GNU Linux-libre 4.9.318-gnu1
[releases.git] / sound / pci / cmipci.c
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19  
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22
23 #include <linux/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47                 "{C-Media,CMI8738B},"
48                 "{C-Media,CMI8338A},"
49                 "{C-Media,CMI8338B}}");
50
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
57 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81
82 /*
83  * CM8x38 registers definition
84  */
85
86 #define CM_REG_FUNCTRL0         0x00
87 #define CM_RST_CH1              0x00080000
88 #define CM_RST_CH0              0x00040000
89 #define CM_CHEN1                0x00020000      /* ch1: enable */
90 #define CM_CHEN0                0x00010000      /* ch0: enable */
91 #define CM_PAUSE1               0x00000008      /* ch1: pause */
92 #define CM_PAUSE0               0x00000004      /* ch0: pause */
93 #define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
94 #define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
95
96 #define CM_REG_FUNCTRL1         0x04
97 #define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT           13
99 #define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT           10
101 #define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
106 #define CM_BREQ                 0x00000010      /* bus master enabled */
107 #define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
108 #define CM_UART_EN              0x00000004      /* legacy UART */
109 #define CM_JYSTK_EN             0x00000002      /* legacy joystick */
110 #define CM_ZVPORT               0x00000001      /* ZVPORT */
111
112 #define CM_REG_CHFORMAT         0x08
113
114 #define CM_CHB3D5C              0x80000000      /* 5,6 channels */
115 #define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D                0x20000000      /* 4 channels */
117
118 #define CM_CHIP_MASK1           0x1f000000
119 #define CM_CHIP_037             0x01000000
120 #define CM_SETLAT48             0x00800000      /* set latency timer 48h */
121 #define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
123 #define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
125 #define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
127
128 #define CM_ADCBITLEN_MASK       0x0000C000      
129 #define CM_ADCBITLEN_16         0x00000000
130 #define CM_ADCBITLEN_15         0x00004000
131 #define CM_ADCBITLEN_14         0x00008000
132 #define CM_ADCBITLEN_13         0x0000C000
133
134 #define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
135 #define CM_ADCDACLEN_060        0x00000000
136 #define CM_ADCDACLEN_066        0x00001000
137 #define CM_ADCDACLEN_130        0x00002000
138 #define CM_ADCDACLEN_280        0x00003000
139
140 #define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
141 #define CM_ADCDLEN_ORIGINAL     0x00000000
142 #define CM_ADCDLEN_EXTRA        0x00001000
143 #define CM_ADCDLEN_24K          0x00002000
144 #define CM_ADCDLEN_WEIGHT       0x00003000
145
146 #define CM_CH1_SRATE_176K       0x00000800
147 #define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
148 #define CM_CH1_SRATE_88K        0x00000400
149 #define CM_CH0_SRATE_176K       0x00000200
150 #define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
151 #define CM_CH0_SRATE_88K        0x00000100
152 #define CM_CH0_SRATE_128K       0x00000300
153 #define CM_CH0_SRATE_MASK       0x00000300
154
155 #define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
156 #define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED            0x00000010
159
160 #define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT         2
162 #define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT         0
164
165 #define CM_REG_INT_HLDCLR       0x0C
166 #define CM_CHIP_MASK2           0xff000000
167 #define CM_CHIP_8768            0x20000000
168 #define CM_CHIP_055             0x08000000
169 #define CM_CHIP_039             0x04000000
170 #define CM_CHIP_039_6CH         0x01000000
171 #define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
172 #define CM_TDMA_INT_EN          0x00040000
173 #define CM_CH1_INT_EN           0x00020000
174 #define CM_CH0_INT_EN           0x00010000
175
176 #define CM_REG_INT_STATUS       0x10
177 #define CM_INTR                 0x80000000
178 #define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
179 #define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
180 #define CM_UARTINT              0x00010000
181 #define CM_LTDMAINT             0x00008000
182 #define CM_HTDMAINT             0x00004000
183 #define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
187 #define CM_CH1BUSY              0x00000008
188 #define CM_CH0BUSY              0x00000004
189 #define CM_CHINT1               0x00000002
190 #define CM_CHINT0               0x00000001
191
192 #define CM_REG_LEGACY_CTRL      0x14
193 #define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
194 #define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
195 #define CM_VMPU_330             0x00000000
196 #define CM_VMPU_320             0x20000000
197 #define CM_VMPU_310             0x40000000
198 #define CM_VMPU_300             0x60000000
199 #define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
201 #define CM_VSBSEL_220           0x00000000
202 #define CM_VSBSEL_240           0x04000000
203 #define CM_VSBSEL_260           0x08000000
204 #define CM_VSBSEL_280           0x0C000000
205 #define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
206 #define CM_FMSEL_388            0x00000000
207 #define CM_FMSEL_3C8            0x01000000
208 #define CM_FMSEL_3E0            0x02000000
209 #define CM_FMSEL_3E8            0x03000000
210 #define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
212 #define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
216 #define CM_C_EECS               0x00040000
217 #define CM_C_EEDI46             0x00020000
218 #define CM_C_EECK46             0x00010000
219 #define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
220 #define CM_CENTR2LIN            0x00004000      /* line-in as center out */
221 #define CM_BASE2LIN             0x00002000      /* line-in as bass out */
222 #define CM_EXBASEN              0x00001000      /* external bass input enable */
223
224 #define CM_REG_MISC_CTRL        0x18
225 #define CM_PWD                  0x80000000      /* power down */
226 #define CM_RESET                0x40000000
227 #define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
229 #define CM_TXVX                 0x08000000      /* model 037? */
230 #define CM_N4SPK3D              0x04000000      /* copy front to rear */
231 #define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K             0x01000000      /* write */
233 #define CM_SPATUS48K            0x01000000      /* read */
234 #define CM_ENDBDAC              0x00800000      /* enable double dac */
235 #define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN                0x00080000      /* enable legacy FM */
239 #define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
240 #define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB             0x00010000      /* model 037? */
242 #define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT             0x00002000      /* model 037? */
246 #define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
248 #define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
249 #define CM_ENCENTER             0x00000080
250 #define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
251 #define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
253 #define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
255 #define CM_UPDDMA_2048          0x00000000
256 #define CM_UPDDMA_1024          0x00000004
257 #define CM_UPDDMA_512           0x00000008
258 #define CM_UPDDMA_256           0x0000000C              
259 #define CM_TWAIT_MASK           0x00000003      /* model 037 */
260 #define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263 #define CM_REG_TDMA_POSITION    0x1C
264 #define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
265 #define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
266
267         /* byte */
268 #define CM_REG_MIXER0           0x20
269 #define CM_REG_SBVR             0x20            /* write: sb16 version */
270 #define CM_REG_DEV              0x20            /* read: hardware device version */
271
272 #define CM_REG_MIXER21          0x21
273 #define CM_UNKNOWN_21_MASK      0x78            /* ? */
274 #define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
275 #define CM_PROINV               0x02            /* SBPro left/right channel switching */
276 #define CM_X_SB16               0x01            /* SB16 compatible */
277
278 #define CM_REG_SB16_DATA        0x22
279 #define CM_REG_SB16_ADDR        0x23
280
281 #define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
285
286 #define CM_REG_MIXER1           0x24
287 #define CM_FMMUTE               0x80    /* mute FM */
288 #define CM_FMMUTE_SHIFT         7
289 #define CM_WSMUTE               0x40    /* mute PCM */
290 #define CM_WSMUTE_SHIFT         6
291 #define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT       5
293 #define CM_REAR2FRONT           0x10    /* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT     4
295 #define CM_WAVEINL              0x08    /* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT        3
297 #define CM_WAVEINR              0x04    /* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT        2
299 #define CM_X3DEN                0x02    /* 3D surround enable */
300 #define CM_X3DEN_SHIFT          1
301 #define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT         0
303
304 #define CM_REG_MIXER2           0x25
305 #define CM_RAUXREN              0x80    /* AUX right capture */
306 #define CM_RAUXREN_SHIFT        7
307 #define CM_RAUXLEN              0x40    /* AUX left capture */
308 #define CM_RAUXLEN_SHIFT        6
309 #define CM_VAUXRM               0x20    /* AUX right mute */
310 #define CM_VAUXRM_SHIFT         5
311 #define CM_VAUXLM               0x10    /* AUX left mute */
312 #define CM_VAUXLM_SHIFT         4
313 #define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT         1
315 #define CM_MICGAINZ             0x01    /* mic boost */
316 #define CM_MICGAINZ_SHIFT       0
317
318 #define CM_REG_AUX_VOL          0x26
319 #define CM_VAUXL_MASK           0xf0
320 #define CM_VAUXR_MASK           0x0f
321
322 #define CM_REG_MISC             0x27
323 #define CM_UNKNOWN_27_MASK      0xd8    /* ? */
324 #define CM_XGPO1                0x20
325 // #define CM_XGPBIO            0x04
326 #define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
327 #define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
328 #define CM_SPDVALID             0x02    /* spdif input valid check */
329 #define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
330
331 #define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
332 /*
333  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
334  * or identical with AC97 codec?
335  */
336 #define CM_REG_EXTERN_CODEC     CM_REG_AC97
337
338 /*
339  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
340  */
341 #define CM_REG_MPU_PCI          0x40
342
343 /*
344  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
345  */
346 #define CM_REG_FM_PCI           0x50
347
348 /*
349  * access from SB-mixer port
350  */
351 #define CM_REG_EXTENT_IND       0xf0
352 #define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
353 #define CM_VPHONE_SHIFT         5
354 #define CM_VPHOM                0x10    /* Phone mute control */
355 #define CM_VSPKM                0x08    /* Speaker mute control, default high */
356 #define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
357 #define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
358 #define CM_VADMIC3              0x01    /* Mic record boost */
359
360 /*
361  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
362  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
363  * unit (readonly?).
364  */
365 #define CM_REG_PLL              0xf8
366
367 /*
368  * extended registers
369  */
370 #define CM_REG_CH0_FRAME1       0x80    /* write: base address */
371 #define CM_REG_CH0_FRAME2       0x84    /* read: current address */
372 #define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
373 #define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
374
375 #define CM_REG_EXT_MISC         0x90
376 #define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
377 #define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
378 #define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
379 #define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
380 #define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
381 #define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
382 #define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
383 #define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
384
385 /*
386  * size of i/o region
387  */
388 #define CM_EXTENT_CODEC   0x100
389 #define CM_EXTENT_MIDI    0x2
390 #define CM_EXTENT_SYNTH   0x4
391
392
393 /*
394  * channels for playback / capture
395  */
396 #define CM_CH_PLAY      0
397 #define CM_CH_CAPT      1
398
399 /*
400  * flags to check device open/close
401  */
402 #define CM_OPEN_NONE    0
403 #define CM_OPEN_CH_MASK 0x01
404 #define CM_OPEN_DAC     0x10
405 #define CM_OPEN_ADC     0x20
406 #define CM_OPEN_SPDIF   0x40
407 #define CM_OPEN_MCHAN   0x80
408 #define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
409 #define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
411 #define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
412 #define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
413 #define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
414
415
416 #if CM_CH_PLAY == 1
417 #define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
418 #define CM_PLAYBACK_SPDF        CM_SPDF_1
419 #define CM_CAPTURE_SPDF         CM_SPDF_0
420 #else
421 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
422 #define CM_PLAYBACK_SPDF        CM_SPDF_0
423 #define CM_CAPTURE_SPDF         CM_SPDF_1
424 #endif
425
426
427 /*
428  * driver data
429  */
430
431 struct cmipci_pcm {
432         struct snd_pcm_substream *substream;
433         u8 running;             /* dac/adc running? */
434         u8 fmt;                 /* format bits */
435         u8 is_dac;
436         u8 needs_silencing;
437         unsigned int dma_size;  /* in frames */
438         unsigned int shift;
439         unsigned int ch;        /* channel (0/1) */
440         unsigned int offset;    /* physical address of the buffer */
441 };
442
443 /* mixer elements toggled/resumed during ac3 playback */
444 struct cmipci_mixer_auto_switches {
445         const char *name;       /* switch to toggle */
446         int toggle_on;          /* value to change when ac3 mode */
447 };
448 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
449         {"PCM Playback Switch", 0},
450         {"IEC958 Output Switch", 1},
451         {"IEC958 Mix Analog", 0},
452         // {"IEC958 Out To DAC", 1}, // no longer used
453         {"IEC958 Loop", 0},
454 };
455 #define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
456
457 struct cmipci {
458         struct snd_card *card;
459
460         struct pci_dev *pci;
461         unsigned int device;    /* device ID */
462         int irq;
463
464         unsigned long iobase;
465         unsigned int ctrl;      /* FUNCTRL0 current value */
466
467         struct snd_pcm *pcm;            /* DAC/ADC PCM */
468         struct snd_pcm *pcm2;   /* 2nd DAC */
469         struct snd_pcm *pcm_spdif;      /* SPDIF */
470
471         int chip_version;
472         int max_channels;
473         unsigned int can_ac3_sw: 1;
474         unsigned int can_ac3_hw: 1;
475         unsigned int can_multi_ch: 1;
476         unsigned int can_96k: 1;        /* samplerate above 48k */
477         unsigned int do_soft_ac3: 1;
478
479         unsigned int spdif_playback_avail: 1;   /* spdif ready? */
480         unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
481         int spdif_counter;      /* for software AC3 */
482
483         unsigned int dig_status;
484         unsigned int dig_pcm_status;
485
486         struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
487
488         int opened[2];  /* open mode */
489         struct mutex open_mutex;
490
491         unsigned int mixer_insensitive: 1;
492         struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
493         int mixer_res_status[CM_SAVED_MIXERS];
494
495         struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
496
497         /* external MIDI */
498         struct snd_rawmidi *rmidi;
499
500 #ifdef SUPPORT_JOYSTICK
501         struct gameport *gameport;
502 #endif
503
504         spinlock_t reg_lock;
505
506 #ifdef CONFIG_PM_SLEEP
507         unsigned int saved_regs[0x20];
508         unsigned char saved_mixers[0x20];
509 #endif
510 };
511
512
513 /* read/write operations for dword register */
514 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
515 {
516         outl(data, cm->iobase + cmd);
517 }
518
519 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
520 {
521         return inl(cm->iobase + cmd);
522 }
523
524 /* read/write operations for word register */
525 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
526 {
527         outw(data, cm->iobase + cmd);
528 }
529
530 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
531 {
532         return inw(cm->iobase + cmd);
533 }
534
535 /* read/write operations for byte register */
536 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
537 {
538         outb(data, cm->iobase + cmd);
539 }
540
541 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
542 {
543         return inb(cm->iobase + cmd);
544 }
545
546 /* bit operations for dword register */
547 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
548 {
549         unsigned int val, oval;
550         val = oval = inl(cm->iobase + cmd);
551         val |= flag;
552         if (val == oval)
553                 return 0;
554         outl(val, cm->iobase + cmd);
555         return 1;
556 }
557
558 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
559 {
560         unsigned int val, oval;
561         val = oval = inl(cm->iobase + cmd);
562         val &= ~flag;
563         if (val == oval)
564                 return 0;
565         outl(val, cm->iobase + cmd);
566         return 1;
567 }
568
569 /* bit operations for byte register */
570 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
571 {
572         unsigned char val, oval;
573         val = oval = inb(cm->iobase + cmd);
574         val |= flag;
575         if (val == oval)
576                 return 0;
577         outb(val, cm->iobase + cmd);
578         return 1;
579 }
580
581 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
582 {
583         unsigned char val, oval;
584         val = oval = inb(cm->iobase + cmd);
585         val &= ~flag;
586         if (val == oval)
587                 return 0;
588         outb(val, cm->iobase + cmd);
589         return 1;
590 }
591
592
593 /*
594  * PCM interface
595  */
596
597 /*
598  * calculate frequency
599  */
600
601 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
602
603 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
604 {
605         unsigned int i;
606
607         for (i = 0; i < ARRAY_SIZE(rates); i++) {
608                 if (rates[i] == rate)
609                         return i;
610         }
611         snd_BUG();
612         return 0;
613 }
614
615 #ifdef USE_VAR48KRATE
616 /*
617  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
618  * does it this way .. maybe not.  Never get any information from C-Media about
619  * that <werner@suse.de>.
620  */
621 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
622 {
623         unsigned int delta, tolerance;
624         int xm, xn, xr;
625
626         for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
627                 rate <<= 1;
628         *n = -1;
629         if (*r > 0xff)
630                 goto out;
631         tolerance = rate*CM_TOLERANCE_RATE;
632
633         for (xn = (1+2); xn < (0x1f+2); xn++) {
634                 for (xm = (1+2); xm < (0xff+2); xm++) {
635                         xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
636
637                         if (xr < rate)
638                                 delta = rate - xr;
639                         else
640                                 delta = xr - rate;
641
642                         /*
643                          * If we found one, remember this,
644                          * and try to find a closer one
645                          */
646                         if (delta < tolerance) {
647                                 tolerance = delta;
648                                 *m = xm - 2;
649                                 *n = xn - 2;
650                         }
651                 }
652         }
653 out:
654         return (*n > -1);
655 }
656
657 /*
658  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
659  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
660  * at the register CM_REG_FUNCTRL1 (0x04).
661  * Problem: other ways are also possible (any information about that?)
662  */
663 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
664 {
665         unsigned int reg = CM_REG_PLL + slot;
666         /*
667          * Guess that this programs at reg. 0x04 the pos 15:13/12:10
668          * for DSFC/ASFC (000 up to 111).
669          */
670
671         /* FIXME: Init (Do we've to set an other register first before programming?) */
672
673         /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
674         snd_cmipci_write_b(cm, reg, rate>>8);
675         snd_cmipci_write_b(cm, reg, rate&0xff);
676
677         /* FIXME: Setup (Do we've to set an other register first to enable this?) */
678 }
679 #endif /* USE_VAR48KRATE */
680
681 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
682                                 struct snd_pcm_hw_params *hw_params)
683 {
684         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
685 }
686
687 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
688                                           struct snd_pcm_hw_params *hw_params)
689 {
690         struct cmipci *cm = snd_pcm_substream_chip(substream);
691         if (params_channels(hw_params) > 2) {
692                 mutex_lock(&cm->open_mutex);
693                 if (cm->opened[CM_CH_PLAY]) {
694                         mutex_unlock(&cm->open_mutex);
695                         return -EBUSY;
696                 }
697                 /* reserve the channel A */
698                 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
699                 mutex_unlock(&cm->open_mutex);
700         }
701         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
702 }
703
704 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
705 {
706         int reset = CM_RST_CH0 << (cm->channel[ch].ch);
707         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
708         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
709         udelay(10);
710 }
711
712 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
713 {
714         return snd_pcm_lib_free_pages(substream);
715 }
716
717
718 /*
719  */
720
721 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
722 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
723         .count = 3,
724         .list = hw_channels,
725         .mask = 0,
726 };
727 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
728         .count = 4,
729         .list = hw_channels,
730         .mask = 0,
731 };
732 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
733         .count = 5,
734         .list = hw_channels,
735         .mask = 0,
736 };
737
738 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
739 {
740         if (channels > 2) {
741                 if (!cm->can_multi_ch || !rec->ch)
742                         return -EINVAL;
743                 if (rec->fmt != 0x03) /* stereo 16bit only */
744                         return -EINVAL;
745         }
746
747         if (cm->can_multi_ch) {
748                 spin_lock_irq(&cm->reg_lock);
749                 if (channels > 2) {
750                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
751                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
752                 } else {
753                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
754                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
755                 }
756                 if (channels == 8)
757                         snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
758                 else
759                         snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
760                 if (channels == 6) {
761                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
762                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
763                 } else {
764                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
765                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
766                 }
767                 if (channels == 4)
768                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
769                 else
770                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
771                 spin_unlock_irq(&cm->reg_lock);
772         }
773         return 0;
774 }
775
776
777 /*
778  * prepare playback/capture channel
779  * channel to be used must have been set in rec->ch.
780  */
781 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
782                                  struct snd_pcm_substream *substream)
783 {
784         unsigned int reg, freq, freq_ext, val;
785         unsigned int period_size;
786         struct snd_pcm_runtime *runtime = substream->runtime;
787
788         rec->fmt = 0;
789         rec->shift = 0;
790         if (snd_pcm_format_width(runtime->format) >= 16) {
791                 rec->fmt |= 0x02;
792                 if (snd_pcm_format_width(runtime->format) > 16)
793                         rec->shift++; /* 24/32bit */
794         }
795         if (runtime->channels > 1)
796                 rec->fmt |= 0x01;
797         if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
798                 dev_dbg(cm->card->dev, "cannot set dac channels\n");
799                 return -EINVAL;
800         }
801
802         rec->offset = runtime->dma_addr;
803         /* buffer and period sizes in frame */
804         rec->dma_size = runtime->buffer_size << rec->shift;
805         period_size = runtime->period_size << rec->shift;
806         if (runtime->channels > 2) {
807                 /* multi-channels */
808                 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
809                 period_size = (period_size * runtime->channels) / 2;
810         }
811
812         spin_lock_irq(&cm->reg_lock);
813
814         /* set buffer address */
815         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
816         snd_cmipci_write(cm, reg, rec->offset);
817         /* program sample counts */
818         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
819         snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
820         snd_cmipci_write_w(cm, reg + 2, period_size - 1);
821
822         /* set adc/dac flag */
823         val = rec->ch ? CM_CHADC1 : CM_CHADC0;
824         if (rec->is_dac)
825                 cm->ctrl &= ~val;
826         else
827                 cm->ctrl |= val;
828         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
829         /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
830
831         /* set sample rate */
832         freq = 0;
833         freq_ext = 0;
834         if (runtime->rate > 48000)
835                 switch (runtime->rate) {
836                 case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
837                 case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
838                 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
839                 default:     snd_BUG(); break;
840                 }
841         else
842                 freq = snd_cmipci_rate_freq(runtime->rate);
843         val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
844         if (rec->ch) {
845                 val &= ~CM_DSFC_MASK;
846                 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
847         } else {
848                 val &= ~CM_ASFC_MASK;
849                 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
850         }
851         snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
852         dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
853
854         /* set format */
855         val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
856         if (rec->ch) {
857                 val &= ~CM_CH1FMT_MASK;
858                 val |= rec->fmt << CM_CH1FMT_SHIFT;
859         } else {
860                 val &= ~CM_CH0FMT_MASK;
861                 val |= rec->fmt << CM_CH0FMT_SHIFT;
862         }
863         if (cm->can_96k) {
864                 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
865                 val |= freq_ext << (rec->ch * 2);
866         }
867         snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
868         dev_dbg(cm->card->dev, "chformat = %08x\n", val);
869
870         if (!rec->is_dac && cm->chip_version) {
871                 if (runtime->rate > 44100)
872                         snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
873                 else
874                         snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
875         }
876
877         rec->running = 0;
878         spin_unlock_irq(&cm->reg_lock);
879
880         return 0;
881 }
882
883 /*
884  * PCM trigger/stop
885  */
886 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
887                                   int cmd)
888 {
889         unsigned int inthld, chen, reset, pause;
890         int result = 0;
891
892         inthld = CM_CH0_INT_EN << rec->ch;
893         chen = CM_CHEN0 << rec->ch;
894         reset = CM_RST_CH0 << rec->ch;
895         pause = CM_PAUSE0 << rec->ch;
896
897         spin_lock(&cm->reg_lock);
898         switch (cmd) {
899         case SNDRV_PCM_TRIGGER_START:
900                 rec->running = 1;
901                 /* set interrupt */
902                 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
903                 cm->ctrl |= chen;
904                 /* enable channel */
905                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
906                 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
907                 break;
908         case SNDRV_PCM_TRIGGER_STOP:
909                 rec->running = 0;
910                 /* disable interrupt */
911                 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
912                 /* reset */
913                 cm->ctrl &= ~chen;
914                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
915                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
916                 rec->needs_silencing = rec->is_dac;
917                 break;
918         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
919         case SNDRV_PCM_TRIGGER_SUSPEND:
920                 cm->ctrl |= pause;
921                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
922                 break;
923         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
924         case SNDRV_PCM_TRIGGER_RESUME:
925                 cm->ctrl &= ~pause;
926                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
927                 break;
928         default:
929                 result = -EINVAL;
930                 break;
931         }
932         spin_unlock(&cm->reg_lock);
933         return result;
934 }
935
936 /*
937  * return the current pointer
938  */
939 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
940                                                 struct snd_pcm_substream *substream)
941 {
942         size_t ptr;
943         unsigned int reg, rem, tries;
944
945         if (!rec->running)
946                 return 0;
947 #if 1 // this seems better..
948         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
949         for (tries = 0; tries < 3; tries++) {
950                 rem = snd_cmipci_read_w(cm, reg);
951                 if (rem < rec->dma_size)
952                         goto ok;
953         } 
954         dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
955         return SNDRV_PCM_POS_XRUN;
956 ok:
957         ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
958 #else
959         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
960         ptr = snd_cmipci_read(cm, reg) - rec->offset;
961         ptr = bytes_to_frames(substream->runtime, ptr);
962 #endif
963         if (substream->runtime->channels > 2)
964                 ptr = (ptr * 2) / substream->runtime->channels;
965         return ptr;
966 }
967
968 /*
969  * playback
970  */
971
972 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
973                                        int cmd)
974 {
975         struct cmipci *cm = snd_pcm_substream_chip(substream);
976         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
977 }
978
979 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
980 {
981         struct cmipci *cm = snd_pcm_substream_chip(substream);
982         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
983 }
984
985
986
987 /*
988  * capture
989  */
990
991 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
992                                      int cmd)
993 {
994         struct cmipci *cm = snd_pcm_substream_chip(substream);
995         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
996 }
997
998 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
999 {
1000         struct cmipci *cm = snd_pcm_substream_chip(substream);
1001         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1002 }
1003
1004
1005 /*
1006  * hw preparation for spdif
1007  */
1008
1009 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1010                                          struct snd_ctl_elem_info *uinfo)
1011 {
1012         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1013         uinfo->count = 1;
1014         return 0;
1015 }
1016
1017 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1018                                         struct snd_ctl_elem_value *ucontrol)
1019 {
1020         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1021         int i;
1022
1023         spin_lock_irq(&chip->reg_lock);
1024         for (i = 0; i < 4; i++)
1025                 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1026         spin_unlock_irq(&chip->reg_lock);
1027         return 0;
1028 }
1029
1030 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1031                                          struct snd_ctl_elem_value *ucontrol)
1032 {
1033         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1034         int i, change;
1035         unsigned int val;
1036
1037         val = 0;
1038         spin_lock_irq(&chip->reg_lock);
1039         for (i = 0; i < 4; i++)
1040                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1041         change = val != chip->dig_status;
1042         chip->dig_status = val;
1043         spin_unlock_irq(&chip->reg_lock);
1044         return change;
1045 }
1046
1047 static struct snd_kcontrol_new snd_cmipci_spdif_default =
1048 {
1049         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1050         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1051         .info =         snd_cmipci_spdif_default_info,
1052         .get =          snd_cmipci_spdif_default_get,
1053         .put =          snd_cmipci_spdif_default_put
1054 };
1055
1056 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1057                                       struct snd_ctl_elem_info *uinfo)
1058 {
1059         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1060         uinfo->count = 1;
1061         return 0;
1062 }
1063
1064 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1065                                      struct snd_ctl_elem_value *ucontrol)
1066 {
1067         ucontrol->value.iec958.status[0] = 0xff;
1068         ucontrol->value.iec958.status[1] = 0xff;
1069         ucontrol->value.iec958.status[2] = 0xff;
1070         ucontrol->value.iec958.status[3] = 0xff;
1071         return 0;
1072 }
1073
1074 static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1075 {
1076         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1077         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1078         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1079         .info =         snd_cmipci_spdif_mask_info,
1080         .get =          snd_cmipci_spdif_mask_get,
1081 };
1082
1083 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1084                                         struct snd_ctl_elem_info *uinfo)
1085 {
1086         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1087         uinfo->count = 1;
1088         return 0;
1089 }
1090
1091 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1092                                        struct snd_ctl_elem_value *ucontrol)
1093 {
1094         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1095         int i;
1096
1097         spin_lock_irq(&chip->reg_lock);
1098         for (i = 0; i < 4; i++)
1099                 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1100         spin_unlock_irq(&chip->reg_lock);
1101         return 0;
1102 }
1103
1104 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1105                                        struct snd_ctl_elem_value *ucontrol)
1106 {
1107         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1108         int i, change;
1109         unsigned int val;
1110
1111         val = 0;
1112         spin_lock_irq(&chip->reg_lock);
1113         for (i = 0; i < 4; i++)
1114                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1115         change = val != chip->dig_pcm_status;
1116         chip->dig_pcm_status = val;
1117         spin_unlock_irq(&chip->reg_lock);
1118         return change;
1119 }
1120
1121 static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1122 {
1123         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1124         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1125         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1126         .info =         snd_cmipci_spdif_stream_info,
1127         .get =          snd_cmipci_spdif_stream_get,
1128         .put =          snd_cmipci_spdif_stream_put
1129 };
1130
1131 /*
1132  */
1133
1134 /* save mixer setting and mute for AC3 playback */
1135 static int save_mixer_state(struct cmipci *cm)
1136 {
1137         if (! cm->mixer_insensitive) {
1138                 struct snd_ctl_elem_value *val;
1139                 unsigned int i;
1140
1141                 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1142                 if (!val)
1143                         return -ENOMEM;
1144                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1145                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1146                         if (ctl) {
1147                                 int event;
1148                                 memset(val, 0, sizeof(*val));
1149                                 ctl->get(ctl, val);
1150                                 cm->mixer_res_status[i] = val->value.integer.value[0];
1151                                 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1152                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1153                                 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1154                                         ctl->put(ctl, val); /* toggle */
1155                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1156                                 }
1157                                 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1158                                 snd_ctl_notify(cm->card, event, &ctl->id);
1159                         }
1160                 }
1161                 kfree(val);
1162                 cm->mixer_insensitive = 1;
1163         }
1164         return 0;
1165 }
1166
1167
1168 /* restore the previously saved mixer status */
1169 static void restore_mixer_state(struct cmipci *cm)
1170 {
1171         if (cm->mixer_insensitive) {
1172                 struct snd_ctl_elem_value *val;
1173                 unsigned int i;
1174
1175                 val = kmalloc(sizeof(*val), GFP_KERNEL);
1176                 if (!val)
1177                         return;
1178                 cm->mixer_insensitive = 0; /* at first clear this;
1179                                               otherwise the changes will be ignored */
1180                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1181                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1182                         if (ctl) {
1183                                 int event;
1184
1185                                 memset(val, 0, sizeof(*val));
1186                                 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1187                                 ctl->get(ctl, val);
1188                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1189                                 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1190                                         val->value.integer.value[0] = cm->mixer_res_status[i];
1191                                         ctl->put(ctl, val);
1192                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1193                                 }
1194                                 snd_ctl_notify(cm->card, event, &ctl->id);
1195                         }
1196                 }
1197                 kfree(val);
1198         }
1199 }
1200
1201 /* spinlock held! */
1202 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1203 {
1204         if (do_ac3) {
1205                 /* AC3EN for 037 */
1206                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1207                 /* AC3EN for 039 */
1208                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1209         
1210                 if (cm->can_ac3_hw) {
1211                         /* SPD24SEL for 037, 0x02 */
1212                         /* SPD24SEL for 039, 0x20, but cannot be set */
1213                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215                 } else { /* can_ac3_sw */
1216                         /* SPD32SEL for 037 & 039, 0x20 */
1217                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1218                         /* set 176K sample rate to fix 033 HW bug */
1219                         if (cm->chip_version == 33) {
1220                                 if (rate >= 48000) {
1221                                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1222                                 } else {
1223                                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1224                                 }
1225                         }
1226                 }
1227
1228         } else {
1229                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1230                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1231
1232                 if (cm->can_ac3_hw) {
1233                         /* chip model >= 37 */
1234                         if (snd_pcm_format_width(subs->runtime->format) > 16) {
1235                                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1236                                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1237                         } else {
1238                                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1239                                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1240                         }
1241                 } else {
1242                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1243                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1244                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1245                 }
1246         }
1247 }
1248
1249 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1250 {
1251         int rate, err;
1252
1253         rate = subs->runtime->rate;
1254
1255         if (up && do_ac3)
1256                 if ((err = save_mixer_state(cm)) < 0)
1257                         return err;
1258
1259         spin_lock_irq(&cm->reg_lock);
1260         cm->spdif_playback_avail = up;
1261         if (up) {
1262                 /* they are controlled via "IEC958 Output Switch" */
1263                 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1264                 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1265                 if (cm->spdif_playback_enabled)
1266                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1267                 setup_ac3(cm, subs, do_ac3, rate);
1268
1269                 if (rate == 48000 || rate == 96000)
1270                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1271                 else
1272                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1273                 if (rate > 48000)
1274                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1275                 else
1276                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1277         } else {
1278                 /* they are controlled via "IEC958 Output Switch" */
1279                 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1280                 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1281                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1282                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1283                 setup_ac3(cm, subs, 0, 0);
1284         }
1285         spin_unlock_irq(&cm->reg_lock);
1286         return 0;
1287 }
1288
1289
1290 /*
1291  * preparation
1292  */
1293
1294 /* playback - enable spdif only on the certain condition */
1295 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1296 {
1297         struct cmipci *cm = snd_pcm_substream_chip(substream);
1298         int rate = substream->runtime->rate;
1299         int err, do_spdif, do_ac3 = 0;
1300
1301         do_spdif = (rate >= 44100 && rate <= 96000 &&
1302                     substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1303                     substream->runtime->channels == 2);
1304         if (do_spdif && cm->can_ac3_hw) 
1305                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1306         if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1307                 return err;
1308         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1309 }
1310
1311 /* playback  (via device #2) - enable spdif always */
1312 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1313 {
1314         struct cmipci *cm = snd_pcm_substream_chip(substream);
1315         int err, do_ac3;
1316
1317         if (cm->can_ac3_hw) 
1318                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1319         else
1320                 do_ac3 = 1; /* doesn't matter */
1321         if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1322                 return err;
1323         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1324 }
1325
1326 /*
1327  * Apparently, the samples last played on channel A stay in some buffer, even
1328  * after the channel is reset, and get added to the data for the rear DACs when
1329  * playing a multichannel stream on channel B.  This is likely to generate
1330  * wraparounds and thus distortions.
1331  * To avoid this, we play at least one zero sample after the actual stream has
1332  * stopped.
1333  */
1334 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1335 {
1336         struct snd_pcm_runtime *runtime = rec->substream->runtime;
1337         unsigned int reg, val;
1338
1339         if (rec->needs_silencing && runtime && runtime->dma_area) {
1340                 /* set up a small silence buffer */
1341                 memset(runtime->dma_area, 0, PAGE_SIZE);
1342                 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1343                 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1344                 snd_cmipci_write(cm, reg, val);
1345         
1346                 /* configure for 16 bits, 2 channels, 8 kHz */
1347                 if (runtime->channels > 2)
1348                         set_dac_channels(cm, rec, 2);
1349                 spin_lock_irq(&cm->reg_lock);
1350                 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1351                 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1352                 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1353                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1354                 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1355                 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1356                 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1357                 if (cm->can_96k)
1358                         val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1359                 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1360         
1361                 /* start stream (we don't need interrupts) */
1362                 cm->ctrl |= CM_CHEN0 << rec->ch;
1363                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1364                 spin_unlock_irq(&cm->reg_lock);
1365
1366                 msleep(1);
1367
1368                 /* stop and reset stream */
1369                 spin_lock_irq(&cm->reg_lock);
1370                 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1371                 val = CM_RST_CH0 << rec->ch;
1372                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1373                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1374                 spin_unlock_irq(&cm->reg_lock);
1375
1376                 rec->needs_silencing = 0;
1377         }
1378 }
1379
1380 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1381 {
1382         struct cmipci *cm = snd_pcm_substream_chip(substream);
1383         setup_spdif_playback(cm, substream, 0, 0);
1384         restore_mixer_state(cm);
1385         snd_cmipci_silence_hack(cm, &cm->channel[0]);
1386         return snd_cmipci_hw_free(substream);
1387 }
1388
1389 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1390 {
1391         struct cmipci *cm = snd_pcm_substream_chip(substream);
1392         snd_cmipci_silence_hack(cm, &cm->channel[1]);
1393         return snd_cmipci_hw_free(substream);
1394 }
1395
1396 /* capture */
1397 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1398 {
1399         struct cmipci *cm = snd_pcm_substream_chip(substream);
1400         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401 }
1402
1403 /* capture with spdif (via device #2) */
1404 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1405 {
1406         struct cmipci *cm = snd_pcm_substream_chip(substream);
1407
1408         spin_lock_irq(&cm->reg_lock);
1409         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1410         if (cm->can_96k) {
1411                 if (substream->runtime->rate > 48000)
1412                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1413                 else
1414                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1415         }
1416         if (snd_pcm_format_width(substream->runtime->format) > 16)
1417                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1418         else
1419                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1420
1421         spin_unlock_irq(&cm->reg_lock);
1422
1423         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1424 }
1425
1426 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1427 {
1428         struct cmipci *cm = snd_pcm_substream_chip(subs);
1429
1430         spin_lock_irq(&cm->reg_lock);
1431         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1432         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1433         spin_unlock_irq(&cm->reg_lock);
1434
1435         return snd_cmipci_hw_free(subs);
1436 }
1437
1438
1439 /*
1440  * interrupt handler
1441  */
1442 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1443 {
1444         struct cmipci *cm = dev_id;
1445         unsigned int status, mask = 0;
1446         
1447         /* fastpath out, to ease interrupt sharing */
1448         status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1449         if (!(status & CM_INTR))
1450                 return IRQ_NONE;
1451
1452         /* acknowledge interrupt */
1453         spin_lock(&cm->reg_lock);
1454         if (status & CM_CHINT0)
1455                 mask |= CM_CH0_INT_EN;
1456         if (status & CM_CHINT1)
1457                 mask |= CM_CH1_INT_EN;
1458         snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1459         snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1460         spin_unlock(&cm->reg_lock);
1461
1462         if (cm->rmidi && (status & CM_UARTINT))
1463                 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1464
1465         if (cm->pcm) {
1466                 if ((status & CM_CHINT0) && cm->channel[0].running)
1467                         snd_pcm_period_elapsed(cm->channel[0].substream);
1468                 if ((status & CM_CHINT1) && cm->channel[1].running)
1469                         snd_pcm_period_elapsed(cm->channel[1].substream);
1470         }
1471         return IRQ_HANDLED;
1472 }
1473
1474 /*
1475  * h/w infos
1476  */
1477
1478 /* playback on channel A */
1479 static struct snd_pcm_hardware snd_cmipci_playback =
1480 {
1481         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1482                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1483                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1484         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1485         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1486         .rate_min =             5512,
1487         .rate_max =             48000,
1488         .channels_min =         1,
1489         .channels_max =         2,
1490         .buffer_bytes_max =     (128*1024),
1491         .period_bytes_min =     64,
1492         .period_bytes_max =     (128*1024),
1493         .periods_min =          2,
1494         .periods_max =          1024,
1495         .fifo_size =            0,
1496 };
1497
1498 /* capture on channel B */
1499 static struct snd_pcm_hardware snd_cmipci_capture =
1500 {
1501         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1502                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1503                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1504         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1505         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1506         .rate_min =             5512,
1507         .rate_max =             48000,
1508         .channels_min =         1,
1509         .channels_max =         2,
1510         .buffer_bytes_max =     (128*1024),
1511         .period_bytes_min =     64,
1512         .period_bytes_max =     (128*1024),
1513         .periods_min =          2,
1514         .periods_max =          1024,
1515         .fifo_size =            0,
1516 };
1517
1518 /* playback on channel B - stereo 16bit only? */
1519 static struct snd_pcm_hardware snd_cmipci_playback2 =
1520 {
1521         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1522                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1523                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1524         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1525         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1526         .rate_min =             5512,
1527         .rate_max =             48000,
1528         .channels_min =         2,
1529         .channels_max =         2,
1530         .buffer_bytes_max =     (128*1024),
1531         .period_bytes_min =     64,
1532         .period_bytes_max =     (128*1024),
1533         .periods_min =          2,
1534         .periods_max =          1024,
1535         .fifo_size =            0,
1536 };
1537
1538 /* spdif playback on channel A */
1539 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1540 {
1541         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1542                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1543                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1544         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1545         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1546         .rate_min =             44100,
1547         .rate_max =             48000,
1548         .channels_min =         2,
1549         .channels_max =         2,
1550         .buffer_bytes_max =     (128*1024),
1551         .period_bytes_min =     64,
1552         .period_bytes_max =     (128*1024),
1553         .periods_min =          2,
1554         .periods_max =          1024,
1555         .fifo_size =            0,
1556 };
1557
1558 /* spdif playback on channel A (32bit, IEC958 subframes) */
1559 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1560 {
1561         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1562                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1563                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1564         .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1565         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1566         .rate_min =             44100,
1567         .rate_max =             48000,
1568         .channels_min =         2,
1569         .channels_max =         2,
1570         .buffer_bytes_max =     (128*1024),
1571         .period_bytes_min =     64,
1572         .period_bytes_max =     (128*1024),
1573         .periods_min =          2,
1574         .periods_max =          1024,
1575         .fifo_size =            0,
1576 };
1577
1578 /* spdif capture on channel B */
1579 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1580 {
1581         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1582                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1583                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1584         .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1585                                 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1586         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1587         .rate_min =             44100,
1588         .rate_max =             48000,
1589         .channels_min =         2,
1590         .channels_max =         2,
1591         .buffer_bytes_max =     (128*1024),
1592         .period_bytes_min =     64,
1593         .period_bytes_max =     (128*1024),
1594         .periods_min =          2,
1595         .periods_max =          1024,
1596         .fifo_size =            0,
1597 };
1598
1599 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1600                         32000, 44100, 48000, 88200, 96000, 128000 };
1601 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1602                 .count = ARRAY_SIZE(rate_constraints),
1603                 .list = rate_constraints,
1604                 .mask = 0,
1605 };
1606
1607 /*
1608  * check device open/close
1609  */
1610 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1611 {
1612         int ch = mode & CM_OPEN_CH_MASK;
1613
1614         /* FIXME: a file should wait until the device becomes free
1615          * when it's opened on blocking mode.  however, since the current
1616          * pcm framework doesn't pass file pointer before actually opened,
1617          * we can't know whether blocking mode or not in open callback..
1618          */
1619         mutex_lock(&cm->open_mutex);
1620         if (cm->opened[ch]) {
1621                 mutex_unlock(&cm->open_mutex);
1622                 return -EBUSY;
1623         }
1624         cm->opened[ch] = mode;
1625         cm->channel[ch].substream = subs;
1626         if (! (mode & CM_OPEN_DAC)) {
1627                 /* disable dual DAC mode */
1628                 cm->channel[ch].is_dac = 0;
1629                 spin_lock_irq(&cm->reg_lock);
1630                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631                 spin_unlock_irq(&cm->reg_lock);
1632         }
1633         mutex_unlock(&cm->open_mutex);
1634         return 0;
1635 }
1636
1637 static void close_device_check(struct cmipci *cm, int mode)
1638 {
1639         int ch = mode & CM_OPEN_CH_MASK;
1640
1641         mutex_lock(&cm->open_mutex);
1642         if (cm->opened[ch] == mode) {
1643                 if (cm->channel[ch].substream) {
1644                         snd_cmipci_ch_reset(cm, ch);
1645                         cm->channel[ch].running = 0;
1646                         cm->channel[ch].substream = NULL;
1647                 }
1648                 cm->opened[ch] = 0;
1649                 if (! cm->channel[ch].is_dac) {
1650                         /* enable dual DAC mode again */
1651                         cm->channel[ch].is_dac = 1;
1652                         spin_lock_irq(&cm->reg_lock);
1653                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1654                         spin_unlock_irq(&cm->reg_lock);
1655                 }
1656         }
1657         mutex_unlock(&cm->open_mutex);
1658 }
1659
1660 /*
1661  */
1662
1663 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1664 {
1665         struct cmipci *cm = snd_pcm_substream_chip(substream);
1666         struct snd_pcm_runtime *runtime = substream->runtime;
1667         int err;
1668
1669         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1670                 return err;
1671         runtime->hw = snd_cmipci_playback;
1672         if (cm->chip_version == 68) {
1673                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1674                                      SNDRV_PCM_RATE_96000;
1675                 runtime->hw.rate_max = 96000;
1676         } else if (cm->chip_version == 55) {
1677                 err = snd_pcm_hw_constraint_list(runtime, 0,
1678                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1679                 if (err < 0)
1680                         return err;
1681                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1682                 runtime->hw.rate_max = 128000;
1683         }
1684         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1685         cm->dig_pcm_status = cm->dig_status;
1686         return 0;
1687 }
1688
1689 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1690 {
1691         struct cmipci *cm = snd_pcm_substream_chip(substream);
1692         struct snd_pcm_runtime *runtime = substream->runtime;
1693         int err;
1694
1695         if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1696                 return err;
1697         runtime->hw = snd_cmipci_capture;
1698         if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1699                 runtime->hw.rate_min = 41000;
1700                 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1701         } else if (cm->chip_version == 55) {
1702                 err = snd_pcm_hw_constraint_list(runtime, 0,
1703                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1704                 if (err < 0)
1705                         return err;
1706                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1707                 runtime->hw.rate_max = 128000;
1708         }
1709         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1710         return 0;
1711 }
1712
1713 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1714 {
1715         struct cmipci *cm = snd_pcm_substream_chip(substream);
1716         struct snd_pcm_runtime *runtime = substream->runtime;
1717         int err;
1718
1719         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1720                 return err;
1721         runtime->hw = snd_cmipci_playback2;
1722         mutex_lock(&cm->open_mutex);
1723         if (! cm->opened[CM_CH_PLAY]) {
1724                 if (cm->can_multi_ch) {
1725                         runtime->hw.channels_max = cm->max_channels;
1726                         if (cm->max_channels == 4)
1727                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1728                         else if (cm->max_channels == 6)
1729                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1730                         else if (cm->max_channels == 8)
1731                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1732                 }
1733         }
1734         mutex_unlock(&cm->open_mutex);
1735         if (cm->chip_version == 68) {
1736                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1737                                      SNDRV_PCM_RATE_96000;
1738                 runtime->hw.rate_max = 96000;
1739         } else if (cm->chip_version == 55) {
1740                 err = snd_pcm_hw_constraint_list(runtime, 0,
1741                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1742                 if (err < 0)
1743                         return err;
1744                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1745                 runtime->hw.rate_max = 128000;
1746         }
1747         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1748         return 0;
1749 }
1750
1751 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1752 {
1753         struct cmipci *cm = snd_pcm_substream_chip(substream);
1754         struct snd_pcm_runtime *runtime = substream->runtime;
1755         int err;
1756
1757         if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1758                 return err;
1759         if (cm->can_ac3_hw) {
1760                 runtime->hw = snd_cmipci_playback_spdif;
1761                 if (cm->chip_version >= 37) {
1762                         runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1763                         snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1764                 }
1765                 if (cm->can_96k) {
1766                         runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1767                                              SNDRV_PCM_RATE_96000;
1768                         runtime->hw.rate_max = 96000;
1769                 }
1770         } else {
1771                 runtime->hw = snd_cmipci_playback_iec958_subframe;
1772         }
1773         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1774         cm->dig_pcm_status = cm->dig_status;
1775         return 0;
1776 }
1777
1778 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1779 {
1780         struct cmipci *cm = snd_pcm_substream_chip(substream);
1781         struct snd_pcm_runtime *runtime = substream->runtime;
1782         int err;
1783
1784         if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1785                 return err;
1786         runtime->hw = snd_cmipci_capture_spdif;
1787         if (cm->can_96k && !(cm->chip_version == 68)) {
1788                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1789                                      SNDRV_PCM_RATE_96000;
1790                 runtime->hw.rate_max = 96000;
1791         }
1792         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1793         return 0;
1794 }
1795
1796
1797 /*
1798  */
1799
1800 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1801 {
1802         struct cmipci *cm = snd_pcm_substream_chip(substream);
1803         close_device_check(cm, CM_OPEN_PLAYBACK);
1804         return 0;
1805 }
1806
1807 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1808 {
1809         struct cmipci *cm = snd_pcm_substream_chip(substream);
1810         close_device_check(cm, CM_OPEN_CAPTURE);
1811         return 0;
1812 }
1813
1814 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1815 {
1816         struct cmipci *cm = snd_pcm_substream_chip(substream);
1817         close_device_check(cm, CM_OPEN_PLAYBACK2);
1818         close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1819         return 0;
1820 }
1821
1822 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1823 {
1824         struct cmipci *cm = snd_pcm_substream_chip(substream);
1825         close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1826         return 0;
1827 }
1828
1829 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1830 {
1831         struct cmipci *cm = snd_pcm_substream_chip(substream);
1832         close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1833         return 0;
1834 }
1835
1836
1837 /*
1838  */
1839
1840 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1841         .open =         snd_cmipci_playback_open,
1842         .close =        snd_cmipci_playback_close,
1843         .ioctl =        snd_pcm_lib_ioctl,
1844         .hw_params =    snd_cmipci_hw_params,
1845         .hw_free =      snd_cmipci_playback_hw_free,
1846         .prepare =      snd_cmipci_playback_prepare,
1847         .trigger =      snd_cmipci_playback_trigger,
1848         .pointer =      snd_cmipci_playback_pointer,
1849 };
1850
1851 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1852         .open =         snd_cmipci_capture_open,
1853         .close =        snd_cmipci_capture_close,
1854         .ioctl =        snd_pcm_lib_ioctl,
1855         .hw_params =    snd_cmipci_hw_params,
1856         .hw_free =      snd_cmipci_hw_free,
1857         .prepare =      snd_cmipci_capture_prepare,
1858         .trigger =      snd_cmipci_capture_trigger,
1859         .pointer =      snd_cmipci_capture_pointer,
1860 };
1861
1862 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1863         .open =         snd_cmipci_playback2_open,
1864         .close =        snd_cmipci_playback2_close,
1865         .ioctl =        snd_pcm_lib_ioctl,
1866         .hw_params =    snd_cmipci_playback2_hw_params,
1867         .hw_free =      snd_cmipci_playback2_hw_free,
1868         .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1869         .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1870         .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1871 };
1872
1873 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1874         .open =         snd_cmipci_playback_spdif_open,
1875         .close =        snd_cmipci_playback_spdif_close,
1876         .ioctl =        snd_pcm_lib_ioctl,
1877         .hw_params =    snd_cmipci_hw_params,
1878         .hw_free =      snd_cmipci_playback_hw_free,
1879         .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1880         .trigger =      snd_cmipci_playback_trigger,
1881         .pointer =      snd_cmipci_playback_pointer,
1882 };
1883
1884 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1885         .open =         snd_cmipci_capture_spdif_open,
1886         .close =        snd_cmipci_capture_spdif_close,
1887         .ioctl =        snd_pcm_lib_ioctl,
1888         .hw_params =    snd_cmipci_hw_params,
1889         .hw_free =      snd_cmipci_capture_spdif_hw_free,
1890         .prepare =      snd_cmipci_capture_spdif_prepare,
1891         .trigger =      snd_cmipci_capture_trigger,
1892         .pointer =      snd_cmipci_capture_pointer,
1893 };
1894
1895
1896 /*
1897  */
1898
1899 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1900 {
1901         struct snd_pcm *pcm;
1902         int err;
1903
1904         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1905         if (err < 0)
1906                 return err;
1907
1908         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1909         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1910
1911         pcm->private_data = cm;
1912         pcm->info_flags = 0;
1913         strcpy(pcm->name, "C-Media PCI DAC/ADC");
1914         cm->pcm = pcm;
1915
1916         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1917                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1918
1919         return 0;
1920 }
1921
1922 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1923 {
1924         struct snd_pcm *pcm;
1925         int err;
1926
1927         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1928         if (err < 0)
1929                 return err;
1930
1931         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1932
1933         pcm->private_data = cm;
1934         pcm->info_flags = 0;
1935         strcpy(pcm->name, "C-Media PCI 2nd DAC");
1936         cm->pcm2 = pcm;
1937
1938         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1939                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1940
1941         return 0;
1942 }
1943
1944 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1945 {
1946         struct snd_pcm *pcm;
1947         int err;
1948
1949         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1950         if (err < 0)
1951                 return err;
1952
1953         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1954         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1955
1956         pcm->private_data = cm;
1957         pcm->info_flags = 0;
1958         strcpy(pcm->name, "C-Media PCI IEC958");
1959         cm->pcm_spdif = pcm;
1960
1961         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1962                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1963
1964         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1965                                      snd_pcm_alt_chmaps, cm->max_channels, 0,
1966                                      NULL);
1967         if (err < 0)
1968                 return err;
1969
1970         return 0;
1971 }
1972
1973 /*
1974  * mixer interface:
1975  * - CM8338/8738 has a compatible mixer interface with SB16, but
1976  *   lack of some elements like tone control, i/o gain and AGC.
1977  * - Access to native registers:
1978  *   - A 3D switch
1979  *   - Output mute switches
1980  */
1981
1982 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1983 {
1984         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1985         outb(data, s->iobase + CM_REG_SB16_DATA);
1986 }
1987
1988 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1989 {
1990         unsigned char v;
1991
1992         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1993         v = inb(s->iobase + CM_REG_SB16_DATA);
1994         return v;
1995 }
1996
1997 /*
1998  * general mixer element
1999  */
2000 struct cmipci_sb_reg {
2001         unsigned int left_reg, right_reg;
2002         unsigned int left_shift, right_shift;
2003         unsigned int mask;
2004         unsigned int invert: 1;
2005         unsigned int stereo: 1;
2006 };
2007
2008 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2009  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2010
2011 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2012 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2013   .info = snd_cmipci_info_volume, \
2014   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2015   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2016 }
2017
2018 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2019 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2020 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2021 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2022
2023 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2024 {
2025         r->left_reg = val & 0xff;
2026         r->right_reg = (val >> 8) & 0xff;
2027         r->left_shift = (val >> 16) & 0x07;
2028         r->right_shift = (val >> 19) & 0x07;
2029         r->invert = (val >> 22) & 1;
2030         r->stereo = (val >> 23) & 1;
2031         r->mask = (val >> 24) & 0xff;
2032 }
2033
2034 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2035                                   struct snd_ctl_elem_info *uinfo)
2036 {
2037         struct cmipci_sb_reg reg;
2038
2039         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2040         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2041         uinfo->count = reg.stereo + 1;
2042         uinfo->value.integer.min = 0;
2043         uinfo->value.integer.max = reg.mask;
2044         return 0;
2045 }
2046  
2047 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2048                                  struct snd_ctl_elem_value *ucontrol)
2049 {
2050         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2051         struct cmipci_sb_reg reg;
2052         int val;
2053
2054         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2055         spin_lock_irq(&cm->reg_lock);
2056         val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2057         if (reg.invert)
2058                 val = reg.mask - val;
2059         ucontrol->value.integer.value[0] = val;
2060         if (reg.stereo) {
2061                 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2062                 if (reg.invert)
2063                         val = reg.mask - val;
2064                 ucontrol->value.integer.value[1] = val;
2065         }
2066         spin_unlock_irq(&cm->reg_lock);
2067         return 0;
2068 }
2069
2070 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2071                                  struct snd_ctl_elem_value *ucontrol)
2072 {
2073         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2074         struct cmipci_sb_reg reg;
2075         int change;
2076         int left, right, oleft, oright;
2077
2078         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2079         left = ucontrol->value.integer.value[0] & reg.mask;
2080         if (reg.invert)
2081                 left = reg.mask - left;
2082         left <<= reg.left_shift;
2083         if (reg.stereo) {
2084                 right = ucontrol->value.integer.value[1] & reg.mask;
2085                 if (reg.invert)
2086                         right = reg.mask - right;
2087                 right <<= reg.right_shift;
2088         } else
2089                 right = 0;
2090         spin_lock_irq(&cm->reg_lock);
2091         oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2092         left |= oleft & ~(reg.mask << reg.left_shift);
2093         change = left != oleft;
2094         if (reg.stereo) {
2095                 if (reg.left_reg != reg.right_reg) {
2096                         snd_cmipci_mixer_write(cm, reg.left_reg, left);
2097                         oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2098                 } else
2099                         oright = left;
2100                 right |= oright & ~(reg.mask << reg.right_shift);
2101                 change |= right != oright;
2102                 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2103         } else
2104                 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2105         spin_unlock_irq(&cm->reg_lock);
2106         return change;
2107 }
2108
2109 /*
2110  * input route (left,right) -> (left,right)
2111  */
2112 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2113 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2114   .info = snd_cmipci_info_input_sw, \
2115   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2116   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2117 }
2118
2119 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2120                                     struct snd_ctl_elem_info *uinfo)
2121 {
2122         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2123         uinfo->count = 4;
2124         uinfo->value.integer.min = 0;
2125         uinfo->value.integer.max = 1;
2126         return 0;
2127 }
2128  
2129 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2130                                    struct snd_ctl_elem_value *ucontrol)
2131 {
2132         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2133         struct cmipci_sb_reg reg;
2134         int val1, val2;
2135
2136         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2137         spin_lock_irq(&cm->reg_lock);
2138         val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2139         val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2140         spin_unlock_irq(&cm->reg_lock);
2141         ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2142         ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2143         ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2144         ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2145         return 0;
2146 }
2147
2148 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2149                                    struct snd_ctl_elem_value *ucontrol)
2150 {
2151         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2152         struct cmipci_sb_reg reg;
2153         int change;
2154         int val1, val2, oval1, oval2;
2155
2156         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2157         spin_lock_irq(&cm->reg_lock);
2158         oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2159         oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2160         val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2161         val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162         val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2163         val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2164         val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2165         val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2166         change = val1 != oval1 || val2 != oval2;
2167         snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2168         snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2169         spin_unlock_irq(&cm->reg_lock);
2170         return change;
2171 }
2172
2173 /*
2174  * native mixer switches/volumes
2175  */
2176
2177 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2178 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2179   .info = snd_cmipci_info_native_mixer, \
2180   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2181   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2182 }
2183
2184 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2185 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2186   .info = snd_cmipci_info_native_mixer, \
2187   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2188   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2189 }
2190
2191 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2192 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2193   .info = snd_cmipci_info_native_mixer, \
2194   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2195   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2196 }
2197
2198 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2199 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2200   .info = snd_cmipci_info_native_mixer, \
2201   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2202   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2203 }
2204
2205 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2206                                         struct snd_ctl_elem_info *uinfo)
2207 {
2208         struct cmipci_sb_reg reg;
2209
2210         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2211         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2212         uinfo->count = reg.stereo + 1;
2213         uinfo->value.integer.min = 0;
2214         uinfo->value.integer.max = reg.mask;
2215         return 0;
2216
2217 }
2218
2219 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2220                                        struct snd_ctl_elem_value *ucontrol)
2221 {
2222         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2223         struct cmipci_sb_reg reg;
2224         unsigned char oreg, val;
2225
2226         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2227         spin_lock_irq(&cm->reg_lock);
2228         oreg = inb(cm->iobase + reg.left_reg);
2229         val = (oreg >> reg.left_shift) & reg.mask;
2230         if (reg.invert)
2231                 val = reg.mask - val;
2232         ucontrol->value.integer.value[0] = val;
2233         if (reg.stereo) {
2234                 val = (oreg >> reg.right_shift) & reg.mask;
2235                 if (reg.invert)
2236                         val = reg.mask - val;
2237                 ucontrol->value.integer.value[1] = val;
2238         }
2239         spin_unlock_irq(&cm->reg_lock);
2240         return 0;
2241 }
2242
2243 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2244                                        struct snd_ctl_elem_value *ucontrol)
2245 {
2246         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2247         struct cmipci_sb_reg reg;
2248         unsigned char oreg, nreg, val;
2249
2250         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2251         spin_lock_irq(&cm->reg_lock);
2252         oreg = inb(cm->iobase + reg.left_reg);
2253         val = ucontrol->value.integer.value[0] & reg.mask;
2254         if (reg.invert)
2255                 val = reg.mask - val;
2256         nreg = oreg & ~(reg.mask << reg.left_shift);
2257         nreg |= (val << reg.left_shift);
2258         if (reg.stereo) {
2259                 val = ucontrol->value.integer.value[1] & reg.mask;
2260                 if (reg.invert)
2261                         val = reg.mask - val;
2262                 nreg &= ~(reg.mask << reg.right_shift);
2263                 nreg |= (val << reg.right_shift);
2264         }
2265         outb(nreg, cm->iobase + reg.left_reg);
2266         spin_unlock_irq(&cm->reg_lock);
2267         return (nreg != oreg);
2268 }
2269
2270 /*
2271  * special case - check mixer sensitivity
2272  */
2273 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2274                                                  struct snd_ctl_elem_value *ucontrol)
2275 {
2276         //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2277         return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2278 }
2279
2280 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2281                                                  struct snd_ctl_elem_value *ucontrol)
2282 {
2283         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2284         if (cm->mixer_insensitive) {
2285                 /* ignored */
2286                 return 0;
2287         }
2288         return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2289 }
2290
2291
2292 static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2293         CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2294         CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2295         CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2296         //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2297         { /* switch with sensitivity */
2298                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2299                 .name = "PCM Playback Switch",
2300                 .info = snd_cmipci_info_native_mixer,
2301                 .get = snd_cmipci_get_native_mixer_sensitive,
2302                 .put = snd_cmipci_put_native_mixer_sensitive,
2303                 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2304         },
2305         CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2306         CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2307         CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2308         CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2309         CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2310         CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2311         CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2312         CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2313         CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2314         CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2315         CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2316         CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2317         CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2318         CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2319         CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2320         CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2321         CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2322         CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2323         CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2324         CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2325         CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2326         CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2327         CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2328 };
2329
2330 /*
2331  * other switches
2332  */
2333
2334 struct cmipci_switch_args {
2335         int reg;                /* register index */
2336         unsigned int mask;      /* mask bits */
2337         unsigned int mask_on;   /* mask bits to turn on */
2338         unsigned int is_byte: 1;                /* byte access? */
2339         unsigned int ac3_sensitive: 1;  /* access forbidden during
2340                                          * non-audio operation?
2341                                          */
2342 };
2343
2344 #define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2345
2346 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2347                                    struct snd_ctl_elem_value *ucontrol,
2348                                    struct cmipci_switch_args *args)
2349 {
2350         unsigned int val;
2351         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2352
2353         spin_lock_irq(&cm->reg_lock);
2354         if (args->ac3_sensitive && cm->mixer_insensitive) {
2355                 ucontrol->value.integer.value[0] = 0;
2356                 spin_unlock_irq(&cm->reg_lock);
2357                 return 0;
2358         }
2359         if (args->is_byte)
2360                 val = inb(cm->iobase + args->reg);
2361         else
2362                 val = snd_cmipci_read(cm, args->reg);
2363         ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2364         spin_unlock_irq(&cm->reg_lock);
2365         return 0;
2366 }
2367
2368 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2369                                   struct snd_ctl_elem_value *ucontrol)
2370 {
2371         struct cmipci_switch_args *args;
2372         args = (struct cmipci_switch_args *)kcontrol->private_value;
2373         if (snd_BUG_ON(!args))
2374                 return -EINVAL;
2375         return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2376 }
2377
2378 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2379                                    struct snd_ctl_elem_value *ucontrol,
2380                                    struct cmipci_switch_args *args)
2381 {
2382         unsigned int val;
2383         int change;
2384         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2385
2386         spin_lock_irq(&cm->reg_lock);
2387         if (args->ac3_sensitive && cm->mixer_insensitive) {
2388                 /* ignored */
2389                 spin_unlock_irq(&cm->reg_lock);
2390                 return 0;
2391         }
2392         if (args->is_byte)
2393                 val = inb(cm->iobase + args->reg);
2394         else
2395                 val = snd_cmipci_read(cm, args->reg);
2396         change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2397                         args->mask_on : (args->mask & ~args->mask_on));
2398         if (change) {
2399                 val &= ~args->mask;
2400                 if (ucontrol->value.integer.value[0])
2401                         val |= args->mask_on;
2402                 else
2403                         val |= (args->mask & ~args->mask_on);
2404                 if (args->is_byte)
2405                         outb((unsigned char)val, cm->iobase + args->reg);
2406                 else
2407                         snd_cmipci_write(cm, args->reg, val);
2408         }
2409         spin_unlock_irq(&cm->reg_lock);
2410         return change;
2411 }
2412
2413 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2414                                   struct snd_ctl_elem_value *ucontrol)
2415 {
2416         struct cmipci_switch_args *args;
2417         args = (struct cmipci_switch_args *)kcontrol->private_value;
2418         if (snd_BUG_ON(!args))
2419                 return -EINVAL;
2420         return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2421 }
2422
2423 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2424 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2425   .reg = xreg, \
2426   .mask = xmask, \
2427   .mask_on = xmask_on, \
2428   .is_byte = xis_byte, \
2429   .ac3_sensitive = xac3, \
2430 }
2431         
2432 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2433         DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2434
2435 #if 0 /* these will be controlled in pcm device */
2436 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2437 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2438 #endif
2439 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2440 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2441 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2442 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2443 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2444 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2445 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2446 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2447 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2448 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2449 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2450 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2451 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2452 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2453 #if CM_CH_PLAY == 1
2454 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2455 #else
2456 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2457 #endif
2458 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2459 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2460 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2461 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2462 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2463
2464 #define DEFINE_SWITCH(sname, stype, sarg) \
2465 { .name = sname, \
2466   .iface = stype, \
2467   .info = snd_cmipci_uswitch_info, \
2468   .get = snd_cmipci_uswitch_get, \
2469   .put = snd_cmipci_uswitch_put, \
2470   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2471 }
2472
2473 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2474 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2475
2476
2477 /*
2478  * callbacks for spdif output switch
2479  * needs toggle two registers..
2480  */
2481 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2482                                         struct snd_ctl_elem_value *ucontrol)
2483 {
2484         int changed;
2485         changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2486         changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2487         return changed;
2488 }
2489
2490 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2491                                         struct snd_ctl_elem_value *ucontrol)
2492 {
2493         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2494         int changed;
2495         changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2496         changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2497         if (changed) {
2498                 if (ucontrol->value.integer.value[0]) {
2499                         if (chip->spdif_playback_avail)
2500                                 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2501                 } else {
2502                         if (chip->spdif_playback_avail)
2503                                 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2504                 }
2505         }
2506         chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2507         return changed;
2508 }
2509
2510
2511 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2512                                         struct snd_ctl_elem_info *uinfo)
2513 {
2514         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2515         static const char *const texts[3] = {
2516                 "Line-In", "Rear Output", "Bass Output"
2517         };
2518
2519         return snd_ctl_enum_info(uinfo, 1,
2520                                  cm->chip_version >= 39 ? 3 : 2, texts);
2521 }
2522
2523 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2524 {
2525         unsigned int val;
2526         if (cm->chip_version >= 39) {
2527                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2528                 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2529                         return 2;
2530         }
2531         val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2532         if (val & CM_REAR2LIN)
2533                 return 1;
2534         return 0;
2535 }
2536
2537 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2538                                        struct snd_ctl_elem_value *ucontrol)
2539 {
2540         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2541
2542         spin_lock_irq(&cm->reg_lock);
2543         ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2544         spin_unlock_irq(&cm->reg_lock);
2545         return 0;
2546 }
2547
2548 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2549                                        struct snd_ctl_elem_value *ucontrol)
2550 {
2551         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2552         int change;
2553
2554         spin_lock_irq(&cm->reg_lock);
2555         if (ucontrol->value.enumerated.item[0] == 2)
2556                 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2557         else
2558                 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2559         if (ucontrol->value.enumerated.item[0] == 1)
2560                 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2561         else
2562                 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2563         spin_unlock_irq(&cm->reg_lock);
2564         return change;
2565 }
2566
2567 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2568                                        struct snd_ctl_elem_info *uinfo)
2569 {
2570         static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2571
2572         return snd_ctl_enum_info(uinfo, 1, 2, texts);
2573 }
2574
2575 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2576                                       struct snd_ctl_elem_value *ucontrol)
2577 {
2578         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2579         /* same bit as spdi_phase */
2580         spin_lock_irq(&cm->reg_lock);
2581         ucontrol->value.enumerated.item[0] = 
2582                 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2583         spin_unlock_irq(&cm->reg_lock);
2584         return 0;
2585 }
2586
2587 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2588                                       struct snd_ctl_elem_value *ucontrol)
2589 {
2590         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2591         int change;
2592
2593         spin_lock_irq(&cm->reg_lock);
2594         if (ucontrol->value.enumerated.item[0])
2595                 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2596         else
2597                 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2598         spin_unlock_irq(&cm->reg_lock);
2599         return change;
2600 }
2601
2602 /* both for CM8338/8738 */
2603 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2604         DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2605         {
2606                 .name = "Line-In Mode",
2607                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2608                 .info = snd_cmipci_line_in_mode_info,
2609                 .get = snd_cmipci_line_in_mode_get,
2610                 .put = snd_cmipci_line_in_mode_put,
2611         },
2612 };
2613
2614 /* for non-multichannel chips */
2615 static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2616 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2617
2618 /* only for CM8738 */
2619 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2620 #if 0 /* controlled in pcm device */
2621         DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2622         DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2623         DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2624 #endif
2625         // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2626         { .name = "IEC958 Output Switch",
2627           .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2628           .info = snd_cmipci_uswitch_info,
2629           .get = snd_cmipci_spdout_enable_get,
2630           .put = snd_cmipci_spdout_enable_put,
2631         },
2632         DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2633         DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2634         DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2635 //      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2636         DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2637         DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2638 };
2639
2640 /* only for model 033/037 */
2641 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2642         DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2643         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2644         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2645 };
2646
2647 /* only for model 039 or later */
2648 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2649         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2650         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2651         {
2652                 .name = "Mic-In Mode",
2653                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2654                 .info = snd_cmipci_mic_in_mode_info,
2655                 .get = snd_cmipci_mic_in_mode_get,
2656                 .put = snd_cmipci_mic_in_mode_put,
2657         }
2658 };
2659
2660 /* card control switches */
2661 static struct snd_kcontrol_new snd_cmipci_modem_switch =
2662 DEFINE_CARD_SWITCH("Modem", modem);
2663
2664
2665 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2666 {
2667         struct snd_card *card;
2668         struct snd_kcontrol_new *sw;
2669         struct snd_kcontrol *kctl;
2670         unsigned int idx;
2671         int err;
2672
2673         if (snd_BUG_ON(!cm || !cm->card))
2674                 return -EINVAL;
2675
2676         card = cm->card;
2677
2678         strcpy(card->mixername, "CMedia PCI");
2679
2680         spin_lock_irq(&cm->reg_lock);
2681         snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2682         spin_unlock_irq(&cm->reg_lock);
2683
2684         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2685                 if (cm->chip_version == 68) {   // 8768 has no PCM volume
2686                         if (!strcmp(snd_cmipci_mixers[idx].name,
2687                                 "PCM Playback Volume"))
2688                                 continue;
2689                 }
2690                 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2691                         return err;
2692         }
2693
2694         /* mixer switches */
2695         sw = snd_cmipci_mixer_switches;
2696         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2697                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2698                 if (err < 0)
2699                         return err;
2700         }
2701         if (! cm->can_multi_ch) {
2702                 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2703                 if (err < 0)
2704                         return err;
2705         }
2706         if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2707             cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2708                 sw = snd_cmipci_8738_mixer_switches;
2709                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2710                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2711                         if (err < 0)
2712                                 return err;
2713                 }
2714                 if (cm->can_ac3_hw) {
2715                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2716                                 return err;
2717                         kctl->id.device = pcm_spdif_device;
2718                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2719                                 return err;
2720                         kctl->id.device = pcm_spdif_device;
2721                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2722                                 return err;
2723                         kctl->id.device = pcm_spdif_device;
2724                 }
2725                 if (cm->chip_version <= 37) {
2726                         sw = snd_cmipci_old_mixer_switches;
2727                         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2728                                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2729                                 if (err < 0)
2730                                         return err;
2731                         }
2732                 }
2733         }
2734         if (cm->chip_version >= 39) {
2735                 sw = snd_cmipci_extra_mixer_switches;
2736                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2737                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2738                         if (err < 0)
2739                                 return err;
2740                 }
2741         }
2742
2743         /* card switches */
2744         /*
2745          * newer chips don't have the register bits to force modem link
2746          * detection; the bit that was FLINKON now mutes CH1
2747          */
2748         if (cm->chip_version < 39) {
2749                 err = snd_ctl_add(cm->card,
2750                                   snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2751                 if (err < 0)
2752                         return err;
2753         }
2754
2755         for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2756                 struct snd_ctl_elem_id elem_id;
2757                 struct snd_kcontrol *ctl;
2758                 memset(&elem_id, 0, sizeof(elem_id));
2759                 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2760                 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2761                 ctl = snd_ctl_find_id(cm->card, &elem_id);
2762                 if (ctl)
2763                         cm->mixer_res_ctl[idx] = ctl;
2764         }
2765
2766         return 0;
2767 }
2768
2769
2770 /*
2771  * proc interface
2772  */
2773
2774 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2775                                  struct snd_info_buffer *buffer)
2776 {
2777         struct cmipci *cm = entry->private_data;
2778         int i, v;
2779         
2780         snd_iprintf(buffer, "%s\n", cm->card->longname);
2781         for (i = 0; i < 0x94; i++) {
2782                 if (i == 0x28)
2783                         i = 0x90;
2784                 v = inb(cm->iobase + i);
2785                 if (i % 4 == 0)
2786                         snd_iprintf(buffer, "\n%02x:", i);
2787                 snd_iprintf(buffer, " %02x", v);
2788         }
2789         snd_iprintf(buffer, "\n");
2790 }
2791
2792 static void snd_cmipci_proc_init(struct cmipci *cm)
2793 {
2794         struct snd_info_entry *entry;
2795
2796         if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2797                 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2798 }
2799
2800 static const struct pci_device_id snd_cmipci_ids[] = {
2801         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2802         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2803         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2804         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2805         {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2806         {0,},
2807 };
2808
2809
2810 /*
2811  * check chip version and capabilities
2812  * driver name is modified according to the chip model
2813  */
2814 static void query_chip(struct cmipci *cm)
2815 {
2816         unsigned int detect;
2817
2818         /* check reg 0Ch, bit 24-31 */
2819         detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2820         if (! detect) {
2821                 /* check reg 08h, bit 24-28 */
2822                 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2823                 switch (detect) {
2824                 case 0:
2825                         cm->chip_version = 33;
2826                         if (cm->do_soft_ac3)
2827                                 cm->can_ac3_sw = 1;
2828                         else
2829                                 cm->can_ac3_hw = 1;
2830                         break;
2831                 case CM_CHIP_037:
2832                         cm->chip_version = 37;
2833                         cm->can_ac3_hw = 1;
2834                         break;
2835                 default:
2836                         cm->chip_version = 39;
2837                         cm->can_ac3_hw = 1;
2838                         break;
2839                 }
2840                 cm->max_channels = 2;
2841         } else {
2842                 if (detect & CM_CHIP_039) {
2843                         cm->chip_version = 39;
2844                         if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2845                                 cm->max_channels = 6;
2846                         else
2847                                 cm->max_channels = 4;
2848                 } else if (detect & CM_CHIP_8768) {
2849                         cm->chip_version = 68;
2850                         cm->max_channels = 8;
2851                         cm->can_96k = 1;
2852                 } else {
2853                         cm->chip_version = 55;
2854                         cm->max_channels = 6;
2855                         cm->can_96k = 1;
2856                 }
2857                 cm->can_ac3_hw = 1;
2858                 cm->can_multi_ch = 1;
2859         }
2860 }
2861
2862 #ifdef SUPPORT_JOYSTICK
2863 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2864 {
2865         static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2866         struct gameport *gp;
2867         struct resource *r = NULL;
2868         int i, io_port = 0;
2869
2870         if (joystick_port[dev] == 0)
2871                 return -ENODEV;
2872
2873         if (joystick_port[dev] == 1) { /* auto-detect */
2874                 for (i = 0; ports[i]; i++) {
2875                         io_port = ports[i];
2876                         r = request_region(io_port, 1, "CMIPCI gameport");
2877                         if (r)
2878                                 break;
2879                 }
2880         } else {
2881                 io_port = joystick_port[dev];
2882                 r = request_region(io_port, 1, "CMIPCI gameport");
2883         }
2884
2885         if (!r) {
2886                 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2887                 return -EBUSY;
2888         }
2889
2890         cm->gameport = gp = gameport_allocate_port();
2891         if (!gp) {
2892                 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2893                 release_and_free_resource(r);
2894                 return -ENOMEM;
2895         }
2896         gameport_set_name(gp, "C-Media Gameport");
2897         gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2898         gameport_set_dev_parent(gp, &cm->pci->dev);
2899         gp->io = io_port;
2900         gameport_set_port_data(gp, r);
2901
2902         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903
2904         gameport_register_port(cm->gameport);
2905
2906         return 0;
2907 }
2908
2909 static void snd_cmipci_free_gameport(struct cmipci *cm)
2910 {
2911         if (cm->gameport) {
2912                 struct resource *r = gameport_get_port_data(cm->gameport);
2913
2914                 gameport_unregister_port(cm->gameport);
2915                 cm->gameport = NULL;
2916
2917                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2918                 release_and_free_resource(r);
2919         }
2920 }
2921 #else
2922 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2923 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2924 #endif
2925
2926 static int snd_cmipci_free(struct cmipci *cm)
2927 {
2928         if (cm->irq >= 0) {
2929                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2930                 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2931                 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2932                 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2933                 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2934                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2935                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2936
2937                 /* reset mixer */
2938                 snd_cmipci_mixer_write(cm, 0, 0);
2939
2940                 free_irq(cm->irq, cm);
2941         }
2942
2943         snd_cmipci_free_gameport(cm);
2944         pci_release_regions(cm->pci);
2945         pci_disable_device(cm->pci);
2946         kfree(cm);
2947         return 0;
2948 }
2949
2950 static int snd_cmipci_dev_free(struct snd_device *device)
2951 {
2952         struct cmipci *cm = device->device_data;
2953         return snd_cmipci_free(cm);
2954 }
2955
2956 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2957 {
2958         long iosynth;
2959         unsigned int val;
2960         struct snd_opl3 *opl3;
2961         int err;
2962
2963         if (!fm_port)
2964                 goto disable_fm;
2965
2966         if (cm->chip_version >= 39) {
2967                 /* first try FM regs in PCI port range */
2968                 iosynth = cm->iobase + CM_REG_FM_PCI;
2969                 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970                                       OPL3_HW_OPL3, 1, &opl3);
2971         } else {
2972                 err = -EIO;
2973         }
2974         if (err < 0) {
2975                 /* then try legacy ports */
2976                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2977                 iosynth = fm_port;
2978                 switch (iosynth) {
2979                 case 0x3E8: val |= CM_FMSEL_3E8; break;
2980                 case 0x3E0: val |= CM_FMSEL_3E0; break;
2981                 case 0x3C8: val |= CM_FMSEL_3C8; break;
2982                 case 0x388: val |= CM_FMSEL_388; break;
2983                 default:
2984                         goto disable_fm;
2985                 }
2986                 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2987                 /* enable FM */
2988                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2989
2990                 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2991                                     OPL3_HW_OPL3, 0, &opl3) < 0) {
2992                         dev_err(cm->card->dev,
2993                                 "no OPL device at %#lx, skipping...\n",
2994                                 iosynth);
2995                         goto disable_fm;
2996                 }
2997         }
2998         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2999                 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
3000                 return err;
3001         }
3002         return 0;
3003
3004  disable_fm:
3005         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3006         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3007         return 0;
3008 }
3009
3010 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3011                              int dev, struct cmipci **rcmipci)
3012 {
3013         struct cmipci *cm;
3014         int err;
3015         static struct snd_device_ops ops = {
3016                 .dev_free =     snd_cmipci_dev_free,
3017         };
3018         unsigned int val;
3019         long iomidi = 0;
3020         int integrated_midi = 0;
3021         char modelstr[16];
3022         int pcm_index, pcm_spdif_index;
3023         static const struct pci_device_id intel_82437vx[] = {
3024                 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3025                 { },
3026         };
3027
3028         *rcmipci = NULL;
3029
3030         if ((err = pci_enable_device(pci)) < 0)
3031                 return err;
3032
3033         cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3034         if (cm == NULL) {
3035                 pci_disable_device(pci);
3036                 return -ENOMEM;
3037         }
3038
3039         spin_lock_init(&cm->reg_lock);
3040         mutex_init(&cm->open_mutex);
3041         cm->device = pci->device;
3042         cm->card = card;
3043         cm->pci = pci;
3044         cm->irq = -1;
3045         cm->channel[0].ch = 0;
3046         cm->channel[1].ch = 1;
3047         cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3048
3049         if ((err = pci_request_regions(pci, card->driver)) < 0) {
3050                 kfree(cm);
3051                 pci_disable_device(pci);
3052                 return err;
3053         }
3054         cm->iobase = pci_resource_start(pci, 0);
3055
3056         if (request_irq(pci->irq, snd_cmipci_interrupt,
3057                         IRQF_SHARED, KBUILD_MODNAME, cm)) {
3058                 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3059                 snd_cmipci_free(cm);
3060                 return -EBUSY;
3061         }
3062         cm->irq = pci->irq;
3063
3064         pci_set_master(cm->pci);
3065
3066         /*
3067          * check chip version, max channels and capabilities
3068          */
3069
3070         cm->chip_version = 0;
3071         cm->max_channels = 2;
3072         cm->do_soft_ac3 = soft_ac3[dev];
3073
3074         if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3075             pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3076                 query_chip(cm);
3077         /* added -MCx suffix for chip supporting multi-channels */
3078         if (cm->can_multi_ch)
3079                 sprintf(cm->card->driver + strlen(cm->card->driver),
3080                         "-MC%d", cm->max_channels);
3081         else if (cm->can_ac3_sw)
3082                 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3083
3084         cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3085         cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3086
3087 #if CM_CH_PLAY == 1
3088         cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3089 #else
3090         cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3091 #endif
3092
3093         /* initialize codec registers */
3094         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3095         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3096         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3097         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3098         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3099         snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3100         snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3101
3102         snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3103         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3104 #if CM_CH_PLAY == 1
3105         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3106 #else
3107         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3108 #endif
3109         if (cm->chip_version) {
3110                 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3111                 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3112         }
3113         /* Set Bus Master Request */
3114         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3115
3116         /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3117         switch (pci->device) {
3118         case PCI_DEVICE_ID_CMEDIA_CM8738:
3119         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3120                 if (!pci_dev_present(intel_82437vx)) 
3121                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3122                 break;
3123         default:
3124                 break;
3125         }
3126
3127         if (cm->chip_version < 68) {
3128                 val = pci->device < 0x110 ? 8338 : 8738;
3129         } else {
3130                 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3131                 case 0:
3132                         val = 8769;
3133                         break;
3134                 case 2:
3135                         val = 8762;
3136                         break;
3137                 default:
3138                         switch ((pci->subsystem_vendor << 16) |
3139                                 pci->subsystem_device) {
3140                         case 0x13f69761:
3141                         case 0x584d3741:
3142                         case 0x584d3751:
3143                         case 0x584d3761:
3144                         case 0x584d3771:
3145                         case 0x72848384:
3146                                 val = 8770;
3147                                 break;
3148                         default:
3149                                 val = 8768;
3150                                 break;
3151                         }
3152                 }
3153         }
3154         sprintf(card->shortname, "C-Media CMI%d", val);
3155         if (cm->chip_version < 68)
3156                 sprintf(modelstr, " (model %d)", cm->chip_version);
3157         else
3158                 modelstr[0] = '\0';
3159         sprintf(card->longname, "%s%s at %#lx, irq %i",
3160                 card->shortname, modelstr, cm->iobase, cm->irq);
3161
3162         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3163                 snd_cmipci_free(cm);
3164                 return err;
3165         }
3166
3167         if (cm->chip_version >= 39) {
3168                 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3169                 if (val != 0x00 && val != 0xff) {
3170                         iomidi = cm->iobase + CM_REG_MPU_PCI;
3171                         integrated_midi = 1;
3172                 }
3173         }
3174         if (!integrated_midi) {
3175                 val = 0;
3176                 iomidi = mpu_port[dev];
3177                 switch (iomidi) {
3178                 case 0x320: val = CM_VMPU_320; break;
3179                 case 0x310: val = CM_VMPU_310; break;
3180                 case 0x300: val = CM_VMPU_300; break;
3181                 case 0x330: val = CM_VMPU_330; break;
3182                 default:
3183                             iomidi = 0; break;
3184                 }
3185                 if (iomidi > 0) {
3186                         snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3187                         /* enable UART */
3188                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3189                         if (inb(iomidi + 1) == 0xff) {
3190                                 dev_err(cm->card->dev,
3191                                         "cannot enable MPU-401 port at %#lx\n",
3192                                         iomidi);
3193                                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3194                                                      CM_UART_EN);
3195                                 iomidi = 0;
3196                         }
3197                 }
3198         }
3199
3200         if (cm->chip_version < 68) {
3201                 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3202                 if (err < 0)
3203                         return err;
3204         }
3205
3206         /* reset mixer */
3207         snd_cmipci_mixer_write(cm, 0, 0);
3208
3209         snd_cmipci_proc_init(cm);
3210
3211         /* create pcm devices */
3212         pcm_index = pcm_spdif_index = 0;
3213         if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3214                 return err;
3215         pcm_index++;
3216         if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3217                 return err;
3218         pcm_index++;
3219         if (cm->can_ac3_hw || cm->can_ac3_sw) {
3220                 pcm_spdif_index = pcm_index;
3221                 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3222                         return err;
3223         }
3224
3225         /* create mixer interface & switches */
3226         if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3227                 return err;
3228
3229         if (iomidi > 0) {
3230                 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3231                                                iomidi,
3232                                                (integrated_midi ?
3233                                                 MPU401_INFO_INTEGRATED : 0) |
3234                                                MPU401_INFO_IRQ_HOOK,
3235                                                -1, &cm->rmidi)) < 0) {
3236                         dev_err(cm->card->dev,
3237                                 "no UART401 device at 0x%lx\n", iomidi);
3238                 }
3239         }
3240
3241 #ifdef USE_VAR48KRATE
3242         for (val = 0; val < ARRAY_SIZE(rates); val++)
3243                 snd_cmipci_set_pll(cm, rates[val], val);
3244
3245         /*
3246          * (Re-)Enable external switch spdo_48k
3247          */
3248         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3249 #endif /* USE_VAR48KRATE */
3250
3251         if (snd_cmipci_create_gameport(cm, dev) < 0)
3252                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3253
3254         *rcmipci = cm;
3255         return 0;
3256 }
3257
3258 /*
3259  */
3260
3261 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3262
3263 static int snd_cmipci_probe(struct pci_dev *pci,
3264                             const struct pci_device_id *pci_id)
3265 {
3266         static int dev;
3267         struct snd_card *card;
3268         struct cmipci *cm;
3269         int err;
3270
3271         if (dev >= SNDRV_CARDS)
3272                 return -ENODEV;
3273         if (! enable[dev]) {
3274                 dev++;
3275                 return -ENOENT;
3276         }
3277
3278         err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3279                            0, &card);
3280         if (err < 0)
3281                 return err;
3282         
3283         switch (pci->device) {
3284         case PCI_DEVICE_ID_CMEDIA_CM8738:
3285         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3286                 strcpy(card->driver, "CMI8738");
3287                 break;
3288         case PCI_DEVICE_ID_CMEDIA_CM8338A:
3289         case PCI_DEVICE_ID_CMEDIA_CM8338B:
3290                 strcpy(card->driver, "CMI8338");
3291                 break;
3292         default:
3293                 strcpy(card->driver, "CMIPCI");
3294                 break;
3295         }
3296
3297         if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3298                 snd_card_free(card);
3299                 return err;
3300         }
3301         card->private_data = cm;
3302
3303         if ((err = snd_card_register(card)) < 0) {
3304                 snd_card_free(card);
3305                 return err;
3306         }
3307         pci_set_drvdata(pci, card);
3308         dev++;
3309         return 0;
3310
3311 }
3312
3313 static void snd_cmipci_remove(struct pci_dev *pci)
3314 {
3315         snd_card_free(pci_get_drvdata(pci));
3316 }
3317
3318
3319 #ifdef CONFIG_PM_SLEEP
3320 /*
3321  * power management
3322  */
3323 static unsigned char saved_regs[] = {
3324         CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3325         CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3326         CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3327         CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3328         CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3329 };
3330
3331 static unsigned char saved_mixers[] = {
3332         SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3333         SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3334         SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3335         SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3336         SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3337         SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3338         CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3339         SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3340 };
3341
3342 static int snd_cmipci_suspend(struct device *dev)
3343 {
3344         struct snd_card *card = dev_get_drvdata(dev);
3345         struct cmipci *cm = card->private_data;
3346         int i;
3347
3348         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3349         
3350         snd_pcm_suspend_all(cm->pcm);
3351         snd_pcm_suspend_all(cm->pcm2);
3352         snd_pcm_suspend_all(cm->pcm_spdif);
3353
3354         /* save registers */
3355         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3356                 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3357         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3358                 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3359
3360         /* disable ints */
3361         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3362         return 0;
3363 }
3364
3365 static int snd_cmipci_resume(struct device *dev)
3366 {
3367         struct snd_card *card = dev_get_drvdata(dev);
3368         struct cmipci *cm = card->private_data;
3369         int i;
3370
3371         /* reset / initialize to a sane state */
3372         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3373         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3374         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3375         snd_cmipci_mixer_write(cm, 0, 0);
3376
3377         /* restore registers */
3378         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3379                 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3380         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3381                 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3382
3383         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3384         return 0;
3385 }
3386
3387 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3388 #define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3389 #else
3390 #define SND_CMIPCI_PM_OPS       NULL
3391 #endif /* CONFIG_PM_SLEEP */
3392
3393 static struct pci_driver cmipci_driver = {
3394         .name = KBUILD_MODNAME,
3395         .id_table = snd_cmipci_ids,
3396         .probe = snd_cmipci_probe,
3397         .remove = snd_cmipci_remove,
3398         .driver = {
3399                 .pm = SND_CMIPCI_PM_OPS,
3400         },
3401 };
3402         
3403 module_pci_driver(cmipci_driver);