GNU Linux-libre 6.8.7-gnu
[releases.git] / security / selinux / ss / sidtab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the SID table type.
4  *
5  * Original author: Stephen Smalley, <stephen.smalley.work@gmail.com>
6  * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7  *
8  * Copyright (C) 2018 Red Hat, Inc.
9  */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/rcupdate.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <asm/barrier.h>
18 #include "flask.h"
19 #include "security.h"
20 #include "sidtab.h"
21 #include "services.h"
22
23 struct sidtab_str_cache {
24         struct rcu_head rcu_member;
25         struct list_head lru_member;
26         struct sidtab_entry *parent;
27         u32 len;
28         char str[] __counted_by(len);
29 };
30
31 #define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
32 #define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
33
34 int sidtab_init(struct sidtab *s)
35 {
36         u32 i;
37
38         memset(s->roots, 0, sizeof(s->roots));
39
40         for (i = 0; i < SECINITSID_NUM; i++)
41                 s->isids[i].set = 0;
42
43         s->frozen = false;
44         s->count = 0;
45         s->convert = NULL;
46         hash_init(s->context_to_sid);
47
48         spin_lock_init(&s->lock);
49
50 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
51         s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
52         INIT_LIST_HEAD(&s->cache_lru_list);
53         spin_lock_init(&s->cache_lock);
54 #endif
55
56         return 0;
57 }
58
59 static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
60 {
61         struct sidtab_entry *entry;
62         u32 sid = 0;
63
64         rcu_read_lock();
65         hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
66                 if (entry->hash != hash)
67                         continue;
68                 if (context_cmp(&entry->context, context)) {
69                         sid = entry->sid;
70                         break;
71                 }
72         }
73         rcu_read_unlock();
74         return sid;
75 }
76
77 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
78 {
79         struct sidtab_isid_entry *isid;
80         u32 hash;
81         int rc;
82
83         if (sid == 0 || sid > SECINITSID_NUM)
84                 return -EINVAL;
85
86         isid = &s->isids[sid - 1];
87
88         rc = context_cpy(&isid->entry.context, context);
89         if (rc)
90                 return rc;
91
92 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
93         isid->entry.cache = NULL;
94 #endif
95         isid->set = 1;
96
97         hash = context_compute_hash(context);
98
99         /*
100          * Multiple initial sids may map to the same context. Check that this
101          * context is not already represented in the context_to_sid hashtable
102          * to avoid duplicate entries and long linked lists upon hash
103          * collision.
104          */
105         if (!context_to_sid(s, context, hash)) {
106                 isid->entry.sid = sid;
107                 isid->entry.hash = hash;
108                 hash_add(s->context_to_sid, &isid->entry.list, hash);
109         }
110
111         return 0;
112 }
113
114 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
115 {
116         int i;
117         int chain_len = 0;
118         int slots_used = 0;
119         int entries = 0;
120         int max_chain_len = 0;
121         int cur_bucket = 0;
122         struct sidtab_entry *entry;
123
124         rcu_read_lock();
125         hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
126                 entries++;
127                 if (i == cur_bucket) {
128                         chain_len++;
129                         if (chain_len == 1)
130                                 slots_used++;
131                 } else {
132                         cur_bucket = i;
133                         if (chain_len > max_chain_len)
134                                 max_chain_len = chain_len;
135                         chain_len = 0;
136                 }
137         }
138         rcu_read_unlock();
139
140         if (chain_len > max_chain_len)
141                 max_chain_len = chain_len;
142
143         return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
144                          "longest chain: %d\n", entries,
145                          slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
146 }
147
148 static u32 sidtab_level_from_count(u32 count)
149 {
150         u32 capacity = SIDTAB_LEAF_ENTRIES;
151         u32 level = 0;
152
153         while (count > capacity) {
154                 capacity <<= SIDTAB_INNER_SHIFT;
155                 ++level;
156         }
157         return level;
158 }
159
160 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
161 {
162         u32 l;
163
164         if (!s->roots[0].ptr_leaf) {
165                 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
166                                                GFP_ATOMIC);
167                 if (!s->roots[0].ptr_leaf)
168                         return -ENOMEM;
169         }
170         for (l = 1; l <= level; ++l)
171                 if (!s->roots[l].ptr_inner) {
172                         s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
173                                                         GFP_ATOMIC);
174                         if (!s->roots[l].ptr_inner)
175                                 return -ENOMEM;
176                         s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
177                 }
178         return 0;
179 }
180
181 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
182                                              int alloc)
183 {
184         union sidtab_entry_inner *entry;
185         u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
186
187         /* find the level of the subtree we need */
188         level = sidtab_level_from_count(index + 1);
189         capacity_shift = level * SIDTAB_INNER_SHIFT;
190
191         /* allocate roots if needed */
192         if (alloc && sidtab_alloc_roots(s, level) != 0)
193                 return NULL;
194
195         /* lookup inside the subtree */
196         entry = &s->roots[level];
197         while (level != 0) {
198                 capacity_shift -= SIDTAB_INNER_SHIFT;
199                 --level;
200
201                 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
202                 leaf_index &= ((u32)1 << capacity_shift) - 1;
203
204                 if (!entry->ptr_inner) {
205                         if (alloc)
206                                 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
207                                                            GFP_ATOMIC);
208                         if (!entry->ptr_inner)
209                                 return NULL;
210                 }
211         }
212         if (!entry->ptr_leaf) {
213                 if (alloc)
214                         entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
215                                                   GFP_ATOMIC);
216                 if (!entry->ptr_leaf)
217                         return NULL;
218         }
219         return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
220 }
221
222 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
223 {
224         /* read entries only after reading count */
225         u32 count = smp_load_acquire(&s->count);
226
227         if (index >= count)
228                 return NULL;
229
230         return sidtab_do_lookup(s, index, 0);
231 }
232
233 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
234 {
235         return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
236 }
237
238 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
239                                                int force)
240 {
241         if (sid != 0) {
242                 struct sidtab_entry *entry;
243
244                 if (sid > SECINITSID_NUM)
245                         entry = sidtab_lookup(s, sid_to_index(sid));
246                 else
247                         entry = sidtab_lookup_initial(s, sid);
248                 if (entry && (!entry->context.len || force))
249                         return entry;
250         }
251
252         return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
253 }
254
255 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
256 {
257         return sidtab_search_core(s, sid, 0);
258 }
259
260 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
261 {
262         return sidtab_search_core(s, sid, 1);
263 }
264
265 int sidtab_context_to_sid(struct sidtab *s, struct context *context,
266                           u32 *sid)
267 {
268         unsigned long flags;
269         u32 count, hash = context_compute_hash(context);
270         struct sidtab_convert_params *convert;
271         struct sidtab_entry *dst, *dst_convert;
272         int rc;
273
274         *sid = context_to_sid(s, context, hash);
275         if (*sid)
276                 return 0;
277
278         /* lock-free search failed: lock, re-search, and insert if not found */
279         spin_lock_irqsave(&s->lock, flags);
280
281         rc = 0;
282         *sid = context_to_sid(s, context, hash);
283         if (*sid)
284                 goto out_unlock;
285
286         if (unlikely(s->frozen)) {
287                 /*
288                  * This sidtab is now frozen - tell the caller to abort and
289                  * get the new one.
290                  */
291                 rc = -ESTALE;
292                 goto out_unlock;
293         }
294
295         count = s->count;
296
297         /* bail out if we already reached max entries */
298         rc = -EOVERFLOW;
299         if (count >= SIDTAB_MAX)
300                 goto out_unlock;
301
302         /* insert context into new entry */
303         rc = -ENOMEM;
304         dst = sidtab_do_lookup(s, count, 1);
305         if (!dst)
306                 goto out_unlock;
307
308         dst->sid = index_to_sid(count);
309         dst->hash = hash;
310
311         rc = context_cpy(&dst->context, context);
312         if (rc)
313                 goto out_unlock;
314
315         /*
316          * if we are building a new sidtab, we need to convert the context
317          * and insert it there as well
318          */
319         convert = s->convert;
320         if (convert) {
321                 struct sidtab *target = convert->target;
322
323                 rc = -ENOMEM;
324                 dst_convert = sidtab_do_lookup(target, count, 1);
325                 if (!dst_convert) {
326                         context_destroy(&dst->context);
327                         goto out_unlock;
328                 }
329
330                 rc = services_convert_context(convert->args,
331                                               context, &dst_convert->context,
332                                               GFP_ATOMIC);
333                 if (rc) {
334                         context_destroy(&dst->context);
335                         goto out_unlock;
336                 }
337                 dst_convert->sid = index_to_sid(count);
338                 dst_convert->hash = context_compute_hash(&dst_convert->context);
339                 target->count = count + 1;
340
341                 hash_add_rcu(target->context_to_sid,
342                              &dst_convert->list, dst_convert->hash);
343         }
344
345         if (context->len)
346                 pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
347                         context->str);
348
349         *sid = index_to_sid(count);
350
351         /* write entries before updating count */
352         smp_store_release(&s->count, count + 1);
353         hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
354
355         rc = 0;
356 out_unlock:
357         spin_unlock_irqrestore(&s->lock, flags);
358         return rc;
359 }
360
361 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
362 {
363         struct sidtab_entry *entry;
364         u32 i;
365
366         for (i = 0; i < count; i++) {
367                 entry = sidtab_do_lookup(s, i, 0);
368                 entry->sid = index_to_sid(i);
369                 entry->hash = context_compute_hash(&entry->context);
370
371                 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
372         }
373 }
374
375 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
376                                union sidtab_entry_inner *esrc,
377                                u32 *pos, u32 count, u32 level,
378                                struct sidtab_convert_params *convert)
379 {
380         int rc;
381         u32 i;
382
383         if (level != 0) {
384                 if (!edst->ptr_inner) {
385                         edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
386                                                   GFP_KERNEL);
387                         if (!edst->ptr_inner)
388                                 return -ENOMEM;
389                 }
390                 i = 0;
391                 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
392                         rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
393                                                  &esrc->ptr_inner->entries[i],
394                                                  pos, count, level - 1,
395                                                  convert);
396                         if (rc)
397                                 return rc;
398                         i++;
399                 }
400         } else {
401                 if (!edst->ptr_leaf) {
402                         edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
403                                                  GFP_KERNEL);
404                         if (!edst->ptr_leaf)
405                                 return -ENOMEM;
406                 }
407                 i = 0;
408                 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
409                         rc = services_convert_context(convert->args,
410                                         &esrc->ptr_leaf->entries[i].context,
411                                         &edst->ptr_leaf->entries[i].context,
412                                         GFP_KERNEL);
413                         if (rc)
414                                 return rc;
415                         (*pos)++;
416                         i++;
417                 }
418                 cond_resched();
419         }
420         return 0;
421 }
422
423 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
424 {
425         unsigned long flags;
426         u32 count, level, pos;
427         int rc;
428
429         spin_lock_irqsave(&s->lock, flags);
430
431         /* concurrent policy loads are not allowed */
432         if (s->convert) {
433                 spin_unlock_irqrestore(&s->lock, flags);
434                 return -EBUSY;
435         }
436
437         count = s->count;
438         level = sidtab_level_from_count(count);
439
440         /* allocate last leaf in the new sidtab (to avoid race with
441          * live convert)
442          */
443         rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
444         if (rc) {
445                 spin_unlock_irqrestore(&s->lock, flags);
446                 return rc;
447         }
448
449         /* set count in case no new entries are added during conversion */
450         params->target->count = count;
451
452         /* enable live convert of new entries */
453         s->convert = params;
454
455         /* we can safely convert the tree outside the lock */
456         spin_unlock_irqrestore(&s->lock, flags);
457
458         pr_info("SELinux:  Converting %u SID table entries...\n", count);
459
460         /* convert all entries not covered by live convert */
461         pos = 0;
462         rc = sidtab_convert_tree(&params->target->roots[level],
463                                  &s->roots[level], &pos, count, level, params);
464         if (rc) {
465                 /* we need to keep the old table - disable live convert */
466                 spin_lock_irqsave(&s->lock, flags);
467                 s->convert = NULL;
468                 spin_unlock_irqrestore(&s->lock, flags);
469                 return rc;
470         }
471         /*
472          * The hashtable can also be modified in sidtab_context_to_sid()
473          * so we must re-acquire the lock here.
474          */
475         spin_lock_irqsave(&s->lock, flags);
476         sidtab_convert_hashtable(params->target, count);
477         spin_unlock_irqrestore(&s->lock, flags);
478
479         return 0;
480 }
481
482 void sidtab_cancel_convert(struct sidtab *s)
483 {
484         unsigned long flags;
485
486         /* cancelling policy load - disable live convert of sidtab */
487         spin_lock_irqsave(&s->lock, flags);
488         s->convert = NULL;
489         spin_unlock_irqrestore(&s->lock, flags);
490 }
491
492 void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
493 {
494         spin_lock_irqsave(&s->lock, *flags);
495         s->frozen = true;
496         s->convert = NULL;
497 }
498 void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
499 {
500         spin_unlock_irqrestore(&s->lock, *flags);
501 }
502
503 static void sidtab_destroy_entry(struct sidtab_entry *entry)
504 {
505         context_destroy(&entry->context);
506 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
507         kfree(rcu_dereference_raw(entry->cache));
508 #endif
509 }
510
511 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
512 {
513         u32 i;
514
515         if (level != 0) {
516                 struct sidtab_node_inner *node = entry.ptr_inner;
517
518                 if (!node)
519                         return;
520
521                 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
522                         sidtab_destroy_tree(node->entries[i], level - 1);
523                 kfree(node);
524         } else {
525                 struct sidtab_node_leaf *node = entry.ptr_leaf;
526
527                 if (!node)
528                         return;
529
530                 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
531                         sidtab_destroy_entry(&node->entries[i]);
532                 kfree(node);
533         }
534 }
535
536 void sidtab_destroy(struct sidtab *s)
537 {
538         u32 i, level;
539
540         for (i = 0; i < SECINITSID_NUM; i++)
541                 if (s->isids[i].set)
542                         sidtab_destroy_entry(&s->isids[i].entry);
543
544         level = SIDTAB_MAX_LEVEL;
545         while (level && !s->roots[level].ptr_inner)
546                 --level;
547
548         sidtab_destroy_tree(s->roots[level], level);
549         /*
550          * The context_to_sid hashtable's objects are all shared
551          * with the isids array and context tree, and so don't need
552          * to be cleaned up here.
553          */
554 }
555
556 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
557
558 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
559                         const char *str, u32 str_len)
560 {
561         struct sidtab_str_cache *cache, *victim = NULL;
562         unsigned long flags;
563
564         /* do not cache invalid contexts */
565         if (entry->context.len)
566                 return;
567
568         spin_lock_irqsave(&s->cache_lock, flags);
569
570         cache = rcu_dereference_protected(entry->cache,
571                                           lockdep_is_held(&s->cache_lock));
572         if (cache) {
573                 /* entry in cache - just bump to the head of LRU list */
574                 list_move(&cache->lru_member, &s->cache_lru_list);
575                 goto out_unlock;
576         }
577
578         cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
579         if (!cache)
580                 goto out_unlock;
581
582         if (s->cache_free_slots == 0) {
583                 /* pop a cache entry from the tail and free it */
584                 victim = container_of(s->cache_lru_list.prev,
585                                       struct sidtab_str_cache, lru_member);
586                 list_del(&victim->lru_member);
587                 rcu_assign_pointer(victim->parent->cache, NULL);
588         } else {
589                 s->cache_free_slots--;
590         }
591         cache->parent = entry;
592         cache->len = str_len;
593         memcpy(cache->str, str, str_len);
594         list_add(&cache->lru_member, &s->cache_lru_list);
595
596         rcu_assign_pointer(entry->cache, cache);
597
598 out_unlock:
599         spin_unlock_irqrestore(&s->cache_lock, flags);
600         kfree_rcu(victim, rcu_member);
601 }
602
603 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
604                        char **out, u32 *out_len)
605 {
606         struct sidtab_str_cache *cache;
607         int rc = 0;
608
609         if (entry->context.len)
610                 return -ENOENT; /* do not cache invalid contexts */
611
612         rcu_read_lock();
613
614         cache = rcu_dereference(entry->cache);
615         if (!cache) {
616                 rc = -ENOENT;
617         } else {
618                 *out_len = cache->len;
619                 if (out) {
620                         *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
621                         if (!*out)
622                                 rc = -ENOMEM;
623                 }
624         }
625
626         rcu_read_unlock();
627
628         if (!rc && out)
629                 sidtab_sid2str_put(s, entry, *out, *out_len);
630         return rc;
631 }
632
633 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */