GNU Linux-libre 5.4.241-gnu1
[releases.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5  *                   Abramo Bagnara <abramo@alsa-project.org>
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36 /*
37  * fill ring buffer with silence
38  * runtime->silence_start: starting pointer to silence area
39  * runtime->silence_filled: size filled with silence
40  * runtime->silence_threshold: threshold from application
41  * runtime->silence_size: maximal size from application
42  *
43  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44  */
45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46 {
47         struct snd_pcm_runtime *runtime = substream->runtime;
48         snd_pcm_uframes_t frames, ofs, transfer;
49         int err;
50
51         if (runtime->silence_size < runtime->boundary) {
52                 snd_pcm_sframes_t noise_dist, n;
53                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54                 if (runtime->silence_start != appl_ptr) {
55                         n = appl_ptr - runtime->silence_start;
56                         if (n < 0)
57                                 n += runtime->boundary;
58                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59                                 runtime->silence_filled -= n;
60                         else
61                                 runtime->silence_filled = 0;
62                         runtime->silence_start = appl_ptr;
63                 }
64                 if (runtime->silence_filled >= runtime->buffer_size)
65                         return;
66                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68                         return;
69                 frames = runtime->silence_threshold - noise_dist;
70                 if (frames > runtime->silence_size)
71                         frames = runtime->silence_size;
72         } else {
73                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
74                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75                         if (avail > runtime->buffer_size)
76                                 avail = runtime->buffer_size;
77                         runtime->silence_filled = avail > 0 ? avail : 0;
78                         runtime->silence_start = (runtime->status->hw_ptr +
79                                                   runtime->silence_filled) %
80                                                  runtime->boundary;
81                 } else {
82                         ofs = runtime->status->hw_ptr;
83                         frames = new_hw_ptr - ofs;
84                         if ((snd_pcm_sframes_t)frames < 0)
85                                 frames += runtime->boundary;
86                         runtime->silence_filled -= frames;
87                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88                                 runtime->silence_filled = 0;
89                                 runtime->silence_start = new_hw_ptr;
90                         } else {
91                                 runtime->silence_start = ofs;
92                         }
93                 }
94                 frames = runtime->buffer_size - runtime->silence_filled;
95         }
96         if (snd_BUG_ON(frames > runtime->buffer_size))
97                 return;
98         if (frames == 0)
99                 return;
100         ofs = runtime->silence_start % runtime->buffer_size;
101         while (frames > 0) {
102                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103                 err = fill_silence_frames(substream, ofs, transfer);
104                 snd_BUG_ON(err < 0);
105                 runtime->silence_filled += transfer;
106                 frames -= transfer;
107                 ofs = 0;
108         }
109 }
110
111 #ifdef CONFIG_SND_DEBUG
112 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113                            char *name, size_t len)
114 {
115         snprintf(name, len, "pcmC%dD%d%c:%d",
116                  substream->pcm->card->number,
117                  substream->pcm->device,
118                  substream->stream ? 'c' : 'p',
119                  substream->number);
120 }
121 EXPORT_SYMBOL(snd_pcm_debug_name);
122 #endif
123
124 #define XRUN_DEBUG_BASIC        (1<<0)
125 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
126 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130 #define xrun_debug(substream, mask) \
131                         ((substream)->pstr->xrun_debug & (mask))
132 #else
133 #define xrun_debug(substream, mask)     0
134 #endif
135
136 #define dump_stack_on_xrun(substream) do {                      \
137                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
138                         dump_stack();                           \
139         } while (0)
140
141 /* call with stream lock held */
142 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143 {
144         struct snd_pcm_runtime *runtime = substream->runtime;
145
146         trace_xrun(substream);
147         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
148                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
149         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
150         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
151                 char name[16];
152                 snd_pcm_debug_name(substream, name, sizeof(name));
153                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
154                 dump_stack_on_xrun(substream);
155         }
156 }
157
158 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
159 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
160         do {                                                            \
161                 trace_hw_ptr_error(substream, reason);  \
162                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
163                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
164                                            (in_interrupt) ? 'Q' : 'P', ##args); \
165                         dump_stack_on_xrun(substream);                  \
166                 }                                                       \
167         } while (0)
168
169 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
170
171 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
172
173 #endif
174
175 int snd_pcm_update_state(struct snd_pcm_substream *substream,
176                          struct snd_pcm_runtime *runtime)
177 {
178         snd_pcm_uframes_t avail;
179
180         avail = snd_pcm_avail(substream);
181         if (avail > runtime->avail_max)
182                 runtime->avail_max = avail;
183         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
184                 if (avail >= runtime->buffer_size) {
185                         snd_pcm_drain_done(substream);
186                         return -EPIPE;
187                 }
188         } else {
189                 if (avail >= runtime->stop_threshold) {
190                         __snd_pcm_xrun(substream);
191                         return -EPIPE;
192                 }
193         }
194         if (runtime->twake) {
195                 if (avail >= runtime->twake)
196                         wake_up(&runtime->tsleep);
197         } else if (avail >= runtime->control->avail_min)
198                 wake_up(&runtime->sleep);
199         return 0;
200 }
201
202 static void update_audio_tstamp(struct snd_pcm_substream *substream,
203                                 struct timespec *curr_tstamp,
204                                 struct timespec *audio_tstamp)
205 {
206         struct snd_pcm_runtime *runtime = substream->runtime;
207         u64 audio_frames, audio_nsecs;
208         struct timespec driver_tstamp;
209
210         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
211                 return;
212
213         if (!(substream->ops->get_time_info) ||
214                 (runtime->audio_tstamp_report.actual_type ==
215                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
216
217                 /*
218                  * provide audio timestamp derived from pointer position
219                  * add delay only if requested
220                  */
221
222                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
223
224                 if (runtime->audio_tstamp_config.report_delay) {
225                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
226                                 audio_frames -=  runtime->delay;
227                         else
228                                 audio_frames +=  runtime->delay;
229                 }
230                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
231                                 runtime->rate);
232                 *audio_tstamp = ns_to_timespec(audio_nsecs);
233         }
234         if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
235                 runtime->status->audio_tstamp = *audio_tstamp;
236                 runtime->status->tstamp = *curr_tstamp;
237         }
238
239         /*
240          * re-take a driver timestamp to let apps detect if the reference tstamp
241          * read by low-level hardware was provided with a delay
242          */
243         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
244         runtime->driver_tstamp = driver_tstamp;
245 }
246
247 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
248                                   unsigned int in_interrupt)
249 {
250         struct snd_pcm_runtime *runtime = substream->runtime;
251         snd_pcm_uframes_t pos;
252         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
253         snd_pcm_sframes_t hdelta, delta;
254         unsigned long jdelta;
255         unsigned long curr_jiffies;
256         struct timespec curr_tstamp;
257         struct timespec audio_tstamp;
258         int crossed_boundary = 0;
259
260         old_hw_ptr = runtime->status->hw_ptr;
261
262         /*
263          * group pointer, time and jiffies reads to allow for more
264          * accurate correlations/corrections.
265          * The values are stored at the end of this routine after
266          * corrections for hw_ptr position
267          */
268         pos = substream->ops->pointer(substream);
269         curr_jiffies = jiffies;
270         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
271                 if ((substream->ops->get_time_info) &&
272                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
273                         substream->ops->get_time_info(substream, &curr_tstamp,
274                                                 &audio_tstamp,
275                                                 &runtime->audio_tstamp_config,
276                                                 &runtime->audio_tstamp_report);
277
278                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
279                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
280                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
281                 } else
282                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
283         }
284
285         if (pos == SNDRV_PCM_POS_XRUN) {
286                 __snd_pcm_xrun(substream);
287                 return -EPIPE;
288         }
289         if (pos >= runtime->buffer_size) {
290                 if (printk_ratelimit()) {
291                         char name[16];
292                         snd_pcm_debug_name(substream, name, sizeof(name));
293                         pcm_err(substream->pcm,
294                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
295                                 name, pos, runtime->buffer_size,
296                                 runtime->period_size);
297                 }
298                 pos = 0;
299         }
300         pos -= pos % runtime->min_align;
301         trace_hwptr(substream, pos, in_interrupt);
302         hw_base = runtime->hw_ptr_base;
303         new_hw_ptr = hw_base + pos;
304         if (in_interrupt) {
305                 /* we know that one period was processed */
306                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
307                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
308                 if (delta > new_hw_ptr) {
309                         /* check for double acknowledged interrupts */
310                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
311                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
312                                 hw_base += runtime->buffer_size;
313                                 if (hw_base >= runtime->boundary) {
314                                         hw_base = 0;
315                                         crossed_boundary++;
316                                 }
317                                 new_hw_ptr = hw_base + pos;
318                                 goto __delta;
319                         }
320                 }
321         }
322         /* new_hw_ptr might be lower than old_hw_ptr in case when */
323         /* pointer crosses the end of the ring buffer */
324         if (new_hw_ptr < old_hw_ptr) {
325                 hw_base += runtime->buffer_size;
326                 if (hw_base >= runtime->boundary) {
327                         hw_base = 0;
328                         crossed_boundary++;
329                 }
330                 new_hw_ptr = hw_base + pos;
331         }
332       __delta:
333         delta = new_hw_ptr - old_hw_ptr;
334         if (delta < 0)
335                 delta += runtime->boundary;
336
337         if (runtime->no_period_wakeup) {
338                 snd_pcm_sframes_t xrun_threshold;
339                 /*
340                  * Without regular period interrupts, we have to check
341                  * the elapsed time to detect xruns.
342                  */
343                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
345                         goto no_delta_check;
346                 hdelta = jdelta - delta * HZ / runtime->rate;
347                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
348                 while (hdelta > xrun_threshold) {
349                         delta += runtime->buffer_size;
350                         hw_base += runtime->buffer_size;
351                         if (hw_base >= runtime->boundary) {
352                                 hw_base = 0;
353                                 crossed_boundary++;
354                         }
355                         new_hw_ptr = hw_base + pos;
356                         hdelta -= runtime->hw_ptr_buffer_jiffies;
357                 }
358                 goto no_delta_check;
359         }
360
361         /* something must be really wrong */
362         if (delta >= runtime->buffer_size + runtime->period_size) {
363                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
364                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
365                              substream->stream, (long)pos,
366                              (long)new_hw_ptr, (long)old_hw_ptr);
367                 return 0;
368         }
369
370         /* Do jiffies check only in xrun_debug mode */
371         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
372                 goto no_jiffies_check;
373
374         /* Skip the jiffies check for hardwares with BATCH flag.
375          * Such hardware usually just increases the position at each IRQ,
376          * thus it can't give any strange position.
377          */
378         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
379                 goto no_jiffies_check;
380         hdelta = delta;
381         if (hdelta < runtime->delay)
382                 goto no_jiffies_check;
383         hdelta -= runtime->delay;
384         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
385         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
386                 delta = jdelta /
387                         (((runtime->period_size * HZ) / runtime->rate)
388                                                                 + HZ/100);
389                 /* move new_hw_ptr according jiffies not pos variable */
390                 new_hw_ptr = old_hw_ptr;
391                 hw_base = delta;
392                 /* use loop to avoid checks for delta overflows */
393                 /* the delta value is small or zero in most cases */
394                 while (delta > 0) {
395                         new_hw_ptr += runtime->period_size;
396                         if (new_hw_ptr >= runtime->boundary) {
397                                 new_hw_ptr -= runtime->boundary;
398                                 crossed_boundary--;
399                         }
400                         delta--;
401                 }
402                 /* align hw_base to buffer_size */
403                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
404                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
405                              (long)pos, (long)hdelta,
406                              (long)runtime->period_size, jdelta,
407                              ((hdelta * HZ) / runtime->rate), hw_base,
408                              (unsigned long)old_hw_ptr,
409                              (unsigned long)new_hw_ptr);
410                 /* reset values to proper state */
411                 delta = 0;
412                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
413         }
414  no_jiffies_check:
415         if (delta > runtime->period_size + runtime->period_size / 2) {
416                 hw_ptr_error(substream, in_interrupt,
417                              "Lost interrupts?",
418                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
419                              substream->stream, (long)delta,
420                              (long)new_hw_ptr,
421                              (long)old_hw_ptr);
422         }
423
424  no_delta_check:
425         if (runtime->status->hw_ptr == new_hw_ptr) {
426                 runtime->hw_ptr_jiffies = curr_jiffies;
427                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
428                 return 0;
429         }
430
431         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
432             runtime->silence_size > 0)
433                 snd_pcm_playback_silence(substream, new_hw_ptr);
434
435         if (in_interrupt) {
436                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
437                 if (delta < 0)
438                         delta += runtime->boundary;
439                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
440                 runtime->hw_ptr_interrupt += delta;
441                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
442                         runtime->hw_ptr_interrupt -= runtime->boundary;
443         }
444         runtime->hw_ptr_base = hw_base;
445         runtime->status->hw_ptr = new_hw_ptr;
446         runtime->hw_ptr_jiffies = curr_jiffies;
447         if (crossed_boundary) {
448                 snd_BUG_ON(crossed_boundary != 1);
449                 runtime->hw_ptr_wrap += runtime->boundary;
450         }
451
452         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
453
454         return snd_pcm_update_state(substream, runtime);
455 }
456
457 /* CAUTION: call it with irq disabled */
458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
459 {
460         return snd_pcm_update_hw_ptr0(substream, 0);
461 }
462
463 /**
464  * snd_pcm_set_ops - set the PCM operators
465  * @pcm: the pcm instance
466  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
467  * @ops: the operator table
468  *
469  * Sets the given PCM operators to the pcm instance.
470  */
471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
472                      const struct snd_pcm_ops *ops)
473 {
474         struct snd_pcm_str *stream = &pcm->streams[direction];
475         struct snd_pcm_substream *substream;
476         
477         for (substream = stream->substream; substream != NULL; substream = substream->next)
478                 substream->ops = ops;
479 }
480 EXPORT_SYMBOL(snd_pcm_set_ops);
481
482 /**
483  * snd_pcm_sync - set the PCM sync id
484  * @substream: the pcm substream
485  *
486  * Sets the PCM sync identifier for the card.
487  */
488 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
489 {
490         struct snd_pcm_runtime *runtime = substream->runtime;
491         
492         runtime->sync.id32[0] = substream->pcm->card->number;
493         runtime->sync.id32[1] = -1;
494         runtime->sync.id32[2] = -1;
495         runtime->sync.id32[3] = -1;
496 }
497 EXPORT_SYMBOL(snd_pcm_set_sync);
498
499 /*
500  *  Standard ioctl routine
501  */
502
503 static inline unsigned int div32(unsigned int a, unsigned int b, 
504                                  unsigned int *r)
505 {
506         if (b == 0) {
507                 *r = 0;
508                 return UINT_MAX;
509         }
510         *r = a % b;
511         return a / b;
512 }
513
514 static inline unsigned int div_down(unsigned int a, unsigned int b)
515 {
516         if (b == 0)
517                 return UINT_MAX;
518         return a / b;
519 }
520
521 static inline unsigned int div_up(unsigned int a, unsigned int b)
522 {
523         unsigned int r;
524         unsigned int q;
525         if (b == 0)
526                 return UINT_MAX;
527         q = div32(a, b, &r);
528         if (r)
529                 ++q;
530         return q;
531 }
532
533 static inline unsigned int mul(unsigned int a, unsigned int b)
534 {
535         if (a == 0)
536                 return 0;
537         if (div_down(UINT_MAX, a) < b)
538                 return UINT_MAX;
539         return a * b;
540 }
541
542 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
543                                     unsigned int c, unsigned int *r)
544 {
545         u_int64_t n = (u_int64_t) a * b;
546         if (c == 0) {
547                 *r = 0;
548                 return UINT_MAX;
549         }
550         n = div_u64_rem(n, c, r);
551         if (n >= UINT_MAX) {
552                 *r = 0;
553                 return UINT_MAX;
554         }
555         return n;
556 }
557
558 /**
559  * snd_interval_refine - refine the interval value of configurator
560  * @i: the interval value to refine
561  * @v: the interval value to refer to
562  *
563  * Refines the interval value with the reference value.
564  * The interval is changed to the range satisfying both intervals.
565  * The interval status (min, max, integer, etc.) are evaluated.
566  *
567  * Return: Positive if the value is changed, zero if it's not changed, or a
568  * negative error code.
569  */
570 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
571 {
572         int changed = 0;
573         if (snd_BUG_ON(snd_interval_empty(i)))
574                 return -EINVAL;
575         if (i->min < v->min) {
576                 i->min = v->min;
577                 i->openmin = v->openmin;
578                 changed = 1;
579         } else if (i->min == v->min && !i->openmin && v->openmin) {
580                 i->openmin = 1;
581                 changed = 1;
582         }
583         if (i->max > v->max) {
584                 i->max = v->max;
585                 i->openmax = v->openmax;
586                 changed = 1;
587         } else if (i->max == v->max && !i->openmax && v->openmax) {
588                 i->openmax = 1;
589                 changed = 1;
590         }
591         if (!i->integer && v->integer) {
592                 i->integer = 1;
593                 changed = 1;
594         }
595         if (i->integer) {
596                 if (i->openmin) {
597                         i->min++;
598                         i->openmin = 0;
599                 }
600                 if (i->openmax) {
601                         i->max--;
602                         i->openmax = 0;
603                 }
604         } else if (!i->openmin && !i->openmax && i->min == i->max)
605                 i->integer = 1;
606         if (snd_interval_checkempty(i)) {
607                 snd_interval_none(i);
608                 return -EINVAL;
609         }
610         return changed;
611 }
612 EXPORT_SYMBOL(snd_interval_refine);
613
614 static int snd_interval_refine_first(struct snd_interval *i)
615 {
616         const unsigned int last_max = i->max;
617
618         if (snd_BUG_ON(snd_interval_empty(i)))
619                 return -EINVAL;
620         if (snd_interval_single(i))
621                 return 0;
622         i->max = i->min;
623         if (i->openmin)
624                 i->max++;
625         /* only exclude max value if also excluded before refine */
626         i->openmax = (i->openmax && i->max >= last_max);
627         return 1;
628 }
629
630 static int snd_interval_refine_last(struct snd_interval *i)
631 {
632         const unsigned int last_min = i->min;
633
634         if (snd_BUG_ON(snd_interval_empty(i)))
635                 return -EINVAL;
636         if (snd_interval_single(i))
637                 return 0;
638         i->min = i->max;
639         if (i->openmax)
640                 i->min--;
641         /* only exclude min value if also excluded before refine */
642         i->openmin = (i->openmin && i->min <= last_min);
643         return 1;
644 }
645
646 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
647 {
648         if (a->empty || b->empty) {
649                 snd_interval_none(c);
650                 return;
651         }
652         c->empty = 0;
653         c->min = mul(a->min, b->min);
654         c->openmin = (a->openmin || b->openmin);
655         c->max = mul(a->max,  b->max);
656         c->openmax = (a->openmax || b->openmax);
657         c->integer = (a->integer && b->integer);
658 }
659
660 /**
661  * snd_interval_div - refine the interval value with division
662  * @a: dividend
663  * @b: divisor
664  * @c: quotient
665  *
666  * c = a / b
667  *
668  * Returns non-zero if the value is changed, zero if not changed.
669  */
670 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
671 {
672         unsigned int r;
673         if (a->empty || b->empty) {
674                 snd_interval_none(c);
675                 return;
676         }
677         c->empty = 0;
678         c->min = div32(a->min, b->max, &r);
679         c->openmin = (r || a->openmin || b->openmax);
680         if (b->min > 0) {
681                 c->max = div32(a->max, b->min, &r);
682                 if (r) {
683                         c->max++;
684                         c->openmax = 1;
685                 } else
686                         c->openmax = (a->openmax || b->openmin);
687         } else {
688                 c->max = UINT_MAX;
689                 c->openmax = 0;
690         }
691         c->integer = 0;
692 }
693
694 /**
695  * snd_interval_muldivk - refine the interval value
696  * @a: dividend 1
697  * @b: dividend 2
698  * @k: divisor (as integer)
699  * @c: result
700   *
701  * c = a * b / k
702  *
703  * Returns non-zero if the value is changed, zero if not changed.
704  */
705 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
706                       unsigned int k, struct snd_interval *c)
707 {
708         unsigned int r;
709         if (a->empty || b->empty) {
710                 snd_interval_none(c);
711                 return;
712         }
713         c->empty = 0;
714         c->min = muldiv32(a->min, b->min, k, &r);
715         c->openmin = (r || a->openmin || b->openmin);
716         c->max = muldiv32(a->max, b->max, k, &r);
717         if (r) {
718                 c->max++;
719                 c->openmax = 1;
720         } else
721                 c->openmax = (a->openmax || b->openmax);
722         c->integer = 0;
723 }
724
725 /**
726  * snd_interval_mulkdiv - refine the interval value
727  * @a: dividend 1
728  * @k: dividend 2 (as integer)
729  * @b: divisor
730  * @c: result
731  *
732  * c = a * k / b
733  *
734  * Returns non-zero if the value is changed, zero if not changed.
735  */
736 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
737                       const struct snd_interval *b, struct snd_interval *c)
738 {
739         unsigned int r;
740         if (a->empty || b->empty) {
741                 snd_interval_none(c);
742                 return;
743         }
744         c->empty = 0;
745         c->min = muldiv32(a->min, k, b->max, &r);
746         c->openmin = (r || a->openmin || b->openmax);
747         if (b->min > 0) {
748                 c->max = muldiv32(a->max, k, b->min, &r);
749                 if (r) {
750                         c->max++;
751                         c->openmax = 1;
752                 } else
753                         c->openmax = (a->openmax || b->openmin);
754         } else {
755                 c->max = UINT_MAX;
756                 c->openmax = 0;
757         }
758         c->integer = 0;
759 }
760
761 /* ---- */
762
763
764 /**
765  * snd_interval_ratnum - refine the interval value
766  * @i: interval to refine
767  * @rats_count: number of ratnum_t 
768  * @rats: ratnum_t array
769  * @nump: pointer to store the resultant numerator
770  * @denp: pointer to store the resultant denominator
771  *
772  * Return: Positive if the value is changed, zero if it's not changed, or a
773  * negative error code.
774  */
775 int snd_interval_ratnum(struct snd_interval *i,
776                         unsigned int rats_count, const struct snd_ratnum *rats,
777                         unsigned int *nump, unsigned int *denp)
778 {
779         unsigned int best_num, best_den;
780         int best_diff;
781         unsigned int k;
782         struct snd_interval t;
783         int err;
784         unsigned int result_num, result_den;
785         int result_diff;
786
787         best_num = best_den = best_diff = 0;
788         for (k = 0; k < rats_count; ++k) {
789                 unsigned int num = rats[k].num;
790                 unsigned int den;
791                 unsigned int q = i->min;
792                 int diff;
793                 if (q == 0)
794                         q = 1;
795                 den = div_up(num, q);
796                 if (den < rats[k].den_min)
797                         continue;
798                 if (den > rats[k].den_max)
799                         den = rats[k].den_max;
800                 else {
801                         unsigned int r;
802                         r = (den - rats[k].den_min) % rats[k].den_step;
803                         if (r != 0)
804                                 den -= r;
805                 }
806                 diff = num - q * den;
807                 if (diff < 0)
808                         diff = -diff;
809                 if (best_num == 0 ||
810                     diff * best_den < best_diff * den) {
811                         best_diff = diff;
812                         best_den = den;
813                         best_num = num;
814                 }
815         }
816         if (best_den == 0) {
817                 i->empty = 1;
818                 return -EINVAL;
819         }
820         t.min = div_down(best_num, best_den);
821         t.openmin = !!(best_num % best_den);
822         
823         result_num = best_num;
824         result_diff = best_diff;
825         result_den = best_den;
826         best_num = best_den = best_diff = 0;
827         for (k = 0; k < rats_count; ++k) {
828                 unsigned int num = rats[k].num;
829                 unsigned int den;
830                 unsigned int q = i->max;
831                 int diff;
832                 if (q == 0) {
833                         i->empty = 1;
834                         return -EINVAL;
835                 }
836                 den = div_down(num, q);
837                 if (den > rats[k].den_max)
838                         continue;
839                 if (den < rats[k].den_min)
840                         den = rats[k].den_min;
841                 else {
842                         unsigned int r;
843                         r = (den - rats[k].den_min) % rats[k].den_step;
844                         if (r != 0)
845                                 den += rats[k].den_step - r;
846                 }
847                 diff = q * den - num;
848                 if (diff < 0)
849                         diff = -diff;
850                 if (best_num == 0 ||
851                     diff * best_den < best_diff * den) {
852                         best_diff = diff;
853                         best_den = den;
854                         best_num = num;
855                 }
856         }
857         if (best_den == 0) {
858                 i->empty = 1;
859                 return -EINVAL;
860         }
861         t.max = div_up(best_num, best_den);
862         t.openmax = !!(best_num % best_den);
863         t.integer = 0;
864         err = snd_interval_refine(i, &t);
865         if (err < 0)
866                 return err;
867
868         if (snd_interval_single(i)) {
869                 if (best_diff * result_den < result_diff * best_den) {
870                         result_num = best_num;
871                         result_den = best_den;
872                 }
873                 if (nump)
874                         *nump = result_num;
875                 if (denp)
876                         *denp = result_den;
877         }
878         return err;
879 }
880 EXPORT_SYMBOL(snd_interval_ratnum);
881
882 /**
883  * snd_interval_ratden - refine the interval value
884  * @i: interval to refine
885  * @rats_count: number of struct ratden
886  * @rats: struct ratden array
887  * @nump: pointer to store the resultant numerator
888  * @denp: pointer to store the resultant denominator
889  *
890  * Return: Positive if the value is changed, zero if it's not changed, or a
891  * negative error code.
892  */
893 static int snd_interval_ratden(struct snd_interval *i,
894                                unsigned int rats_count,
895                                const struct snd_ratden *rats,
896                                unsigned int *nump, unsigned int *denp)
897 {
898         unsigned int best_num, best_diff, best_den;
899         unsigned int k;
900         struct snd_interval t;
901         int err;
902
903         best_num = best_den = best_diff = 0;
904         for (k = 0; k < rats_count; ++k) {
905                 unsigned int num;
906                 unsigned int den = rats[k].den;
907                 unsigned int q = i->min;
908                 int diff;
909                 num = mul(q, den);
910                 if (num > rats[k].num_max)
911                         continue;
912                 if (num < rats[k].num_min)
913                         num = rats[k].num_max;
914                 else {
915                         unsigned int r;
916                         r = (num - rats[k].num_min) % rats[k].num_step;
917                         if (r != 0)
918                                 num += rats[k].num_step - r;
919                 }
920                 diff = num - q * den;
921                 if (best_num == 0 ||
922                     diff * best_den < best_diff * den) {
923                         best_diff = diff;
924                         best_den = den;
925                         best_num = num;
926                 }
927         }
928         if (best_den == 0) {
929                 i->empty = 1;
930                 return -EINVAL;
931         }
932         t.min = div_down(best_num, best_den);
933         t.openmin = !!(best_num % best_den);
934         
935         best_num = best_den = best_diff = 0;
936         for (k = 0; k < rats_count; ++k) {
937                 unsigned int num;
938                 unsigned int den = rats[k].den;
939                 unsigned int q = i->max;
940                 int diff;
941                 num = mul(q, den);
942                 if (num < rats[k].num_min)
943                         continue;
944                 if (num > rats[k].num_max)
945                         num = rats[k].num_max;
946                 else {
947                         unsigned int r;
948                         r = (num - rats[k].num_min) % rats[k].num_step;
949                         if (r != 0)
950                                 num -= r;
951                 }
952                 diff = q * den - num;
953                 if (best_num == 0 ||
954                     diff * best_den < best_diff * den) {
955                         best_diff = diff;
956                         best_den = den;
957                         best_num = num;
958                 }
959         }
960         if (best_den == 0) {
961                 i->empty = 1;
962                 return -EINVAL;
963         }
964         t.max = div_up(best_num, best_den);
965         t.openmax = !!(best_num % best_den);
966         t.integer = 0;
967         err = snd_interval_refine(i, &t);
968         if (err < 0)
969                 return err;
970
971         if (snd_interval_single(i)) {
972                 if (nump)
973                         *nump = best_num;
974                 if (denp)
975                         *denp = best_den;
976         }
977         return err;
978 }
979
980 /**
981  * snd_interval_list - refine the interval value from the list
982  * @i: the interval value to refine
983  * @count: the number of elements in the list
984  * @list: the value list
985  * @mask: the bit-mask to evaluate
986  *
987  * Refines the interval value from the list.
988  * When mask is non-zero, only the elements corresponding to bit 1 are
989  * evaluated.
990  *
991  * Return: Positive if the value is changed, zero if it's not changed, or a
992  * negative error code.
993  */
994 int snd_interval_list(struct snd_interval *i, unsigned int count,
995                       const unsigned int *list, unsigned int mask)
996 {
997         unsigned int k;
998         struct snd_interval list_range;
999
1000         if (!count) {
1001                 i->empty = 1;
1002                 return -EINVAL;
1003         }
1004         snd_interval_any(&list_range);
1005         list_range.min = UINT_MAX;
1006         list_range.max = 0;
1007         for (k = 0; k < count; k++) {
1008                 if (mask && !(mask & (1 << k)))
1009                         continue;
1010                 if (!snd_interval_test(i, list[k]))
1011                         continue;
1012                 list_range.min = min(list_range.min, list[k]);
1013                 list_range.max = max(list_range.max, list[k]);
1014         }
1015         return snd_interval_refine(i, &list_range);
1016 }
1017 EXPORT_SYMBOL(snd_interval_list);
1018
1019 /**
1020  * snd_interval_ranges - refine the interval value from the list of ranges
1021  * @i: the interval value to refine
1022  * @count: the number of elements in the list of ranges
1023  * @ranges: the ranges list
1024  * @mask: the bit-mask to evaluate
1025  *
1026  * Refines the interval value from the list of ranges.
1027  * When mask is non-zero, only the elements corresponding to bit 1 are
1028  * evaluated.
1029  *
1030  * Return: Positive if the value is changed, zero if it's not changed, or a
1031  * negative error code.
1032  */
1033 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1034                         const struct snd_interval *ranges, unsigned int mask)
1035 {
1036         unsigned int k;
1037         struct snd_interval range_union;
1038         struct snd_interval range;
1039
1040         if (!count) {
1041                 snd_interval_none(i);
1042                 return -EINVAL;
1043         }
1044         snd_interval_any(&range_union);
1045         range_union.min = UINT_MAX;
1046         range_union.max = 0;
1047         for (k = 0; k < count; k++) {
1048                 if (mask && !(mask & (1 << k)))
1049                         continue;
1050                 snd_interval_copy(&range, &ranges[k]);
1051                 if (snd_interval_refine(&range, i) < 0)
1052                         continue;
1053                 if (snd_interval_empty(&range))
1054                         continue;
1055
1056                 if (range.min < range_union.min) {
1057                         range_union.min = range.min;
1058                         range_union.openmin = 1;
1059                 }
1060                 if (range.min == range_union.min && !range.openmin)
1061                         range_union.openmin = 0;
1062                 if (range.max > range_union.max) {
1063                         range_union.max = range.max;
1064                         range_union.openmax = 1;
1065                 }
1066                 if (range.max == range_union.max && !range.openmax)
1067                         range_union.openmax = 0;
1068         }
1069         return snd_interval_refine(i, &range_union);
1070 }
1071 EXPORT_SYMBOL(snd_interval_ranges);
1072
1073 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1074 {
1075         unsigned int n;
1076         int changed = 0;
1077         n = i->min % step;
1078         if (n != 0 || i->openmin) {
1079                 i->min += step - n;
1080                 i->openmin = 0;
1081                 changed = 1;
1082         }
1083         n = i->max % step;
1084         if (n != 0 || i->openmax) {
1085                 i->max -= n;
1086                 i->openmax = 0;
1087                 changed = 1;
1088         }
1089         if (snd_interval_checkempty(i)) {
1090                 i->empty = 1;
1091                 return -EINVAL;
1092         }
1093         return changed;
1094 }
1095
1096 /* Info constraints helpers */
1097
1098 /**
1099  * snd_pcm_hw_rule_add - add the hw-constraint rule
1100  * @runtime: the pcm runtime instance
1101  * @cond: condition bits
1102  * @var: the variable to evaluate
1103  * @func: the evaluation function
1104  * @private: the private data pointer passed to function
1105  * @dep: the dependent variables
1106  *
1107  * Return: Zero if successful, or a negative error code on failure.
1108  */
1109 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1110                         int var,
1111                         snd_pcm_hw_rule_func_t func, void *private,
1112                         int dep, ...)
1113 {
1114         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1115         struct snd_pcm_hw_rule *c;
1116         unsigned int k;
1117         va_list args;
1118         va_start(args, dep);
1119         if (constrs->rules_num >= constrs->rules_all) {
1120                 struct snd_pcm_hw_rule *new;
1121                 unsigned int new_rules = constrs->rules_all + 16;
1122                 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1123                                GFP_KERNEL);
1124                 if (!new) {
1125                         va_end(args);
1126                         return -ENOMEM;
1127                 }
1128                 constrs->rules = new;
1129                 constrs->rules_all = new_rules;
1130         }
1131         c = &constrs->rules[constrs->rules_num];
1132         c->cond = cond;
1133         c->func = func;
1134         c->var = var;
1135         c->private = private;
1136         k = 0;
1137         while (1) {
1138                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139                         va_end(args);
1140                         return -EINVAL;
1141                 }
1142                 c->deps[k++] = dep;
1143                 if (dep < 0)
1144                         break;
1145                 dep = va_arg(args, int);
1146         }
1147         constrs->rules_num++;
1148         va_end(args);
1149         return 0;
1150 }
1151 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1152
1153 /**
1154  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1155  * @runtime: PCM runtime instance
1156  * @var: hw_params variable to apply the mask
1157  * @mask: the bitmap mask
1158  *
1159  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1160  *
1161  * Return: Zero if successful, or a negative error code on failure.
1162  */
1163 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1164                                u_int32_t mask)
1165 {
1166         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1167         struct snd_mask *maskp = constrs_mask(constrs, var);
1168         *maskp->bits &= mask;
1169         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1170         if (*maskp->bits == 0)
1171                 return -EINVAL;
1172         return 0;
1173 }
1174
1175 /**
1176  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1177  * @runtime: PCM runtime instance
1178  * @var: hw_params variable to apply the mask
1179  * @mask: the 64bit bitmap mask
1180  *
1181  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1182  *
1183  * Return: Zero if successful, or a negative error code on failure.
1184  */
1185 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1186                                  u_int64_t mask)
1187 {
1188         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1189         struct snd_mask *maskp = constrs_mask(constrs, var);
1190         maskp->bits[0] &= (u_int32_t)mask;
1191         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1192         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1193         if (! maskp->bits[0] && ! maskp->bits[1])
1194                 return -EINVAL;
1195         return 0;
1196 }
1197 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1198
1199 /**
1200  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1201  * @runtime: PCM runtime instance
1202  * @var: hw_params variable to apply the integer constraint
1203  *
1204  * Apply the constraint of integer to an interval parameter.
1205  *
1206  * Return: Positive if the value is changed, zero if it's not changed, or a
1207  * negative error code.
1208  */
1209 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1210 {
1211         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1212         return snd_interval_setinteger(constrs_interval(constrs, var));
1213 }
1214 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1215
1216 /**
1217  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1218  * @runtime: PCM runtime instance
1219  * @var: hw_params variable to apply the range
1220  * @min: the minimal value
1221  * @max: the maximal value
1222  * 
1223  * Apply the min/max range constraint to an interval parameter.
1224  *
1225  * Return: Positive if the value is changed, zero if it's not changed, or a
1226  * negative error code.
1227  */
1228 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1229                                  unsigned int min, unsigned int max)
1230 {
1231         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1232         struct snd_interval t;
1233         t.min = min;
1234         t.max = max;
1235         t.openmin = t.openmax = 0;
1236         t.integer = 0;
1237         return snd_interval_refine(constrs_interval(constrs, var), &t);
1238 }
1239 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1240
1241 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1242                                 struct snd_pcm_hw_rule *rule)
1243 {
1244         struct snd_pcm_hw_constraint_list *list = rule->private;
1245         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1246 }               
1247
1248
1249 /**
1250  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1251  * @runtime: PCM runtime instance
1252  * @cond: condition bits
1253  * @var: hw_params variable to apply the list constraint
1254  * @l: list
1255  * 
1256  * Apply the list of constraints to an interval parameter.
1257  *
1258  * Return: Zero if successful, or a negative error code on failure.
1259  */
1260 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1261                                unsigned int cond,
1262                                snd_pcm_hw_param_t var,
1263                                const struct snd_pcm_hw_constraint_list *l)
1264 {
1265         return snd_pcm_hw_rule_add(runtime, cond, var,
1266                                    snd_pcm_hw_rule_list, (void *)l,
1267                                    var, -1);
1268 }
1269 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1270
1271 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1272                                   struct snd_pcm_hw_rule *rule)
1273 {
1274         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1275         return snd_interval_ranges(hw_param_interval(params, rule->var),
1276                                    r->count, r->ranges, r->mask);
1277 }
1278
1279
1280 /**
1281  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1282  * @runtime: PCM runtime instance
1283  * @cond: condition bits
1284  * @var: hw_params variable to apply the list of range constraints
1285  * @r: ranges
1286  *
1287  * Apply the list of range constraints to an interval parameter.
1288  *
1289  * Return: Zero if successful, or a negative error code on failure.
1290  */
1291 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1292                                  unsigned int cond,
1293                                  snd_pcm_hw_param_t var,
1294                                  const struct snd_pcm_hw_constraint_ranges *r)
1295 {
1296         return snd_pcm_hw_rule_add(runtime, cond, var,
1297                                    snd_pcm_hw_rule_ranges, (void *)r,
1298                                    var, -1);
1299 }
1300 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1301
1302 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1303                                    struct snd_pcm_hw_rule *rule)
1304 {
1305         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1306         unsigned int num = 0, den = 0;
1307         int err;
1308         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1309                                   r->nrats, r->rats, &num, &den);
1310         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1311                 params->rate_num = num;
1312                 params->rate_den = den;
1313         }
1314         return err;
1315 }
1316
1317 /**
1318  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1319  * @runtime: PCM runtime instance
1320  * @cond: condition bits
1321  * @var: hw_params variable to apply the ratnums constraint
1322  * @r: struct snd_ratnums constriants
1323  *
1324  * Return: Zero if successful, or a negative error code on failure.
1325  */
1326 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1327                                   unsigned int cond,
1328                                   snd_pcm_hw_param_t var,
1329                                   const struct snd_pcm_hw_constraint_ratnums *r)
1330 {
1331         return snd_pcm_hw_rule_add(runtime, cond, var,
1332                                    snd_pcm_hw_rule_ratnums, (void *)r,
1333                                    var, -1);
1334 }
1335 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1336
1337 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1338                                    struct snd_pcm_hw_rule *rule)
1339 {
1340         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1341         unsigned int num = 0, den = 0;
1342         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1343                                   r->nrats, r->rats, &num, &den);
1344         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1345                 params->rate_num = num;
1346                 params->rate_den = den;
1347         }
1348         return err;
1349 }
1350
1351 /**
1352  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1353  * @runtime: PCM runtime instance
1354  * @cond: condition bits
1355  * @var: hw_params variable to apply the ratdens constraint
1356  * @r: struct snd_ratdens constriants
1357  *
1358  * Return: Zero if successful, or a negative error code on failure.
1359  */
1360 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1361                                   unsigned int cond,
1362                                   snd_pcm_hw_param_t var,
1363                                   const struct snd_pcm_hw_constraint_ratdens *r)
1364 {
1365         return snd_pcm_hw_rule_add(runtime, cond, var,
1366                                    snd_pcm_hw_rule_ratdens, (void *)r,
1367                                    var, -1);
1368 }
1369 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1370
1371 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1372                                   struct snd_pcm_hw_rule *rule)
1373 {
1374         unsigned int l = (unsigned long) rule->private;
1375         int width = l & 0xffff;
1376         unsigned int msbits = l >> 16;
1377         const struct snd_interval *i =
1378                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1379
1380         if (!snd_interval_single(i))
1381                 return 0;
1382
1383         if ((snd_interval_value(i) == width) ||
1384             (width == 0 && snd_interval_value(i) > msbits))
1385                 params->msbits = min_not_zero(params->msbits, msbits);
1386
1387         return 0;
1388 }
1389
1390 /**
1391  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1392  * @runtime: PCM runtime instance
1393  * @cond: condition bits
1394  * @width: sample bits width
1395  * @msbits: msbits width
1396  *
1397  * This constraint will set the number of most significant bits (msbits) if a
1398  * sample format with the specified width has been select. If width is set to 0
1399  * the msbits will be set for any sample format with a width larger than the
1400  * specified msbits.
1401  *
1402  * Return: Zero if successful, or a negative error code on failure.
1403  */
1404 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1405                                  unsigned int cond,
1406                                  unsigned int width,
1407                                  unsigned int msbits)
1408 {
1409         unsigned long l = (msbits << 16) | width;
1410         return snd_pcm_hw_rule_add(runtime, cond, -1,
1411                                     snd_pcm_hw_rule_msbits,
1412                                     (void*) l,
1413                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1414 }
1415 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1416
1417 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1418                                 struct snd_pcm_hw_rule *rule)
1419 {
1420         unsigned long step = (unsigned long) rule->private;
1421         return snd_interval_step(hw_param_interval(params, rule->var), step);
1422 }
1423
1424 /**
1425  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1426  * @runtime: PCM runtime instance
1427  * @cond: condition bits
1428  * @var: hw_params variable to apply the step constraint
1429  * @step: step size
1430  *
1431  * Return: Zero if successful, or a negative error code on failure.
1432  */
1433 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1434                                unsigned int cond,
1435                                snd_pcm_hw_param_t var,
1436                                unsigned long step)
1437 {
1438         return snd_pcm_hw_rule_add(runtime, cond, var, 
1439                                    snd_pcm_hw_rule_step, (void *) step,
1440                                    var, -1);
1441 }
1442 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1443
1444 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1445 {
1446         static unsigned int pow2_sizes[] = {
1447                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1448                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1449                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1450                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1451         };
1452         return snd_interval_list(hw_param_interval(params, rule->var),
1453                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1454 }               
1455
1456 /**
1457  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1458  * @runtime: PCM runtime instance
1459  * @cond: condition bits
1460  * @var: hw_params variable to apply the power-of-2 constraint
1461  *
1462  * Return: Zero if successful, or a negative error code on failure.
1463  */
1464 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1465                                unsigned int cond,
1466                                snd_pcm_hw_param_t var)
1467 {
1468         return snd_pcm_hw_rule_add(runtime, cond, var, 
1469                                    snd_pcm_hw_rule_pow2, NULL,
1470                                    var, -1);
1471 }
1472 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1473
1474 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1475                                            struct snd_pcm_hw_rule *rule)
1476 {
1477         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1478         struct snd_interval *rate;
1479
1480         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1481         return snd_interval_list(rate, 1, &base_rate, 0);
1482 }
1483
1484 /**
1485  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1486  * @runtime: PCM runtime instance
1487  * @base_rate: the rate at which the hardware does not resample
1488  *
1489  * Return: Zero if successful, or a negative error code on failure.
1490  */
1491 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1492                                unsigned int base_rate)
1493 {
1494         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1495                                    SNDRV_PCM_HW_PARAM_RATE,
1496                                    snd_pcm_hw_rule_noresample_func,
1497                                    (void *)(uintptr_t)base_rate,
1498                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1499 }
1500 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1501
1502 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1503                                   snd_pcm_hw_param_t var)
1504 {
1505         if (hw_is_mask(var)) {
1506                 snd_mask_any(hw_param_mask(params, var));
1507                 params->cmask |= 1 << var;
1508                 params->rmask |= 1 << var;
1509                 return;
1510         }
1511         if (hw_is_interval(var)) {
1512                 snd_interval_any(hw_param_interval(params, var));
1513                 params->cmask |= 1 << var;
1514                 params->rmask |= 1 << var;
1515                 return;
1516         }
1517         snd_BUG();
1518 }
1519
1520 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1521 {
1522         unsigned int k;
1523         memset(params, 0, sizeof(*params));
1524         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1525                 _snd_pcm_hw_param_any(params, k);
1526         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1527                 _snd_pcm_hw_param_any(params, k);
1528         params->info = ~0U;
1529 }
1530 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1531
1532 /**
1533  * snd_pcm_hw_param_value - return @params field @var value
1534  * @params: the hw_params instance
1535  * @var: parameter to retrieve
1536  * @dir: pointer to the direction (-1,0,1) or %NULL
1537  *
1538  * Return: The value for field @var if it's fixed in configuration space
1539  * defined by @params. -%EINVAL otherwise.
1540  */
1541 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1542                            snd_pcm_hw_param_t var, int *dir)
1543 {
1544         if (hw_is_mask(var)) {
1545                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1546                 if (!snd_mask_single(mask))
1547                         return -EINVAL;
1548                 if (dir)
1549                         *dir = 0;
1550                 return snd_mask_value(mask);
1551         }
1552         if (hw_is_interval(var)) {
1553                 const struct snd_interval *i = hw_param_interval_c(params, var);
1554                 if (!snd_interval_single(i))
1555                         return -EINVAL;
1556                 if (dir)
1557                         *dir = i->openmin;
1558                 return snd_interval_value(i);
1559         }
1560         return -EINVAL;
1561 }
1562 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1563
1564 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1565                                 snd_pcm_hw_param_t var)
1566 {
1567         if (hw_is_mask(var)) {
1568                 snd_mask_none(hw_param_mask(params, var));
1569                 params->cmask |= 1 << var;
1570                 params->rmask |= 1 << var;
1571         } else if (hw_is_interval(var)) {
1572                 snd_interval_none(hw_param_interval(params, var));
1573                 params->cmask |= 1 << var;
1574                 params->rmask |= 1 << var;
1575         } else {
1576                 snd_BUG();
1577         }
1578 }
1579 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1580
1581 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1582                                    snd_pcm_hw_param_t var)
1583 {
1584         int changed;
1585         if (hw_is_mask(var))
1586                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1587         else if (hw_is_interval(var))
1588                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1589         else
1590                 return -EINVAL;
1591         if (changed > 0) {
1592                 params->cmask |= 1 << var;
1593                 params->rmask |= 1 << var;
1594         }
1595         return changed;
1596 }
1597
1598
1599 /**
1600  * snd_pcm_hw_param_first - refine config space and return minimum value
1601  * @pcm: PCM instance
1602  * @params: the hw_params instance
1603  * @var: parameter to retrieve
1604  * @dir: pointer to the direction (-1,0,1) or %NULL
1605  *
1606  * Inside configuration space defined by @params remove from @var all
1607  * values > minimum. Reduce configuration space accordingly.
1608  *
1609  * Return: The minimum, or a negative error code on failure.
1610  */
1611 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1612                            struct snd_pcm_hw_params *params, 
1613                            snd_pcm_hw_param_t var, int *dir)
1614 {
1615         int changed = _snd_pcm_hw_param_first(params, var);
1616         if (changed < 0)
1617                 return changed;
1618         if (params->rmask) {
1619                 int err = snd_pcm_hw_refine(pcm, params);
1620                 if (err < 0)
1621                         return err;
1622         }
1623         return snd_pcm_hw_param_value(params, var, dir);
1624 }
1625 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1626
1627 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1628                                   snd_pcm_hw_param_t var)
1629 {
1630         int changed;
1631         if (hw_is_mask(var))
1632                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1633         else if (hw_is_interval(var))
1634                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1635         else
1636                 return -EINVAL;
1637         if (changed > 0) {
1638                 params->cmask |= 1 << var;
1639                 params->rmask |= 1 << var;
1640         }
1641         return changed;
1642 }
1643
1644
1645 /**
1646  * snd_pcm_hw_param_last - refine config space and return maximum value
1647  * @pcm: PCM instance
1648  * @params: the hw_params instance
1649  * @var: parameter to retrieve
1650  * @dir: pointer to the direction (-1,0,1) or %NULL
1651  *
1652  * Inside configuration space defined by @params remove from @var all
1653  * values < maximum. Reduce configuration space accordingly.
1654  *
1655  * Return: The maximum, or a negative error code on failure.
1656  */
1657 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1658                           struct snd_pcm_hw_params *params,
1659                           snd_pcm_hw_param_t var, int *dir)
1660 {
1661         int changed = _snd_pcm_hw_param_last(params, var);
1662         if (changed < 0)
1663                 return changed;
1664         if (params->rmask) {
1665                 int err = snd_pcm_hw_refine(pcm, params);
1666                 if (err < 0)
1667                         return err;
1668         }
1669         return snd_pcm_hw_param_value(params, var, dir);
1670 }
1671 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1672
1673 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1674                                    void *arg)
1675 {
1676         struct snd_pcm_runtime *runtime = substream->runtime;
1677         unsigned long flags;
1678         snd_pcm_stream_lock_irqsave(substream, flags);
1679         if (snd_pcm_running(substream) &&
1680             snd_pcm_update_hw_ptr(substream) >= 0)
1681                 runtime->status->hw_ptr %= runtime->buffer_size;
1682         else {
1683                 runtime->status->hw_ptr = 0;
1684                 runtime->hw_ptr_wrap = 0;
1685         }
1686         snd_pcm_stream_unlock_irqrestore(substream, flags);
1687         return 0;
1688 }
1689
1690 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1691                                           void *arg)
1692 {
1693         struct snd_pcm_channel_info *info = arg;
1694         struct snd_pcm_runtime *runtime = substream->runtime;
1695         int width;
1696         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1697                 info->offset = -1;
1698                 return 0;
1699         }
1700         width = snd_pcm_format_physical_width(runtime->format);
1701         if (width < 0)
1702                 return width;
1703         info->offset = 0;
1704         switch (runtime->access) {
1705         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1706         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1707                 info->first = info->channel * width;
1708                 info->step = runtime->channels * width;
1709                 break;
1710         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1711         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1712         {
1713                 size_t size = runtime->dma_bytes / runtime->channels;
1714                 info->first = info->channel * size * 8;
1715                 info->step = width;
1716                 break;
1717         }
1718         default:
1719                 snd_BUG();
1720                 break;
1721         }
1722         return 0;
1723 }
1724
1725 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1726                                        void *arg)
1727 {
1728         struct snd_pcm_hw_params *params = arg;
1729         snd_pcm_format_t format;
1730         int channels;
1731         ssize_t frame_size;
1732
1733         params->fifo_size = substream->runtime->hw.fifo_size;
1734         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1735                 format = params_format(params);
1736                 channels = params_channels(params);
1737                 frame_size = snd_pcm_format_size(format, channels);
1738                 if (frame_size > 0)
1739                         params->fifo_size /= frame_size;
1740         }
1741         return 0;
1742 }
1743
1744 /**
1745  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1746  * @substream: the pcm substream instance
1747  * @cmd: ioctl command
1748  * @arg: ioctl argument
1749  *
1750  * Processes the generic ioctl commands for PCM.
1751  * Can be passed as the ioctl callback for PCM ops.
1752  *
1753  * Return: Zero if successful, or a negative error code on failure.
1754  */
1755 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1756                       unsigned int cmd, void *arg)
1757 {
1758         switch (cmd) {
1759         case SNDRV_PCM_IOCTL1_RESET:
1760                 return snd_pcm_lib_ioctl_reset(substream, arg);
1761         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1762                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1763         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1764                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1765         }
1766         return -ENXIO;
1767 }
1768 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1769
1770 /**
1771  * snd_pcm_period_elapsed - update the pcm status for the next period
1772  * @substream: the pcm substream instance
1773  *
1774  * This function is called from the interrupt handler when the
1775  * PCM has processed the period size.  It will update the current
1776  * pointer, wake up sleepers, etc.
1777  *
1778  * Even if more than one periods have elapsed since the last call, you
1779  * have to call this only once.
1780  */
1781 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1782 {
1783         struct snd_pcm_runtime *runtime;
1784         unsigned long flags;
1785
1786         if (snd_BUG_ON(!substream))
1787                 return;
1788
1789         snd_pcm_stream_lock_irqsave(substream, flags);
1790         if (PCM_RUNTIME_CHECK(substream))
1791                 goto _unlock;
1792         runtime = substream->runtime;
1793
1794         if (!snd_pcm_running(substream) ||
1795             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1796                 goto _end;
1797
1798 #ifdef CONFIG_SND_PCM_TIMER
1799         if (substream->timer_running)
1800                 snd_timer_interrupt(substream->timer, 1);
1801 #endif
1802  _end:
1803         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1804  _unlock:
1805         snd_pcm_stream_unlock_irqrestore(substream, flags);
1806 }
1807 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1808
1809 /*
1810  * Wait until avail_min data becomes available
1811  * Returns a negative error code if any error occurs during operation.
1812  * The available space is stored on availp.  When err = 0 and avail = 0
1813  * on the capture stream, it indicates the stream is in DRAINING state.
1814  */
1815 static int wait_for_avail(struct snd_pcm_substream *substream,
1816                               snd_pcm_uframes_t *availp)
1817 {
1818         struct snd_pcm_runtime *runtime = substream->runtime;
1819         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1820         wait_queue_entry_t wait;
1821         int err = 0;
1822         snd_pcm_uframes_t avail = 0;
1823         long wait_time, tout;
1824
1825         init_waitqueue_entry(&wait, current);
1826         set_current_state(TASK_INTERRUPTIBLE);
1827         add_wait_queue(&runtime->tsleep, &wait);
1828
1829         if (runtime->no_period_wakeup)
1830                 wait_time = MAX_SCHEDULE_TIMEOUT;
1831         else {
1832                 /* use wait time from substream if available */
1833                 if (substream->wait_time) {
1834                         wait_time = substream->wait_time;
1835                 } else {
1836                         wait_time = 10;
1837
1838                         if (runtime->rate) {
1839                                 long t = runtime->period_size * 2 /
1840                                          runtime->rate;
1841                                 wait_time = max(t, wait_time);
1842                         }
1843                         wait_time = msecs_to_jiffies(wait_time * 1000);
1844                 }
1845         }
1846
1847         for (;;) {
1848                 if (signal_pending(current)) {
1849                         err = -ERESTARTSYS;
1850                         break;
1851                 }
1852
1853                 /*
1854                  * We need to check if space became available already
1855                  * (and thus the wakeup happened already) first to close
1856                  * the race of space already having become available.
1857                  * This check must happen after been added to the waitqueue
1858                  * and having current state be INTERRUPTIBLE.
1859                  */
1860                 avail = snd_pcm_avail(substream);
1861                 if (avail >= runtime->twake)
1862                         break;
1863                 snd_pcm_stream_unlock_irq(substream);
1864
1865                 tout = schedule_timeout(wait_time);
1866
1867                 snd_pcm_stream_lock_irq(substream);
1868                 set_current_state(TASK_INTERRUPTIBLE);
1869                 switch (runtime->status->state) {
1870                 case SNDRV_PCM_STATE_SUSPENDED:
1871                         err = -ESTRPIPE;
1872                         goto _endloop;
1873                 case SNDRV_PCM_STATE_XRUN:
1874                         err = -EPIPE;
1875                         goto _endloop;
1876                 case SNDRV_PCM_STATE_DRAINING:
1877                         if (is_playback)
1878                                 err = -EPIPE;
1879                         else 
1880                                 avail = 0; /* indicate draining */
1881                         goto _endloop;
1882                 case SNDRV_PCM_STATE_OPEN:
1883                 case SNDRV_PCM_STATE_SETUP:
1884                 case SNDRV_PCM_STATE_DISCONNECTED:
1885                         err = -EBADFD;
1886                         goto _endloop;
1887                 case SNDRV_PCM_STATE_PAUSED:
1888                         continue;
1889                 }
1890                 if (!tout) {
1891                         pcm_dbg(substream->pcm,
1892                                 "%s write error (DMA or IRQ trouble?)\n",
1893                                 is_playback ? "playback" : "capture");
1894                         err = -EIO;
1895                         break;
1896                 }
1897         }
1898  _endloop:
1899         set_current_state(TASK_RUNNING);
1900         remove_wait_queue(&runtime->tsleep, &wait);
1901         *availp = avail;
1902         return err;
1903 }
1904         
1905 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1906                               int channel, unsigned long hwoff,
1907                               void *buf, unsigned long bytes);
1908
1909 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1910                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1911
1912 /* calculate the target DMA-buffer position to be written/read */
1913 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1914                            int channel, unsigned long hwoff)
1915 {
1916         return runtime->dma_area + hwoff +
1917                 channel * (runtime->dma_bytes / runtime->channels);
1918 }
1919
1920 /* default copy_user ops for write; used for both interleaved and non- modes */
1921 static int default_write_copy(struct snd_pcm_substream *substream,
1922                               int channel, unsigned long hwoff,
1923                               void *buf, unsigned long bytes)
1924 {
1925         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1926                            (void __user *)buf, bytes))
1927                 return -EFAULT;
1928         return 0;
1929 }
1930
1931 /* default copy_kernel ops for write */
1932 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1933                                      int channel, unsigned long hwoff,
1934                                      void *buf, unsigned long bytes)
1935 {
1936         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1937         return 0;
1938 }
1939
1940 /* fill silence instead of copy data; called as a transfer helper
1941  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1942  * a NULL buffer is passed
1943  */
1944 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1945                         unsigned long hwoff, void *buf, unsigned long bytes)
1946 {
1947         struct snd_pcm_runtime *runtime = substream->runtime;
1948
1949         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1950                 return 0;
1951         if (substream->ops->fill_silence)
1952                 return substream->ops->fill_silence(substream, channel,
1953                                                     hwoff, bytes);
1954
1955         snd_pcm_format_set_silence(runtime->format,
1956                                    get_dma_ptr(runtime, channel, hwoff),
1957                                    bytes_to_samples(runtime, bytes));
1958         return 0;
1959 }
1960
1961 /* default copy_user ops for read; used for both interleaved and non- modes */
1962 static int default_read_copy(struct snd_pcm_substream *substream,
1963                              int channel, unsigned long hwoff,
1964                              void *buf, unsigned long bytes)
1965 {
1966         if (copy_to_user((void __user *)buf,
1967                          get_dma_ptr(substream->runtime, channel, hwoff),
1968                          bytes))
1969                 return -EFAULT;
1970         return 0;
1971 }
1972
1973 /* default copy_kernel ops for read */
1974 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1975                                     int channel, unsigned long hwoff,
1976                                     void *buf, unsigned long bytes)
1977 {
1978         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1979         return 0;
1980 }
1981
1982 /* call transfer function with the converted pointers and sizes;
1983  * for interleaved mode, it's one shot for all samples
1984  */
1985 static int interleaved_copy(struct snd_pcm_substream *substream,
1986                             snd_pcm_uframes_t hwoff, void *data,
1987                             snd_pcm_uframes_t off,
1988                             snd_pcm_uframes_t frames,
1989                             pcm_transfer_f transfer)
1990 {
1991         struct snd_pcm_runtime *runtime = substream->runtime;
1992
1993         /* convert to bytes */
1994         hwoff = frames_to_bytes(runtime, hwoff);
1995         off = frames_to_bytes(runtime, off);
1996         frames = frames_to_bytes(runtime, frames);
1997         return transfer(substream, 0, hwoff, data + off, frames);
1998 }
1999
2000 /* call transfer function with the converted pointers and sizes for each
2001  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2002  */
2003 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2004                                snd_pcm_uframes_t hwoff, void *data,
2005                                snd_pcm_uframes_t off,
2006                                snd_pcm_uframes_t frames,
2007                                pcm_transfer_f transfer)
2008 {
2009         struct snd_pcm_runtime *runtime = substream->runtime;
2010         int channels = runtime->channels;
2011         void **bufs = data;
2012         int c, err;
2013
2014         /* convert to bytes; note that it's not frames_to_bytes() here.
2015          * in non-interleaved mode, we copy for each channel, thus
2016          * each copy is n_samples bytes x channels = whole frames.
2017          */
2018         off = samples_to_bytes(runtime, off);
2019         frames = samples_to_bytes(runtime, frames);
2020         hwoff = samples_to_bytes(runtime, hwoff);
2021         for (c = 0; c < channels; ++c, ++bufs) {
2022                 if (!data || !*bufs)
2023                         err = fill_silence(substream, c, hwoff, NULL, frames);
2024                 else
2025                         err = transfer(substream, c, hwoff, *bufs + off,
2026                                        frames);
2027                 if (err < 0)
2028                         return err;
2029         }
2030         return 0;
2031 }
2032
2033 /* fill silence on the given buffer position;
2034  * called from snd_pcm_playback_silence()
2035  */
2036 static int fill_silence_frames(struct snd_pcm_substream *substream,
2037                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2038 {
2039         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2040             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2041                 return interleaved_copy(substream, off, NULL, 0, frames,
2042                                         fill_silence);
2043         else
2044                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2045                                            fill_silence);
2046 }
2047
2048 /* sanity-check for read/write methods */
2049 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2050 {
2051         struct snd_pcm_runtime *runtime;
2052         if (PCM_RUNTIME_CHECK(substream))
2053                 return -ENXIO;
2054         runtime = substream->runtime;
2055         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2056                 return -EINVAL;
2057         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2058                 return -EBADFD;
2059         return 0;
2060 }
2061
2062 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2063 {
2064         switch (runtime->status->state) {
2065         case SNDRV_PCM_STATE_PREPARED:
2066         case SNDRV_PCM_STATE_RUNNING:
2067         case SNDRV_PCM_STATE_PAUSED:
2068                 return 0;
2069         case SNDRV_PCM_STATE_XRUN:
2070                 return -EPIPE;
2071         case SNDRV_PCM_STATE_SUSPENDED:
2072                 return -ESTRPIPE;
2073         default:
2074                 return -EBADFD;
2075         }
2076 }
2077
2078 /* update to the given appl_ptr and call ack callback if needed;
2079  * when an error is returned, take back to the original value
2080  */
2081 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2082                            snd_pcm_uframes_t appl_ptr)
2083 {
2084         struct snd_pcm_runtime *runtime = substream->runtime;
2085         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2086         int ret;
2087
2088         if (old_appl_ptr == appl_ptr)
2089                 return 0;
2090
2091         runtime->control->appl_ptr = appl_ptr;
2092         if (substream->ops->ack) {
2093                 ret = substream->ops->ack(substream);
2094                 if (ret < 0) {
2095                         runtime->control->appl_ptr = old_appl_ptr;
2096                         return ret;
2097                 }
2098         }
2099
2100         trace_applptr(substream, old_appl_ptr, appl_ptr);
2101
2102         return 0;
2103 }
2104
2105 /* the common loop for read/write data */
2106 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2107                                      void *data, bool interleaved,
2108                                      snd_pcm_uframes_t size, bool in_kernel)
2109 {
2110         struct snd_pcm_runtime *runtime = substream->runtime;
2111         snd_pcm_uframes_t xfer = 0;
2112         snd_pcm_uframes_t offset = 0;
2113         snd_pcm_uframes_t avail;
2114         pcm_copy_f writer;
2115         pcm_transfer_f transfer;
2116         bool nonblock;
2117         bool is_playback;
2118         int err;
2119
2120         err = pcm_sanity_check(substream);
2121         if (err < 0)
2122                 return err;
2123
2124         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2125         if (interleaved) {
2126                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2127                     runtime->channels > 1)
2128                         return -EINVAL;
2129                 writer = interleaved_copy;
2130         } else {
2131                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2132                         return -EINVAL;
2133                 writer = noninterleaved_copy;
2134         }
2135
2136         if (!data) {
2137                 if (is_playback)
2138                         transfer = fill_silence;
2139                 else
2140                         return -EINVAL;
2141         } else if (in_kernel) {
2142                 if (substream->ops->copy_kernel)
2143                         transfer = substream->ops->copy_kernel;
2144                 else
2145                         transfer = is_playback ?
2146                                 default_write_copy_kernel : default_read_copy_kernel;
2147         } else {
2148                 if (substream->ops->copy_user)
2149                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2150                 else
2151                         transfer = is_playback ?
2152                                 default_write_copy : default_read_copy;
2153         }
2154
2155         if (size == 0)
2156                 return 0;
2157
2158         nonblock = !!(substream->f_flags & O_NONBLOCK);
2159
2160         snd_pcm_stream_lock_irq(substream);
2161         err = pcm_accessible_state(runtime);
2162         if (err < 0)
2163                 goto _end_unlock;
2164
2165         runtime->twake = runtime->control->avail_min ? : 1;
2166         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2167                 snd_pcm_update_hw_ptr(substream);
2168
2169         /*
2170          * If size < start_threshold, wait indefinitely. Another
2171          * thread may start capture
2172          */
2173         if (!is_playback &&
2174             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2175             size >= runtime->start_threshold) {
2176                 err = snd_pcm_start(substream);
2177                 if (err < 0)
2178                         goto _end_unlock;
2179         }
2180
2181         avail = snd_pcm_avail(substream);
2182
2183         while (size > 0) {
2184                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2185                 snd_pcm_uframes_t cont;
2186                 if (!avail) {
2187                         if (!is_playback &&
2188                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2189                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2190                                 goto _end_unlock;
2191                         }
2192                         if (nonblock) {
2193                                 err = -EAGAIN;
2194                                 goto _end_unlock;
2195                         }
2196                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2197                                         runtime->control->avail_min ? : 1);
2198                         err = wait_for_avail(substream, &avail);
2199                         if (err < 0)
2200                                 goto _end_unlock;
2201                         if (!avail)
2202                                 continue; /* draining */
2203                 }
2204                 frames = size > avail ? avail : size;
2205                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2206                 appl_ofs = appl_ptr % runtime->buffer_size;
2207                 cont = runtime->buffer_size - appl_ofs;
2208                 if (frames > cont)
2209                         frames = cont;
2210                 if (snd_BUG_ON(!frames)) {
2211                         err = -EINVAL;
2212                         goto _end_unlock;
2213                 }
2214                 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2215                         err = -EBUSY;
2216                         goto _end_unlock;
2217                 }
2218                 snd_pcm_stream_unlock_irq(substream);
2219                 err = writer(substream, appl_ofs, data, offset, frames,
2220                              transfer);
2221                 snd_pcm_stream_lock_irq(substream);
2222                 atomic_dec(&runtime->buffer_accessing);
2223                 if (err < 0)
2224                         goto _end_unlock;
2225                 err = pcm_accessible_state(runtime);
2226                 if (err < 0)
2227                         goto _end_unlock;
2228                 appl_ptr += frames;
2229                 if (appl_ptr >= runtime->boundary)
2230                         appl_ptr -= runtime->boundary;
2231                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2232                 if (err < 0)
2233                         goto _end_unlock;
2234
2235                 offset += frames;
2236                 size -= frames;
2237                 xfer += frames;
2238                 avail -= frames;
2239                 if (is_playback &&
2240                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2241                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2242                         err = snd_pcm_start(substream);
2243                         if (err < 0)
2244                                 goto _end_unlock;
2245                 }
2246         }
2247  _end_unlock:
2248         runtime->twake = 0;
2249         if (xfer > 0 && err >= 0)
2250                 snd_pcm_update_state(substream, runtime);
2251         snd_pcm_stream_unlock_irq(substream);
2252         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2253 }
2254 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2255
2256 /*
2257  * standard channel mapping helpers
2258  */
2259
2260 /* default channel maps for multi-channel playbacks, up to 8 channels */
2261 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2262         { .channels = 1,
2263           .map = { SNDRV_CHMAP_MONO } },
2264         { .channels = 2,
2265           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2266         { .channels = 4,
2267           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2268                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2269         { .channels = 6,
2270           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2271                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2272                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2273         { .channels = 8,
2274           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2275                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2276                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2277                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2278         { }
2279 };
2280 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2281
2282 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2283 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2284         { .channels = 1,
2285           .map = { SNDRV_CHMAP_MONO } },
2286         { .channels = 2,
2287           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2288         { .channels = 4,
2289           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2290                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2291         { .channels = 6,
2292           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2293                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2294                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2295         { .channels = 8,
2296           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2297                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2298                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2299                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2300         { }
2301 };
2302 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2303
2304 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2305 {
2306         if (ch > info->max_channels)
2307                 return false;
2308         return !info->channel_mask || (info->channel_mask & (1U << ch));
2309 }
2310
2311 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2312                               struct snd_ctl_elem_info *uinfo)
2313 {
2314         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2315
2316         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2317         uinfo->count = 0;
2318         uinfo->count = info->max_channels;
2319         uinfo->value.integer.min = 0;
2320         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2321         return 0;
2322 }
2323
2324 /* get callback for channel map ctl element
2325  * stores the channel position firstly matching with the current channels
2326  */
2327 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2328                              struct snd_ctl_elem_value *ucontrol)
2329 {
2330         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2331         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2332         struct snd_pcm_substream *substream;
2333         const struct snd_pcm_chmap_elem *map;
2334
2335         if (!info->chmap)
2336                 return -EINVAL;
2337         substream = snd_pcm_chmap_substream(info, idx);
2338         if (!substream)
2339                 return -ENODEV;
2340         memset(ucontrol->value.integer.value, 0,
2341                sizeof(ucontrol->value.integer.value));
2342         if (!substream->runtime)
2343                 return 0; /* no channels set */
2344         for (map = info->chmap; map->channels; map++) {
2345                 int i;
2346                 if (map->channels == substream->runtime->channels &&
2347                     valid_chmap_channels(info, map->channels)) {
2348                         for (i = 0; i < map->channels; i++)
2349                                 ucontrol->value.integer.value[i] = map->map[i];
2350                         return 0;
2351                 }
2352         }
2353         return -EINVAL;
2354 }
2355
2356 /* tlv callback for channel map ctl element
2357  * expands the pre-defined channel maps in a form of TLV
2358  */
2359 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2360                              unsigned int size, unsigned int __user *tlv)
2361 {
2362         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2363         const struct snd_pcm_chmap_elem *map;
2364         unsigned int __user *dst;
2365         int c, count = 0;
2366
2367         if (!info->chmap)
2368                 return -EINVAL;
2369         if (size < 8)
2370                 return -ENOMEM;
2371         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2372                 return -EFAULT;
2373         size -= 8;
2374         dst = tlv + 2;
2375         for (map = info->chmap; map->channels; map++) {
2376                 int chs_bytes = map->channels * 4;
2377                 if (!valid_chmap_channels(info, map->channels))
2378                         continue;
2379                 if (size < 8)
2380                         return -ENOMEM;
2381                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2382                     put_user(chs_bytes, dst + 1))
2383                         return -EFAULT;
2384                 dst += 2;
2385                 size -= 8;
2386                 count += 8;
2387                 if (size < chs_bytes)
2388                         return -ENOMEM;
2389                 size -= chs_bytes;
2390                 count += chs_bytes;
2391                 for (c = 0; c < map->channels; c++) {
2392                         if (put_user(map->map[c], dst))
2393                                 return -EFAULT;
2394                         dst++;
2395                 }
2396         }
2397         if (put_user(count, tlv + 1))
2398                 return -EFAULT;
2399         return 0;
2400 }
2401
2402 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2403 {
2404         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2405         info->pcm->streams[info->stream].chmap_kctl = NULL;
2406         kfree(info);
2407 }
2408
2409 /**
2410  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2411  * @pcm: the assigned PCM instance
2412  * @stream: stream direction
2413  * @chmap: channel map elements (for query)
2414  * @max_channels: the max number of channels for the stream
2415  * @private_value: the value passed to each kcontrol's private_value field
2416  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2417  *
2418  * Create channel-mapping control elements assigned to the given PCM stream(s).
2419  * Return: Zero if successful, or a negative error value.
2420  */
2421 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2422                            const struct snd_pcm_chmap_elem *chmap,
2423                            int max_channels,
2424                            unsigned long private_value,
2425                            struct snd_pcm_chmap **info_ret)
2426 {
2427         struct snd_pcm_chmap *info;
2428         struct snd_kcontrol_new knew = {
2429                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2430                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2431                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2432                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2433                 .info = pcm_chmap_ctl_info,
2434                 .get = pcm_chmap_ctl_get,
2435                 .tlv.c = pcm_chmap_ctl_tlv,
2436         };
2437         int err;
2438
2439         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2440                 return -EBUSY;
2441         info = kzalloc(sizeof(*info), GFP_KERNEL);
2442         if (!info)
2443                 return -ENOMEM;
2444         info->pcm = pcm;
2445         info->stream = stream;
2446         info->chmap = chmap;
2447         info->max_channels = max_channels;
2448         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2449                 knew.name = "Playback Channel Map";
2450         else
2451                 knew.name = "Capture Channel Map";
2452         knew.device = pcm->device;
2453         knew.count = pcm->streams[stream].substream_count;
2454         knew.private_value = private_value;
2455         info->kctl = snd_ctl_new1(&knew, info);
2456         if (!info->kctl) {
2457                 kfree(info);
2458                 return -ENOMEM;
2459         }
2460         info->kctl->private_free = pcm_chmap_ctl_private_free;
2461         err = snd_ctl_add(pcm->card, info->kctl);
2462         if (err < 0)
2463                 return err;
2464         pcm->streams[stream].chmap_kctl = info->kctl;
2465         if (info_ret)
2466                 *info_ret = info;
2467         return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);