulators */
1220         for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1221                 sta350->supplies[i].supply = sta350_supply_names[i];
1222
1223         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1224                                       sta350->supplies);
1225         if (ret < 0) {
1226                 dev_err(dev, "Failed to request supplies: %d\n", ret);
1227                 return ret;
1228         }
1229
1230         sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1231         if (IS_ERR(sta350->regmap)) {
1232                 ret = PTR_ERR(sta350->regmap);
1233                 dev_err(dev, "Failed to init regmap: %d\n", ret);
1234                 return ret;
1235         }
1236
1237         i2c_set_clientdata(i2c, sta350);
1238
1239         ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1240         if (ret < 0)
1241                 dev_err(dev, "Failed to register component (%d)\n", ret);
1242
1243         return ret;
1244 }
1245
1246 static int sta350_i2c_remove(struct i2c_client *client)
1247 {
1248         return 0;
1249 }
1250
1251 static const struct i2c_device_id sta350_i2c_id[] = {
1252         { "sta350", 0 },
1253         { }
1254 };
1255 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1256
1257 static struct i2c_driver sta350_i2c_driver = {
1258         .driver = {
1259                 .name = "sta350",
1260                 .of_match_table = of_match_ptr(st350_dt_ids),
1261         },
1262         .probe_new = sta350_i2c_probe,
1263         .remove =   sta350_i2c_remove,
1264         .id_table = sta350_i2c_id,
1265 };
1266
1267 module_i2c_driver(sta350_i2c_driver);
1268
1269 MODULE_DESCRIPTION("ASoC STA350 driver");
1270 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1271 MODULE_LICENSE("GPL");