GNU Linux-libre 4.19.314-gnu1
[releases.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *      This program is free software; you can redistribute it and/or modify
10  *      it under the terms of the GNU General Public License as published by
11  *      the Free Software Foundation; either version 2 of the License, or
12  *      (at your option) any later version.
13  */
14
15 #include <linux/bpf.h>
16 #include <linux/capability.h>
17 #include <linux/dcache.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/integrity.h>
23 #include <linux/ima.h>
24 #include <linux/evm.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mman.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/backing-dev.h>
30 #include <linux/string.h>
31 #include <net/flow.h>
32
33 #include <trace/events/initcall.h>
34
35 #define MAX_LSM_EVM_XATTR       2
36
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX       10
39
40 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42
43 char *lsm_names;
44 /* Boot-time LSM user choice */
45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46         CONFIG_DEFAULT_SECURITY;
47
48 static void __init do_security_initcalls(void)
49 {
50         int ret;
51         initcall_t call;
52         initcall_entry_t *ce;
53
54         ce = __security_initcall_start;
55         trace_initcall_level("security");
56         while (ce < __security_initcall_end) {
57                 call = initcall_from_entry(ce);
58                 trace_initcall_start(call);
59                 ret = call();
60                 trace_initcall_finish(call, ret);
61                 ce++;
62         }
63 }
64
65 /**
66  * security_init - initializes the security framework
67  *
68  * This should be called early in the kernel initialization sequence.
69  */
70 int __init security_init(void)
71 {
72         int i;
73         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
74
75         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
76              i++)
77                 INIT_HLIST_HEAD(&list[i]);
78         pr_info("Security Framework initialized\n");
79
80         /*
81          * Load minor LSMs, with the capability module always first.
82          */
83         capability_add_hooks();
84         yama_add_hooks();
85         loadpin_add_hooks();
86
87         /*
88          * Load all the remaining security modules.
89          */
90         do_security_initcalls();
91
92         return 0;
93 }
94
95 /* Save user chosen LSM */
96 static int __init choose_lsm(char *str)
97 {
98         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
99         return 1;
100 }
101 __setup("security=", choose_lsm);
102
103 static bool match_last_lsm(const char *list, const char *lsm)
104 {
105         const char *last;
106
107         if (WARN_ON(!list || !lsm))
108                 return false;
109         last = strrchr(list, ',');
110         if (last)
111                 /* Pass the comma, strcmp() will check for '\0' */
112                 last++;
113         else
114                 last = list;
115         return !strcmp(last, lsm);
116 }
117
118 static int lsm_append(char *new, char **result)
119 {
120         char *cp;
121
122         if (*result == NULL) {
123                 *result = kstrdup(new, GFP_KERNEL);
124                 if (*result == NULL)
125                         return -ENOMEM;
126         } else {
127                 /* Check if it is the last registered name */
128                 if (match_last_lsm(*result, new))
129                         return 0;
130                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
131                 if (cp == NULL)
132                         return -ENOMEM;
133                 kfree(*result);
134                 *result = cp;
135         }
136         return 0;
137 }
138
139 /**
140  * security_module_enable - Load given security module on boot ?
141  * @module: the name of the module
142  *
143  * Each LSM must pass this method before registering its own operations
144  * to avoid security registration races. This method may also be used
145  * to check if your LSM is currently loaded during kernel initialization.
146  *
147  * Returns:
148  *
149  * true if:
150  *
151  * - The passed LSM is the one chosen by user at boot time,
152  * - or the passed LSM is configured as the default and the user did not
153  *   choose an alternate LSM at boot time.
154  *
155  * Otherwise, return false.
156  */
157 int __init security_module_enable(const char *module)
158 {
159         return !strcmp(module, chosen_lsm);
160 }
161
162 /**
163  * security_add_hooks - Add a modules hooks to the hook lists.
164  * @hooks: the hooks to add
165  * @count: the number of hooks to add
166  * @lsm: the name of the security module
167  *
168  * Each LSM has to register its hooks with the infrastructure.
169  */
170 void __init security_add_hooks(struct security_hook_list *hooks, int count,
171                                 char *lsm)
172 {
173         int i;
174
175         for (i = 0; i < count; i++) {
176                 hooks[i].lsm = lsm;
177                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
178         }
179         if (lsm_append(lsm, &lsm_names) < 0)
180                 panic("%s - Cannot get early memory.\n", __func__);
181 }
182
183 int call_lsm_notifier(enum lsm_event event, void *data)
184 {
185         return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
186 }
187 EXPORT_SYMBOL(call_lsm_notifier);
188
189 int register_lsm_notifier(struct notifier_block *nb)
190 {
191         return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
192 }
193 EXPORT_SYMBOL(register_lsm_notifier);
194
195 int unregister_lsm_notifier(struct notifier_block *nb)
196 {
197         return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
198 }
199 EXPORT_SYMBOL(unregister_lsm_notifier);
200
201 /*
202  * Hook list operation macros.
203  *
204  * call_void_hook:
205  *      This is a hook that does not return a value.
206  *
207  * call_int_hook:
208  *      This is a hook that returns a value.
209  */
210
211 #define call_void_hook(FUNC, ...)                               \
212         do {                                                    \
213                 struct security_hook_list *P;                   \
214                                                                 \
215                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
216                         P->hook.FUNC(__VA_ARGS__);              \
217         } while (0)
218
219 #define call_int_hook(FUNC, IRC, ...) ({                        \
220         int RC = IRC;                                           \
221         do {                                                    \
222                 struct security_hook_list *P;                   \
223                                                                 \
224                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
225                         RC = P->hook.FUNC(__VA_ARGS__);         \
226                         if (RC != 0)                            \
227                                 break;                          \
228                 }                                               \
229         } while (0);                                            \
230         RC;                                                     \
231 })
232
233 /* Security operations */
234
235 int security_binder_set_context_mgr(const struct cred *mgr)
236 {
237         return call_int_hook(binder_set_context_mgr, 0, mgr);
238 }
239
240 int security_binder_transaction(const struct cred *from,
241                                 const struct cred *to)
242 {
243         return call_int_hook(binder_transaction, 0, from, to);
244 }
245
246 int security_binder_transfer_binder(const struct cred *from,
247                                     const struct cred *to)
248 {
249         return call_int_hook(binder_transfer_binder, 0, from, to);
250 }
251
252 int security_binder_transfer_file(const struct cred *from,
253                                   const struct cred *to, struct file *file)
254 {
255         return call_int_hook(binder_transfer_file, 0, from, to, file);
256 }
257
258 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
259 {
260         return call_int_hook(ptrace_access_check, 0, child, mode);
261 }
262
263 int security_ptrace_traceme(struct task_struct *parent)
264 {
265         return call_int_hook(ptrace_traceme, 0, parent);
266 }
267
268 int security_capget(struct task_struct *target,
269                      kernel_cap_t *effective,
270                      kernel_cap_t *inheritable,
271                      kernel_cap_t *permitted)
272 {
273         return call_int_hook(capget, 0, target,
274                                 effective, inheritable, permitted);
275 }
276
277 int security_capset(struct cred *new, const struct cred *old,
278                     const kernel_cap_t *effective,
279                     const kernel_cap_t *inheritable,
280                     const kernel_cap_t *permitted)
281 {
282         return call_int_hook(capset, 0, new, old,
283                                 effective, inheritable, permitted);
284 }
285
286 int security_capable(const struct cred *cred,
287                      struct user_namespace *ns,
288                      int cap,
289                      unsigned int opts)
290 {
291         return call_int_hook(capable, 0, cred, ns, cap, opts);
292 }
293
294 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
295 {
296         return call_int_hook(quotactl, 0, cmds, type, id, sb);
297 }
298
299 int security_quota_on(struct dentry *dentry)
300 {
301         return call_int_hook(quota_on, 0, dentry);
302 }
303
304 int security_syslog(int type)
305 {
306         return call_int_hook(syslog, 0, type);
307 }
308
309 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
310 {
311         return call_int_hook(settime, 0, ts, tz);
312 }
313
314 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
315 {
316         struct security_hook_list *hp;
317         int cap_sys_admin = 1;
318         int rc;
319
320         /*
321          * The module will respond with a positive value if
322          * it thinks the __vm_enough_memory() call should be
323          * made with the cap_sys_admin set. If all of the modules
324          * agree that it should be set it will. If any module
325          * thinks it should not be set it won't.
326          */
327         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
328                 rc = hp->hook.vm_enough_memory(mm, pages);
329                 if (rc <= 0) {
330                         cap_sys_admin = 0;
331                         break;
332                 }
333         }
334         return __vm_enough_memory(mm, pages, cap_sys_admin);
335 }
336
337 int security_bprm_set_creds(struct linux_binprm *bprm)
338 {
339         return call_int_hook(bprm_set_creds, 0, bprm);
340 }
341
342 int security_bprm_check(struct linux_binprm *bprm)
343 {
344         int ret;
345
346         ret = call_int_hook(bprm_check_security, 0, bprm);
347         if (ret)
348                 return ret;
349         return ima_bprm_check(bprm);
350 }
351
352 void security_bprm_committing_creds(struct linux_binprm *bprm)
353 {
354         call_void_hook(bprm_committing_creds, bprm);
355 }
356
357 void security_bprm_committed_creds(struct linux_binprm *bprm)
358 {
359         call_void_hook(bprm_committed_creds, bprm);
360 }
361
362 int security_sb_alloc(struct super_block *sb)
363 {
364         return call_int_hook(sb_alloc_security, 0, sb);
365 }
366
367 void security_sb_free(struct super_block *sb)
368 {
369         call_void_hook(sb_free_security, sb);
370 }
371
372 int security_sb_copy_data(char *orig, char *copy)
373 {
374         return call_int_hook(sb_copy_data, 0, orig, copy);
375 }
376 EXPORT_SYMBOL(security_sb_copy_data);
377
378 int security_sb_remount(struct super_block *sb, void *data)
379 {
380         return call_int_hook(sb_remount, 0, sb, data);
381 }
382
383 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
384 {
385         return call_int_hook(sb_kern_mount, 0, sb, flags, data);
386 }
387
388 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
389 {
390         return call_int_hook(sb_show_options, 0, m, sb);
391 }
392
393 int security_sb_statfs(struct dentry *dentry)
394 {
395         return call_int_hook(sb_statfs, 0, dentry);
396 }
397
398 int security_sb_mount(const char *dev_name, const struct path *path,
399                        const char *type, unsigned long flags, void *data)
400 {
401         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
402 }
403
404 int security_sb_umount(struct vfsmount *mnt, int flags)
405 {
406         return call_int_hook(sb_umount, 0, mnt, flags);
407 }
408
409 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
410 {
411         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
412 }
413
414 int security_sb_set_mnt_opts(struct super_block *sb,
415                                 struct security_mnt_opts *opts,
416                                 unsigned long kern_flags,
417                                 unsigned long *set_kern_flags)
418 {
419         return call_int_hook(sb_set_mnt_opts,
420                                 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
421                                 opts, kern_flags, set_kern_flags);
422 }
423 EXPORT_SYMBOL(security_sb_set_mnt_opts);
424
425 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
426                                 struct super_block *newsb,
427                                 unsigned long kern_flags,
428                                 unsigned long *set_kern_flags)
429 {
430         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
431                                 kern_flags, set_kern_flags);
432 }
433 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
434
435 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
436 {
437         return call_int_hook(sb_parse_opts_str, 0, options, opts);
438 }
439 EXPORT_SYMBOL(security_sb_parse_opts_str);
440
441 int security_inode_alloc(struct inode *inode)
442 {
443         inode->i_security = NULL;
444         return call_int_hook(inode_alloc_security, 0, inode);
445 }
446
447 void security_inode_free(struct inode *inode)
448 {
449         integrity_inode_free(inode);
450         call_void_hook(inode_free_security, inode);
451 }
452
453 int security_dentry_init_security(struct dentry *dentry, int mode,
454                                         const struct qstr *name, void **ctx,
455                                         u32 *ctxlen)
456 {
457         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
458                                 name, ctx, ctxlen);
459 }
460 EXPORT_SYMBOL(security_dentry_init_security);
461
462 int security_dentry_create_files_as(struct dentry *dentry, int mode,
463                                     struct qstr *name,
464                                     const struct cred *old, struct cred *new)
465 {
466         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
467                                 name, old, new);
468 }
469 EXPORT_SYMBOL(security_dentry_create_files_as);
470
471 int security_inode_init_security(struct inode *inode, struct inode *dir,
472                                  const struct qstr *qstr,
473                                  const initxattrs initxattrs, void *fs_data)
474 {
475         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
476         struct xattr *lsm_xattr, *evm_xattr, *xattr;
477         int ret;
478
479         if (unlikely(IS_PRIVATE(inode)))
480                 return 0;
481
482         if (!initxattrs)
483                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
484                                      dir, qstr, NULL, NULL, NULL);
485         memset(new_xattrs, 0, sizeof(new_xattrs));
486         lsm_xattr = new_xattrs;
487         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
488                                                 &lsm_xattr->name,
489                                                 &lsm_xattr->value,
490                                                 &lsm_xattr->value_len);
491         if (ret)
492                 goto out;
493
494         evm_xattr = lsm_xattr + 1;
495         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
496         if (ret)
497                 goto out;
498         ret = initxattrs(inode, new_xattrs, fs_data);
499 out:
500         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
501                 kfree(xattr->value);
502         return (ret == -EOPNOTSUPP) ? 0 : ret;
503 }
504 EXPORT_SYMBOL(security_inode_init_security);
505
506 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
507                                      const struct qstr *qstr, const char **name,
508                                      void **value, size_t *len)
509 {
510         if (unlikely(IS_PRIVATE(inode)))
511                 return -EOPNOTSUPP;
512         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
513                              qstr, name, value, len);
514 }
515 EXPORT_SYMBOL(security_old_inode_init_security);
516
517 #ifdef CONFIG_SECURITY_PATH
518 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
519                         unsigned int dev)
520 {
521         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
522                 return 0;
523         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
524 }
525 EXPORT_SYMBOL(security_path_mknod);
526
527 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
528 {
529         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
530                 return 0;
531         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
532 }
533 EXPORT_SYMBOL(security_path_mkdir);
534
535 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
536 {
537         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
538                 return 0;
539         return call_int_hook(path_rmdir, 0, dir, dentry);
540 }
541
542 int security_path_unlink(const struct path *dir, struct dentry *dentry)
543 {
544         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
545                 return 0;
546         return call_int_hook(path_unlink, 0, dir, dentry);
547 }
548 EXPORT_SYMBOL(security_path_unlink);
549
550 int security_path_symlink(const struct path *dir, struct dentry *dentry,
551                           const char *old_name)
552 {
553         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
554                 return 0;
555         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
556 }
557
558 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
559                        struct dentry *new_dentry)
560 {
561         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
562                 return 0;
563         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
564 }
565
566 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
567                          const struct path *new_dir, struct dentry *new_dentry,
568                          unsigned int flags)
569 {
570         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
571                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
572                 return 0;
573
574         if (flags & RENAME_EXCHANGE) {
575                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
576                                         old_dir, old_dentry);
577                 if (err)
578                         return err;
579         }
580
581         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
582                                 new_dentry);
583 }
584 EXPORT_SYMBOL(security_path_rename);
585
586 int security_path_truncate(const struct path *path)
587 {
588         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
589                 return 0;
590         return call_int_hook(path_truncate, 0, path);
591 }
592
593 int security_path_chmod(const struct path *path, umode_t mode)
594 {
595         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
596                 return 0;
597         return call_int_hook(path_chmod, 0, path, mode);
598 }
599
600 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
601 {
602         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
603                 return 0;
604         return call_int_hook(path_chown, 0, path, uid, gid);
605 }
606
607 int security_path_chroot(const struct path *path)
608 {
609         return call_int_hook(path_chroot, 0, path);
610 }
611 #endif
612
613 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
614 {
615         if (unlikely(IS_PRIVATE(dir)))
616                 return 0;
617         return call_int_hook(inode_create, 0, dir, dentry, mode);
618 }
619 EXPORT_SYMBOL_GPL(security_inode_create);
620
621 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
622                          struct dentry *new_dentry)
623 {
624         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
625                 return 0;
626         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
627 }
628
629 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
630 {
631         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
632                 return 0;
633         return call_int_hook(inode_unlink, 0, dir, dentry);
634 }
635
636 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
637                             const char *old_name)
638 {
639         if (unlikely(IS_PRIVATE(dir)))
640                 return 0;
641         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
642 }
643
644 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
645 {
646         if (unlikely(IS_PRIVATE(dir)))
647                 return 0;
648         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
649 }
650 EXPORT_SYMBOL_GPL(security_inode_mkdir);
651
652 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
653 {
654         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
655                 return 0;
656         return call_int_hook(inode_rmdir, 0, dir, dentry);
657 }
658
659 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
660 {
661         if (unlikely(IS_PRIVATE(dir)))
662                 return 0;
663         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
664 }
665
666 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
667                            struct inode *new_dir, struct dentry *new_dentry,
668                            unsigned int flags)
669 {
670         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
671             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
672                 return 0;
673
674         if (flags & RENAME_EXCHANGE) {
675                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
676                                                      old_dir, old_dentry);
677                 if (err)
678                         return err;
679         }
680
681         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
682                                            new_dir, new_dentry);
683 }
684
685 int security_inode_readlink(struct dentry *dentry)
686 {
687         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
688                 return 0;
689         return call_int_hook(inode_readlink, 0, dentry);
690 }
691
692 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
693                                bool rcu)
694 {
695         if (unlikely(IS_PRIVATE(inode)))
696                 return 0;
697         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
698 }
699
700 int security_inode_permission(struct inode *inode, int mask)
701 {
702         if (unlikely(IS_PRIVATE(inode)))
703                 return 0;
704         return call_int_hook(inode_permission, 0, inode, mask);
705 }
706
707 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
708 {
709         int ret;
710
711         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
712                 return 0;
713         ret = call_int_hook(inode_setattr, 0, dentry, attr);
714         if (ret)
715                 return ret;
716         return evm_inode_setattr(dentry, attr);
717 }
718 EXPORT_SYMBOL_GPL(security_inode_setattr);
719
720 int security_inode_getattr(const struct path *path)
721 {
722         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
723                 return 0;
724         return call_int_hook(inode_getattr, 0, path);
725 }
726
727 int security_inode_setxattr(struct dentry *dentry, const char *name,
728                             const void *value, size_t size, int flags)
729 {
730         int ret;
731
732         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
733                 return 0;
734         /*
735          * SELinux and Smack integrate the cap call,
736          * so assume that all LSMs supplying this call do so.
737          */
738         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
739                                 flags);
740
741         if (ret == 1)
742                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
743         if (ret)
744                 return ret;
745         ret = ima_inode_setxattr(dentry, name, value, size);
746         if (ret)
747                 return ret;
748         return evm_inode_setxattr(dentry, name, value, size);
749 }
750
751 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
752                                   const void *value, size_t size, int flags)
753 {
754         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
755                 return;
756         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
757         evm_inode_post_setxattr(dentry, name, value, size);
758 }
759
760 int security_inode_getxattr(struct dentry *dentry, const char *name)
761 {
762         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
763                 return 0;
764         return call_int_hook(inode_getxattr, 0, dentry, name);
765 }
766
767 int security_inode_listxattr(struct dentry *dentry)
768 {
769         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
770                 return 0;
771         return call_int_hook(inode_listxattr, 0, dentry);
772 }
773
774 int security_inode_removexattr(struct dentry *dentry, const char *name)
775 {
776         int ret;
777
778         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
779                 return 0;
780         /*
781          * SELinux and Smack integrate the cap call,
782          * so assume that all LSMs supplying this call do so.
783          */
784         ret = call_int_hook(inode_removexattr, 1, dentry, name);
785         if (ret == 1)
786                 ret = cap_inode_removexattr(dentry, name);
787         if (ret)
788                 return ret;
789         ret = ima_inode_removexattr(dentry, name);
790         if (ret)
791                 return ret;
792         return evm_inode_removexattr(dentry, name);
793 }
794
795 int security_inode_need_killpriv(struct dentry *dentry)
796 {
797         return call_int_hook(inode_need_killpriv, 0, dentry);
798 }
799
800 int security_inode_killpriv(struct dentry *dentry)
801 {
802         return call_int_hook(inode_killpriv, 0, dentry);
803 }
804
805 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
806 {
807         struct security_hook_list *hp;
808         int rc;
809
810         if (unlikely(IS_PRIVATE(inode)))
811                 return -EOPNOTSUPP;
812         /*
813          * Only one module will provide an attribute with a given name.
814          */
815         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
816                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
817                 if (rc != -EOPNOTSUPP)
818                         return rc;
819         }
820         return -EOPNOTSUPP;
821 }
822
823 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
824 {
825         struct security_hook_list *hp;
826         int rc;
827
828         if (unlikely(IS_PRIVATE(inode)))
829                 return -EOPNOTSUPP;
830         /*
831          * Only one module will provide an attribute with a given name.
832          */
833         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
834                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
835                                                                 flags);
836                 if (rc != -EOPNOTSUPP)
837                         return rc;
838         }
839         return -EOPNOTSUPP;
840 }
841
842 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
843 {
844         if (unlikely(IS_PRIVATE(inode)))
845                 return 0;
846         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
847 }
848 EXPORT_SYMBOL(security_inode_listsecurity);
849
850 void security_inode_getsecid(struct inode *inode, u32 *secid)
851 {
852         call_void_hook(inode_getsecid, inode, secid);
853 }
854
855 int security_inode_copy_up(struct dentry *src, struct cred **new)
856 {
857         return call_int_hook(inode_copy_up, 0, src, new);
858 }
859 EXPORT_SYMBOL(security_inode_copy_up);
860
861 int security_inode_copy_up_xattr(const char *name)
862 {
863         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
864 }
865 EXPORT_SYMBOL(security_inode_copy_up_xattr);
866
867 int security_file_permission(struct file *file, int mask)
868 {
869         int ret;
870
871         ret = call_int_hook(file_permission, 0, file, mask);
872         if (ret)
873                 return ret;
874
875         return fsnotify_perm(file, mask);
876 }
877
878 int security_file_alloc(struct file *file)
879 {
880         return call_int_hook(file_alloc_security, 0, file);
881 }
882
883 void security_file_free(struct file *file)
884 {
885         call_void_hook(file_free_security, file);
886 }
887
888 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
889 {
890         return call_int_hook(file_ioctl, 0, file, cmd, arg);
891 }
892
893 /**
894  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
895  * @file: associated file
896  * @cmd: ioctl cmd
897  * @arg: ioctl arguments
898  *
899  * Compat version of security_file_ioctl() that correctly handles 32-bit
900  * processes running on 64-bit kernels.
901  *
902  * Return: Returns 0 if permission is granted.
903  */
904 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
905                                unsigned long arg)
906 {
907         return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
908 }
909
910 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
911 {
912         /*
913          * Does we have PROT_READ and does the application expect
914          * it to imply PROT_EXEC?  If not, nothing to talk about...
915          */
916         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
917                 return prot;
918         if (!(current->personality & READ_IMPLIES_EXEC))
919                 return prot;
920         /*
921          * if that's an anonymous mapping, let it.
922          */
923         if (!file)
924                 return prot | PROT_EXEC;
925         /*
926          * ditto if it's not on noexec mount, except that on !MMU we need
927          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
928          */
929         if (!path_noexec(&file->f_path)) {
930 #ifndef CONFIG_MMU
931                 if (file->f_op->mmap_capabilities) {
932                         unsigned caps = file->f_op->mmap_capabilities(file);
933                         if (!(caps & NOMMU_MAP_EXEC))
934                                 return prot;
935                 }
936 #endif
937                 return prot | PROT_EXEC;
938         }
939         /* anything on noexec mount won't get PROT_EXEC */
940         return prot;
941 }
942
943 int security_mmap_file(struct file *file, unsigned long prot,
944                         unsigned long flags)
945 {
946         unsigned long prot_adj = mmap_prot(file, prot);
947         int ret;
948
949         ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
950         if (ret)
951                 return ret;
952         return ima_file_mmap(file, prot, prot_adj, flags);
953 }
954
955 int security_mmap_addr(unsigned long addr)
956 {
957         return call_int_hook(mmap_addr, 0, addr);
958 }
959
960 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
961                             unsigned long prot)
962 {
963         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
964 }
965
966 int security_file_lock(struct file *file, unsigned int cmd)
967 {
968         return call_int_hook(file_lock, 0, file, cmd);
969 }
970
971 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
972 {
973         return call_int_hook(file_fcntl, 0, file, cmd, arg);
974 }
975
976 void security_file_set_fowner(struct file *file)
977 {
978         call_void_hook(file_set_fowner, file);
979 }
980
981 int security_file_send_sigiotask(struct task_struct *tsk,
982                                   struct fown_struct *fown, int sig)
983 {
984         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
985 }
986
987 int security_file_receive(struct file *file)
988 {
989         return call_int_hook(file_receive, 0, file);
990 }
991
992 int security_file_open(struct file *file)
993 {
994         int ret;
995
996         ret = call_int_hook(file_open, 0, file);
997         if (ret)
998                 return ret;
999
1000         return fsnotify_perm(file, MAY_OPEN);
1001 }
1002
1003 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1004 {
1005         return call_int_hook(task_alloc, 0, task, clone_flags);
1006 }
1007
1008 void security_task_free(struct task_struct *task)
1009 {
1010         call_void_hook(task_free, task);
1011 }
1012
1013 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1014 {
1015         return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1016 }
1017
1018 void security_cred_free(struct cred *cred)
1019 {
1020         /*
1021          * There is a failure case in prepare_creds() that
1022          * may result in a call here with ->security being NULL.
1023          */
1024         if (unlikely(cred->security == NULL))
1025                 return;
1026
1027         call_void_hook(cred_free, cred);
1028 }
1029
1030 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1031 {
1032         return call_int_hook(cred_prepare, 0, new, old, gfp);
1033 }
1034
1035 void security_transfer_creds(struct cred *new, const struct cred *old)
1036 {
1037         call_void_hook(cred_transfer, new, old);
1038 }
1039
1040 void security_cred_getsecid(const struct cred *c, u32 *secid)
1041 {
1042         *secid = 0;
1043         call_void_hook(cred_getsecid, c, secid);
1044 }
1045 EXPORT_SYMBOL(security_cred_getsecid);
1046
1047 int security_kernel_act_as(struct cred *new, u32 secid)
1048 {
1049         return call_int_hook(kernel_act_as, 0, new, secid);
1050 }
1051
1052 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1053 {
1054         return call_int_hook(kernel_create_files_as, 0, new, inode);
1055 }
1056
1057 int security_kernel_module_request(char *kmod_name)
1058 {
1059         int ret;
1060
1061         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1062         if (ret)
1063                 return ret;
1064         return integrity_kernel_module_request(kmod_name);
1065 }
1066
1067 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1068 {
1069         int ret;
1070
1071         ret = call_int_hook(kernel_read_file, 0, file, id);
1072         if (ret)
1073                 return ret;
1074         return ima_read_file(file, id);
1075 }
1076 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1077
1078 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1079                                    enum kernel_read_file_id id)
1080 {
1081         int ret;
1082
1083         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1084         if (ret)
1085                 return ret;
1086         return ima_post_read_file(file, buf, size, id);
1087 }
1088 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1089
1090 int security_kernel_load_data(enum kernel_load_data_id id)
1091 {
1092         int ret;
1093
1094         ret = call_int_hook(kernel_load_data, 0, id);
1095         if (ret)
1096                 return ret;
1097         return ima_load_data(id);
1098 }
1099 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1100
1101 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1102                              int flags)
1103 {
1104         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1105 }
1106
1107 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1108 {
1109         return call_int_hook(task_setpgid, 0, p, pgid);
1110 }
1111
1112 int security_task_getpgid(struct task_struct *p)
1113 {
1114         return call_int_hook(task_getpgid, 0, p);
1115 }
1116
1117 int security_task_getsid(struct task_struct *p)
1118 {
1119         return call_int_hook(task_getsid, 0, p);
1120 }
1121
1122 void security_task_getsecid(struct task_struct *p, u32 *secid)
1123 {
1124         *secid = 0;
1125         call_void_hook(task_getsecid, p, secid);
1126 }
1127 EXPORT_SYMBOL(security_task_getsecid);
1128
1129 int security_task_setnice(struct task_struct *p, int nice)
1130 {
1131         return call_int_hook(task_setnice, 0, p, nice);
1132 }
1133
1134 int security_task_setioprio(struct task_struct *p, int ioprio)
1135 {
1136         return call_int_hook(task_setioprio, 0, p, ioprio);
1137 }
1138
1139 int security_task_getioprio(struct task_struct *p)
1140 {
1141         return call_int_hook(task_getioprio, 0, p);
1142 }
1143
1144 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1145                           unsigned int flags)
1146 {
1147         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1148 }
1149
1150 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1151                 struct rlimit *new_rlim)
1152 {
1153         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1154 }
1155
1156 int security_task_setscheduler(struct task_struct *p)
1157 {
1158         return call_int_hook(task_setscheduler, 0, p);
1159 }
1160
1161 int security_task_getscheduler(struct task_struct *p)
1162 {
1163         return call_int_hook(task_getscheduler, 0, p);
1164 }
1165
1166 int security_task_movememory(struct task_struct *p)
1167 {
1168         return call_int_hook(task_movememory, 0, p);
1169 }
1170
1171 int security_task_kill(struct task_struct *p, struct siginfo *info,
1172                         int sig, const struct cred *cred)
1173 {
1174         return call_int_hook(task_kill, 0, p, info, sig, cred);
1175 }
1176
1177 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1178                          unsigned long arg4, unsigned long arg5)
1179 {
1180         int thisrc;
1181         int rc = -ENOSYS;
1182         struct security_hook_list *hp;
1183
1184         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1185                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1186                 if (thisrc != -ENOSYS) {
1187                         rc = thisrc;
1188                         if (thisrc != 0)
1189                                 break;
1190                 }
1191         }
1192         return rc;
1193 }
1194
1195 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1196 {
1197         call_void_hook(task_to_inode, p, inode);
1198 }
1199
1200 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1201 {
1202         return call_int_hook(ipc_permission, 0, ipcp, flag);
1203 }
1204
1205 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1206 {
1207         *secid = 0;
1208         call_void_hook(ipc_getsecid, ipcp, secid);
1209 }
1210
1211 int security_msg_msg_alloc(struct msg_msg *msg)
1212 {
1213         return call_int_hook(msg_msg_alloc_security, 0, msg);
1214 }
1215
1216 void security_msg_msg_free(struct msg_msg *msg)
1217 {
1218         call_void_hook(msg_msg_free_security, msg);
1219 }
1220
1221 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1222 {
1223         return call_int_hook(msg_queue_alloc_security, 0, msq);
1224 }
1225
1226 void security_msg_queue_free(struct kern_ipc_perm *msq)
1227 {
1228         call_void_hook(msg_queue_free_security, msq);
1229 }
1230
1231 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1232 {
1233         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1234 }
1235
1236 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1237 {
1238         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1239 }
1240
1241 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1242                                struct msg_msg *msg, int msqflg)
1243 {
1244         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1245 }
1246
1247 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1248                                struct task_struct *target, long type, int mode)
1249 {
1250         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1251 }
1252
1253 int security_shm_alloc(struct kern_ipc_perm *shp)
1254 {
1255         return call_int_hook(shm_alloc_security, 0, shp);
1256 }
1257
1258 void security_shm_free(struct kern_ipc_perm *shp)
1259 {
1260         call_void_hook(shm_free_security, shp);
1261 }
1262
1263 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1264 {
1265         return call_int_hook(shm_associate, 0, shp, shmflg);
1266 }
1267
1268 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1269 {
1270         return call_int_hook(shm_shmctl, 0, shp, cmd);
1271 }
1272
1273 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1274 {
1275         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1276 }
1277
1278 int security_sem_alloc(struct kern_ipc_perm *sma)
1279 {
1280         return call_int_hook(sem_alloc_security, 0, sma);
1281 }
1282
1283 void security_sem_free(struct kern_ipc_perm *sma)
1284 {
1285         call_void_hook(sem_free_security, sma);
1286 }
1287
1288 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1289 {
1290         return call_int_hook(sem_associate, 0, sma, semflg);
1291 }
1292
1293 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1294 {
1295         return call_int_hook(sem_semctl, 0, sma, cmd);
1296 }
1297
1298 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1299                         unsigned nsops, int alter)
1300 {
1301         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1302 }
1303
1304 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1305 {
1306         if (unlikely(inode && IS_PRIVATE(inode)))
1307                 return;
1308         call_void_hook(d_instantiate, dentry, inode);
1309 }
1310 EXPORT_SYMBOL(security_d_instantiate);
1311
1312 int security_getprocattr(struct task_struct *p, char *name, char **value)
1313 {
1314         return call_int_hook(getprocattr, -EINVAL, p, name, value);
1315 }
1316
1317 int security_setprocattr(const char *name, void *value, size_t size)
1318 {
1319         return call_int_hook(setprocattr, -EINVAL, name, value, size);
1320 }
1321
1322 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1323 {
1324         return call_int_hook(netlink_send, 0, sk, skb);
1325 }
1326
1327 int security_ismaclabel(const char *name)
1328 {
1329         return call_int_hook(ismaclabel, 0, name);
1330 }
1331 EXPORT_SYMBOL(security_ismaclabel);
1332
1333 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1334 {
1335         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1336                                 seclen);
1337 }
1338 EXPORT_SYMBOL(security_secid_to_secctx);
1339
1340 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1341 {
1342         *secid = 0;
1343         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1344 }
1345 EXPORT_SYMBOL(security_secctx_to_secid);
1346
1347 void security_release_secctx(char *secdata, u32 seclen)
1348 {
1349         call_void_hook(release_secctx, secdata, seclen);
1350 }
1351 EXPORT_SYMBOL(security_release_secctx);
1352
1353 void security_inode_invalidate_secctx(struct inode *inode)
1354 {
1355         call_void_hook(inode_invalidate_secctx, inode);
1356 }
1357 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1358
1359 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1360 {
1361         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1362 }
1363 EXPORT_SYMBOL(security_inode_notifysecctx);
1364
1365 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1366 {
1367         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1368 }
1369 EXPORT_SYMBOL(security_inode_setsecctx);
1370
1371 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1372 {
1373         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1374 }
1375 EXPORT_SYMBOL(security_inode_getsecctx);
1376
1377 #ifdef CONFIG_SECURITY_NETWORK
1378
1379 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1380 {
1381         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1382 }
1383 EXPORT_SYMBOL(security_unix_stream_connect);
1384
1385 int security_unix_may_send(struct socket *sock,  struct socket *other)
1386 {
1387         return call_int_hook(unix_may_send, 0, sock, other);
1388 }
1389 EXPORT_SYMBOL(security_unix_may_send);
1390
1391 int security_socket_create(int family, int type, int protocol, int kern)
1392 {
1393         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1394 }
1395
1396 int security_socket_post_create(struct socket *sock, int family,
1397                                 int type, int protocol, int kern)
1398 {
1399         return call_int_hook(socket_post_create, 0, sock, family, type,
1400                                                 protocol, kern);
1401 }
1402
1403 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1404 {
1405         return call_int_hook(socket_socketpair, 0, socka, sockb);
1406 }
1407 EXPORT_SYMBOL(security_socket_socketpair);
1408
1409 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1410 {
1411         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1412 }
1413
1414 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1415 {
1416         return call_int_hook(socket_connect, 0, sock, address, addrlen);
1417 }
1418
1419 int security_socket_listen(struct socket *sock, int backlog)
1420 {
1421         return call_int_hook(socket_listen, 0, sock, backlog);
1422 }
1423
1424 int security_socket_accept(struct socket *sock, struct socket *newsock)
1425 {
1426         return call_int_hook(socket_accept, 0, sock, newsock);
1427 }
1428
1429 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1430 {
1431         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1432 }
1433
1434 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1435                             int size, int flags)
1436 {
1437         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1438 }
1439
1440 int security_socket_getsockname(struct socket *sock)
1441 {
1442         return call_int_hook(socket_getsockname, 0, sock);
1443 }
1444
1445 int security_socket_getpeername(struct socket *sock)
1446 {
1447         return call_int_hook(socket_getpeername, 0, sock);
1448 }
1449
1450 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1451 {
1452         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1453 }
1454
1455 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1456 {
1457         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1458 }
1459
1460 int security_socket_shutdown(struct socket *sock, int how)
1461 {
1462         return call_int_hook(socket_shutdown, 0, sock, how);
1463 }
1464
1465 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1466 {
1467         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1468 }
1469 EXPORT_SYMBOL(security_sock_rcv_skb);
1470
1471 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1472                                       int __user *optlen, unsigned len)
1473 {
1474         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1475                                 optval, optlen, len);
1476 }
1477
1478 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1479 {
1480         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1481                              skb, secid);
1482 }
1483 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1484
1485 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1486 {
1487         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1488 }
1489
1490 void security_sk_free(struct sock *sk)
1491 {
1492         call_void_hook(sk_free_security, sk);
1493 }
1494
1495 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1496 {
1497         call_void_hook(sk_clone_security, sk, newsk);
1498 }
1499 EXPORT_SYMBOL(security_sk_clone);
1500
1501 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1502 {
1503         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1504 }
1505 EXPORT_SYMBOL(security_sk_classify_flow);
1506
1507 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1508 {
1509         call_void_hook(req_classify_flow, req, fl);
1510 }
1511 EXPORT_SYMBOL(security_req_classify_flow);
1512
1513 void security_sock_graft(struct sock *sk, struct socket *parent)
1514 {
1515         call_void_hook(sock_graft, sk, parent);
1516 }
1517 EXPORT_SYMBOL(security_sock_graft);
1518
1519 int security_inet_conn_request(struct sock *sk,
1520                         struct sk_buff *skb, struct request_sock *req)
1521 {
1522         return call_int_hook(inet_conn_request, 0, sk, skb, req);
1523 }
1524 EXPORT_SYMBOL(security_inet_conn_request);
1525
1526 void security_inet_csk_clone(struct sock *newsk,
1527                         const struct request_sock *req)
1528 {
1529         call_void_hook(inet_csk_clone, newsk, req);
1530 }
1531
1532 void security_inet_conn_established(struct sock *sk,
1533                         struct sk_buff *skb)
1534 {
1535         call_void_hook(inet_conn_established, sk, skb);
1536 }
1537 EXPORT_SYMBOL(security_inet_conn_established);
1538
1539 int security_secmark_relabel_packet(u32 secid)
1540 {
1541         return call_int_hook(secmark_relabel_packet, 0, secid);
1542 }
1543 EXPORT_SYMBOL(security_secmark_relabel_packet);
1544
1545 void security_secmark_refcount_inc(void)
1546 {
1547         call_void_hook(secmark_refcount_inc);
1548 }
1549 EXPORT_SYMBOL(security_secmark_refcount_inc);
1550
1551 void security_secmark_refcount_dec(void)
1552 {
1553         call_void_hook(secmark_refcount_dec);
1554 }
1555 EXPORT_SYMBOL(security_secmark_refcount_dec);
1556
1557 int security_tun_dev_alloc_security(void **security)
1558 {
1559         return call_int_hook(tun_dev_alloc_security, 0, security);
1560 }
1561 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1562
1563 void security_tun_dev_free_security(void *security)
1564 {
1565         call_void_hook(tun_dev_free_security, security);
1566 }
1567 EXPORT_SYMBOL(security_tun_dev_free_security);
1568
1569 int security_tun_dev_create(void)
1570 {
1571         return call_int_hook(tun_dev_create, 0);
1572 }
1573 EXPORT_SYMBOL(security_tun_dev_create);
1574
1575 int security_tun_dev_attach_queue(void *security)
1576 {
1577         return call_int_hook(tun_dev_attach_queue, 0, security);
1578 }
1579 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1580
1581 int security_tun_dev_attach(struct sock *sk, void *security)
1582 {
1583         return call_int_hook(tun_dev_attach, 0, sk, security);
1584 }
1585 EXPORT_SYMBOL(security_tun_dev_attach);
1586
1587 int security_tun_dev_open(void *security)
1588 {
1589         return call_int_hook(tun_dev_open, 0, security);
1590 }
1591 EXPORT_SYMBOL(security_tun_dev_open);
1592
1593 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1594 {
1595         return call_int_hook(sctp_assoc_request, 0, ep, skb);
1596 }
1597 EXPORT_SYMBOL(security_sctp_assoc_request);
1598
1599 int security_sctp_bind_connect(struct sock *sk, int optname,
1600                                struct sockaddr *address, int addrlen)
1601 {
1602         return call_int_hook(sctp_bind_connect, 0, sk, optname,
1603                              address, addrlen);
1604 }
1605 EXPORT_SYMBOL(security_sctp_bind_connect);
1606
1607 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1608                             struct sock *newsk)
1609 {
1610         call_void_hook(sctp_sk_clone, ep, sk, newsk);
1611 }
1612 EXPORT_SYMBOL(security_sctp_sk_clone);
1613
1614 #endif  /* CONFIG_SECURITY_NETWORK */
1615
1616 #ifdef CONFIG_SECURITY_INFINIBAND
1617
1618 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1619 {
1620         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1621 }
1622 EXPORT_SYMBOL(security_ib_pkey_access);
1623
1624 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1625 {
1626         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1627 }
1628 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1629
1630 int security_ib_alloc_security(void **sec)
1631 {
1632         return call_int_hook(ib_alloc_security, 0, sec);
1633 }
1634 EXPORT_SYMBOL(security_ib_alloc_security);
1635
1636 void security_ib_free_security(void *sec)
1637 {
1638         call_void_hook(ib_free_security, sec);
1639 }
1640 EXPORT_SYMBOL(security_ib_free_security);
1641 #endif  /* CONFIG_SECURITY_INFINIBAND */
1642
1643 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1644
1645 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1646                                struct xfrm_user_sec_ctx *sec_ctx,
1647                                gfp_t gfp)
1648 {
1649         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1650 }
1651 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1652
1653 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1654                               struct xfrm_sec_ctx **new_ctxp)
1655 {
1656         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1657 }
1658
1659 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1660 {
1661         call_void_hook(xfrm_policy_free_security, ctx);
1662 }
1663 EXPORT_SYMBOL(security_xfrm_policy_free);
1664
1665 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1666 {
1667         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1668 }
1669
1670 int security_xfrm_state_alloc(struct xfrm_state *x,
1671                               struct xfrm_user_sec_ctx *sec_ctx)
1672 {
1673         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1674 }
1675 EXPORT_SYMBOL(security_xfrm_state_alloc);
1676
1677 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1678                                       struct xfrm_sec_ctx *polsec, u32 secid)
1679 {
1680         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1681 }
1682
1683 int security_xfrm_state_delete(struct xfrm_state *x)
1684 {
1685         return call_int_hook(xfrm_state_delete_security, 0, x);
1686 }
1687 EXPORT_SYMBOL(security_xfrm_state_delete);
1688
1689 void security_xfrm_state_free(struct xfrm_state *x)
1690 {
1691         call_void_hook(xfrm_state_free_security, x);
1692 }
1693
1694 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1695 {
1696         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1697 }
1698
1699 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1700                                        struct xfrm_policy *xp,
1701                                        const struct flowi *fl)
1702 {
1703         struct security_hook_list *hp;
1704         int rc = 1;
1705
1706         /*
1707          * Since this function is expected to return 0 or 1, the judgment
1708          * becomes difficult if multiple LSMs supply this call. Fortunately,
1709          * we can use the first LSM's judgment because currently only SELinux
1710          * supplies this call.
1711          *
1712          * For speed optimization, we explicitly break the loop rather than
1713          * using the macro
1714          */
1715         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1716                                 list) {
1717                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1718                 break;
1719         }
1720         return rc;
1721 }
1722
1723 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1724 {
1725         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1726 }
1727
1728 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1729 {
1730         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1731                                 0);
1732
1733         BUG_ON(rc);
1734 }
1735 EXPORT_SYMBOL(security_skb_classify_flow);
1736
1737 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1738
1739 #ifdef CONFIG_KEYS
1740
1741 int security_key_alloc(struct key *key, const struct cred *cred,
1742                        unsigned long flags)
1743 {
1744         return call_int_hook(key_alloc, 0, key, cred, flags);
1745 }
1746
1747 void security_key_free(struct key *key)
1748 {
1749         call_void_hook(key_free, key);
1750 }
1751
1752 int security_key_permission(key_ref_t key_ref,
1753                             const struct cred *cred, unsigned perm)
1754 {
1755         return call_int_hook(key_permission, 0, key_ref, cred, perm);
1756 }
1757
1758 int security_key_getsecurity(struct key *key, char **_buffer)
1759 {
1760         *_buffer = NULL;
1761         return call_int_hook(key_getsecurity, 0, key, _buffer);
1762 }
1763
1764 #endif  /* CONFIG_KEYS */
1765
1766 #ifdef CONFIG_AUDIT
1767
1768 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1769 {
1770         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1771 }
1772
1773 int security_audit_rule_known(struct audit_krule *krule)
1774 {
1775         return call_int_hook(audit_rule_known, 0, krule);
1776 }
1777
1778 void security_audit_rule_free(void *lsmrule)
1779 {
1780         call_void_hook(audit_rule_free, lsmrule);
1781 }
1782
1783 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1784                               struct audit_context *actx)
1785 {
1786         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1787                                 actx);
1788 }
1789 #endif /* CONFIG_AUDIT */
1790
1791 #ifdef CONFIG_BPF_SYSCALL
1792 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1793 {
1794         return call_int_hook(bpf, 0, cmd, attr, size);
1795 }
1796 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1797 {
1798         return call_int_hook(bpf_map, 0, map, fmode);
1799 }
1800 int security_bpf_prog(struct bpf_prog *prog)
1801 {
1802         return call_int_hook(bpf_prog, 0, prog);
1803 }
1804 int security_bpf_map_alloc(struct bpf_map *map)
1805 {
1806         return call_int_hook(bpf_map_alloc_security, 0, map);
1807 }
1808 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1809 {
1810         return call_int_hook(bpf_prog_alloc_security, 0, aux);
1811 }
1812 void security_bpf_map_free(struct bpf_map *map)
1813 {
1814         call_void_hook(bpf_map_free_security, map);
1815 }
1816 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1817 {
1818         call_void_hook(bpf_prog_free_security, aux);
1819 }
1820 #endif /* CONFIG_BPF_SYSCALL */