3111499653704695d249a877a0defdf38aef89d4
[releases.git] / sensors.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Sensor Protocol
4  *
5  * Copyright (C) 2018-2022 ARM Ltd.
6  */
7
8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/scmi_protocol.h>
13
14 #include "protocols.h"
15 #include "notify.h"
16
17 /* Updated only after ALL the mandatory features for that version are merged */
18 #define SCMI_PROTOCOL_SUPPORTED_VERSION         0x30000
19
20 #define SCMI_MAX_NUM_SENSOR_AXIS        63
21 #define SCMIv2_SENSOR_PROTOCOL          0x10000
22
23 enum scmi_sensor_protocol_cmd {
24         SENSOR_DESCRIPTION_GET = 0x3,
25         SENSOR_TRIP_POINT_NOTIFY = 0x4,
26         SENSOR_TRIP_POINT_CONFIG = 0x5,
27         SENSOR_READING_GET = 0x6,
28         SENSOR_AXIS_DESCRIPTION_GET = 0x7,
29         SENSOR_LIST_UPDATE_INTERVALS = 0x8,
30         SENSOR_CONFIG_GET = 0x9,
31         SENSOR_CONFIG_SET = 0xA,
32         SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
33         SENSOR_NAME_GET = 0xC,
34         SENSOR_AXIS_NAME_GET = 0xD,
35 };
36
37 struct scmi_msg_resp_sensor_attributes {
38         __le16 num_sensors;
39         u8 max_requests;
40         u8 reserved;
41         __le32 reg_addr_low;
42         __le32 reg_addr_high;
43         __le32 reg_size;
44 };
45
46 /* v3 attributes_low macros */
47 #define SUPPORTS_UPDATE_NOTIFY(x)       FIELD_GET(BIT(30), (x))
48 #define SENSOR_TSTAMP_EXP(x)            FIELD_GET(GENMASK(14, 10), (x))
49 #define SUPPORTS_TIMESTAMP(x)           FIELD_GET(BIT(9), (x))
50 #define SUPPORTS_EXTEND_ATTRS(x)        FIELD_GET(BIT(8), (x))
51
52 /* v2 attributes_high macros */
53 #define SENSOR_UPDATE_BASE(x)           FIELD_GET(GENMASK(31, 27), (x))
54 #define SENSOR_UPDATE_SCALE(x)          FIELD_GET(GENMASK(26, 22), (x))
55
56 /* v3 attributes_high macros */
57 #define SENSOR_AXIS_NUMBER(x)           FIELD_GET(GENMASK(21, 16), (x))
58 #define SUPPORTS_AXIS(x)                FIELD_GET(BIT(8), (x))
59
60 /* v3 resolution macros */
61 #define SENSOR_RES(x)                   FIELD_GET(GENMASK(26, 0), (x))
62 #define SENSOR_RES_EXP(x)               FIELD_GET(GENMASK(31, 27), (x))
63
64 struct scmi_msg_resp_attrs {
65         __le32 min_range_low;
66         __le32 min_range_high;
67         __le32 max_range_low;
68         __le32 max_range_high;
69 };
70
71 struct scmi_msg_sensor_description {
72         __le32 desc_index;
73 };
74
75 struct scmi_msg_resp_sensor_description {
76         __le16 num_returned;
77         __le16 num_remaining;
78         struct scmi_sensor_descriptor {
79                 __le32 id;
80                 __le32 attributes_low;
81 /* Common attributes_low macros */
82 #define SUPPORTS_ASYNC_READ(x)          FIELD_GET(BIT(31), (x))
83 #define SUPPORTS_EXTENDED_NAMES(x)      FIELD_GET(BIT(29), (x))
84 #define NUM_TRIP_POINTS(x)              FIELD_GET(GENMASK(7, 0), (x))
85                 __le32 attributes_high;
86 /* Common attributes_high macros */
87 #define SENSOR_SCALE(x)                 FIELD_GET(GENMASK(15, 11), (x))
88 #define SENSOR_SCALE_SIGN               BIT(4)
89 #define SENSOR_SCALE_EXTEND             GENMASK(31, 5)
90 #define SENSOR_TYPE(x)                  FIELD_GET(GENMASK(7, 0), (x))
91                 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
92                 /* only for version > 2.0 */
93                 __le32 power;
94                 __le32 resolution;
95                 struct scmi_msg_resp_attrs scalar_attrs;
96         } desc[];
97 };
98
99 /* Base scmi_sensor_descriptor size excluding extended attrs after name */
100 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ        28
101
102 /* Sign extend to a full s32 */
103 #define S32_EXT(v)                                                      \
104         ({                                                              \
105                 int __v = (v);                                          \
106                                                                         \
107                 if (__v & SENSOR_SCALE_SIGN)                            \
108                         __v |= SENSOR_SCALE_EXTEND;                     \
109                 __v;                                                    \
110         })
111
112 struct scmi_msg_sensor_axis_description_get {
113         __le32 id;
114         __le32 axis_desc_index;
115 };
116
117 struct scmi_msg_resp_sensor_axis_description {
118         __le32 num_axis_flags;
119 #define NUM_AXIS_RETURNED(x)            FIELD_GET(GENMASK(5, 0), (x))
120 #define NUM_AXIS_REMAINING(x)           FIELD_GET(GENMASK(31, 26), (x))
121         struct scmi_axis_descriptor {
122                 __le32 id;
123                 __le32 attributes_low;
124 #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x))
125                 __le32 attributes_high;
126                 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
127                 __le32 resolution;
128                 struct scmi_msg_resp_attrs attrs;
129         } desc[];
130 };
131
132 struct scmi_msg_resp_sensor_axis_names_description {
133         __le32 num_axis_flags;
134         struct scmi_sensor_axis_name_descriptor {
135                 __le32 axis_id;
136                 u8 name[SCMI_MAX_STR_SIZE];
137         } desc[];
138 };
139
140 /* Base scmi_axis_descriptor size excluding extended attrs after name */
141 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ        28
142
143 struct scmi_msg_sensor_list_update_intervals {
144         __le32 id;
145         __le32 index;
146 };
147
148 struct scmi_msg_resp_sensor_list_update_intervals {
149         __le32 num_intervals_flags;
150 #define NUM_INTERVALS_RETURNED(x)       FIELD_GET(GENMASK(11, 0), (x))
151 #define SEGMENTED_INTVL_FORMAT(x)       FIELD_GET(BIT(12), (x))
152 #define NUM_INTERVALS_REMAINING(x)      FIELD_GET(GENMASK(31, 16), (x))
153         __le32 intervals[];
154 };
155
156 struct scmi_msg_sensor_request_notify {
157         __le32 id;
158         __le32 event_control;
159 #define SENSOR_NOTIFY_ALL       BIT(0)
160 };
161
162 struct scmi_msg_set_sensor_trip_point {
163         __le32 id;
164         __le32 event_control;
165 #define SENSOR_TP_EVENT_MASK    (0x3)
166 #define SENSOR_TP_DISABLED      0x0
167 #define SENSOR_TP_POSITIVE      0x1
168 #define SENSOR_TP_NEGATIVE      0x2
169 #define SENSOR_TP_BOTH          0x3
170 #define SENSOR_TP_ID(x)         (((x) & 0xff) << 4)
171         __le32 value_low;
172         __le32 value_high;
173 };
174
175 struct scmi_msg_sensor_config_set {
176         __le32 id;
177         __le32 sensor_config;
178 };
179
180 struct scmi_msg_sensor_reading_get {
181         __le32 id;
182         __le32 flags;
183 #define SENSOR_READ_ASYNC       BIT(0)
184 };
185
186 struct scmi_resp_sensor_reading_complete {
187         __le32 id;
188         __le32 readings_low;
189         __le32 readings_high;
190 };
191
192 struct scmi_sensor_reading_resp {
193         __le32 sensor_value_low;
194         __le32 sensor_value_high;
195         __le32 timestamp_low;
196         __le32 timestamp_high;
197 };
198
199 struct scmi_resp_sensor_reading_complete_v3 {
200         __le32 id;
201         struct scmi_sensor_reading_resp readings[];
202 };
203
204 struct scmi_sensor_trip_notify_payld {
205         __le32 agent_id;
206         __le32 sensor_id;
207         __le32 trip_point_desc;
208 };
209
210 struct scmi_sensor_update_notify_payld {
211         __le32 agent_id;
212         __le32 sensor_id;
213         struct scmi_sensor_reading_resp readings[];
214 };
215
216 struct sensors_info {
217         u32 version;
218         int num_sensors;
219         int max_requests;
220         u64 reg_addr;
221         u32 reg_size;
222         struct scmi_sensor_info *sensors;
223 };
224
225 static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
226                                       struct sensors_info *si)
227 {
228         int ret;
229         struct scmi_xfer *t;
230         struct scmi_msg_resp_sensor_attributes *attr;
231
232         ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
233                                       0, sizeof(*attr), &t);
234         if (ret)
235                 return ret;
236
237         attr = t->rx.buf;
238
239         ret = ph->xops->do_xfer(ph, t);
240         if (!ret) {
241                 si->num_sensors = le16_to_cpu(attr->num_sensors);
242                 si->max_requests = attr->max_requests;
243                 si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
244                                 (u64)le32_to_cpu(attr->reg_addr_high) << 32;
245                 si->reg_size = le32_to_cpu(attr->reg_size);
246         }
247
248         ph->xops->xfer_put(ph, t);
249         return ret;
250 }
251
252 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
253                                           const struct scmi_msg_resp_attrs *in)
254 {
255         out->min_range = get_unaligned_le64((void *)&in->min_range_low);
256         out->max_range = get_unaligned_le64((void *)&in->max_range_low);
257 }
258
259 struct scmi_sens_ipriv {
260         void *priv;
261         struct device *dev;
262 };
263
264 static void iter_intervals_prepare_message(void *message,
265                                            unsigned int desc_index,
266                                            const void *p)
267 {
268         struct scmi_msg_sensor_list_update_intervals *msg = message;
269         const struct scmi_sensor_info *s;
270
271         s = ((const struct scmi_sens_ipriv *)p)->priv;
272         /* Set the number of sensors to be skipped/already read */
273         msg->id = cpu_to_le32(s->id);
274         msg->index = cpu_to_le32(desc_index);
275 }
276
277 static int iter_intervals_update_state(struct scmi_iterator_state *st,
278                                        const void *response, void *p)
279 {
280         u32 flags;
281         struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
282         struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
283         const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
284
285         flags = le32_to_cpu(r->num_intervals_flags);
286         st->num_returned = NUM_INTERVALS_RETURNED(flags);
287         st->num_remaining = NUM_INTERVALS_REMAINING(flags);
288
289         /*
290          * Max intervals is not declared previously anywhere so we
291          * assume it's returned+remaining on first call.
292          */
293         if (!st->max_resources) {
294                 s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
295                 s->intervals.count = st->num_returned + st->num_remaining;
296                 /* segmented intervals are reported in one triplet */
297                 if (s->intervals.segmented &&
298                     (st->num_remaining || st->num_returned != 3)) {
299                         dev_err(dev,
300                                 "Sensor ID:%d advertises an invalid segmented interval (%d)\n",
301                                 s->id, s->intervals.count);
302                         s->intervals.segmented = false;
303                         s->intervals.count = 0;
304                         return -EINVAL;
305                 }
306                 /* Direct allocation when exceeding pre-allocated */
307                 if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
308                         s->intervals.desc =
309                                 devm_kcalloc(dev,
310                                              s->intervals.count,
311                                              sizeof(*s->intervals.desc),
312                                              GFP_KERNEL);
313                         if (!s->intervals.desc) {
314                                 s->intervals.segmented = false;
315                                 s->intervals.count = 0;
316                                 return -ENOMEM;
317                         }
318                 }
319
320                 st->max_resources = s->intervals.count;
321         }
322
323         return 0;
324 }
325
326 static int
327 iter_intervals_process_response(const struct scmi_protocol_handle *ph,
328                                 const void *response,
329                                 struct scmi_iterator_state *st, void *p)
330 {
331         const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
332         struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
333
334         s->intervals.desc[st->desc_index + st->loop_idx] =
335                 le32_to_cpu(r->intervals[st->loop_idx]);
336
337         return 0;
338 }
339
340 static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
341                                         struct scmi_sensor_info *s)
342 {
343         void *iter;
344         struct scmi_iterator_ops ops = {
345                 .prepare_message = iter_intervals_prepare_message,
346                 .update_state = iter_intervals_update_state,
347                 .process_response = iter_intervals_process_response,
348         };
349         struct scmi_sens_ipriv upriv = {
350                 .priv = s,
351                 .dev = ph->dev,
352         };
353
354         iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
355                                             SENSOR_LIST_UPDATE_INTERVALS,
356                                             sizeof(struct scmi_msg_sensor_list_update_intervals),
357                                             &upriv);
358         if (IS_ERR(iter))
359                 return PTR_ERR(iter);
360
361         return ph->hops->iter_response_run(iter);
362 }
363
364 struct scmi_apriv {
365         bool any_axes_support_extended_names;
366         struct scmi_sensor_info *s;
367 };
368
369 static void iter_axes_desc_prepare_message(void *message,
370                                            const unsigned int desc_index,
371                                            const void *priv)
372 {
373         struct scmi_msg_sensor_axis_description_get *msg = message;
374         const struct scmi_apriv *apriv = priv;
375
376         /* Set the number of sensors to be skipped/already read */
377         msg->id = cpu_to_le32(apriv->s->id);
378         msg->axis_desc_index = cpu_to_le32(desc_index);
379 }
380
381 static int
382 iter_axes_desc_update_state(struct scmi_iterator_state *st,
383                             const void *response, void *priv)
384 {
385         u32 flags;
386         const struct scmi_msg_resp_sensor_axis_description *r = response;
387
388         flags = le32_to_cpu(r->num_axis_flags);
389         st->num_returned = NUM_AXIS_RETURNED(flags);
390         st->num_remaining = NUM_AXIS_REMAINING(flags);
391         st->priv = (void *)&r->desc[0];
392
393         return 0;
394 }
395
396 static int
397 iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
398                                 const void *response,
399                                 struct scmi_iterator_state *st, void *priv)
400 {
401         u32 attrh, attrl;
402         struct scmi_sensor_axis_info *a;
403         size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
404         struct scmi_apriv *apriv = priv;
405         const struct scmi_axis_descriptor *adesc = st->priv;
406
407         attrl = le32_to_cpu(adesc->attributes_low);
408         if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl))
409                 apriv->any_axes_support_extended_names = true;
410
411         a = &apriv->s->axis[st->desc_index + st->loop_idx];
412         a->id = le32_to_cpu(adesc->id);
413         a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
414
415         attrh = le32_to_cpu(adesc->attributes_high);
416         a->scale = S32_EXT(SENSOR_SCALE(attrh));
417         a->type = SENSOR_TYPE(attrh);
418         strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE);
419
420         if (a->extended_attrs) {
421                 unsigned int ares = le32_to_cpu(adesc->resolution);
422
423                 a->resolution = SENSOR_RES(ares);
424                 a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
425                 dsize += sizeof(adesc->resolution);
426
427                 scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
428                 dsize += sizeof(adesc->attrs);
429         }
430         st->priv = ((u8 *)adesc + dsize);
431
432         return 0;
433 }
434
435 static int
436 iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
437                                      const void *response, void *priv)
438 {
439         u32 flags;
440         const struct scmi_msg_resp_sensor_axis_names_description *r = response;
441
442         flags = le32_to_cpu(r->num_axis_flags);
443         st->num_returned = NUM_AXIS_RETURNED(flags);
444         st->num_remaining = NUM_AXIS_REMAINING(flags);
445         st->priv = (void *)&r->desc[0];
446
447         return 0;
448 }
449
450 static int
451 iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
452                                          const void *response,
453                                          struct scmi_iterator_state *st,
454                                          void *priv)
455 {
456         struct scmi_sensor_axis_info *a;
457         const struct scmi_apriv *apriv = priv;
458         struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
459         u32 axis_id = le32_to_cpu(adesc->axis_id);
460
461         if (axis_id >= st->max_resources)
462                 return -EPROTO;
463
464         /*
465          * Pick the corresponding descriptor based on the axis_id embedded
466          * in the reply since the list of axes supporting extended names
467          * can be a subset of all the axes.
468          */
469         a = &apriv->s->axis[axis_id];
470         strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
471         st->priv = ++adesc;
472
473         return 0;
474 }
475
476 static int
477 scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
478                                     struct scmi_sensor_info *s)
479 {
480         int ret;
481         void *iter;
482         struct scmi_iterator_ops ops = {
483                 .prepare_message = iter_axes_desc_prepare_message,
484                 .update_state = iter_axes_extended_name_update_state,
485                 .process_response = iter_axes_extended_name_process_response,
486         };
487         struct scmi_apriv apriv = {
488                 .any_axes_support_extended_names = false,
489                 .s = s,
490         };
491
492         iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
493                                             SENSOR_AXIS_NAME_GET,
494                                             sizeof(struct scmi_msg_sensor_axis_description_get),
495                                             &apriv);
496         if (IS_ERR(iter))
497                 return PTR_ERR(iter);
498
499         /*
500          * Do not cause whole protocol initialization failure when failing to
501          * get extended names for axes.
502          */
503         ret = ph->hops->iter_response_run(iter);
504         if (ret)
505                 dev_warn(ph->dev,
506                          "Failed to get axes extended names for %s (ret:%d).\n",
507                          s->name, ret);
508
509         return 0;
510 }
511
512 static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
513                                         struct scmi_sensor_info *s,
514                                         u32 version)
515 {
516         int ret;
517         void *iter;
518         struct scmi_iterator_ops ops = {
519                 .prepare_message = iter_axes_desc_prepare_message,
520                 .update_state = iter_axes_desc_update_state,
521                 .process_response = iter_axes_desc_process_response,
522         };
523         struct scmi_apriv apriv = {
524                 .any_axes_support_extended_names = false,
525                 .s = s,
526         };
527
528         s->axis = devm_kcalloc(ph->dev, s->num_axis,
529                                sizeof(*s->axis), GFP_KERNEL);
530         if (!s->axis)
531                 return -ENOMEM;
532
533         iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
534                                             SENSOR_AXIS_DESCRIPTION_GET,
535                                             sizeof(struct scmi_msg_sensor_axis_description_get),
536                                             &apriv);
537         if (IS_ERR(iter))
538                 return PTR_ERR(iter);
539
540         ret = ph->hops->iter_response_run(iter);
541         if (ret)
542                 return ret;
543
544         if (PROTOCOL_REV_MAJOR(version) >= 0x3 &&
545             apriv.any_axes_support_extended_names)
546                 ret = scmi_sensor_axis_extended_names_get(ph, s);
547
548         return ret;
549 }
550
551 static void iter_sens_descr_prepare_message(void *message,
552                                             unsigned int desc_index,
553                                             const void *priv)
554 {
555         struct scmi_msg_sensor_description *msg = message;
556
557         msg->desc_index = cpu_to_le32(desc_index);
558 }
559
560 static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
561                                         const void *response, void *priv)
562 {
563         const struct scmi_msg_resp_sensor_description *r = response;
564
565         st->num_returned = le16_to_cpu(r->num_returned);
566         st->num_remaining = le16_to_cpu(r->num_remaining);
567         st->priv = (void *)&r->desc[0];
568
569         return 0;
570 }
571
572 static int
573 iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
574                                  const void *response,
575                                  struct scmi_iterator_state *st, void *priv)
576
577 {
578         int ret = 0;
579         u32 attrh, attrl;
580         size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
581         struct scmi_sensor_info *s;
582         struct sensors_info *si = priv;
583         const struct scmi_sensor_descriptor *sdesc = st->priv;
584
585         s = &si->sensors[st->desc_index + st->loop_idx];
586         s->id = le32_to_cpu(sdesc->id);
587
588         attrl = le32_to_cpu(sdesc->attributes_low);
589         /* common bitfields parsing */
590         s->async = SUPPORTS_ASYNC_READ(attrl);
591         s->num_trip_points = NUM_TRIP_POINTS(attrl);
592         /**
593          * only SCMIv3.0 specific bitfield below.
594          * Such bitfields are assumed to be zeroed on non
595          * relevant fw versions...assuming fw not buggy !
596          */
597         s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
598         s->timestamped = SUPPORTS_TIMESTAMP(attrl);
599         if (s->timestamped)
600                 s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
601         s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
602
603         attrh = le32_to_cpu(sdesc->attributes_high);
604         /* common bitfields parsing */
605         s->scale = S32_EXT(SENSOR_SCALE(attrh));
606         s->type = SENSOR_TYPE(attrh);
607         /* Use pre-allocated pool wherever possible */
608         s->intervals.desc = s->intervals.prealloc_pool;
609         if (si->version == SCMIv2_SENSOR_PROTOCOL) {
610                 s->intervals.segmented = false;
611                 s->intervals.count = 1;
612                 /*
613                  * Convert SCMIv2.0 update interval format to
614                  * SCMIv3.0 to be used as the common exposed
615                  * descriptor, accessible via common macros.
616                  */
617                 s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
618                                         SENSOR_UPDATE_SCALE(attrh);
619         } else {
620                 /*
621                  * From SCMIv3.0 update intervals are retrieved
622                  * via a dedicated (optional) command.
623                  * Since the command is optional, on error carry
624                  * on without any update interval.
625                  */
626                 if (scmi_sensor_update_intervals(ph, s))
627                         dev_dbg(ph->dev,
628                                 "Update Intervals not available for sensor ID:%d\n",
629                                 s->id);
630         }
631         /**
632          * only > SCMIv2.0 specific bitfield below.
633          * Such bitfields are assumed to be zeroed on non
634          * relevant fw versions...assuming fw not buggy !
635          */
636         s->num_axis = min_t(unsigned int,
637                             SUPPORTS_AXIS(attrh) ?
638                             SENSOR_AXIS_NUMBER(attrh) : 0,
639                             SCMI_MAX_NUM_SENSOR_AXIS);
640         strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE);
641
642         /*
643          * If supported overwrite short name with the extended
644          * one; on error just carry on and use already provided
645          * short name.
646          */
647         if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
648             SUPPORTS_EXTENDED_NAMES(attrl))
649                 ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
650                                             NULL, s->name, SCMI_MAX_STR_SIZE);
651
652         if (s->extended_scalar_attrs) {
653                 s->sensor_power = le32_to_cpu(sdesc->power);
654                 dsize += sizeof(sdesc->power);
655
656                 /* Only for sensors reporting scalar values */
657                 if (s->num_axis == 0) {
658                         unsigned int sres = le32_to_cpu(sdesc->resolution);
659
660                         s->resolution = SENSOR_RES(sres);
661                         s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
662                         dsize += sizeof(sdesc->resolution);
663
664                         scmi_parse_range_attrs(&s->scalar_attrs,
665                                                &sdesc->scalar_attrs);
666                         dsize += sizeof(sdesc->scalar_attrs);
667                 }
668         }
669
670         if (s->num_axis > 0)
671                 ret = scmi_sensor_axis_description(ph, s, si->version);
672
673         st->priv = ((u8 *)sdesc + dsize);
674
675         return ret;
676 }
677
678 static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
679                                        struct sensors_info *si)
680 {
681         void *iter;
682         struct scmi_iterator_ops ops = {
683                 .prepare_message = iter_sens_descr_prepare_message,
684                 .update_state = iter_sens_descr_update_state,
685                 .process_response = iter_sens_descr_process_response,
686         };
687
688         iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
689                                             SENSOR_DESCRIPTION_GET,
690                                             sizeof(__le32), si);
691         if (IS_ERR(iter))
692                 return PTR_ERR(iter);
693
694         return ph->hops->iter_response_run(iter);
695 }
696
697 static inline int
698 scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
699                            u8 message_id, bool enable)
700 {
701         int ret;
702         u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
703         struct scmi_xfer *t;
704         struct scmi_msg_sensor_request_notify *cfg;
705
706         ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
707         if (ret)
708                 return ret;
709
710         cfg = t->tx.buf;
711         cfg->id = cpu_to_le32(sensor_id);
712         cfg->event_control = cpu_to_le32(evt_cntl);
713
714         ret = ph->xops->do_xfer(ph, t);
715
716         ph->xops->xfer_put(ph, t);
717         return ret;
718 }
719
720 static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
721                                          u32 sensor_id, bool enable)
722 {
723         return scmi_sensor_request_notify(ph, sensor_id,
724                                           SENSOR_TRIP_POINT_NOTIFY,
725                                           enable);
726 }
727
728 static int
729 scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
730                                      u32 sensor_id, bool enable)
731 {
732         return scmi_sensor_request_notify(ph, sensor_id,
733                                           SENSOR_CONTINUOUS_UPDATE_NOTIFY,
734                                           enable);
735 }
736
737 static int
738 scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
739                               u32 sensor_id, u8 trip_id, u64 trip_value)
740 {
741         int ret;
742         u32 evt_cntl = SENSOR_TP_BOTH;
743         struct scmi_xfer *t;
744         struct scmi_msg_set_sensor_trip_point *trip;
745
746         ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
747                                       sizeof(*trip), 0, &t);
748         if (ret)
749                 return ret;
750
751         trip = t->tx.buf;
752         trip->id = cpu_to_le32(sensor_id);
753         trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
754         trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
755         trip->value_high = cpu_to_le32(trip_value >> 32);
756
757         ret = ph->xops->do_xfer(ph, t);
758
759         ph->xops->xfer_put(ph, t);
760         return ret;
761 }
762
763 static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
764                                   u32 sensor_id, u32 *sensor_config)
765 {
766         int ret;
767         struct scmi_xfer *t;
768         struct sensors_info *si = ph->get_priv(ph);
769
770         if (sensor_id >= si->num_sensors)
771                 return -EINVAL;
772
773         ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
774                                       sizeof(__le32), sizeof(__le32), &t);
775         if (ret)
776                 return ret;
777
778         put_unaligned_le32(sensor_id, t->tx.buf);
779         ret = ph->xops->do_xfer(ph, t);
780         if (!ret) {
781                 struct scmi_sensor_info *s = si->sensors + sensor_id;
782
783                 *sensor_config = get_unaligned_le64(t->rx.buf);
784                 s->sensor_config = *sensor_config;
785         }
786
787         ph->xops->xfer_put(ph, t);
788         return ret;
789 }
790
791 static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
792                                   u32 sensor_id, u32 sensor_config)
793 {
794         int ret;
795         struct scmi_xfer *t;
796         struct scmi_msg_sensor_config_set *msg;
797         struct sensors_info *si = ph->get_priv(ph);
798
799         if (sensor_id >= si->num_sensors)
800                 return -EINVAL;
801
802         ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
803                                       sizeof(*msg), 0, &t);
804         if (ret)
805                 return ret;
806
807         msg = t->tx.buf;
808         msg->id = cpu_to_le32(sensor_id);
809         msg->sensor_config = cpu_to_le32(sensor_config);
810
811         ret = ph->xops->do_xfer(ph, t);
812         if (!ret) {
813                 struct scmi_sensor_info *s = si->sensors + sensor_id;
814
815                 s->sensor_config = sensor_config;
816         }
817
818         ph->xops->xfer_put(ph, t);
819         return ret;
820 }
821
822 /**
823  * scmi_sensor_reading_get  - Read scalar sensor value
824  * @ph: Protocol handle
825  * @sensor_id: Sensor ID
826  * @value: The 64bit value sensor reading
827  *
828  * This function returns a single 64 bit reading value representing the sensor
829  * value; if the platform SCMI Protocol implementation and the sensor support
830  * multiple axis and timestamped-reads, this just returns the first axis while
831  * dropping the timestamp value.
832  * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
833  * timestamped multi-axis values.
834  *
835  * Return: 0 on Success
836  */
837 static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
838                                    u32 sensor_id, u64 *value)
839 {
840         int ret;
841         struct scmi_xfer *t;
842         struct scmi_msg_sensor_reading_get *sensor;
843         struct scmi_sensor_info *s;
844         struct sensors_info *si = ph->get_priv(ph);
845
846         if (sensor_id >= si->num_sensors)
847                 return -EINVAL;
848
849         ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
850                                       sizeof(*sensor), 0, &t);
851         if (ret)
852                 return ret;
853
854         sensor = t->tx.buf;
855         sensor->id = cpu_to_le32(sensor_id);
856         s = si->sensors + sensor_id;
857         if (s->async) {
858                 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
859                 ret = ph->xops->do_xfer_with_response(ph, t);
860                 if (!ret) {
861                         struct scmi_resp_sensor_reading_complete *resp;
862
863                         resp = t->rx.buf;
864                         if (le32_to_cpu(resp->id) == sensor_id)
865                                 *value =
866                                         get_unaligned_le64(&resp->readings_low);
867                         else
868                                 ret = -EPROTO;
869                 }
870         } else {
871                 sensor->flags = cpu_to_le32(0);
872                 ret = ph->xops->do_xfer(ph, t);
873                 if (!ret)
874                         *value = get_unaligned_le64(t->rx.buf);
875         }
876
877         ph->xops->xfer_put(ph, t);
878         return ret;
879 }
880
881 static inline void
882 scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
883                            const struct scmi_sensor_reading_resp *in)
884 {
885         out->value = get_unaligned_le64((void *)&in->sensor_value_low);
886         out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
887 }
888
889 /**
890  * scmi_sensor_reading_get_timestamped  - Read multiple-axis timestamped values
891  * @ph: Protocol handle
892  * @sensor_id: Sensor ID
893  * @count: The length of the provided @readings array
894  * @readings: An array of elements each representing a timestamped per-axis
895  *            reading of type @struct scmi_sensor_reading.
896  *            Returned readings are ordered as the @axis descriptors array
897  *            included in @struct scmi_sensor_info and the max number of
898  *            returned elements is min(@count, @num_axis); ideally the provided
899  *            array should be of length @count equal to @num_axis.
900  *
901  * Return: 0 on Success
902  */
903 static int
904 scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
905                                     u32 sensor_id, u8 count,
906                                     struct scmi_sensor_reading *readings)
907 {
908         int ret;
909         struct scmi_xfer *t;
910         struct scmi_msg_sensor_reading_get *sensor;
911         struct scmi_sensor_info *s;
912         struct sensors_info *si = ph->get_priv(ph);
913
914         if (sensor_id >= si->num_sensors)
915                 return -EINVAL;
916
917         s = si->sensors + sensor_id;
918         if (!count || !readings ||
919             (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
920                 return -EINVAL;
921
922         ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
923                                       sizeof(*sensor), 0, &t);
924         if (ret)
925                 return ret;
926
927         sensor = t->tx.buf;
928         sensor->id = cpu_to_le32(sensor_id);
929         if (s->async) {
930                 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
931                 ret = ph->xops->do_xfer_with_response(ph, t);
932                 if (!ret) {
933                         int i;
934                         struct scmi_resp_sensor_reading_complete_v3 *resp;
935
936                         resp = t->rx.buf;
937                         /* Retrieve only the number of requested axis anyway */
938                         if (le32_to_cpu(resp->id) == sensor_id)
939                                 for (i = 0; i < count; i++)
940                                         scmi_parse_sensor_readings(&readings[i],
941                                                                    &resp->readings[i]);
942                         else
943                                 ret = -EPROTO;
944                 }
945         } else {
946                 sensor->flags = cpu_to_le32(0);
947                 ret = ph->xops->do_xfer(ph, t);
948                 if (!ret) {
949                         int i;
950                         struct scmi_sensor_reading_resp *resp_readings;
951
952                         resp_readings = t->rx.buf;
953                         for (i = 0; i < count; i++)
954                                 scmi_parse_sensor_readings(&readings[i],
955                                                            &resp_readings[i]);
956                 }
957         }
958
959         ph->xops->xfer_put(ph, t);
960         return ret;
961 }
962
963 static const struct scmi_sensor_info *
964 scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
965 {
966         struct sensors_info *si = ph->get_priv(ph);
967
968         if (sensor_id >= si->num_sensors)
969                 return NULL;
970
971         return si->sensors + sensor_id;
972 }
973
974 static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
975 {
976         struct sensors_info *si = ph->get_priv(ph);
977
978         return si->num_sensors;
979 }
980
981 static const struct scmi_sensor_proto_ops sensor_proto_ops = {
982         .count_get = scmi_sensor_count_get,
983         .info_get = scmi_sensor_info_get,
984         .trip_point_config = scmi_sensor_trip_point_config,
985         .reading_get = scmi_sensor_reading_get,
986         .reading_get_timestamped = scmi_sensor_reading_get_timestamped,
987         .config_get = scmi_sensor_config_get,
988         .config_set = scmi_sensor_config_set,
989 };
990
991 static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
992                                           u8 evt_id, u32 src_id, bool enable)
993 {
994         int ret;
995
996         switch (evt_id) {
997         case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
998                 ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
999                 break;
1000         case SCMI_EVENT_SENSOR_UPDATE:
1001                 ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
1002                 break;
1003         default:
1004                 ret = -EINVAL;
1005                 break;
1006         }
1007
1008         if (ret)
1009                 pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
1010                          evt_id, src_id, ret);
1011
1012         return ret;
1013 }
1014
1015 static void *
1016 scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
1017                                u8 evt_id, ktime_t timestamp,
1018                                const void *payld, size_t payld_sz,
1019                                void *report, u32 *src_id)
1020 {
1021         void *rep = NULL;
1022
1023         switch (evt_id) {
1024         case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1025         {
1026                 const struct scmi_sensor_trip_notify_payld *p = payld;
1027                 struct scmi_sensor_trip_point_report *r = report;
1028
1029                 if (sizeof(*p) != payld_sz)
1030                         break;
1031
1032                 r->timestamp = timestamp;
1033                 r->agent_id = le32_to_cpu(p->agent_id);
1034                 r->sensor_id = le32_to_cpu(p->sensor_id);
1035                 r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
1036                 *src_id = r->sensor_id;
1037                 rep = r;
1038                 break;
1039         }
1040         case SCMI_EVENT_SENSOR_UPDATE:
1041         {
1042                 int i;
1043                 struct scmi_sensor_info *s;
1044                 const struct scmi_sensor_update_notify_payld *p = payld;
1045                 struct scmi_sensor_update_report *r = report;
1046                 struct sensors_info *sinfo = ph->get_priv(ph);
1047
1048                 /* payld_sz is variable for this event */
1049                 r->sensor_id = le32_to_cpu(p->sensor_id);
1050                 if (r->sensor_id >= sinfo->num_sensors)
1051                         break;
1052                 r->timestamp = timestamp;
1053                 r->agent_id = le32_to_cpu(p->agent_id);
1054                 s = &sinfo->sensors[r->sensor_id];
1055                 /*
1056                  * The generated report r (@struct scmi_sensor_update_report)
1057                  * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
1058                  * readings: here it is filled with the effective @num_axis
1059                  * readings defined for this sensor or 1 for scalar sensors.
1060                  */
1061                 r->readings_count = s->num_axis ?: 1;
1062                 for (i = 0; i < r->readings_count; i++)
1063                         scmi_parse_sensor_readings(&r->readings[i],
1064                                                    &p->readings[i]);
1065                 *src_id = r->sensor_id;
1066                 rep = r;
1067                 break;
1068         }
1069         default:
1070                 break;
1071         }
1072
1073         return rep;
1074 }
1075
1076 static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
1077 {
1078         struct sensors_info *si = ph->get_priv(ph);
1079
1080         return si->num_sensors;
1081 }
1082
1083 static const struct scmi_event sensor_events[] = {
1084         {
1085                 .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
1086                 .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
1087                 .max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
1088         },
1089         {
1090                 .id = SCMI_EVENT_SENSOR_UPDATE,
1091                 .max_payld_sz =
1092                         sizeof(struct scmi_sensor_update_notify_payld) +
1093                          SCMI_MAX_NUM_SENSOR_AXIS *
1094                          sizeof(struct scmi_sensor_reading_resp),
1095                 .max_report_sz = sizeof(struct scmi_sensor_update_report) +
1096                                   SCMI_MAX_NUM_SENSOR_AXIS *
1097                                   sizeof(struct scmi_sensor_reading),
1098         },
1099 };
1100
1101 static const struct scmi_event_ops sensor_event_ops = {
1102         .get_num_sources = scmi_sensor_get_num_sources,
1103         .set_notify_enabled = scmi_sensor_set_notify_enabled,
1104         .fill_custom_report = scmi_sensor_fill_custom_report,
1105 };
1106
1107 static const struct scmi_protocol_events sensor_protocol_events = {
1108         .queue_sz = SCMI_PROTO_QUEUE_SZ,
1109         .ops = &sensor_event_ops,
1110         .evts = sensor_events,
1111         .num_events = ARRAY_SIZE(sensor_events),
1112 };
1113
1114 static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
1115 {
1116         u32 version;
1117         int ret;
1118         struct sensors_info *sinfo;
1119
1120         ret = ph->xops->version_get(ph, &version);
1121         if (ret)
1122                 return ret;
1123
1124         dev_dbg(ph->dev, "Sensor Version %d.%d\n",
1125                 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
1126
1127         sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
1128         if (!sinfo)
1129                 return -ENOMEM;
1130         sinfo->version = version;
1131
1132         ret = scmi_sensor_attributes_get(ph, sinfo);
1133         if (ret)
1134                 return ret;
1135         sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
1136                                       sizeof(*sinfo->sensors), GFP_KERNEL);
1137         if (!sinfo->sensors)
1138                 return -ENOMEM;
1139
1140         ret = scmi_sensor_description_get(ph, sinfo);
1141         if (ret)
1142                 return ret;
1143
1144         return ph->set_priv(ph, sinfo, version);
1145 }
1146
1147 static const struct scmi_protocol scmi_sensors = {
1148         .id = SCMI_PROTOCOL_SENSOR,
1149         .owner = THIS_MODULE,
1150         .instance_init = &scmi_sensors_protocol_init,
1151         .ops = &sensor_proto_ops,
1152         .events = &sensor_protocol_events,
1153         .supported_version = SCMI_PROTOCOL_SUPPORTED_VERSION,
1154 };
1155
1156 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)