GNU Linux-libre 4.14.262-gnu1
[releases.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62         struct snd_pcm_runtime *runtime = substream->runtime;
63         snd_pcm_uframes_t frames, ofs, transfer;
64         int err;
65
66         if (runtime->silence_size < runtime->boundary) {
67                 snd_pcm_sframes_t noise_dist, n;
68                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69                 if (runtime->silence_start != appl_ptr) {
70                         n = appl_ptr - runtime->silence_start;
71                         if (n < 0)
72                                 n += runtime->boundary;
73                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74                                 runtime->silence_filled -= n;
75                         else
76                                 runtime->silence_filled = 0;
77                         runtime->silence_start = appl_ptr;
78                 }
79                 if (runtime->silence_filled >= runtime->buffer_size)
80                         return;
81                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83                         return;
84                 frames = runtime->silence_threshold - noise_dist;
85                 if (frames > runtime->silence_size)
86                         frames = runtime->silence_size;
87         } else {
88                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
89                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90                         if (avail > runtime->buffer_size)
91                                 avail = runtime->buffer_size;
92                         runtime->silence_filled = avail > 0 ? avail : 0;
93                         runtime->silence_start = (runtime->status->hw_ptr +
94                                                   runtime->silence_filled) %
95                                                  runtime->boundary;
96                 } else {
97                         ofs = runtime->status->hw_ptr;
98                         frames = new_hw_ptr - ofs;
99                         if ((snd_pcm_sframes_t)frames < 0)
100                                 frames += runtime->boundary;
101                         runtime->silence_filled -= frames;
102                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103                                 runtime->silence_filled = 0;
104                                 runtime->silence_start = new_hw_ptr;
105                         } else {
106                                 runtime->silence_start = ofs;
107                         }
108                 }
109                 frames = runtime->buffer_size - runtime->silence_filled;
110         }
111         if (snd_BUG_ON(frames > runtime->buffer_size))
112                 return;
113         if (frames == 0)
114                 return;
115         ofs = runtime->silence_start % runtime->buffer_size;
116         while (frames > 0) {
117                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118                 err = fill_silence_frames(substream, ofs, transfer);
119                 snd_BUG_ON(err < 0);
120                 runtime->silence_filled += transfer;
121                 frames -= transfer;
122                 ofs = 0;
123         }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128                            char *name, size_t len)
129 {
130         snprintf(name, len, "pcmC%dD%d%c:%d",
131                  substream->pcm->card->number,
132                  substream->pcm->device,
133                  substream->stream ? 'c' : 'p',
134                  substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146                         ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)     0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do {                      \
152                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
153                         dump_stack();                           \
154         } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158         struct snd_pcm_runtime *runtime = substream->runtime;
159
160         trace_xrun(substream);
161         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165                 char name[16];
166                 snd_pcm_debug_name(substream, name, sizeof(name));
167                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168                 dump_stack_on_xrun(substream);
169         }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
174         do {                                                            \
175                 trace_hw_ptr_error(substream, reason);  \
176                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
177                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178                                            (in_interrupt) ? 'Q' : 'P', ##args); \
179                         dump_stack_on_xrun(substream);                  \
180                 }                                                       \
181         } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190                          struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201                 if (avail >= runtime->buffer_size) {
202                         snd_pcm_drain_done(substream);
203                         return -EPIPE;
204                 }
205         } else {
206                 if (avail >= runtime->stop_threshold) {
207                         xrun(substream);
208                         return -EPIPE;
209                 }
210         }
211         if (runtime->twake) {
212                 if (avail >= runtime->twake)
213                         wake_up(&runtime->tsleep);
214         } else if (avail >= runtime->control->avail_min)
215                 wake_up(&runtime->sleep);
216         return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220                                 struct timespec *curr_tstamp,
221                                 struct timespec *audio_tstamp)
222 {
223         struct snd_pcm_runtime *runtime = substream->runtime;
224         u64 audio_frames, audio_nsecs;
225         struct timespec driver_tstamp;
226
227         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228                 return;
229
230         if (!(substream->ops->get_time_info) ||
231                 (runtime->audio_tstamp_report.actual_type ==
232                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234                 /*
235                  * provide audio timestamp derived from pointer position
236                  * add delay only if requested
237                  */
238
239                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241                 if (runtime->audio_tstamp_config.report_delay) {
242                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243                                 audio_frames -=  runtime->delay;
244                         else
245                                 audio_frames +=  runtime->delay;
246                 }
247                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248                                 runtime->rate);
249                 *audio_tstamp = ns_to_timespec(audio_nsecs);
250         }
251         if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252                 runtime->status->audio_tstamp = *audio_tstamp;
253                 runtime->status->tstamp = *curr_tstamp;
254         }
255
256         /*
257          * re-take a driver timestamp to let apps detect if the reference tstamp
258          * read by low-level hardware was provided with a delay
259          */
260         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261         runtime->driver_tstamp = driver_tstamp;
262 }
263
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265                                   unsigned int in_interrupt)
266 {
267         struct snd_pcm_runtime *runtime = substream->runtime;
268         snd_pcm_uframes_t pos;
269         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270         snd_pcm_sframes_t hdelta, delta;
271         unsigned long jdelta;
272         unsigned long curr_jiffies;
273         struct timespec curr_tstamp;
274         struct timespec audio_tstamp;
275         int crossed_boundary = 0;
276
277         old_hw_ptr = runtime->status->hw_ptr;
278
279         /*
280          * group pointer, time and jiffies reads to allow for more
281          * accurate correlations/corrections.
282          * The values are stored at the end of this routine after
283          * corrections for hw_ptr position
284          */
285         pos = substream->ops->pointer(substream);
286         curr_jiffies = jiffies;
287         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288                 if ((substream->ops->get_time_info) &&
289                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290                         substream->ops->get_time_info(substream, &curr_tstamp,
291                                                 &audio_tstamp,
292                                                 &runtime->audio_tstamp_config,
293                                                 &runtime->audio_tstamp_report);
294
295                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298                 } else
299                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300         }
301
302         if (pos == SNDRV_PCM_POS_XRUN) {
303                 xrun(substream);
304                 return -EPIPE;
305         }
306         if (pos >= runtime->buffer_size) {
307                 if (printk_ratelimit()) {
308                         char name[16];
309                         snd_pcm_debug_name(substream, name, sizeof(name));
310                         pcm_err(substream->pcm,
311                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312                                 name, pos, runtime->buffer_size,
313                                 runtime->period_size);
314                 }
315                 pos = 0;
316         }
317         pos -= pos % runtime->min_align;
318         trace_hwptr(substream, pos, in_interrupt);
319         hw_base = runtime->hw_ptr_base;
320         new_hw_ptr = hw_base + pos;
321         if (in_interrupt) {
322                 /* we know that one period was processed */
323                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
325                 if (delta > new_hw_ptr) {
326                         /* check for double acknowledged interrupts */
327                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329                                 hw_base += runtime->buffer_size;
330                                 if (hw_base >= runtime->boundary) {
331                                         hw_base = 0;
332                                         crossed_boundary++;
333                                 }
334                                 new_hw_ptr = hw_base + pos;
335                                 goto __delta;
336                         }
337                 }
338         }
339         /* new_hw_ptr might be lower than old_hw_ptr in case when */
340         /* pointer crosses the end of the ring buffer */
341         if (new_hw_ptr < old_hw_ptr) {
342                 hw_base += runtime->buffer_size;
343                 if (hw_base >= runtime->boundary) {
344                         hw_base = 0;
345                         crossed_boundary++;
346                 }
347                 new_hw_ptr = hw_base + pos;
348         }
349       __delta:
350         delta = new_hw_ptr - old_hw_ptr;
351         if (delta < 0)
352                 delta += runtime->boundary;
353
354         if (runtime->no_period_wakeup) {
355                 snd_pcm_sframes_t xrun_threshold;
356                 /*
357                  * Without regular period interrupts, we have to check
358                  * the elapsed time to detect xruns.
359                  */
360                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362                         goto no_delta_check;
363                 hdelta = jdelta - delta * HZ / runtime->rate;
364                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365                 while (hdelta > xrun_threshold) {
366                         delta += runtime->buffer_size;
367                         hw_base += runtime->buffer_size;
368                         if (hw_base >= runtime->boundary) {
369                                 hw_base = 0;
370                                 crossed_boundary++;
371                         }
372                         new_hw_ptr = hw_base + pos;
373                         hdelta -= runtime->hw_ptr_buffer_jiffies;
374                 }
375                 goto no_delta_check;
376         }
377
378         /* something must be really wrong */
379         if (delta >= runtime->buffer_size + runtime->period_size) {
380                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382                              substream->stream, (long)pos,
383                              (long)new_hw_ptr, (long)old_hw_ptr);
384                 return 0;
385         }
386
387         /* Do jiffies check only in xrun_debug mode */
388         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389                 goto no_jiffies_check;
390
391         /* Skip the jiffies check for hardwares with BATCH flag.
392          * Such hardware usually just increases the position at each IRQ,
393          * thus it can't give any strange position.
394          */
395         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396                 goto no_jiffies_check;
397         hdelta = delta;
398         if (hdelta < runtime->delay)
399                 goto no_jiffies_check;
400         hdelta -= runtime->delay;
401         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403                 delta = jdelta /
404                         (((runtime->period_size * HZ) / runtime->rate)
405                                                                 + HZ/100);
406                 /* move new_hw_ptr according jiffies not pos variable */
407                 new_hw_ptr = old_hw_ptr;
408                 hw_base = delta;
409                 /* use loop to avoid checks for delta overflows */
410                 /* the delta value is small or zero in most cases */
411                 while (delta > 0) {
412                         new_hw_ptr += runtime->period_size;
413                         if (new_hw_ptr >= runtime->boundary) {
414                                 new_hw_ptr -= runtime->boundary;
415                                 crossed_boundary--;
416                         }
417                         delta--;
418                 }
419                 /* align hw_base to buffer_size */
420                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422                              (long)pos, (long)hdelta,
423                              (long)runtime->period_size, jdelta,
424                              ((hdelta * HZ) / runtime->rate), hw_base,
425                              (unsigned long)old_hw_ptr,
426                              (unsigned long)new_hw_ptr);
427                 /* reset values to proper state */
428                 delta = 0;
429                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430         }
431  no_jiffies_check:
432         if (delta > runtime->period_size + runtime->period_size / 2) {
433                 hw_ptr_error(substream, in_interrupt,
434                              "Lost interrupts?",
435                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436                              substream->stream, (long)delta,
437                              (long)new_hw_ptr,
438                              (long)old_hw_ptr);
439         }
440
441  no_delta_check:
442         if (runtime->status->hw_ptr == new_hw_ptr) {
443                 runtime->hw_ptr_jiffies = curr_jiffies;
444                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
445                 return 0;
446         }
447
448         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
449             runtime->silence_size > 0)
450                 snd_pcm_playback_silence(substream, new_hw_ptr);
451
452         if (in_interrupt) {
453                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
454                 if (delta < 0)
455                         delta += runtime->boundary;
456                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
457                 runtime->hw_ptr_interrupt += delta;
458                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
459                         runtime->hw_ptr_interrupt -= runtime->boundary;
460         }
461         runtime->hw_ptr_base = hw_base;
462         runtime->status->hw_ptr = new_hw_ptr;
463         runtime->hw_ptr_jiffies = curr_jiffies;
464         if (crossed_boundary) {
465                 snd_BUG_ON(crossed_boundary != 1);
466                 runtime->hw_ptr_wrap += runtime->boundary;
467         }
468
469         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
470
471         return snd_pcm_update_state(substream, runtime);
472 }
473
474 /* CAUTION: call it with irq disabled */
475 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
476 {
477         return snd_pcm_update_hw_ptr0(substream, 0);
478 }
479
480 /**
481  * snd_pcm_set_ops - set the PCM operators
482  * @pcm: the pcm instance
483  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
484  * @ops: the operator table
485  *
486  * Sets the given PCM operators to the pcm instance.
487  */
488 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
489                      const struct snd_pcm_ops *ops)
490 {
491         struct snd_pcm_str *stream = &pcm->streams[direction];
492         struct snd_pcm_substream *substream;
493         
494         for (substream = stream->substream; substream != NULL; substream = substream->next)
495                 substream->ops = ops;
496 }
497 EXPORT_SYMBOL(snd_pcm_set_ops);
498
499 /**
500  * snd_pcm_sync - set the PCM sync id
501  * @substream: the pcm substream
502  *
503  * Sets the PCM sync identifier for the card.
504  */
505 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
506 {
507         struct snd_pcm_runtime *runtime = substream->runtime;
508         
509         runtime->sync.id32[0] = substream->pcm->card->number;
510         runtime->sync.id32[1] = -1;
511         runtime->sync.id32[2] = -1;
512         runtime->sync.id32[3] = -1;
513 }
514 EXPORT_SYMBOL(snd_pcm_set_sync);
515
516 /*
517  *  Standard ioctl routine
518  */
519
520 static inline unsigned int div32(unsigned int a, unsigned int b, 
521                                  unsigned int *r)
522 {
523         if (b == 0) {
524                 *r = 0;
525                 return UINT_MAX;
526         }
527         *r = a % b;
528         return a / b;
529 }
530
531 static inline unsigned int div_down(unsigned int a, unsigned int b)
532 {
533         if (b == 0)
534                 return UINT_MAX;
535         return a / b;
536 }
537
538 static inline unsigned int div_up(unsigned int a, unsigned int b)
539 {
540         unsigned int r;
541         unsigned int q;
542         if (b == 0)
543                 return UINT_MAX;
544         q = div32(a, b, &r);
545         if (r)
546                 ++q;
547         return q;
548 }
549
550 static inline unsigned int mul(unsigned int a, unsigned int b)
551 {
552         if (a == 0)
553                 return 0;
554         if (div_down(UINT_MAX, a) < b)
555                 return UINT_MAX;
556         return a * b;
557 }
558
559 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
560                                     unsigned int c, unsigned int *r)
561 {
562         u_int64_t n = (u_int64_t) a * b;
563         if (c == 0) {
564                 *r = 0;
565                 return UINT_MAX;
566         }
567         n = div_u64_rem(n, c, r);
568         if (n >= UINT_MAX) {
569                 *r = 0;
570                 return UINT_MAX;
571         }
572         return n;
573 }
574
575 /**
576  * snd_interval_refine - refine the interval value of configurator
577  * @i: the interval value to refine
578  * @v: the interval value to refer to
579  *
580  * Refines the interval value with the reference value.
581  * The interval is changed to the range satisfying both intervals.
582  * The interval status (min, max, integer, etc.) are evaluated.
583  *
584  * Return: Positive if the value is changed, zero if it's not changed, or a
585  * negative error code.
586  */
587 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
588 {
589         int changed = 0;
590         if (snd_BUG_ON(snd_interval_empty(i)))
591                 return -EINVAL;
592         if (i->min < v->min) {
593                 i->min = v->min;
594                 i->openmin = v->openmin;
595                 changed = 1;
596         } else if (i->min == v->min && !i->openmin && v->openmin) {
597                 i->openmin = 1;
598                 changed = 1;
599         }
600         if (i->max > v->max) {
601                 i->max = v->max;
602                 i->openmax = v->openmax;
603                 changed = 1;
604         } else if (i->max == v->max && !i->openmax && v->openmax) {
605                 i->openmax = 1;
606                 changed = 1;
607         }
608         if (!i->integer && v->integer) {
609                 i->integer = 1;
610                 changed = 1;
611         }
612         if (i->integer) {
613                 if (i->openmin) {
614                         i->min++;
615                         i->openmin = 0;
616                 }
617                 if (i->openmax) {
618                         i->max--;
619                         i->openmax = 0;
620                 }
621         } else if (!i->openmin && !i->openmax && i->min == i->max)
622                 i->integer = 1;
623         if (snd_interval_checkempty(i)) {
624                 snd_interval_none(i);
625                 return -EINVAL;
626         }
627         return changed;
628 }
629 EXPORT_SYMBOL(snd_interval_refine);
630
631 static int snd_interval_refine_first(struct snd_interval *i)
632 {
633         const unsigned int last_max = i->max;
634
635         if (snd_BUG_ON(snd_interval_empty(i)))
636                 return -EINVAL;
637         if (snd_interval_single(i))
638                 return 0;
639         i->max = i->min;
640         if (i->openmin)
641                 i->max++;
642         /* only exclude max value if also excluded before refine */
643         i->openmax = (i->openmax && i->max >= last_max);
644         return 1;
645 }
646
647 static int snd_interval_refine_last(struct snd_interval *i)
648 {
649         const unsigned int last_min = i->min;
650
651         if (snd_BUG_ON(snd_interval_empty(i)))
652                 return -EINVAL;
653         if (snd_interval_single(i))
654                 return 0;
655         i->min = i->max;
656         if (i->openmax)
657                 i->min--;
658         /* only exclude min value if also excluded before refine */
659         i->openmin = (i->openmin && i->min <= last_min);
660         return 1;
661 }
662
663 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
664 {
665         if (a->empty || b->empty) {
666                 snd_interval_none(c);
667                 return;
668         }
669         c->empty = 0;
670         c->min = mul(a->min, b->min);
671         c->openmin = (a->openmin || b->openmin);
672         c->max = mul(a->max,  b->max);
673         c->openmax = (a->openmax || b->openmax);
674         c->integer = (a->integer && b->integer);
675 }
676
677 /**
678  * snd_interval_div - refine the interval value with division
679  * @a: dividend
680  * @b: divisor
681  * @c: quotient
682  *
683  * c = a / b
684  *
685  * Returns non-zero if the value is changed, zero if not changed.
686  */
687 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
688 {
689         unsigned int r;
690         if (a->empty || b->empty) {
691                 snd_interval_none(c);
692                 return;
693         }
694         c->empty = 0;
695         c->min = div32(a->min, b->max, &r);
696         c->openmin = (r || a->openmin || b->openmax);
697         if (b->min > 0) {
698                 c->max = div32(a->max, b->min, &r);
699                 if (r) {
700                         c->max++;
701                         c->openmax = 1;
702                 } else
703                         c->openmax = (a->openmax || b->openmin);
704         } else {
705                 c->max = UINT_MAX;
706                 c->openmax = 0;
707         }
708         c->integer = 0;
709 }
710
711 /**
712  * snd_interval_muldivk - refine the interval value
713  * @a: dividend 1
714  * @b: dividend 2
715  * @k: divisor (as integer)
716  * @c: result
717   *
718  * c = a * b / k
719  *
720  * Returns non-zero if the value is changed, zero if not changed.
721  */
722 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
723                       unsigned int k, struct snd_interval *c)
724 {
725         unsigned int r;
726         if (a->empty || b->empty) {
727                 snd_interval_none(c);
728                 return;
729         }
730         c->empty = 0;
731         c->min = muldiv32(a->min, b->min, k, &r);
732         c->openmin = (r || a->openmin || b->openmin);
733         c->max = muldiv32(a->max, b->max, k, &r);
734         if (r) {
735                 c->max++;
736                 c->openmax = 1;
737         } else
738                 c->openmax = (a->openmax || b->openmax);
739         c->integer = 0;
740 }
741
742 /**
743  * snd_interval_mulkdiv - refine the interval value
744  * @a: dividend 1
745  * @k: dividend 2 (as integer)
746  * @b: divisor
747  * @c: result
748  *
749  * c = a * k / b
750  *
751  * Returns non-zero if the value is changed, zero if not changed.
752  */
753 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
754                       const struct snd_interval *b, struct snd_interval *c)
755 {
756         unsigned int r;
757         if (a->empty || b->empty) {
758                 snd_interval_none(c);
759                 return;
760         }
761         c->empty = 0;
762         c->min = muldiv32(a->min, k, b->max, &r);
763         c->openmin = (r || a->openmin || b->openmax);
764         if (b->min > 0) {
765                 c->max = muldiv32(a->max, k, b->min, &r);
766                 if (r) {
767                         c->max++;
768                         c->openmax = 1;
769                 } else
770                         c->openmax = (a->openmax || b->openmin);
771         } else {
772                 c->max = UINT_MAX;
773                 c->openmax = 0;
774         }
775         c->integer = 0;
776 }
777
778 /* ---- */
779
780
781 /**
782  * snd_interval_ratnum - refine the interval value
783  * @i: interval to refine
784  * @rats_count: number of ratnum_t 
785  * @rats: ratnum_t array
786  * @nump: pointer to store the resultant numerator
787  * @denp: pointer to store the resultant denominator
788  *
789  * Return: Positive if the value is changed, zero if it's not changed, or a
790  * negative error code.
791  */
792 int snd_interval_ratnum(struct snd_interval *i,
793                         unsigned int rats_count, const struct snd_ratnum *rats,
794                         unsigned int *nump, unsigned int *denp)
795 {
796         unsigned int best_num, best_den;
797         int best_diff;
798         unsigned int k;
799         struct snd_interval t;
800         int err;
801         unsigned int result_num, result_den;
802         int result_diff;
803
804         best_num = best_den = best_diff = 0;
805         for (k = 0; k < rats_count; ++k) {
806                 unsigned int num = rats[k].num;
807                 unsigned int den;
808                 unsigned int q = i->min;
809                 int diff;
810                 if (q == 0)
811                         q = 1;
812                 den = div_up(num, q);
813                 if (den < rats[k].den_min)
814                         continue;
815                 if (den > rats[k].den_max)
816                         den = rats[k].den_max;
817                 else {
818                         unsigned int r;
819                         r = (den - rats[k].den_min) % rats[k].den_step;
820                         if (r != 0)
821                                 den -= r;
822                 }
823                 diff = num - q * den;
824                 if (diff < 0)
825                         diff = -diff;
826                 if (best_num == 0 ||
827                     diff * best_den < best_diff * den) {
828                         best_diff = diff;
829                         best_den = den;
830                         best_num = num;
831                 }
832         }
833         if (best_den == 0) {
834                 i->empty = 1;
835                 return -EINVAL;
836         }
837         t.min = div_down(best_num, best_den);
838         t.openmin = !!(best_num % best_den);
839         
840         result_num = best_num;
841         result_diff = best_diff;
842         result_den = best_den;
843         best_num = best_den = best_diff = 0;
844         for (k = 0; k < rats_count; ++k) {
845                 unsigned int num = rats[k].num;
846                 unsigned int den;
847                 unsigned int q = i->max;
848                 int diff;
849                 if (q == 0) {
850                         i->empty = 1;
851                         return -EINVAL;
852                 }
853                 den = div_down(num, q);
854                 if (den > rats[k].den_max)
855                         continue;
856                 if (den < rats[k].den_min)
857                         den = rats[k].den_min;
858                 else {
859                         unsigned int r;
860                         r = (den - rats[k].den_min) % rats[k].den_step;
861                         if (r != 0)
862                                 den += rats[k].den_step - r;
863                 }
864                 diff = q * den - num;
865                 if (diff < 0)
866                         diff = -diff;
867                 if (best_num == 0 ||
868                     diff * best_den < best_diff * den) {
869                         best_diff = diff;
870                         best_den = den;
871                         best_num = num;
872                 }
873         }
874         if (best_den == 0) {
875                 i->empty = 1;
876                 return -EINVAL;
877         }
878         t.max = div_up(best_num, best_den);
879         t.openmax = !!(best_num % best_den);
880         t.integer = 0;
881         err = snd_interval_refine(i, &t);
882         if (err < 0)
883                 return err;
884
885         if (snd_interval_single(i)) {
886                 if (best_diff * result_den < result_diff * best_den) {
887                         result_num = best_num;
888                         result_den = best_den;
889                 }
890                 if (nump)
891                         *nump = result_num;
892                 if (denp)
893                         *denp = result_den;
894         }
895         return err;
896 }
897 EXPORT_SYMBOL(snd_interval_ratnum);
898
899 /**
900  * snd_interval_ratden - refine the interval value
901  * @i: interval to refine
902  * @rats_count: number of struct ratden
903  * @rats: struct ratden array
904  * @nump: pointer to store the resultant numerator
905  * @denp: pointer to store the resultant denominator
906  *
907  * Return: Positive if the value is changed, zero if it's not changed, or a
908  * negative error code.
909  */
910 static int snd_interval_ratden(struct snd_interval *i,
911                                unsigned int rats_count,
912                                const struct snd_ratden *rats,
913                                unsigned int *nump, unsigned int *denp)
914 {
915         unsigned int best_num, best_diff, best_den;
916         unsigned int k;
917         struct snd_interval t;
918         int err;
919
920         best_num = best_den = best_diff = 0;
921         for (k = 0; k < rats_count; ++k) {
922                 unsigned int num;
923                 unsigned int den = rats[k].den;
924                 unsigned int q = i->min;
925                 int diff;
926                 num = mul(q, den);
927                 if (num > rats[k].num_max)
928                         continue;
929                 if (num < rats[k].num_min)
930                         num = rats[k].num_max;
931                 else {
932                         unsigned int r;
933                         r = (num - rats[k].num_min) % rats[k].num_step;
934                         if (r != 0)
935                                 num += rats[k].num_step - r;
936                 }
937                 diff = num - q * den;
938                 if (best_num == 0 ||
939                     diff * best_den < best_diff * den) {
940                         best_diff = diff;
941                         best_den = den;
942                         best_num = num;
943                 }
944         }
945         if (best_den == 0) {
946                 i->empty = 1;
947                 return -EINVAL;
948         }
949         t.min = div_down(best_num, best_den);
950         t.openmin = !!(best_num % best_den);
951         
952         best_num = best_den = best_diff = 0;
953         for (k = 0; k < rats_count; ++k) {
954                 unsigned int num;
955                 unsigned int den = rats[k].den;
956                 unsigned int q = i->max;
957                 int diff;
958                 num = mul(q, den);
959                 if (num < rats[k].num_min)
960                         continue;
961                 if (num > rats[k].num_max)
962                         num = rats[k].num_max;
963                 else {
964                         unsigned int r;
965                         r = (num - rats[k].num_min) % rats[k].num_step;
966                         if (r != 0)
967                                 num -= r;
968                 }
969                 diff = q * den - num;
970                 if (best_num == 0 ||
971                     diff * best_den < best_diff * den) {
972                         best_diff = diff;
973                         best_den = den;
974                         best_num = num;
975                 }
976         }
977         if (best_den == 0) {
978                 i->empty = 1;
979                 return -EINVAL;
980         }
981         t.max = div_up(best_num, best_den);
982         t.openmax = !!(best_num % best_den);
983         t.integer = 0;
984         err = snd_interval_refine(i, &t);
985         if (err < 0)
986                 return err;
987
988         if (snd_interval_single(i)) {
989                 if (nump)
990                         *nump = best_num;
991                 if (denp)
992                         *denp = best_den;
993         }
994         return err;
995 }
996
997 /**
998  * snd_interval_list - refine the interval value from the list
999  * @i: the interval value to refine
1000  * @count: the number of elements in the list
1001  * @list: the value list
1002  * @mask: the bit-mask to evaluate
1003  *
1004  * Refines the interval value from the list.
1005  * When mask is non-zero, only the elements corresponding to bit 1 are
1006  * evaluated.
1007  *
1008  * Return: Positive if the value is changed, zero if it's not changed, or a
1009  * negative error code.
1010  */
1011 int snd_interval_list(struct snd_interval *i, unsigned int count,
1012                       const unsigned int *list, unsigned int mask)
1013 {
1014         unsigned int k;
1015         struct snd_interval list_range;
1016
1017         if (!count) {
1018                 i->empty = 1;
1019                 return -EINVAL;
1020         }
1021         snd_interval_any(&list_range);
1022         list_range.min = UINT_MAX;
1023         list_range.max = 0;
1024         for (k = 0; k < count; k++) {
1025                 if (mask && !(mask & (1 << k)))
1026                         continue;
1027                 if (!snd_interval_test(i, list[k]))
1028                         continue;
1029                 list_range.min = min(list_range.min, list[k]);
1030                 list_range.max = max(list_range.max, list[k]);
1031         }
1032         return snd_interval_refine(i, &list_range);
1033 }
1034 EXPORT_SYMBOL(snd_interval_list);
1035
1036 /**
1037  * snd_interval_ranges - refine the interval value from the list of ranges
1038  * @i: the interval value to refine
1039  * @count: the number of elements in the list of ranges
1040  * @ranges: the ranges list
1041  * @mask: the bit-mask to evaluate
1042  *
1043  * Refines the interval value from the list of ranges.
1044  * When mask is non-zero, only the elements corresponding to bit 1 are
1045  * evaluated.
1046  *
1047  * Return: Positive if the value is changed, zero if it's not changed, or a
1048  * negative error code.
1049  */
1050 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1051                         const struct snd_interval *ranges, unsigned int mask)
1052 {
1053         unsigned int k;
1054         struct snd_interval range_union;
1055         struct snd_interval range;
1056
1057         if (!count) {
1058                 snd_interval_none(i);
1059                 return -EINVAL;
1060         }
1061         snd_interval_any(&range_union);
1062         range_union.min = UINT_MAX;
1063         range_union.max = 0;
1064         for (k = 0; k < count; k++) {
1065                 if (mask && !(mask & (1 << k)))
1066                         continue;
1067                 snd_interval_copy(&range, &ranges[k]);
1068                 if (snd_interval_refine(&range, i) < 0)
1069                         continue;
1070                 if (snd_interval_empty(&range))
1071                         continue;
1072
1073                 if (range.min < range_union.min) {
1074                         range_union.min = range.min;
1075                         range_union.openmin = 1;
1076                 }
1077                 if (range.min == range_union.min && !range.openmin)
1078                         range_union.openmin = 0;
1079                 if (range.max > range_union.max) {
1080                         range_union.max = range.max;
1081                         range_union.openmax = 1;
1082                 }
1083                 if (range.max == range_union.max && !range.openmax)
1084                         range_union.openmax = 0;
1085         }
1086         return snd_interval_refine(i, &range_union);
1087 }
1088 EXPORT_SYMBOL(snd_interval_ranges);
1089
1090 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1091 {
1092         unsigned int n;
1093         int changed = 0;
1094         n = i->min % step;
1095         if (n != 0 || i->openmin) {
1096                 i->min += step - n;
1097                 i->openmin = 0;
1098                 changed = 1;
1099         }
1100         n = i->max % step;
1101         if (n != 0 || i->openmax) {
1102                 i->max -= n;
1103                 i->openmax = 0;
1104                 changed = 1;
1105         }
1106         if (snd_interval_checkempty(i)) {
1107                 i->empty = 1;
1108                 return -EINVAL;
1109         }
1110         return changed;
1111 }
1112
1113 /* Info constraints helpers */
1114
1115 /**
1116  * snd_pcm_hw_rule_add - add the hw-constraint rule
1117  * @runtime: the pcm runtime instance
1118  * @cond: condition bits
1119  * @var: the variable to evaluate
1120  * @func: the evaluation function
1121  * @private: the private data pointer passed to function
1122  * @dep: the dependent variables
1123  *
1124  * Return: Zero if successful, or a negative error code on failure.
1125  */
1126 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1127                         int var,
1128                         snd_pcm_hw_rule_func_t func, void *private,
1129                         int dep, ...)
1130 {
1131         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1132         struct snd_pcm_hw_rule *c;
1133         unsigned int k;
1134         va_list args;
1135         va_start(args, dep);
1136         if (constrs->rules_num >= constrs->rules_all) {
1137                 struct snd_pcm_hw_rule *new;
1138                 unsigned int new_rules = constrs->rules_all + 16;
1139                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1140                 if (!new) {
1141                         va_end(args);
1142                         return -ENOMEM;
1143                 }
1144                 if (constrs->rules) {
1145                         memcpy(new, constrs->rules,
1146                                constrs->rules_num * sizeof(*c));
1147                         kfree(constrs->rules);
1148                 }
1149                 constrs->rules = new;
1150                 constrs->rules_all = new_rules;
1151         }
1152         c = &constrs->rules[constrs->rules_num];
1153         c->cond = cond;
1154         c->func = func;
1155         c->var = var;
1156         c->private = private;
1157         k = 0;
1158         while (1) {
1159                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1160                         va_end(args);
1161                         return -EINVAL;
1162                 }
1163                 c->deps[k++] = dep;
1164                 if (dep < 0)
1165                         break;
1166                 dep = va_arg(args, int);
1167         }
1168         constrs->rules_num++;
1169         va_end(args);
1170         return 0;
1171 }
1172 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1173
1174 /**
1175  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1176  * @runtime: PCM runtime instance
1177  * @var: hw_params variable to apply the mask
1178  * @mask: the bitmap mask
1179  *
1180  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1181  *
1182  * Return: Zero if successful, or a negative error code on failure.
1183  */
1184 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1185                                u_int32_t mask)
1186 {
1187         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1188         struct snd_mask *maskp = constrs_mask(constrs, var);
1189         *maskp->bits &= mask;
1190         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1191         if (*maskp->bits == 0)
1192                 return -EINVAL;
1193         return 0;
1194 }
1195
1196 /**
1197  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1198  * @runtime: PCM runtime instance
1199  * @var: hw_params variable to apply the mask
1200  * @mask: the 64bit bitmap mask
1201  *
1202  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1203  *
1204  * Return: Zero if successful, or a negative error code on failure.
1205  */
1206 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1207                                  u_int64_t mask)
1208 {
1209         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1210         struct snd_mask *maskp = constrs_mask(constrs, var);
1211         maskp->bits[0] &= (u_int32_t)mask;
1212         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1213         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1214         if (! maskp->bits[0] && ! maskp->bits[1])
1215                 return -EINVAL;
1216         return 0;
1217 }
1218 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1219
1220 /**
1221  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1222  * @runtime: PCM runtime instance
1223  * @var: hw_params variable to apply the integer constraint
1224  *
1225  * Apply the constraint of integer to an interval parameter.
1226  *
1227  * Return: Positive if the value is changed, zero if it's not changed, or a
1228  * negative error code.
1229  */
1230 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1231 {
1232         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1233         return snd_interval_setinteger(constrs_interval(constrs, var));
1234 }
1235 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1236
1237 /**
1238  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1239  * @runtime: PCM runtime instance
1240  * @var: hw_params variable to apply the range
1241  * @min: the minimal value
1242  * @max: the maximal value
1243  * 
1244  * Apply the min/max range constraint to an interval parameter.
1245  *
1246  * Return: Positive if the value is changed, zero if it's not changed, or a
1247  * negative error code.
1248  */
1249 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1250                                  unsigned int min, unsigned int max)
1251 {
1252         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1253         struct snd_interval t;
1254         t.min = min;
1255         t.max = max;
1256         t.openmin = t.openmax = 0;
1257         t.integer = 0;
1258         return snd_interval_refine(constrs_interval(constrs, var), &t);
1259 }
1260 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1261
1262 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1263                                 struct snd_pcm_hw_rule *rule)
1264 {
1265         struct snd_pcm_hw_constraint_list *list = rule->private;
1266         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1267 }               
1268
1269
1270 /**
1271  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1272  * @runtime: PCM runtime instance
1273  * @cond: condition bits
1274  * @var: hw_params variable to apply the list constraint
1275  * @l: list
1276  * 
1277  * Apply the list of constraints to an interval parameter.
1278  *
1279  * Return: Zero if successful, or a negative error code on failure.
1280  */
1281 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1282                                unsigned int cond,
1283                                snd_pcm_hw_param_t var,
1284                                const struct snd_pcm_hw_constraint_list *l)
1285 {
1286         return snd_pcm_hw_rule_add(runtime, cond, var,
1287                                    snd_pcm_hw_rule_list, (void *)l,
1288                                    var, -1);
1289 }
1290 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1291
1292 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1293                                   struct snd_pcm_hw_rule *rule)
1294 {
1295         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1296         return snd_interval_ranges(hw_param_interval(params, rule->var),
1297                                    r->count, r->ranges, r->mask);
1298 }
1299
1300
1301 /**
1302  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1303  * @runtime: PCM runtime instance
1304  * @cond: condition bits
1305  * @var: hw_params variable to apply the list of range constraints
1306  * @r: ranges
1307  *
1308  * Apply the list of range constraints to an interval parameter.
1309  *
1310  * Return: Zero if successful, or a negative error code on failure.
1311  */
1312 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1313                                  unsigned int cond,
1314                                  snd_pcm_hw_param_t var,
1315                                  const struct snd_pcm_hw_constraint_ranges *r)
1316 {
1317         return snd_pcm_hw_rule_add(runtime, cond, var,
1318                                    snd_pcm_hw_rule_ranges, (void *)r,
1319                                    var, -1);
1320 }
1321 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1322
1323 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1324                                    struct snd_pcm_hw_rule *rule)
1325 {
1326         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1327         unsigned int num = 0, den = 0;
1328         int err;
1329         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1330                                   r->nrats, r->rats, &num, &den);
1331         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1332                 params->rate_num = num;
1333                 params->rate_den = den;
1334         }
1335         return err;
1336 }
1337
1338 /**
1339  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1340  * @runtime: PCM runtime instance
1341  * @cond: condition bits
1342  * @var: hw_params variable to apply the ratnums constraint
1343  * @r: struct snd_ratnums constriants
1344  *
1345  * Return: Zero if successful, or a negative error code on failure.
1346  */
1347 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1348                                   unsigned int cond,
1349                                   snd_pcm_hw_param_t var,
1350                                   const struct snd_pcm_hw_constraint_ratnums *r)
1351 {
1352         return snd_pcm_hw_rule_add(runtime, cond, var,
1353                                    snd_pcm_hw_rule_ratnums, (void *)r,
1354                                    var, -1);
1355 }
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1357
1358 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1359                                    struct snd_pcm_hw_rule *rule)
1360 {
1361         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1362         unsigned int num = 0, den = 0;
1363         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1364                                   r->nrats, r->rats, &num, &den);
1365         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1366                 params->rate_num = num;
1367                 params->rate_den = den;
1368         }
1369         return err;
1370 }
1371
1372 /**
1373  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1374  * @runtime: PCM runtime instance
1375  * @cond: condition bits
1376  * @var: hw_params variable to apply the ratdens constraint
1377  * @r: struct snd_ratdens constriants
1378  *
1379  * Return: Zero if successful, or a negative error code on failure.
1380  */
1381 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1382                                   unsigned int cond,
1383                                   snd_pcm_hw_param_t var,
1384                                   const struct snd_pcm_hw_constraint_ratdens *r)
1385 {
1386         return snd_pcm_hw_rule_add(runtime, cond, var,
1387                                    snd_pcm_hw_rule_ratdens, (void *)r,
1388                                    var, -1);
1389 }
1390 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1391
1392 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1393                                   struct snd_pcm_hw_rule *rule)
1394 {
1395         unsigned int l = (unsigned long) rule->private;
1396         int width = l & 0xffff;
1397         unsigned int msbits = l >> 16;
1398         const struct snd_interval *i =
1399                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1400
1401         if (!snd_interval_single(i))
1402                 return 0;
1403
1404         if ((snd_interval_value(i) == width) ||
1405             (width == 0 && snd_interval_value(i) > msbits))
1406                 params->msbits = min_not_zero(params->msbits, msbits);
1407
1408         return 0;
1409 }
1410
1411 /**
1412  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1413  * @runtime: PCM runtime instance
1414  * @cond: condition bits
1415  * @width: sample bits width
1416  * @msbits: msbits width
1417  *
1418  * This constraint will set the number of most significant bits (msbits) if a
1419  * sample format with the specified width has been select. If width is set to 0
1420  * the msbits will be set for any sample format with a width larger than the
1421  * specified msbits.
1422  *
1423  * Return: Zero if successful, or a negative error code on failure.
1424  */
1425 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1426                                  unsigned int cond,
1427                                  unsigned int width,
1428                                  unsigned int msbits)
1429 {
1430         unsigned long l = (msbits << 16) | width;
1431         return snd_pcm_hw_rule_add(runtime, cond, -1,
1432                                     snd_pcm_hw_rule_msbits,
1433                                     (void*) l,
1434                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1435 }
1436 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1437
1438 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1439                                 struct snd_pcm_hw_rule *rule)
1440 {
1441         unsigned long step = (unsigned long) rule->private;
1442         return snd_interval_step(hw_param_interval(params, rule->var), step);
1443 }
1444
1445 /**
1446  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1447  * @runtime: PCM runtime instance
1448  * @cond: condition bits
1449  * @var: hw_params variable to apply the step constraint
1450  * @step: step size
1451  *
1452  * Return: Zero if successful, or a negative error code on failure.
1453  */
1454 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1455                                unsigned int cond,
1456                                snd_pcm_hw_param_t var,
1457                                unsigned long step)
1458 {
1459         return snd_pcm_hw_rule_add(runtime, cond, var, 
1460                                    snd_pcm_hw_rule_step, (void *) step,
1461                                    var, -1);
1462 }
1463 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1464
1465 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1466 {
1467         static unsigned int pow2_sizes[] = {
1468                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1469                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1470                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1471                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1472         };
1473         return snd_interval_list(hw_param_interval(params, rule->var),
1474                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1475 }               
1476
1477 /**
1478  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1479  * @runtime: PCM runtime instance
1480  * @cond: condition bits
1481  * @var: hw_params variable to apply the power-of-2 constraint
1482  *
1483  * Return: Zero if successful, or a negative error code on failure.
1484  */
1485 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1486                                unsigned int cond,
1487                                snd_pcm_hw_param_t var)
1488 {
1489         return snd_pcm_hw_rule_add(runtime, cond, var, 
1490                                    snd_pcm_hw_rule_pow2, NULL,
1491                                    var, -1);
1492 }
1493 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1494
1495 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1496                                            struct snd_pcm_hw_rule *rule)
1497 {
1498         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1499         struct snd_interval *rate;
1500
1501         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1502         return snd_interval_list(rate, 1, &base_rate, 0);
1503 }
1504
1505 /**
1506  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1507  * @runtime: PCM runtime instance
1508  * @base_rate: the rate at which the hardware does not resample
1509  *
1510  * Return: Zero if successful, or a negative error code on failure.
1511  */
1512 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1513                                unsigned int base_rate)
1514 {
1515         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1516                                    SNDRV_PCM_HW_PARAM_RATE,
1517                                    snd_pcm_hw_rule_noresample_func,
1518                                    (void *)(uintptr_t)base_rate,
1519                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1520 }
1521 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1522
1523 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1524                                   snd_pcm_hw_param_t var)
1525 {
1526         if (hw_is_mask(var)) {
1527                 snd_mask_any(hw_param_mask(params, var));
1528                 params->cmask |= 1 << var;
1529                 params->rmask |= 1 << var;
1530                 return;
1531         }
1532         if (hw_is_interval(var)) {
1533                 snd_interval_any(hw_param_interval(params, var));
1534                 params->cmask |= 1 << var;
1535                 params->rmask |= 1 << var;
1536                 return;
1537         }
1538         snd_BUG();
1539 }
1540
1541 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1542 {
1543         unsigned int k;
1544         memset(params, 0, sizeof(*params));
1545         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1546                 _snd_pcm_hw_param_any(params, k);
1547         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1548                 _snd_pcm_hw_param_any(params, k);
1549         params->info = ~0U;
1550 }
1551 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1552
1553 /**
1554  * snd_pcm_hw_param_value - return @params field @var value
1555  * @params: the hw_params instance
1556  * @var: parameter to retrieve
1557  * @dir: pointer to the direction (-1,0,1) or %NULL
1558  *
1559  * Return: The value for field @var if it's fixed in configuration space
1560  * defined by @params. -%EINVAL otherwise.
1561  */
1562 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1563                            snd_pcm_hw_param_t var, int *dir)
1564 {
1565         if (hw_is_mask(var)) {
1566                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1567                 if (!snd_mask_single(mask))
1568                         return -EINVAL;
1569                 if (dir)
1570                         *dir = 0;
1571                 return snd_mask_value(mask);
1572         }
1573         if (hw_is_interval(var)) {
1574                 const struct snd_interval *i = hw_param_interval_c(params, var);
1575                 if (!snd_interval_single(i))
1576                         return -EINVAL;
1577                 if (dir)
1578                         *dir = i->openmin;
1579                 return snd_interval_value(i);
1580         }
1581         return -EINVAL;
1582 }
1583 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1584
1585 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1586                                 snd_pcm_hw_param_t var)
1587 {
1588         if (hw_is_mask(var)) {
1589                 snd_mask_none(hw_param_mask(params, var));
1590                 params->cmask |= 1 << var;
1591                 params->rmask |= 1 << var;
1592         } else if (hw_is_interval(var)) {
1593                 snd_interval_none(hw_param_interval(params, var));
1594                 params->cmask |= 1 << var;
1595                 params->rmask |= 1 << var;
1596         } else {
1597                 snd_BUG();
1598         }
1599 }
1600 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1601
1602 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1603                                    snd_pcm_hw_param_t var)
1604 {
1605         int changed;
1606         if (hw_is_mask(var))
1607                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1608         else if (hw_is_interval(var))
1609                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1610         else
1611                 return -EINVAL;
1612         if (changed) {
1613                 params->cmask |= 1 << var;
1614                 params->rmask |= 1 << var;
1615         }
1616         return changed;
1617 }
1618
1619
1620 /**
1621  * snd_pcm_hw_param_first - refine config space and return minimum value
1622  * @pcm: PCM instance
1623  * @params: the hw_params instance
1624  * @var: parameter to retrieve
1625  * @dir: pointer to the direction (-1,0,1) or %NULL
1626  *
1627  * Inside configuration space defined by @params remove from @var all
1628  * values > minimum. Reduce configuration space accordingly.
1629  *
1630  * Return: The minimum, or a negative error code on failure.
1631  */
1632 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1633                            struct snd_pcm_hw_params *params, 
1634                            snd_pcm_hw_param_t var, int *dir)
1635 {
1636         int changed = _snd_pcm_hw_param_first(params, var);
1637         if (changed < 0)
1638                 return changed;
1639         if (params->rmask) {
1640                 int err = snd_pcm_hw_refine(pcm, params);
1641                 if (err < 0)
1642                         return err;
1643         }
1644         return snd_pcm_hw_param_value(params, var, dir);
1645 }
1646 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1647
1648 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1649                                   snd_pcm_hw_param_t var)
1650 {
1651         int changed;
1652         if (hw_is_mask(var))
1653                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1654         else if (hw_is_interval(var))
1655                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1656         else
1657                 return -EINVAL;
1658         if (changed) {
1659                 params->cmask |= 1 << var;
1660                 params->rmask |= 1 << var;
1661         }
1662         return changed;
1663 }
1664
1665
1666 /**
1667  * snd_pcm_hw_param_last - refine config space and return maximum value
1668  * @pcm: PCM instance
1669  * @params: the hw_params instance
1670  * @var: parameter to retrieve
1671  * @dir: pointer to the direction (-1,0,1) or %NULL
1672  *
1673  * Inside configuration space defined by @params remove from @var all
1674  * values < maximum. Reduce configuration space accordingly.
1675  *
1676  * Return: The maximum, or a negative error code on failure.
1677  */
1678 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1679                           struct snd_pcm_hw_params *params,
1680                           snd_pcm_hw_param_t var, int *dir)
1681 {
1682         int changed = _snd_pcm_hw_param_last(params, var);
1683         if (changed < 0)
1684                 return changed;
1685         if (params->rmask) {
1686                 int err = snd_pcm_hw_refine(pcm, params);
1687                 if (err < 0)
1688                         return err;
1689         }
1690         return snd_pcm_hw_param_value(params, var, dir);
1691 }
1692 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1693
1694 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1695                                    void *arg)
1696 {
1697         struct snd_pcm_runtime *runtime = substream->runtime;
1698         unsigned long flags;
1699         snd_pcm_stream_lock_irqsave(substream, flags);
1700         if (snd_pcm_running(substream) &&
1701             snd_pcm_update_hw_ptr(substream) >= 0)
1702                 runtime->status->hw_ptr %= runtime->buffer_size;
1703         else {
1704                 runtime->status->hw_ptr = 0;
1705                 runtime->hw_ptr_wrap = 0;
1706         }
1707         snd_pcm_stream_unlock_irqrestore(substream, flags);
1708         return 0;
1709 }
1710
1711 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1712                                           void *arg)
1713 {
1714         struct snd_pcm_channel_info *info = arg;
1715         struct snd_pcm_runtime *runtime = substream->runtime;
1716         int width;
1717         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1718                 info->offset = -1;
1719                 return 0;
1720         }
1721         width = snd_pcm_format_physical_width(runtime->format);
1722         if (width < 0)
1723                 return width;
1724         info->offset = 0;
1725         switch (runtime->access) {
1726         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1727         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1728                 info->first = info->channel * width;
1729                 info->step = runtime->channels * width;
1730                 break;
1731         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1732         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1733         {
1734                 size_t size = runtime->dma_bytes / runtime->channels;
1735                 info->first = info->channel * size * 8;
1736                 info->step = width;
1737                 break;
1738         }
1739         default:
1740                 snd_BUG();
1741                 break;
1742         }
1743         return 0;
1744 }
1745
1746 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1747                                        void *arg)
1748 {
1749         struct snd_pcm_hw_params *params = arg;
1750         snd_pcm_format_t format;
1751         int channels;
1752         ssize_t frame_size;
1753
1754         params->fifo_size = substream->runtime->hw.fifo_size;
1755         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1756                 format = params_format(params);
1757                 channels = params_channels(params);
1758                 frame_size = snd_pcm_format_size(format, channels);
1759                 if (frame_size > 0)
1760                         params->fifo_size /= frame_size;
1761         }
1762         return 0;
1763 }
1764
1765 /**
1766  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1767  * @substream: the pcm substream instance
1768  * @cmd: ioctl command
1769  * @arg: ioctl argument
1770  *
1771  * Processes the generic ioctl commands for PCM.
1772  * Can be passed as the ioctl callback for PCM ops.
1773  *
1774  * Return: Zero if successful, or a negative error code on failure.
1775  */
1776 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1777                       unsigned int cmd, void *arg)
1778 {
1779         switch (cmd) {
1780         case SNDRV_PCM_IOCTL1_RESET:
1781                 return snd_pcm_lib_ioctl_reset(substream, arg);
1782         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1783                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1784         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1785                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1786         }
1787         return -ENXIO;
1788 }
1789 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1790
1791 /**
1792  * snd_pcm_period_elapsed - update the pcm status for the next period
1793  * @substream: the pcm substream instance
1794  *
1795  * This function is called from the interrupt handler when the
1796  * PCM has processed the period size.  It will update the current
1797  * pointer, wake up sleepers, etc.
1798  *
1799  * Even if more than one periods have elapsed since the last call, you
1800  * have to call this only once.
1801  */
1802 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1803 {
1804         struct snd_pcm_runtime *runtime;
1805         unsigned long flags;
1806
1807         if (snd_BUG_ON(!substream))
1808                 return;
1809
1810         snd_pcm_stream_lock_irqsave(substream, flags);
1811         if (PCM_RUNTIME_CHECK(substream))
1812                 goto _unlock;
1813         runtime = substream->runtime;
1814
1815         if (!snd_pcm_running(substream) ||
1816             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1817                 goto _end;
1818
1819 #ifdef CONFIG_SND_PCM_TIMER
1820         if (substream->timer_running)
1821                 snd_timer_interrupt(substream->timer, 1);
1822 #endif
1823  _end:
1824         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1825  _unlock:
1826         snd_pcm_stream_unlock_irqrestore(substream, flags);
1827 }
1828 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1829
1830 /*
1831  * Wait until avail_min data becomes available
1832  * Returns a negative error code if any error occurs during operation.
1833  * The available space is stored on availp.  When err = 0 and avail = 0
1834  * on the capture stream, it indicates the stream is in DRAINING state.
1835  */
1836 static int wait_for_avail(struct snd_pcm_substream *substream,
1837                               snd_pcm_uframes_t *availp)
1838 {
1839         struct snd_pcm_runtime *runtime = substream->runtime;
1840         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1841         wait_queue_entry_t wait;
1842         int err = 0;
1843         snd_pcm_uframes_t avail = 0;
1844         long wait_time, tout;
1845
1846         init_waitqueue_entry(&wait, current);
1847         set_current_state(TASK_INTERRUPTIBLE);
1848         add_wait_queue(&runtime->tsleep, &wait);
1849
1850         if (runtime->no_period_wakeup)
1851                 wait_time = MAX_SCHEDULE_TIMEOUT;
1852         else {
1853                 wait_time = 10;
1854                 if (runtime->rate) {
1855                         long t = runtime->period_size * 2 / runtime->rate;
1856                         wait_time = max(t, wait_time);
1857                 }
1858                 wait_time = msecs_to_jiffies(wait_time * 1000);
1859         }
1860
1861         for (;;) {
1862                 if (signal_pending(current)) {
1863                         err = -ERESTARTSYS;
1864                         break;
1865                 }
1866
1867                 /*
1868                  * We need to check if space became available already
1869                  * (and thus the wakeup happened already) first to close
1870                  * the race of space already having become available.
1871                  * This check must happen after been added to the waitqueue
1872                  * and having current state be INTERRUPTIBLE.
1873                  */
1874                 if (is_playback)
1875                         avail = snd_pcm_playback_avail(runtime);
1876                 else
1877                         avail = snd_pcm_capture_avail(runtime);
1878                 if (avail >= runtime->twake)
1879                         break;
1880                 snd_pcm_stream_unlock_irq(substream);
1881
1882                 tout = schedule_timeout(wait_time);
1883
1884                 snd_pcm_stream_lock_irq(substream);
1885                 set_current_state(TASK_INTERRUPTIBLE);
1886                 switch (runtime->status->state) {
1887                 case SNDRV_PCM_STATE_SUSPENDED:
1888                         err = -ESTRPIPE;
1889                         goto _endloop;
1890                 case SNDRV_PCM_STATE_XRUN:
1891                         err = -EPIPE;
1892                         goto _endloop;
1893                 case SNDRV_PCM_STATE_DRAINING:
1894                         if (is_playback)
1895                                 err = -EPIPE;
1896                         else 
1897                                 avail = 0; /* indicate draining */
1898                         goto _endloop;
1899                 case SNDRV_PCM_STATE_OPEN:
1900                 case SNDRV_PCM_STATE_SETUP:
1901                 case SNDRV_PCM_STATE_DISCONNECTED:
1902                         err = -EBADFD;
1903                         goto _endloop;
1904                 case SNDRV_PCM_STATE_PAUSED:
1905                         continue;
1906                 }
1907                 if (!tout) {
1908                         pcm_dbg(substream->pcm,
1909                                 "%s write error (DMA or IRQ trouble?)\n",
1910                                 is_playback ? "playback" : "capture");
1911                         err = -EIO;
1912                         break;
1913                 }
1914         }
1915  _endloop:
1916         set_current_state(TASK_RUNNING);
1917         remove_wait_queue(&runtime->tsleep, &wait);
1918         *availp = avail;
1919         return err;
1920 }
1921         
1922 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1923                               int channel, unsigned long hwoff,
1924                               void *buf, unsigned long bytes);
1925
1926 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1927                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1928
1929 /* calculate the target DMA-buffer position to be written/read */
1930 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1931                            int channel, unsigned long hwoff)
1932 {
1933         return runtime->dma_area + hwoff +
1934                 channel * (runtime->dma_bytes / runtime->channels);
1935 }
1936
1937 /* default copy_user ops for write; used for both interleaved and non- modes */
1938 static int default_write_copy(struct snd_pcm_substream *substream,
1939                               int channel, unsigned long hwoff,
1940                               void *buf, unsigned long bytes)
1941 {
1942         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1943                            (void __user *)buf, bytes))
1944                 return -EFAULT;
1945         return 0;
1946 }
1947
1948 /* default copy_kernel ops for write */
1949 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1950                                      int channel, unsigned long hwoff,
1951                                      void *buf, unsigned long bytes)
1952 {
1953         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1954         return 0;
1955 }
1956
1957 /* fill silence instead of copy data; called as a transfer helper
1958  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1959  * a NULL buffer is passed
1960  */
1961 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1962                         unsigned long hwoff, void *buf, unsigned long bytes)
1963 {
1964         struct snd_pcm_runtime *runtime = substream->runtime;
1965
1966         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1967                 return 0;
1968         if (substream->ops->fill_silence)
1969                 return substream->ops->fill_silence(substream, channel,
1970                                                     hwoff, bytes);
1971
1972         snd_pcm_format_set_silence(runtime->format,
1973                                    get_dma_ptr(runtime, channel, hwoff),
1974                                    bytes_to_samples(runtime, bytes));
1975         return 0;
1976 }
1977
1978 /* default copy_user ops for read; used for both interleaved and non- modes */
1979 static int default_read_copy(struct snd_pcm_substream *substream,
1980                              int channel, unsigned long hwoff,
1981                              void *buf, unsigned long bytes)
1982 {
1983         if (copy_to_user((void __user *)buf,
1984                          get_dma_ptr(substream->runtime, channel, hwoff),
1985                          bytes))
1986                 return -EFAULT;
1987         return 0;
1988 }
1989
1990 /* default copy_kernel ops for read */
1991 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1992                                     int channel, unsigned long hwoff,
1993                                     void *buf, unsigned long bytes)
1994 {
1995         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1996         return 0;
1997 }
1998
1999 /* call transfer function with the converted pointers and sizes;
2000  * for interleaved mode, it's one shot for all samples
2001  */
2002 static int interleaved_copy(struct snd_pcm_substream *substream,
2003                             snd_pcm_uframes_t hwoff, void *data,
2004                             snd_pcm_uframes_t off,
2005                             snd_pcm_uframes_t frames,
2006                             pcm_transfer_f transfer)
2007 {
2008         struct snd_pcm_runtime *runtime = substream->runtime;
2009
2010         /* convert to bytes */
2011         hwoff = frames_to_bytes(runtime, hwoff);
2012         off = frames_to_bytes(runtime, off);
2013         frames = frames_to_bytes(runtime, frames);
2014         return transfer(substream, 0, hwoff, data + off, frames);
2015 }
2016
2017 /* call transfer function with the converted pointers and sizes for each
2018  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2019  */
2020 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2021                                snd_pcm_uframes_t hwoff, void *data,
2022                                snd_pcm_uframes_t off,
2023                                snd_pcm_uframes_t frames,
2024                                pcm_transfer_f transfer)
2025 {
2026         struct snd_pcm_runtime *runtime = substream->runtime;
2027         int channels = runtime->channels;
2028         void **bufs = data;
2029         int c, err;
2030
2031         /* convert to bytes; note that it's not frames_to_bytes() here.
2032          * in non-interleaved mode, we copy for each channel, thus
2033          * each copy is n_samples bytes x channels = whole frames.
2034          */
2035         off = samples_to_bytes(runtime, off);
2036         frames = samples_to_bytes(runtime, frames);
2037         hwoff = samples_to_bytes(runtime, hwoff);
2038         for (c = 0; c < channels; ++c, ++bufs) {
2039                 if (!data || !*bufs)
2040                         err = fill_silence(substream, c, hwoff, NULL, frames);
2041                 else
2042                         err = transfer(substream, c, hwoff, *bufs + off,
2043                                        frames);
2044                 if (err < 0)
2045                         return err;
2046         }
2047         return 0;
2048 }
2049
2050 /* fill silence on the given buffer position;
2051  * called from snd_pcm_playback_silence()
2052  */
2053 static int fill_silence_frames(struct snd_pcm_substream *substream,
2054                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2055 {
2056         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2057             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2058                 return interleaved_copy(substream, off, NULL, 0, frames,
2059                                         fill_silence);
2060         else
2061                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2062                                            fill_silence);
2063 }
2064
2065 /* sanity-check for read/write methods */
2066 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2067 {
2068         struct snd_pcm_runtime *runtime;
2069         if (PCM_RUNTIME_CHECK(substream))
2070                 return -ENXIO;
2071         runtime = substream->runtime;
2072         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2073                 return -EINVAL;
2074         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2075                 return -EBADFD;
2076         return 0;
2077 }
2078
2079 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2080 {
2081         switch (runtime->status->state) {
2082         case SNDRV_PCM_STATE_PREPARED:
2083         case SNDRV_PCM_STATE_RUNNING:
2084         case SNDRV_PCM_STATE_PAUSED:
2085                 return 0;
2086         case SNDRV_PCM_STATE_XRUN:
2087                 return -EPIPE;
2088         case SNDRV_PCM_STATE_SUSPENDED:
2089                 return -ESTRPIPE;
2090         default:
2091                 return -EBADFD;
2092         }
2093 }
2094
2095 /* update to the given appl_ptr and call ack callback if needed;
2096  * when an error is returned, take back to the original value
2097  */
2098 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2099                            snd_pcm_uframes_t appl_ptr)
2100 {
2101         struct snd_pcm_runtime *runtime = substream->runtime;
2102         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2103         int ret;
2104
2105         if (old_appl_ptr == appl_ptr)
2106                 return 0;
2107
2108         runtime->control->appl_ptr = appl_ptr;
2109         if (substream->ops->ack) {
2110                 ret = substream->ops->ack(substream);
2111                 if (ret < 0) {
2112                         runtime->control->appl_ptr = old_appl_ptr;
2113                         return ret;
2114                 }
2115         }
2116
2117         trace_applptr(substream, old_appl_ptr, appl_ptr);
2118
2119         return 0;
2120 }
2121
2122 /* the common loop for read/write data */
2123 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2124                                      void *data, bool interleaved,
2125                                      snd_pcm_uframes_t size, bool in_kernel)
2126 {
2127         struct snd_pcm_runtime *runtime = substream->runtime;
2128         snd_pcm_uframes_t xfer = 0;
2129         snd_pcm_uframes_t offset = 0;
2130         snd_pcm_uframes_t avail;
2131         pcm_copy_f writer;
2132         pcm_transfer_f transfer;
2133         bool nonblock;
2134         bool is_playback;
2135         int err;
2136
2137         err = pcm_sanity_check(substream);
2138         if (err < 0)
2139                 return err;
2140
2141         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2142         if (interleaved) {
2143                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2144                     runtime->channels > 1)
2145                         return -EINVAL;
2146                 writer = interleaved_copy;
2147         } else {
2148                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2149                         return -EINVAL;
2150                 writer = noninterleaved_copy;
2151         }
2152
2153         if (!data) {
2154                 if (is_playback)
2155                         transfer = fill_silence;
2156                 else
2157                         return -EINVAL;
2158         } else if (in_kernel) {
2159                 if (substream->ops->copy_kernel)
2160                         transfer = substream->ops->copy_kernel;
2161                 else
2162                         transfer = is_playback ?
2163                                 default_write_copy_kernel : default_read_copy_kernel;
2164         } else {
2165                 if (substream->ops->copy_user)
2166                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2167                 else
2168                         transfer = is_playback ?
2169                                 default_write_copy : default_read_copy;
2170         }
2171
2172         if (size == 0)
2173                 return 0;
2174
2175         nonblock = !!(substream->f_flags & O_NONBLOCK);
2176
2177         snd_pcm_stream_lock_irq(substream);
2178         err = pcm_accessible_state(runtime);
2179         if (err < 0)
2180                 goto _end_unlock;
2181
2182         if (!is_playback &&
2183             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2184             size >= runtime->start_threshold) {
2185                 err = snd_pcm_start(substream);
2186                 if (err < 0)
2187                         goto _end_unlock;
2188         }
2189
2190         runtime->twake = runtime->control->avail_min ? : 1;
2191         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2192                 snd_pcm_update_hw_ptr(substream);
2193         if (is_playback)
2194                 avail = snd_pcm_playback_avail(runtime);
2195         else
2196                 avail = snd_pcm_capture_avail(runtime);
2197         while (size > 0) {
2198                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2199                 snd_pcm_uframes_t cont;
2200                 if (!avail) {
2201                         if (!is_playback &&
2202                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2203                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2204                                 goto _end_unlock;
2205                         }
2206                         if (nonblock) {
2207                                 err = -EAGAIN;
2208                                 goto _end_unlock;
2209                         }
2210                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2211                                         runtime->control->avail_min ? : 1);
2212                         err = wait_for_avail(substream, &avail);
2213                         if (err < 0)
2214                                 goto _end_unlock;
2215                         if (!avail)
2216                                 continue; /* draining */
2217                 }
2218                 frames = size > avail ? avail : size;
2219                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2220                 appl_ofs = appl_ptr % runtime->buffer_size;
2221                 cont = runtime->buffer_size - appl_ofs;
2222                 if (frames > cont)
2223                         frames = cont;
2224                 if (snd_BUG_ON(!frames)) {
2225                         runtime->twake = 0;
2226                         snd_pcm_stream_unlock_irq(substream);
2227                         return -EINVAL;
2228                 }
2229                 snd_pcm_stream_unlock_irq(substream);
2230                 err = writer(substream, appl_ofs, data, offset, frames,
2231                              transfer);
2232                 snd_pcm_stream_lock_irq(substream);
2233                 if (err < 0)
2234                         goto _end_unlock;
2235                 err = pcm_accessible_state(runtime);
2236                 if (err < 0)
2237                         goto _end_unlock;
2238                 appl_ptr += frames;
2239                 if (appl_ptr >= runtime->boundary)
2240                         appl_ptr -= runtime->boundary;
2241                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2242                 if (err < 0)
2243                         goto _end_unlock;
2244
2245                 offset += frames;
2246                 size -= frames;
2247                 xfer += frames;
2248                 avail -= frames;
2249                 if (is_playback &&
2250                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2251                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2252                         err = snd_pcm_start(substream);
2253                         if (err < 0)
2254                                 goto _end_unlock;
2255                 }
2256         }
2257  _end_unlock:
2258         runtime->twake = 0;
2259         if (xfer > 0 && err >= 0)
2260                 snd_pcm_update_state(substream, runtime);
2261         snd_pcm_stream_unlock_irq(substream);
2262         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2263 }
2264 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2265
2266 /*
2267  * standard channel mapping helpers
2268  */
2269
2270 /* default channel maps for multi-channel playbacks, up to 8 channels */
2271 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2272         { .channels = 1,
2273           .map = { SNDRV_CHMAP_MONO } },
2274         { .channels = 2,
2275           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2276         { .channels = 4,
2277           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2278                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2279         { .channels = 6,
2280           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2281                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2282                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2283         { .channels = 8,
2284           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2285                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2286                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2287                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2288         { }
2289 };
2290 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2291
2292 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2293 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2294         { .channels = 1,
2295           .map = { SNDRV_CHMAP_MONO } },
2296         { .channels = 2,
2297           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2298         { .channels = 4,
2299           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2300                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2301         { .channels = 6,
2302           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2304                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2305         { .channels = 8,
2306           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2307                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2308                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2309                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2310         { }
2311 };
2312 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2313
2314 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2315 {
2316         if (ch > info->max_channels)
2317                 return false;
2318         return !info->channel_mask || (info->channel_mask & (1U << ch));
2319 }
2320
2321 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2322                               struct snd_ctl_elem_info *uinfo)
2323 {
2324         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325
2326         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2327         uinfo->count = 0;
2328         uinfo->count = info->max_channels;
2329         uinfo->value.integer.min = 0;
2330         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2331         return 0;
2332 }
2333
2334 /* get callback for channel map ctl element
2335  * stores the channel position firstly matching with the current channels
2336  */
2337 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2338                              struct snd_ctl_elem_value *ucontrol)
2339 {
2340         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2341         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2342         struct snd_pcm_substream *substream;
2343         const struct snd_pcm_chmap_elem *map;
2344
2345         if (!info->chmap)
2346                 return -EINVAL;
2347         substream = snd_pcm_chmap_substream(info, idx);
2348         if (!substream)
2349                 return -ENODEV;
2350         memset(ucontrol->value.integer.value, 0,
2351                sizeof(ucontrol->value.integer.value));
2352         if (!substream->runtime)
2353                 return 0; /* no channels set */
2354         for (map = info->chmap; map->channels; map++) {
2355                 int i;
2356                 if (map->channels == substream->runtime->channels &&
2357                     valid_chmap_channels(info, map->channels)) {
2358                         for (i = 0; i < map->channels; i++)
2359                                 ucontrol->value.integer.value[i] = map->map[i];
2360                         return 0;
2361                 }
2362         }
2363         return -EINVAL;
2364 }
2365
2366 /* tlv callback for channel map ctl element
2367  * expands the pre-defined channel maps in a form of TLV
2368  */
2369 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2370                              unsigned int size, unsigned int __user *tlv)
2371 {
2372         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2373         const struct snd_pcm_chmap_elem *map;
2374         unsigned int __user *dst;
2375         int c, count = 0;
2376
2377         if (!info->chmap)
2378                 return -EINVAL;
2379         if (size < 8)
2380                 return -ENOMEM;
2381         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2382                 return -EFAULT;
2383         size -= 8;
2384         dst = tlv + 2;
2385         for (map = info->chmap; map->channels; map++) {
2386                 int chs_bytes = map->channels * 4;
2387                 if (!valid_chmap_channels(info, map->channels))
2388                         continue;
2389                 if (size < 8)
2390                         return -ENOMEM;
2391                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2392                     put_user(chs_bytes, dst + 1))
2393                         return -EFAULT;
2394                 dst += 2;
2395                 size -= 8;
2396                 count += 8;
2397                 if (size < chs_bytes)
2398                         return -ENOMEM;
2399                 size -= chs_bytes;
2400                 count += chs_bytes;
2401                 for (c = 0; c < map->channels; c++) {
2402                         if (put_user(map->map[c], dst))
2403                                 return -EFAULT;
2404                         dst++;
2405                 }
2406         }
2407         if (put_user(count, tlv + 1))
2408                 return -EFAULT;
2409         return 0;
2410 }
2411
2412 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2413 {
2414         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2415         info->pcm->streams[info->stream].chmap_kctl = NULL;
2416         kfree(info);
2417 }
2418
2419 /**
2420  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2421  * @pcm: the assigned PCM instance
2422  * @stream: stream direction
2423  * @chmap: channel map elements (for query)
2424  * @max_channels: the max number of channels for the stream
2425  * @private_value: the value passed to each kcontrol's private_value field
2426  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2427  *
2428  * Create channel-mapping control elements assigned to the given PCM stream(s).
2429  * Return: Zero if successful, or a negative error value.
2430  */
2431 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2432                            const struct snd_pcm_chmap_elem *chmap,
2433                            int max_channels,
2434                            unsigned long private_value,
2435                            struct snd_pcm_chmap **info_ret)
2436 {
2437         struct snd_pcm_chmap *info;
2438         struct snd_kcontrol_new knew = {
2439                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2440                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2441                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2442                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2443                 .info = pcm_chmap_ctl_info,
2444                 .get = pcm_chmap_ctl_get,
2445                 .tlv.c = pcm_chmap_ctl_tlv,
2446         };
2447         int err;
2448
2449         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2450                 return -EBUSY;
2451         info = kzalloc(sizeof(*info), GFP_KERNEL);
2452         if (!info)
2453                 return -ENOMEM;
2454         info->pcm = pcm;
2455         info->stream = stream;
2456         info->chmap = chmap;
2457         info->max_channels = max_channels;
2458         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2459                 knew.name = "Playback Channel Map";
2460         else
2461                 knew.name = "Capture Channel Map";
2462         knew.device = pcm->device;
2463         knew.count = pcm->streams[stream].substream_count;
2464         knew.private_value = private_value;
2465         info->kctl = snd_ctl_new1(&knew, info);
2466         if (!info->kctl) {
2467                 kfree(info);
2468                 return -ENOMEM;
2469         }
2470         info->kctl->private_free = pcm_chmap_ctl_private_free;
2471         err = snd_ctl_add(pcm->card, info->kctl);
2472         if (err < 0)
2473                 return err;
2474         pcm->streams[stream].chmap_kctl = info->kctl;
2475         if (info_ret)
2476                 *info_ret = info;
2477         return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);