GNU Linux-libre 5.4.200-gnu1
[releases.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR       2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37
38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40
41 static struct kmem_cache *lsm_file_cache;
42 static struct kmem_cache *lsm_inode_cache;
43
44 char *lsm_names;
45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46
47 /* Boot-time LSM user choice */
48 static __initdata const char *chosen_lsm_order;
49 static __initdata const char *chosen_major_lsm;
50
51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53 /* Ordered list of LSMs to initialize. */
54 static __initdata struct lsm_info **ordered_lsms;
55 static __initdata struct lsm_info *exclusive;
56
57 static __initdata bool debug;
58 #define init_debug(...)                                         \
59         do {                                                    \
60                 if (debug)                                      \
61                         pr_info(__VA_ARGS__);                   \
62         } while (0)
63
64 static bool __init is_enabled(struct lsm_info *lsm)
65 {
66         if (!lsm->enabled)
67                 return false;
68
69         return *lsm->enabled;
70 }
71
72 /* Mark an LSM's enabled flag. */
73 static int lsm_enabled_true __initdata = 1;
74 static int lsm_enabled_false __initdata = 0;
75 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76 {
77         /*
78          * When an LSM hasn't configured an enable variable, we can use
79          * a hard-coded location for storing the default enabled state.
80          */
81         if (!lsm->enabled) {
82                 if (enabled)
83                         lsm->enabled = &lsm_enabled_true;
84                 else
85                         lsm->enabled = &lsm_enabled_false;
86         } else if (lsm->enabled == &lsm_enabled_true) {
87                 if (!enabled)
88                         lsm->enabled = &lsm_enabled_false;
89         } else if (lsm->enabled == &lsm_enabled_false) {
90                 if (enabled)
91                         lsm->enabled = &lsm_enabled_true;
92         } else {
93                 *lsm->enabled = enabled;
94         }
95 }
96
97 /* Is an LSM already listed in the ordered LSMs list? */
98 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99 {
100         struct lsm_info **check;
101
102         for (check = ordered_lsms; *check; check++)
103                 if (*check == lsm)
104                         return true;
105
106         return false;
107 }
108
109 /* Append an LSM to the list of ordered LSMs to initialize. */
110 static int last_lsm __initdata;
111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112 {
113         /* Ignore duplicate selections. */
114         if (exists_ordered_lsm(lsm))
115                 return;
116
117         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118                 return;
119
120         /* Enable this LSM, if it is not already set. */
121         if (!lsm->enabled)
122                 lsm->enabled = &lsm_enabled_true;
123         ordered_lsms[last_lsm++] = lsm;
124
125         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126                    is_enabled(lsm) ? "en" : "dis");
127 }
128
129 /* Is an LSM allowed to be initialized? */
130 static bool __init lsm_allowed(struct lsm_info *lsm)
131 {
132         /* Skip if the LSM is disabled. */
133         if (!is_enabled(lsm))
134                 return false;
135
136         /* Not allowed if another exclusive LSM already initialized. */
137         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138                 init_debug("exclusive disabled: %s\n", lsm->name);
139                 return false;
140         }
141
142         return true;
143 }
144
145 static void __init lsm_set_blob_size(int *need, int *lbs)
146 {
147         int offset;
148
149         if (*need > 0) {
150                 offset = *lbs;
151                 *lbs += *need;
152                 *need = offset;
153         }
154 }
155
156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157 {
158         if (!needed)
159                 return;
160
161         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163         /*
164          * The inode blob gets an rcu_head in addition to
165          * what the modules might need.
166          */
167         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173 }
174
175 /* Prepare LSM for initialization. */
176 static void __init prepare_lsm(struct lsm_info *lsm)
177 {
178         int enabled = lsm_allowed(lsm);
179
180         /* Record enablement (to handle any following exclusive LSMs). */
181         set_enabled(lsm, enabled);
182
183         /* If enabled, do pre-initialization work. */
184         if (enabled) {
185                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186                         exclusive = lsm;
187                         init_debug("exclusive chosen: %s\n", lsm->name);
188                 }
189
190                 lsm_set_blob_sizes(lsm->blobs);
191         }
192 }
193
194 /* Initialize a given LSM, if it is enabled. */
195 static void __init initialize_lsm(struct lsm_info *lsm)
196 {
197         if (is_enabled(lsm)) {
198                 int ret;
199
200                 init_debug("initializing %s\n", lsm->name);
201                 ret = lsm->init();
202                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203         }
204 }
205
206 /* Populate ordered LSMs list from comma-separated LSM name list. */
207 static void __init ordered_lsm_parse(const char *order, const char *origin)
208 {
209         struct lsm_info *lsm;
210         char *sep, *name, *next;
211
212         /* LSM_ORDER_FIRST is always first. */
213         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214                 if (lsm->order == LSM_ORDER_FIRST)
215                         append_ordered_lsm(lsm, "first");
216         }
217
218         /* Process "security=", if given. */
219         if (chosen_major_lsm) {
220                 struct lsm_info *major;
221
222                 /*
223                  * To match the original "security=" behavior, this
224                  * explicitly does NOT fallback to another Legacy Major
225                  * if the selected one was separately disabled: disable
226                  * all non-matching Legacy Major LSMs.
227                  */
228                 for (major = __start_lsm_info; major < __end_lsm_info;
229                      major++) {
230                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231                             strcmp(major->name, chosen_major_lsm) != 0) {
232                                 set_enabled(major, false);
233                                 init_debug("security=%s disabled: %s\n",
234                                            chosen_major_lsm, major->name);
235                         }
236                 }
237         }
238
239         sep = kstrdup(order, GFP_KERNEL);
240         next = sep;
241         /* Walk the list, looking for matching LSMs. */
242         while ((name = strsep(&next, ",")) != NULL) {
243                 bool found = false;
244
245                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246                         if (lsm->order == LSM_ORDER_MUTABLE &&
247                             strcmp(lsm->name, name) == 0) {
248                                 append_ordered_lsm(lsm, origin);
249                                 found = true;
250                         }
251                 }
252
253                 if (!found)
254                         init_debug("%s ignored: %s\n", origin, name);
255         }
256
257         /* Process "security=", if given. */
258         if (chosen_major_lsm) {
259                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260                         if (exists_ordered_lsm(lsm))
261                                 continue;
262                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
263                                 append_ordered_lsm(lsm, "security=");
264                 }
265         }
266
267         /* Disable all LSMs not in the ordered list. */
268         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269                 if (exists_ordered_lsm(lsm))
270                         continue;
271                 set_enabled(lsm, false);
272                 init_debug("%s disabled: %s\n", origin, lsm->name);
273         }
274
275         kfree(sep);
276 }
277
278 static void __init lsm_early_cred(struct cred *cred);
279 static void __init lsm_early_task(struct task_struct *task);
280
281 static int lsm_append(const char *new, char **result);
282
283 static void __init ordered_lsm_init(void)
284 {
285         struct lsm_info **lsm;
286
287         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288                                 GFP_KERNEL);
289
290         if (chosen_lsm_order) {
291                 if (chosen_major_lsm) {
292                         pr_info("security= is ignored because it is superseded by lsm=\n");
293                         chosen_major_lsm = NULL;
294                 }
295                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296         } else
297                 ordered_lsm_parse(builtin_lsm_order, "builtin");
298
299         for (lsm = ordered_lsms; *lsm; lsm++)
300                 prepare_lsm(*lsm);
301
302         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
303         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
304         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
305         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
306         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
307         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
308
309         /*
310          * Create any kmem_caches needed for blobs
311          */
312         if (blob_sizes.lbs_file)
313                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314                                                    blob_sizes.lbs_file, 0,
315                                                    SLAB_PANIC, NULL);
316         if (blob_sizes.lbs_inode)
317                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318                                                     blob_sizes.lbs_inode, 0,
319                                                     SLAB_PANIC, NULL);
320
321         lsm_early_cred((struct cred *) current->cred);
322         lsm_early_task(current);
323         for (lsm = ordered_lsms; *lsm; lsm++)
324                 initialize_lsm(*lsm);
325
326         kfree(ordered_lsms);
327 }
328
329 int __init early_security_init(void)
330 {
331         int i;
332         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333         struct lsm_info *lsm;
334
335         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336              i++)
337                 INIT_HLIST_HEAD(&list[i]);
338
339         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340                 if (!lsm->enabled)
341                         lsm->enabled = &lsm_enabled_true;
342                 prepare_lsm(lsm);
343                 initialize_lsm(lsm);
344         }
345
346         return 0;
347 }
348
349 /**
350  * security_init - initializes the security framework
351  *
352  * This should be called early in the kernel initialization sequence.
353  */
354 int __init security_init(void)
355 {
356         struct lsm_info *lsm;
357
358         pr_info("Security Framework initializing\n");
359
360         /*
361          * Append the names of the early LSM modules now that kmalloc() is
362          * available
363          */
364         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365                 if (lsm->enabled)
366                         lsm_append(lsm->name, &lsm_names);
367         }
368
369         /* Load LSMs in specified order. */
370         ordered_lsm_init();
371
372         return 0;
373 }
374
375 /* Save user chosen LSM */
376 static int __init choose_major_lsm(char *str)
377 {
378         chosen_major_lsm = str;
379         return 1;
380 }
381 __setup("security=", choose_major_lsm);
382
383 /* Explicitly choose LSM initialization order. */
384 static int __init choose_lsm_order(char *str)
385 {
386         chosen_lsm_order = str;
387         return 1;
388 }
389 __setup("lsm=", choose_lsm_order);
390
391 /* Enable LSM order debugging. */
392 static int __init enable_debug(char *str)
393 {
394         debug = true;
395         return 1;
396 }
397 __setup("lsm.debug", enable_debug);
398
399 static bool match_last_lsm(const char *list, const char *lsm)
400 {
401         const char *last;
402
403         if (WARN_ON(!list || !lsm))
404                 return false;
405         last = strrchr(list, ',');
406         if (last)
407                 /* Pass the comma, strcmp() will check for '\0' */
408                 last++;
409         else
410                 last = list;
411         return !strcmp(last, lsm);
412 }
413
414 static int lsm_append(const char *new, char **result)
415 {
416         char *cp;
417
418         if (*result == NULL) {
419                 *result = kstrdup(new, GFP_KERNEL);
420                 if (*result == NULL)
421                         return -ENOMEM;
422         } else {
423                 /* Check if it is the last registered name */
424                 if (match_last_lsm(*result, new))
425                         return 0;
426                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427                 if (cp == NULL)
428                         return -ENOMEM;
429                 kfree(*result);
430                 *result = cp;
431         }
432         return 0;
433 }
434
435 /**
436  * security_add_hooks - Add a modules hooks to the hook lists.
437  * @hooks: the hooks to add
438  * @count: the number of hooks to add
439  * @lsm: the name of the security module
440  *
441  * Each LSM has to register its hooks with the infrastructure.
442  */
443 void __init security_add_hooks(struct security_hook_list *hooks, int count,
444                                 char *lsm)
445 {
446         int i;
447
448         for (i = 0; i < count; i++) {
449                 hooks[i].lsm = lsm;
450                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451         }
452
453         /*
454          * Don't try to append during early_security_init(), we'll come back
455          * and fix this up afterwards.
456          */
457         if (slab_is_available()) {
458                 if (lsm_append(lsm, &lsm_names) < 0)
459                         panic("%s - Cannot get early memory.\n", __func__);
460         }
461 }
462
463 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464 {
465         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466                                             event, data);
467 }
468 EXPORT_SYMBOL(call_blocking_lsm_notifier);
469
470 int register_blocking_lsm_notifier(struct notifier_block *nb)
471 {
472         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473                                                 nb);
474 }
475 EXPORT_SYMBOL(register_blocking_lsm_notifier);
476
477 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478 {
479         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480                                                   nb);
481 }
482 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483
484 /**
485  * lsm_cred_alloc - allocate a composite cred blob
486  * @cred: the cred that needs a blob
487  * @gfp: allocation type
488  *
489  * Allocate the cred blob for all the modules
490  *
491  * Returns 0, or -ENOMEM if memory can't be allocated.
492  */
493 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494 {
495         if (blob_sizes.lbs_cred == 0) {
496                 cred->security = NULL;
497                 return 0;
498         }
499
500         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501         if (cred->security == NULL)
502                 return -ENOMEM;
503         return 0;
504 }
505
506 /**
507  * lsm_early_cred - during initialization allocate a composite cred blob
508  * @cred: the cred that needs a blob
509  *
510  * Allocate the cred blob for all the modules
511  */
512 static void __init lsm_early_cred(struct cred *cred)
513 {
514         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515
516         if (rc)
517                 panic("%s: Early cred alloc failed.\n", __func__);
518 }
519
520 /**
521  * lsm_file_alloc - allocate a composite file blob
522  * @file: the file that needs a blob
523  *
524  * Allocate the file blob for all the modules
525  *
526  * Returns 0, or -ENOMEM if memory can't be allocated.
527  */
528 static int lsm_file_alloc(struct file *file)
529 {
530         if (!lsm_file_cache) {
531                 file->f_security = NULL;
532                 return 0;
533         }
534
535         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536         if (file->f_security == NULL)
537                 return -ENOMEM;
538         return 0;
539 }
540
541 /**
542  * lsm_inode_alloc - allocate a composite inode blob
543  * @inode: the inode that needs a blob
544  *
545  * Allocate the inode blob for all the modules
546  *
547  * Returns 0, or -ENOMEM if memory can't be allocated.
548  */
549 int lsm_inode_alloc(struct inode *inode)
550 {
551         if (!lsm_inode_cache) {
552                 inode->i_security = NULL;
553                 return 0;
554         }
555
556         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557         if (inode->i_security == NULL)
558                 return -ENOMEM;
559         return 0;
560 }
561
562 /**
563  * lsm_task_alloc - allocate a composite task blob
564  * @task: the task that needs a blob
565  *
566  * Allocate the task blob for all the modules
567  *
568  * Returns 0, or -ENOMEM if memory can't be allocated.
569  */
570 static int lsm_task_alloc(struct task_struct *task)
571 {
572         if (blob_sizes.lbs_task == 0) {
573                 task->security = NULL;
574                 return 0;
575         }
576
577         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578         if (task->security == NULL)
579                 return -ENOMEM;
580         return 0;
581 }
582
583 /**
584  * lsm_ipc_alloc - allocate a composite ipc blob
585  * @kip: the ipc that needs a blob
586  *
587  * Allocate the ipc blob for all the modules
588  *
589  * Returns 0, or -ENOMEM if memory can't be allocated.
590  */
591 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592 {
593         if (blob_sizes.lbs_ipc == 0) {
594                 kip->security = NULL;
595                 return 0;
596         }
597
598         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599         if (kip->security == NULL)
600                 return -ENOMEM;
601         return 0;
602 }
603
604 /**
605  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606  * @mp: the msg_msg that needs a blob
607  *
608  * Allocate the ipc blob for all the modules
609  *
610  * Returns 0, or -ENOMEM if memory can't be allocated.
611  */
612 static int lsm_msg_msg_alloc(struct msg_msg *mp)
613 {
614         if (blob_sizes.lbs_msg_msg == 0) {
615                 mp->security = NULL;
616                 return 0;
617         }
618
619         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620         if (mp->security == NULL)
621                 return -ENOMEM;
622         return 0;
623 }
624
625 /**
626  * lsm_early_task - during initialization allocate a composite task blob
627  * @task: the task that needs a blob
628  *
629  * Allocate the task blob for all the modules
630  */
631 static void __init lsm_early_task(struct task_struct *task)
632 {
633         int rc = lsm_task_alloc(task);
634
635         if (rc)
636                 panic("%s: Early task alloc failed.\n", __func__);
637 }
638
639 /*
640  * Hook list operation macros.
641  *
642  * call_void_hook:
643  *      This is a hook that does not return a value.
644  *
645  * call_int_hook:
646  *      This is a hook that returns a value.
647  */
648
649 #define call_void_hook(FUNC, ...)                               \
650         do {                                                    \
651                 struct security_hook_list *P;                   \
652                                                                 \
653                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654                         P->hook.FUNC(__VA_ARGS__);              \
655         } while (0)
656
657 #define call_int_hook(FUNC, IRC, ...) ({                        \
658         int RC = IRC;                                           \
659         do {                                                    \
660                 struct security_hook_list *P;                   \
661                                                                 \
662                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663                         RC = P->hook.FUNC(__VA_ARGS__);         \
664                         if (RC != 0)                            \
665                                 break;                          \
666                 }                                               \
667         } while (0);                                            \
668         RC;                                                     \
669 })
670
671 /* Security operations */
672
673 int security_binder_set_context_mgr(const struct cred *mgr)
674 {
675         return call_int_hook(binder_set_context_mgr, 0, mgr);
676 }
677
678 int security_binder_transaction(const struct cred *from,
679                                 const struct cred *to)
680 {
681         return call_int_hook(binder_transaction, 0, from, to);
682 }
683
684 int security_binder_transfer_binder(const struct cred *from,
685                                     const struct cred *to)
686 {
687         return call_int_hook(binder_transfer_binder, 0, from, to);
688 }
689
690 int security_binder_transfer_file(const struct cred *from,
691                                   const struct cred *to, struct file *file)
692 {
693         return call_int_hook(binder_transfer_file, 0, from, to, file);
694 }
695
696 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697 {
698         return call_int_hook(ptrace_access_check, 0, child, mode);
699 }
700
701 int security_ptrace_traceme(struct task_struct *parent)
702 {
703         return call_int_hook(ptrace_traceme, 0, parent);
704 }
705
706 int security_capget(struct task_struct *target,
707                      kernel_cap_t *effective,
708                      kernel_cap_t *inheritable,
709                      kernel_cap_t *permitted)
710 {
711         return call_int_hook(capget, 0, target,
712                                 effective, inheritable, permitted);
713 }
714
715 int security_capset(struct cred *new, const struct cred *old,
716                     const kernel_cap_t *effective,
717                     const kernel_cap_t *inheritable,
718                     const kernel_cap_t *permitted)
719 {
720         return call_int_hook(capset, 0, new, old,
721                                 effective, inheritable, permitted);
722 }
723
724 int security_capable(const struct cred *cred,
725                      struct user_namespace *ns,
726                      int cap,
727                      unsigned int opts)
728 {
729         return call_int_hook(capable, 0, cred, ns, cap, opts);
730 }
731
732 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733 {
734         return call_int_hook(quotactl, 0, cmds, type, id, sb);
735 }
736
737 int security_quota_on(struct dentry *dentry)
738 {
739         return call_int_hook(quota_on, 0, dentry);
740 }
741
742 int security_syslog(int type)
743 {
744         return call_int_hook(syslog, 0, type);
745 }
746
747 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748 {
749         return call_int_hook(settime, 0, ts, tz);
750 }
751
752 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753 {
754         struct security_hook_list *hp;
755         int cap_sys_admin = 1;
756         int rc;
757
758         /*
759          * The module will respond with a positive value if
760          * it thinks the __vm_enough_memory() call should be
761          * made with the cap_sys_admin set. If all of the modules
762          * agree that it should be set it will. If any module
763          * thinks it should not be set it won't.
764          */
765         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766                 rc = hp->hook.vm_enough_memory(mm, pages);
767                 if (rc <= 0) {
768                         cap_sys_admin = 0;
769                         break;
770                 }
771         }
772         return __vm_enough_memory(mm, pages, cap_sys_admin);
773 }
774
775 int security_bprm_set_creds(struct linux_binprm *bprm)
776 {
777         return call_int_hook(bprm_set_creds, 0, bprm);
778 }
779
780 int security_bprm_check(struct linux_binprm *bprm)
781 {
782         int ret;
783
784         ret = call_int_hook(bprm_check_security, 0, bprm);
785         if (ret)
786                 return ret;
787         return ima_bprm_check(bprm);
788 }
789
790 void security_bprm_committing_creds(struct linux_binprm *bprm)
791 {
792         call_void_hook(bprm_committing_creds, bprm);
793 }
794
795 void security_bprm_committed_creds(struct linux_binprm *bprm)
796 {
797         call_void_hook(bprm_committed_creds, bprm);
798 }
799
800 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801 {
802         return call_int_hook(fs_context_dup, 0, fc, src_fc);
803 }
804
805 int security_fs_context_parse_param(struct fs_context *fc,
806                                     struct fs_parameter *param)
807 {
808         struct security_hook_list *hp;
809         int trc;
810         int rc = -ENOPARAM;
811
812         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
813                              list) {
814                 trc = hp->hook.fs_context_parse_param(fc, param);
815                 if (trc == 0)
816                         rc = 0;
817                 else if (trc != -ENOPARAM)
818                         return trc;
819         }
820         return rc;
821 }
822
823 int security_sb_alloc(struct super_block *sb)
824 {
825         return call_int_hook(sb_alloc_security, 0, sb);
826 }
827
828 void security_sb_free(struct super_block *sb)
829 {
830         call_void_hook(sb_free_security, sb);
831 }
832
833 void security_free_mnt_opts(void **mnt_opts)
834 {
835         if (!*mnt_opts)
836                 return;
837         call_void_hook(sb_free_mnt_opts, *mnt_opts);
838         *mnt_opts = NULL;
839 }
840 EXPORT_SYMBOL(security_free_mnt_opts);
841
842 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
843 {
844         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
845 }
846 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
847
848 int security_sb_remount(struct super_block *sb,
849                         void *mnt_opts)
850 {
851         return call_int_hook(sb_remount, 0, sb, mnt_opts);
852 }
853 EXPORT_SYMBOL(security_sb_remount);
854
855 int security_sb_kern_mount(struct super_block *sb)
856 {
857         return call_int_hook(sb_kern_mount, 0, sb);
858 }
859
860 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
861 {
862         return call_int_hook(sb_show_options, 0, m, sb);
863 }
864
865 int security_sb_statfs(struct dentry *dentry)
866 {
867         return call_int_hook(sb_statfs, 0, dentry);
868 }
869
870 int security_sb_mount(const char *dev_name, const struct path *path,
871                        const char *type, unsigned long flags, void *data)
872 {
873         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
874 }
875
876 int security_sb_umount(struct vfsmount *mnt, int flags)
877 {
878         return call_int_hook(sb_umount, 0, mnt, flags);
879 }
880
881 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
882 {
883         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
884 }
885
886 int security_sb_set_mnt_opts(struct super_block *sb,
887                                 void *mnt_opts,
888                                 unsigned long kern_flags,
889                                 unsigned long *set_kern_flags)
890 {
891         return call_int_hook(sb_set_mnt_opts,
892                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
893                                 mnt_opts, kern_flags, set_kern_flags);
894 }
895 EXPORT_SYMBOL(security_sb_set_mnt_opts);
896
897 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
898                                 struct super_block *newsb,
899                                 unsigned long kern_flags,
900                                 unsigned long *set_kern_flags)
901 {
902         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
903                                 kern_flags, set_kern_flags);
904 }
905 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
906
907 int security_add_mnt_opt(const char *option, const char *val, int len,
908                          void **mnt_opts)
909 {
910         return call_int_hook(sb_add_mnt_opt, -EINVAL,
911                                         option, val, len, mnt_opts);
912 }
913 EXPORT_SYMBOL(security_add_mnt_opt);
914
915 int security_move_mount(const struct path *from_path, const struct path *to_path)
916 {
917         return call_int_hook(move_mount, 0, from_path, to_path);
918 }
919
920 int security_path_notify(const struct path *path, u64 mask,
921                                 unsigned int obj_type)
922 {
923         return call_int_hook(path_notify, 0, path, mask, obj_type);
924 }
925
926 int security_inode_alloc(struct inode *inode)
927 {
928         int rc = lsm_inode_alloc(inode);
929
930         if (unlikely(rc))
931                 return rc;
932         rc = call_int_hook(inode_alloc_security, 0, inode);
933         if (unlikely(rc))
934                 security_inode_free(inode);
935         return rc;
936 }
937
938 static void inode_free_by_rcu(struct rcu_head *head)
939 {
940         /*
941          * The rcu head is at the start of the inode blob
942          */
943         kmem_cache_free(lsm_inode_cache, head);
944 }
945
946 void security_inode_free(struct inode *inode)
947 {
948         integrity_inode_free(inode);
949         call_void_hook(inode_free_security, inode);
950         /*
951          * The inode may still be referenced in a path walk and
952          * a call to security_inode_permission() can be made
953          * after inode_free_security() is called. Ideally, the VFS
954          * wouldn't do this, but fixing that is a much harder
955          * job. For now, simply free the i_security via RCU, and
956          * leave the current inode->i_security pointer intact.
957          * The inode will be freed after the RCU grace period too.
958          */
959         if (inode->i_security)
960                 call_rcu((struct rcu_head *)inode->i_security,
961                                 inode_free_by_rcu);
962 }
963
964 int security_dentry_init_security(struct dentry *dentry, int mode,
965                                         const struct qstr *name, void **ctx,
966                                         u32 *ctxlen)
967 {
968         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
969                                 name, ctx, ctxlen);
970 }
971 EXPORT_SYMBOL(security_dentry_init_security);
972
973 int security_dentry_create_files_as(struct dentry *dentry, int mode,
974                                     struct qstr *name,
975                                     const struct cred *old, struct cred *new)
976 {
977         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
978                                 name, old, new);
979 }
980 EXPORT_SYMBOL(security_dentry_create_files_as);
981
982 int security_inode_init_security(struct inode *inode, struct inode *dir,
983                                  const struct qstr *qstr,
984                                  const initxattrs initxattrs, void *fs_data)
985 {
986         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
987         struct xattr *lsm_xattr, *evm_xattr, *xattr;
988         int ret;
989
990         if (unlikely(IS_PRIVATE(inode)))
991                 return 0;
992
993         if (!initxattrs)
994                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
995                                      dir, qstr, NULL, NULL, NULL);
996         memset(new_xattrs, 0, sizeof(new_xattrs));
997         lsm_xattr = new_xattrs;
998         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
999                                                 &lsm_xattr->name,
1000                                                 &lsm_xattr->value,
1001                                                 &lsm_xattr->value_len);
1002         if (ret)
1003                 goto out;
1004
1005         evm_xattr = lsm_xattr + 1;
1006         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1007         if (ret)
1008                 goto out;
1009         ret = initxattrs(inode, new_xattrs, fs_data);
1010 out:
1011         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1012                 kfree(xattr->value);
1013         return (ret == -EOPNOTSUPP) ? 0 : ret;
1014 }
1015 EXPORT_SYMBOL(security_inode_init_security);
1016
1017 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1018                                      const struct qstr *qstr, const char **name,
1019                                      void **value, size_t *len)
1020 {
1021         if (unlikely(IS_PRIVATE(inode)))
1022                 return -EOPNOTSUPP;
1023         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1024                              qstr, name, value, len);
1025 }
1026 EXPORT_SYMBOL(security_old_inode_init_security);
1027
1028 #ifdef CONFIG_SECURITY_PATH
1029 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1030                         unsigned int dev)
1031 {
1032         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1033                 return 0;
1034         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1035 }
1036 EXPORT_SYMBOL(security_path_mknod);
1037
1038 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1039 {
1040         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1041                 return 0;
1042         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1043 }
1044 EXPORT_SYMBOL(security_path_mkdir);
1045
1046 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1047 {
1048         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1049                 return 0;
1050         return call_int_hook(path_rmdir, 0, dir, dentry);
1051 }
1052
1053 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1054 {
1055         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1056                 return 0;
1057         return call_int_hook(path_unlink, 0, dir, dentry);
1058 }
1059 EXPORT_SYMBOL(security_path_unlink);
1060
1061 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1062                           const char *old_name)
1063 {
1064         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1065                 return 0;
1066         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1067 }
1068
1069 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1070                        struct dentry *new_dentry)
1071 {
1072         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1073                 return 0;
1074         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1075 }
1076
1077 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1078                          const struct path *new_dir, struct dentry *new_dentry,
1079                          unsigned int flags)
1080 {
1081         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1082                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1083                 return 0;
1084
1085         if (flags & RENAME_EXCHANGE) {
1086                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1087                                         old_dir, old_dentry);
1088                 if (err)
1089                         return err;
1090         }
1091
1092         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1093                                 new_dentry);
1094 }
1095 EXPORT_SYMBOL(security_path_rename);
1096
1097 int security_path_truncate(const struct path *path)
1098 {
1099         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1100                 return 0;
1101         return call_int_hook(path_truncate, 0, path);
1102 }
1103
1104 int security_path_chmod(const struct path *path, umode_t mode)
1105 {
1106         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1107                 return 0;
1108         return call_int_hook(path_chmod, 0, path, mode);
1109 }
1110
1111 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1112 {
1113         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1114                 return 0;
1115         return call_int_hook(path_chown, 0, path, uid, gid);
1116 }
1117
1118 int security_path_chroot(const struct path *path)
1119 {
1120         return call_int_hook(path_chroot, 0, path);
1121 }
1122 #endif
1123
1124 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1125 {
1126         if (unlikely(IS_PRIVATE(dir)))
1127                 return 0;
1128         return call_int_hook(inode_create, 0, dir, dentry, mode);
1129 }
1130 EXPORT_SYMBOL_GPL(security_inode_create);
1131
1132 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1133                          struct dentry *new_dentry)
1134 {
1135         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1136                 return 0;
1137         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1138 }
1139
1140 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1141 {
1142         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1143                 return 0;
1144         return call_int_hook(inode_unlink, 0, dir, dentry);
1145 }
1146
1147 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1148                             const char *old_name)
1149 {
1150         if (unlikely(IS_PRIVATE(dir)))
1151                 return 0;
1152         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1153 }
1154
1155 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1156 {
1157         if (unlikely(IS_PRIVATE(dir)))
1158                 return 0;
1159         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1160 }
1161 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1162
1163 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1164 {
1165         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1166                 return 0;
1167         return call_int_hook(inode_rmdir, 0, dir, dentry);
1168 }
1169
1170 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1171 {
1172         if (unlikely(IS_PRIVATE(dir)))
1173                 return 0;
1174         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1175 }
1176
1177 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1178                            struct inode *new_dir, struct dentry *new_dentry,
1179                            unsigned int flags)
1180 {
1181         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1182             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1183                 return 0;
1184
1185         if (flags & RENAME_EXCHANGE) {
1186                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1187                                                      old_dir, old_dentry);
1188                 if (err)
1189                         return err;
1190         }
1191
1192         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1193                                            new_dir, new_dentry);
1194 }
1195
1196 int security_inode_readlink(struct dentry *dentry)
1197 {
1198         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1199                 return 0;
1200         return call_int_hook(inode_readlink, 0, dentry);
1201 }
1202
1203 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1204                                bool rcu)
1205 {
1206         if (unlikely(IS_PRIVATE(inode)))
1207                 return 0;
1208         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1209 }
1210
1211 int security_inode_permission(struct inode *inode, int mask)
1212 {
1213         if (unlikely(IS_PRIVATE(inode)))
1214                 return 0;
1215         return call_int_hook(inode_permission, 0, inode, mask);
1216 }
1217
1218 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1219 {
1220         int ret;
1221
1222         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1223                 return 0;
1224         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1225         if (ret)
1226                 return ret;
1227         return evm_inode_setattr(dentry, attr);
1228 }
1229 EXPORT_SYMBOL_GPL(security_inode_setattr);
1230
1231 int security_inode_getattr(const struct path *path)
1232 {
1233         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1234                 return 0;
1235         return call_int_hook(inode_getattr, 0, path);
1236 }
1237
1238 int security_inode_setxattr(struct dentry *dentry, const char *name,
1239                             const void *value, size_t size, int flags)
1240 {
1241         int ret;
1242
1243         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1244                 return 0;
1245         /*
1246          * SELinux and Smack integrate the cap call,
1247          * so assume that all LSMs supplying this call do so.
1248          */
1249         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1250                                 flags);
1251
1252         if (ret == 1)
1253                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1254         if (ret)
1255                 return ret;
1256         ret = ima_inode_setxattr(dentry, name, value, size);
1257         if (ret)
1258                 return ret;
1259         return evm_inode_setxattr(dentry, name, value, size);
1260 }
1261
1262 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1263                                   const void *value, size_t size, int flags)
1264 {
1265         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266                 return;
1267         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1268         evm_inode_post_setxattr(dentry, name, value, size);
1269 }
1270
1271 int security_inode_getxattr(struct dentry *dentry, const char *name)
1272 {
1273         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1274                 return 0;
1275         return call_int_hook(inode_getxattr, 0, dentry, name);
1276 }
1277
1278 int security_inode_listxattr(struct dentry *dentry)
1279 {
1280         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1281                 return 0;
1282         return call_int_hook(inode_listxattr, 0, dentry);
1283 }
1284
1285 int security_inode_removexattr(struct dentry *dentry, const char *name)
1286 {
1287         int ret;
1288
1289         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1290                 return 0;
1291         /*
1292          * SELinux and Smack integrate the cap call,
1293          * so assume that all LSMs supplying this call do so.
1294          */
1295         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1296         if (ret == 1)
1297                 ret = cap_inode_removexattr(dentry, name);
1298         if (ret)
1299                 return ret;
1300         ret = ima_inode_removexattr(dentry, name);
1301         if (ret)
1302                 return ret;
1303         return evm_inode_removexattr(dentry, name);
1304 }
1305
1306 int security_inode_need_killpriv(struct dentry *dentry)
1307 {
1308         return call_int_hook(inode_need_killpriv, 0, dentry);
1309 }
1310
1311 int security_inode_killpriv(struct dentry *dentry)
1312 {
1313         return call_int_hook(inode_killpriv, 0, dentry);
1314 }
1315
1316 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1317 {
1318         struct security_hook_list *hp;
1319         int rc;
1320
1321         if (unlikely(IS_PRIVATE(inode)))
1322                 return -EOPNOTSUPP;
1323         /*
1324          * Only one module will provide an attribute with a given name.
1325          */
1326         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1327                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1328                 if (rc != -EOPNOTSUPP)
1329                         return rc;
1330         }
1331         return -EOPNOTSUPP;
1332 }
1333
1334 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1335 {
1336         struct security_hook_list *hp;
1337         int rc;
1338
1339         if (unlikely(IS_PRIVATE(inode)))
1340                 return -EOPNOTSUPP;
1341         /*
1342          * Only one module will provide an attribute with a given name.
1343          */
1344         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1345                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1346                                                                 flags);
1347                 if (rc != -EOPNOTSUPP)
1348                         return rc;
1349         }
1350         return -EOPNOTSUPP;
1351 }
1352
1353 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1354 {
1355         if (unlikely(IS_PRIVATE(inode)))
1356                 return 0;
1357         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1358 }
1359 EXPORT_SYMBOL(security_inode_listsecurity);
1360
1361 void security_inode_getsecid(struct inode *inode, u32 *secid)
1362 {
1363         call_void_hook(inode_getsecid, inode, secid);
1364 }
1365
1366 int security_inode_copy_up(struct dentry *src, struct cred **new)
1367 {
1368         return call_int_hook(inode_copy_up, 0, src, new);
1369 }
1370 EXPORT_SYMBOL(security_inode_copy_up);
1371
1372 int security_inode_copy_up_xattr(const char *name)
1373 {
1374         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1375 }
1376 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1377
1378 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1379                                   struct kernfs_node *kn)
1380 {
1381         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1382 }
1383
1384 int security_file_permission(struct file *file, int mask)
1385 {
1386         int ret;
1387
1388         ret = call_int_hook(file_permission, 0, file, mask);
1389         if (ret)
1390                 return ret;
1391
1392         return fsnotify_perm(file, mask);
1393 }
1394
1395 int security_file_alloc(struct file *file)
1396 {
1397         int rc = lsm_file_alloc(file);
1398
1399         if (rc)
1400                 return rc;
1401         rc = call_int_hook(file_alloc_security, 0, file);
1402         if (unlikely(rc))
1403                 security_file_free(file);
1404         return rc;
1405 }
1406
1407 void security_file_free(struct file *file)
1408 {
1409         void *blob;
1410
1411         call_void_hook(file_free_security, file);
1412
1413         blob = file->f_security;
1414         if (blob) {
1415                 file->f_security = NULL;
1416                 kmem_cache_free(lsm_file_cache, blob);
1417         }
1418 }
1419
1420 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1421 {
1422         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1423 }
1424
1425 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1426 {
1427         /*
1428          * Does we have PROT_READ and does the application expect
1429          * it to imply PROT_EXEC?  If not, nothing to talk about...
1430          */
1431         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1432                 return prot;
1433         if (!(current->personality & READ_IMPLIES_EXEC))
1434                 return prot;
1435         /*
1436          * if that's an anonymous mapping, let it.
1437          */
1438         if (!file)
1439                 return prot | PROT_EXEC;
1440         /*
1441          * ditto if it's not on noexec mount, except that on !MMU we need
1442          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1443          */
1444         if (!path_noexec(&file->f_path)) {
1445 #ifndef CONFIG_MMU
1446                 if (file->f_op->mmap_capabilities) {
1447                         unsigned caps = file->f_op->mmap_capabilities(file);
1448                         if (!(caps & NOMMU_MAP_EXEC))
1449                                 return prot;
1450                 }
1451 #endif
1452                 return prot | PROT_EXEC;
1453         }
1454         /* anything on noexec mount won't get PROT_EXEC */
1455         return prot;
1456 }
1457
1458 int security_mmap_file(struct file *file, unsigned long prot,
1459                         unsigned long flags)
1460 {
1461         int ret;
1462         ret = call_int_hook(mmap_file, 0, file, prot,
1463                                         mmap_prot(file, prot), flags);
1464         if (ret)
1465                 return ret;
1466         return ima_file_mmap(file, prot);
1467 }
1468
1469 int security_mmap_addr(unsigned long addr)
1470 {
1471         return call_int_hook(mmap_addr, 0, addr);
1472 }
1473
1474 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1475                             unsigned long prot)
1476 {
1477         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1478 }
1479
1480 int security_file_lock(struct file *file, unsigned int cmd)
1481 {
1482         return call_int_hook(file_lock, 0, file, cmd);
1483 }
1484
1485 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1486 {
1487         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1488 }
1489
1490 void security_file_set_fowner(struct file *file)
1491 {
1492         call_void_hook(file_set_fowner, file);
1493 }
1494
1495 int security_file_send_sigiotask(struct task_struct *tsk,
1496                                   struct fown_struct *fown, int sig)
1497 {
1498         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1499 }
1500
1501 int security_file_receive(struct file *file)
1502 {
1503         return call_int_hook(file_receive, 0, file);
1504 }
1505
1506 int security_file_open(struct file *file)
1507 {
1508         int ret;
1509
1510         ret = call_int_hook(file_open, 0, file);
1511         if (ret)
1512                 return ret;
1513
1514         return fsnotify_perm(file, MAY_OPEN);
1515 }
1516
1517 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1518 {
1519         int rc = lsm_task_alloc(task);
1520
1521         if (rc)
1522                 return rc;
1523         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1524         if (unlikely(rc))
1525                 security_task_free(task);
1526         return rc;
1527 }
1528
1529 void security_task_free(struct task_struct *task)
1530 {
1531         call_void_hook(task_free, task);
1532
1533         kfree(task->security);
1534         task->security = NULL;
1535 }
1536
1537 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1538 {
1539         int rc = lsm_cred_alloc(cred, gfp);
1540
1541         if (rc)
1542                 return rc;
1543
1544         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1545         if (unlikely(rc))
1546                 security_cred_free(cred);
1547         return rc;
1548 }
1549
1550 void security_cred_free(struct cred *cred)
1551 {
1552         /*
1553          * There is a failure case in prepare_creds() that
1554          * may result in a call here with ->security being NULL.
1555          */
1556         if (unlikely(cred->security == NULL))
1557                 return;
1558
1559         call_void_hook(cred_free, cred);
1560
1561         kfree(cred->security);
1562         cred->security = NULL;
1563 }
1564
1565 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1566 {
1567         int rc = lsm_cred_alloc(new, gfp);
1568
1569         if (rc)
1570                 return rc;
1571
1572         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1573         if (unlikely(rc))
1574                 security_cred_free(new);
1575         return rc;
1576 }
1577
1578 void security_transfer_creds(struct cred *new, const struct cred *old)
1579 {
1580         call_void_hook(cred_transfer, new, old);
1581 }
1582
1583 void security_cred_getsecid(const struct cred *c, u32 *secid)
1584 {
1585         *secid = 0;
1586         call_void_hook(cred_getsecid, c, secid);
1587 }
1588 EXPORT_SYMBOL(security_cred_getsecid);
1589
1590 int security_kernel_act_as(struct cred *new, u32 secid)
1591 {
1592         return call_int_hook(kernel_act_as, 0, new, secid);
1593 }
1594
1595 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1596 {
1597         return call_int_hook(kernel_create_files_as, 0, new, inode);
1598 }
1599
1600 int security_kernel_module_request(char *kmod_name)
1601 {
1602         int ret;
1603
1604         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1605         if (ret)
1606                 return ret;
1607         return integrity_kernel_module_request(kmod_name);
1608 }
1609
1610 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1611 {
1612         int ret;
1613
1614         ret = call_int_hook(kernel_read_file, 0, file, id);
1615         if (ret)
1616                 return ret;
1617         return ima_read_file(file, id);
1618 }
1619 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1620
1621 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1622                                    enum kernel_read_file_id id)
1623 {
1624         int ret;
1625
1626         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1627         if (ret)
1628                 return ret;
1629         return ima_post_read_file(file, buf, size, id);
1630 }
1631 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1632
1633 int security_kernel_load_data(enum kernel_load_data_id id)
1634 {
1635         int ret;
1636
1637         ret = call_int_hook(kernel_load_data, 0, id);
1638         if (ret)
1639                 return ret;
1640         return ima_load_data(id);
1641 }
1642 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1643
1644 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1645                              int flags)
1646 {
1647         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1648 }
1649
1650 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1651 {
1652         return call_int_hook(task_setpgid, 0, p, pgid);
1653 }
1654
1655 int security_task_getpgid(struct task_struct *p)
1656 {
1657         return call_int_hook(task_getpgid, 0, p);
1658 }
1659
1660 int security_task_getsid(struct task_struct *p)
1661 {
1662         return call_int_hook(task_getsid, 0, p);
1663 }
1664
1665 void security_task_getsecid(struct task_struct *p, u32 *secid)
1666 {
1667         *secid = 0;
1668         call_void_hook(task_getsecid, p, secid);
1669 }
1670 EXPORT_SYMBOL(security_task_getsecid);
1671
1672 int security_task_setnice(struct task_struct *p, int nice)
1673 {
1674         return call_int_hook(task_setnice, 0, p, nice);
1675 }
1676
1677 int security_task_setioprio(struct task_struct *p, int ioprio)
1678 {
1679         return call_int_hook(task_setioprio, 0, p, ioprio);
1680 }
1681
1682 int security_task_getioprio(struct task_struct *p)
1683 {
1684         return call_int_hook(task_getioprio, 0, p);
1685 }
1686
1687 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1688                           unsigned int flags)
1689 {
1690         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1691 }
1692
1693 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1694                 struct rlimit *new_rlim)
1695 {
1696         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1697 }
1698
1699 int security_task_setscheduler(struct task_struct *p)
1700 {
1701         return call_int_hook(task_setscheduler, 0, p);
1702 }
1703
1704 int security_task_getscheduler(struct task_struct *p)
1705 {
1706         return call_int_hook(task_getscheduler, 0, p);
1707 }
1708
1709 int security_task_movememory(struct task_struct *p)
1710 {
1711         return call_int_hook(task_movememory, 0, p);
1712 }
1713
1714 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1715                         int sig, const struct cred *cred)
1716 {
1717         return call_int_hook(task_kill, 0, p, info, sig, cred);
1718 }
1719
1720 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1721                          unsigned long arg4, unsigned long arg5)
1722 {
1723         int thisrc;
1724         int rc = -ENOSYS;
1725         struct security_hook_list *hp;
1726
1727         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1728                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1729                 if (thisrc != -ENOSYS) {
1730                         rc = thisrc;
1731                         if (thisrc != 0)
1732                                 break;
1733                 }
1734         }
1735         return rc;
1736 }
1737
1738 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1739 {
1740         call_void_hook(task_to_inode, p, inode);
1741 }
1742
1743 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1744 {
1745         return call_int_hook(ipc_permission, 0, ipcp, flag);
1746 }
1747
1748 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1749 {
1750         *secid = 0;
1751         call_void_hook(ipc_getsecid, ipcp, secid);
1752 }
1753
1754 int security_msg_msg_alloc(struct msg_msg *msg)
1755 {
1756         int rc = lsm_msg_msg_alloc(msg);
1757
1758         if (unlikely(rc))
1759                 return rc;
1760         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1761         if (unlikely(rc))
1762                 security_msg_msg_free(msg);
1763         return rc;
1764 }
1765
1766 void security_msg_msg_free(struct msg_msg *msg)
1767 {
1768         call_void_hook(msg_msg_free_security, msg);
1769         kfree(msg->security);
1770         msg->security = NULL;
1771 }
1772
1773 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1774 {
1775         int rc = lsm_ipc_alloc(msq);
1776
1777         if (unlikely(rc))
1778                 return rc;
1779         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1780         if (unlikely(rc))
1781                 security_msg_queue_free(msq);
1782         return rc;
1783 }
1784
1785 void security_msg_queue_free(struct kern_ipc_perm *msq)
1786 {
1787         call_void_hook(msg_queue_free_security, msq);
1788         kfree(msq->security);
1789         msq->security = NULL;
1790 }
1791
1792 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1793 {
1794         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1795 }
1796
1797 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1798 {
1799         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1800 }
1801
1802 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1803                                struct msg_msg *msg, int msqflg)
1804 {
1805         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1806 }
1807
1808 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1809                                struct task_struct *target, long type, int mode)
1810 {
1811         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1812 }
1813
1814 int security_shm_alloc(struct kern_ipc_perm *shp)
1815 {
1816         int rc = lsm_ipc_alloc(shp);
1817
1818         if (unlikely(rc))
1819                 return rc;
1820         rc = call_int_hook(shm_alloc_security, 0, shp);
1821         if (unlikely(rc))
1822                 security_shm_free(shp);
1823         return rc;
1824 }
1825
1826 void security_shm_free(struct kern_ipc_perm *shp)
1827 {
1828         call_void_hook(shm_free_security, shp);
1829         kfree(shp->security);
1830         shp->security = NULL;
1831 }
1832
1833 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1834 {
1835         return call_int_hook(shm_associate, 0, shp, shmflg);
1836 }
1837
1838 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1839 {
1840         return call_int_hook(shm_shmctl, 0, shp, cmd);
1841 }
1842
1843 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1844 {
1845         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1846 }
1847
1848 int security_sem_alloc(struct kern_ipc_perm *sma)
1849 {
1850         int rc = lsm_ipc_alloc(sma);
1851
1852         if (unlikely(rc))
1853                 return rc;
1854         rc = call_int_hook(sem_alloc_security, 0, sma);
1855         if (unlikely(rc))
1856                 security_sem_free(sma);
1857         return rc;
1858 }
1859
1860 void security_sem_free(struct kern_ipc_perm *sma)
1861 {
1862         call_void_hook(sem_free_security, sma);
1863         kfree(sma->security);
1864         sma->security = NULL;
1865 }
1866
1867 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1868 {
1869         return call_int_hook(sem_associate, 0, sma, semflg);
1870 }
1871
1872 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1873 {
1874         return call_int_hook(sem_semctl, 0, sma, cmd);
1875 }
1876
1877 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1878                         unsigned nsops, int alter)
1879 {
1880         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1881 }
1882
1883 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1884 {
1885         if (unlikely(inode && IS_PRIVATE(inode)))
1886                 return;
1887         call_void_hook(d_instantiate, dentry, inode);
1888 }
1889 EXPORT_SYMBOL(security_d_instantiate);
1890
1891 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1892                                 char **value)
1893 {
1894         struct security_hook_list *hp;
1895
1896         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1897                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1898                         continue;
1899                 return hp->hook.getprocattr(p, name, value);
1900         }
1901         return -EINVAL;
1902 }
1903
1904 int security_setprocattr(const char *lsm, const char *name, void *value,
1905                          size_t size)
1906 {
1907         struct security_hook_list *hp;
1908
1909         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1910                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1911                         continue;
1912                 return hp->hook.setprocattr(name, value, size);
1913         }
1914         return -EINVAL;
1915 }
1916
1917 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1918 {
1919         return call_int_hook(netlink_send, 0, sk, skb);
1920 }
1921
1922 int security_ismaclabel(const char *name)
1923 {
1924         return call_int_hook(ismaclabel, 0, name);
1925 }
1926 EXPORT_SYMBOL(security_ismaclabel);
1927
1928 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1929 {
1930         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1931                                 seclen);
1932 }
1933 EXPORT_SYMBOL(security_secid_to_secctx);
1934
1935 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1936 {
1937         *secid = 0;
1938         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1939 }
1940 EXPORT_SYMBOL(security_secctx_to_secid);
1941
1942 void security_release_secctx(char *secdata, u32 seclen)
1943 {
1944         call_void_hook(release_secctx, secdata, seclen);
1945 }
1946 EXPORT_SYMBOL(security_release_secctx);
1947
1948 void security_inode_invalidate_secctx(struct inode *inode)
1949 {
1950         call_void_hook(inode_invalidate_secctx, inode);
1951 }
1952 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1953
1954 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1955 {
1956         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1957 }
1958 EXPORT_SYMBOL(security_inode_notifysecctx);
1959
1960 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1961 {
1962         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1963 }
1964 EXPORT_SYMBOL(security_inode_setsecctx);
1965
1966 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1967 {
1968         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1969 }
1970 EXPORT_SYMBOL(security_inode_getsecctx);
1971
1972 #ifdef CONFIG_SECURITY_NETWORK
1973
1974 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1975 {
1976         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1977 }
1978 EXPORT_SYMBOL(security_unix_stream_connect);
1979
1980 int security_unix_may_send(struct socket *sock,  struct socket *other)
1981 {
1982         return call_int_hook(unix_may_send, 0, sock, other);
1983 }
1984 EXPORT_SYMBOL(security_unix_may_send);
1985
1986 int security_socket_create(int family, int type, int protocol, int kern)
1987 {
1988         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1989 }
1990
1991 int security_socket_post_create(struct socket *sock, int family,
1992                                 int type, int protocol, int kern)
1993 {
1994         return call_int_hook(socket_post_create, 0, sock, family, type,
1995                                                 protocol, kern);
1996 }
1997
1998 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1999 {
2000         return call_int_hook(socket_socketpair, 0, socka, sockb);
2001 }
2002 EXPORT_SYMBOL(security_socket_socketpair);
2003
2004 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2005 {
2006         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2007 }
2008
2009 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2010 {
2011         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2012 }
2013
2014 int security_socket_listen(struct socket *sock, int backlog)
2015 {
2016         return call_int_hook(socket_listen, 0, sock, backlog);
2017 }
2018
2019 int security_socket_accept(struct socket *sock, struct socket *newsock)
2020 {
2021         return call_int_hook(socket_accept, 0, sock, newsock);
2022 }
2023
2024 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2025 {
2026         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2027 }
2028
2029 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2030                             int size, int flags)
2031 {
2032         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2033 }
2034
2035 int security_socket_getsockname(struct socket *sock)
2036 {
2037         return call_int_hook(socket_getsockname, 0, sock);
2038 }
2039
2040 int security_socket_getpeername(struct socket *sock)
2041 {
2042         return call_int_hook(socket_getpeername, 0, sock);
2043 }
2044
2045 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2046 {
2047         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2048 }
2049
2050 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2051 {
2052         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2053 }
2054
2055 int security_socket_shutdown(struct socket *sock, int how)
2056 {
2057         return call_int_hook(socket_shutdown, 0, sock, how);
2058 }
2059
2060 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2061 {
2062         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2063 }
2064 EXPORT_SYMBOL(security_sock_rcv_skb);
2065
2066 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2067                                       int __user *optlen, unsigned len)
2068 {
2069         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2070                                 optval, optlen, len);
2071 }
2072
2073 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2074 {
2075         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2076                              skb, secid);
2077 }
2078 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2079
2080 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2081 {
2082         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2083 }
2084
2085 void security_sk_free(struct sock *sk)
2086 {
2087         call_void_hook(sk_free_security, sk);
2088 }
2089
2090 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2091 {
2092         call_void_hook(sk_clone_security, sk, newsk);
2093 }
2094 EXPORT_SYMBOL(security_sk_clone);
2095
2096 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2097 {
2098         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2099 }
2100 EXPORT_SYMBOL(security_sk_classify_flow);
2101
2102 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2103 {
2104         call_void_hook(req_classify_flow, req, fl);
2105 }
2106 EXPORT_SYMBOL(security_req_classify_flow);
2107
2108 void security_sock_graft(struct sock *sk, struct socket *parent)
2109 {
2110         call_void_hook(sock_graft, sk, parent);
2111 }
2112 EXPORT_SYMBOL(security_sock_graft);
2113
2114 int security_inet_conn_request(struct sock *sk,
2115                         struct sk_buff *skb, struct request_sock *req)
2116 {
2117         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2118 }
2119 EXPORT_SYMBOL(security_inet_conn_request);
2120
2121 void security_inet_csk_clone(struct sock *newsk,
2122                         const struct request_sock *req)
2123 {
2124         call_void_hook(inet_csk_clone, newsk, req);
2125 }
2126
2127 void security_inet_conn_established(struct sock *sk,
2128                         struct sk_buff *skb)
2129 {
2130         call_void_hook(inet_conn_established, sk, skb);
2131 }
2132 EXPORT_SYMBOL(security_inet_conn_established);
2133
2134 int security_secmark_relabel_packet(u32 secid)
2135 {
2136         return call_int_hook(secmark_relabel_packet, 0, secid);
2137 }
2138 EXPORT_SYMBOL(security_secmark_relabel_packet);
2139
2140 void security_secmark_refcount_inc(void)
2141 {
2142         call_void_hook(secmark_refcount_inc);
2143 }
2144 EXPORT_SYMBOL(security_secmark_refcount_inc);
2145
2146 void security_secmark_refcount_dec(void)
2147 {
2148         call_void_hook(secmark_refcount_dec);
2149 }
2150 EXPORT_SYMBOL(security_secmark_refcount_dec);
2151
2152 int security_tun_dev_alloc_security(void **security)
2153 {
2154         return call_int_hook(tun_dev_alloc_security, 0, security);
2155 }
2156 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2157
2158 void security_tun_dev_free_security(void *security)
2159 {
2160         call_void_hook(tun_dev_free_security, security);
2161 }
2162 EXPORT_SYMBOL(security_tun_dev_free_security);
2163
2164 int security_tun_dev_create(void)
2165 {
2166         return call_int_hook(tun_dev_create, 0);
2167 }
2168 EXPORT_SYMBOL(security_tun_dev_create);
2169
2170 int security_tun_dev_attach_queue(void *security)
2171 {
2172         return call_int_hook(tun_dev_attach_queue, 0, security);
2173 }
2174 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2175
2176 int security_tun_dev_attach(struct sock *sk, void *security)
2177 {
2178         return call_int_hook(tun_dev_attach, 0, sk, security);
2179 }
2180 EXPORT_SYMBOL(security_tun_dev_attach);
2181
2182 int security_tun_dev_open(void *security)
2183 {
2184         return call_int_hook(tun_dev_open, 0, security);
2185 }
2186 EXPORT_SYMBOL(security_tun_dev_open);
2187
2188 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2189 {
2190         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2191 }
2192 EXPORT_SYMBOL(security_sctp_assoc_request);
2193
2194 int security_sctp_bind_connect(struct sock *sk, int optname,
2195                                struct sockaddr *address, int addrlen)
2196 {
2197         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2198                              address, addrlen);
2199 }
2200 EXPORT_SYMBOL(security_sctp_bind_connect);
2201
2202 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2203                             struct sock *newsk)
2204 {
2205         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2206 }
2207 EXPORT_SYMBOL(security_sctp_sk_clone);
2208
2209 #endif  /* CONFIG_SECURITY_NETWORK */
2210
2211 #ifdef CONFIG_SECURITY_INFINIBAND
2212
2213 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2214 {
2215         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2216 }
2217 EXPORT_SYMBOL(security_ib_pkey_access);
2218
2219 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2220 {
2221         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2222 }
2223 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2224
2225 int security_ib_alloc_security(void **sec)
2226 {
2227         return call_int_hook(ib_alloc_security, 0, sec);
2228 }
2229 EXPORT_SYMBOL(security_ib_alloc_security);
2230
2231 void security_ib_free_security(void *sec)
2232 {
2233         call_void_hook(ib_free_security, sec);
2234 }
2235 EXPORT_SYMBOL(security_ib_free_security);
2236 #endif  /* CONFIG_SECURITY_INFINIBAND */
2237
2238 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2239
2240 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2241                                struct xfrm_user_sec_ctx *sec_ctx,
2242                                gfp_t gfp)
2243 {
2244         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2245 }
2246 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2247
2248 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2249                               struct xfrm_sec_ctx **new_ctxp)
2250 {
2251         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2252 }
2253
2254 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2255 {
2256         call_void_hook(xfrm_policy_free_security, ctx);
2257 }
2258 EXPORT_SYMBOL(security_xfrm_policy_free);
2259
2260 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2261 {
2262         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2263 }
2264
2265 int security_xfrm_state_alloc(struct xfrm_state *x,
2266                               struct xfrm_user_sec_ctx *sec_ctx)
2267 {
2268         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2269 }
2270 EXPORT_SYMBOL(security_xfrm_state_alloc);
2271
2272 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2273                                       struct xfrm_sec_ctx *polsec, u32 secid)
2274 {
2275         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2276 }
2277
2278 int security_xfrm_state_delete(struct xfrm_state *x)
2279 {
2280         return call_int_hook(xfrm_state_delete_security, 0, x);
2281 }
2282 EXPORT_SYMBOL(security_xfrm_state_delete);
2283
2284 void security_xfrm_state_free(struct xfrm_state *x)
2285 {
2286         call_void_hook(xfrm_state_free_security, x);
2287 }
2288
2289 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2290 {
2291         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2292 }
2293
2294 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2295                                        struct xfrm_policy *xp,
2296                                        const struct flowi *fl)
2297 {
2298         struct security_hook_list *hp;
2299         int rc = 1;
2300
2301         /*
2302          * Since this function is expected to return 0 or 1, the judgment
2303          * becomes difficult if multiple LSMs supply this call. Fortunately,
2304          * we can use the first LSM's judgment because currently only SELinux
2305          * supplies this call.
2306          *
2307          * For speed optimization, we explicitly break the loop rather than
2308          * using the macro
2309          */
2310         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2311                                 list) {
2312                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2313                 break;
2314         }
2315         return rc;
2316 }
2317
2318 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2319 {
2320         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2321 }
2322
2323 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2324 {
2325         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2326                                 0);
2327
2328         BUG_ON(rc);
2329 }
2330 EXPORT_SYMBOL(security_skb_classify_flow);
2331
2332 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2333
2334 #ifdef CONFIG_KEYS
2335
2336 int security_key_alloc(struct key *key, const struct cred *cred,
2337                        unsigned long flags)
2338 {
2339         return call_int_hook(key_alloc, 0, key, cred, flags);
2340 }
2341
2342 void security_key_free(struct key *key)
2343 {
2344         call_void_hook(key_free, key);
2345 }
2346
2347 int security_key_permission(key_ref_t key_ref,
2348                             const struct cred *cred, unsigned perm)
2349 {
2350         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2351 }
2352
2353 int security_key_getsecurity(struct key *key, char **_buffer)
2354 {
2355         *_buffer = NULL;
2356         return call_int_hook(key_getsecurity, 0, key, _buffer);
2357 }
2358
2359 #endif  /* CONFIG_KEYS */
2360
2361 #ifdef CONFIG_AUDIT
2362
2363 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2364 {
2365         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2366 }
2367
2368 int security_audit_rule_known(struct audit_krule *krule)
2369 {
2370         return call_int_hook(audit_rule_known, 0, krule);
2371 }
2372
2373 void security_audit_rule_free(void *lsmrule)
2374 {
2375         call_void_hook(audit_rule_free, lsmrule);
2376 }
2377
2378 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2379 {
2380         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2381 }
2382 #endif /* CONFIG_AUDIT */
2383
2384 #ifdef CONFIG_BPF_SYSCALL
2385 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2386 {
2387         return call_int_hook(bpf, 0, cmd, attr, size);
2388 }
2389 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2390 {
2391         return call_int_hook(bpf_map, 0, map, fmode);
2392 }
2393 int security_bpf_prog(struct bpf_prog *prog)
2394 {
2395         return call_int_hook(bpf_prog, 0, prog);
2396 }
2397 int security_bpf_map_alloc(struct bpf_map *map)
2398 {
2399         return call_int_hook(bpf_map_alloc_security, 0, map);
2400 }
2401 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2402 {
2403         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2404 }
2405 void security_bpf_map_free(struct bpf_map *map)
2406 {
2407         call_void_hook(bpf_map_free_security, map);
2408 }
2409 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2410 {
2411         call_void_hook(bpf_prog_free_security, aux);
2412 }
2413 #endif /* CONFIG_BPF_SYSCALL */
2414
2415 int security_locked_down(enum lockdown_reason what)
2416 {
2417         return call_int_hook(locked_down, 0, what);
2418 }
2419 EXPORT_SYMBOL(security_locked_down);