GNU Linux-libre 5.10.217-gnu1
[releases.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
64         [LOCKDOWN_KCORE] = "/proc/kcore access",
65         [LOCKDOWN_KPROBES] = "use of kprobes",
66         [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
67         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68         [LOCKDOWN_PERF] = "unsafe use of perf",
69         [LOCKDOWN_TRACEFS] = "use of tracefs",
70         [LOCKDOWN_XMON_RW] = "xmon read and write access",
71         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
72 };
73
74 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
75 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
76
77 static struct kmem_cache *lsm_file_cache;
78 static struct kmem_cache *lsm_inode_cache;
79
80 char *lsm_names;
81 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
82
83 /* Boot-time LSM user choice */
84 static __initdata const char *chosen_lsm_order;
85 static __initdata const char *chosen_major_lsm;
86
87 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
88
89 /* Ordered list of LSMs to initialize. */
90 static __initdata struct lsm_info **ordered_lsms;
91 static __initdata struct lsm_info *exclusive;
92
93 static __initdata bool debug;
94 #define init_debug(...)                                         \
95         do {                                                    \
96                 if (debug)                                      \
97                         pr_info(__VA_ARGS__);                   \
98         } while (0)
99
100 static bool __init is_enabled(struct lsm_info *lsm)
101 {
102         if (!lsm->enabled)
103                 return false;
104
105         return *lsm->enabled;
106 }
107
108 /* Mark an LSM's enabled flag. */
109 static int lsm_enabled_true __initdata = 1;
110 static int lsm_enabled_false __initdata = 0;
111 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
112 {
113         /*
114          * When an LSM hasn't configured an enable variable, we can use
115          * a hard-coded location for storing the default enabled state.
116          */
117         if (!lsm->enabled) {
118                 if (enabled)
119                         lsm->enabled = &lsm_enabled_true;
120                 else
121                         lsm->enabled = &lsm_enabled_false;
122         } else if (lsm->enabled == &lsm_enabled_true) {
123                 if (!enabled)
124                         lsm->enabled = &lsm_enabled_false;
125         } else if (lsm->enabled == &lsm_enabled_false) {
126                 if (enabled)
127                         lsm->enabled = &lsm_enabled_true;
128         } else {
129                 *lsm->enabled = enabled;
130         }
131 }
132
133 /* Is an LSM already listed in the ordered LSMs list? */
134 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
135 {
136         struct lsm_info **check;
137
138         for (check = ordered_lsms; *check; check++)
139                 if (*check == lsm)
140                         return true;
141
142         return false;
143 }
144
145 /* Append an LSM to the list of ordered LSMs to initialize. */
146 static int last_lsm __initdata;
147 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
148 {
149         /* Ignore duplicate selections. */
150         if (exists_ordered_lsm(lsm))
151                 return;
152
153         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
154                 return;
155
156         /* Enable this LSM, if it is not already set. */
157         if (!lsm->enabled)
158                 lsm->enabled = &lsm_enabled_true;
159         ordered_lsms[last_lsm++] = lsm;
160
161         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
162                    is_enabled(lsm) ? "en" : "dis");
163 }
164
165 /* Is an LSM allowed to be initialized? */
166 static bool __init lsm_allowed(struct lsm_info *lsm)
167 {
168         /* Skip if the LSM is disabled. */
169         if (!is_enabled(lsm))
170                 return false;
171
172         /* Not allowed if another exclusive LSM already initialized. */
173         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
174                 init_debug("exclusive disabled: %s\n", lsm->name);
175                 return false;
176         }
177
178         return true;
179 }
180
181 static void __init lsm_set_blob_size(int *need, int *lbs)
182 {
183         int offset;
184
185         if (*need > 0) {
186                 offset = *lbs;
187                 *lbs += *need;
188                 *need = offset;
189         }
190 }
191
192 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
193 {
194         if (!needed)
195                 return;
196
197         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
198         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
199         /*
200          * The inode blob gets an rcu_head in addition to
201          * what the modules might need.
202          */
203         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
204                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
205         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
206         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
207         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
208         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214         int enabled = lsm_allowed(lsm);
215
216         /* Record enablement (to handle any following exclusive LSMs). */
217         set_enabled(lsm, enabled);
218
219         /* If enabled, do pre-initialization work. */
220         if (enabled) {
221                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222                         exclusive = lsm;
223                         init_debug("exclusive chosen: %s\n", lsm->name);
224                 }
225
226                 lsm_set_blob_sizes(lsm->blobs);
227         }
228 }
229
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233         if (is_enabled(lsm)) {
234                 int ret;
235
236                 init_debug("initializing %s\n", lsm->name);
237                 ret = lsm->init();
238                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239         }
240 }
241
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245         struct lsm_info *lsm;
246         char *sep, *name, *next;
247
248         /* LSM_ORDER_FIRST is always first. */
249         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250                 if (lsm->order == LSM_ORDER_FIRST)
251                         append_ordered_lsm(lsm, "first");
252         }
253
254         /* Process "security=", if given. */
255         if (chosen_major_lsm) {
256                 struct lsm_info *major;
257
258                 /*
259                  * To match the original "security=" behavior, this
260                  * explicitly does NOT fallback to another Legacy Major
261                  * if the selected one was separately disabled: disable
262                  * all non-matching Legacy Major LSMs.
263                  */
264                 for (major = __start_lsm_info; major < __end_lsm_info;
265                      major++) {
266                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267                             strcmp(major->name, chosen_major_lsm) != 0) {
268                                 set_enabled(major, false);
269                                 init_debug("security=%s disabled: %s\n",
270                                            chosen_major_lsm, major->name);
271                         }
272                 }
273         }
274
275         sep = kstrdup(order, GFP_KERNEL);
276         next = sep;
277         /* Walk the list, looking for matching LSMs. */
278         while ((name = strsep(&next, ",")) != NULL) {
279                 bool found = false;
280
281                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282                         if (lsm->order == LSM_ORDER_MUTABLE &&
283                             strcmp(lsm->name, name) == 0) {
284                                 append_ordered_lsm(lsm, origin);
285                                 found = true;
286                         }
287                 }
288
289                 if (!found)
290                         init_debug("%s ignored: %s\n", origin, name);
291         }
292
293         /* Process "security=", if given. */
294         if (chosen_major_lsm) {
295                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296                         if (exists_ordered_lsm(lsm))
297                                 continue;
298                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
299                                 append_ordered_lsm(lsm, "security=");
300                 }
301         }
302
303         /* Disable all LSMs not in the ordered list. */
304         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305                 if (exists_ordered_lsm(lsm))
306                         continue;
307                 set_enabled(lsm, false);
308                 init_debug("%s disabled: %s\n", origin, lsm->name);
309         }
310
311         kfree(sep);
312 }
313
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316
317 static int lsm_append(const char *new, char **result);
318
319 static void __init ordered_lsm_init(void)
320 {
321         struct lsm_info **lsm;
322
323         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324                                 GFP_KERNEL);
325
326         if (chosen_lsm_order) {
327                 if (chosen_major_lsm) {
328                         pr_info("security= is ignored because it is superseded by lsm=\n");
329                         chosen_major_lsm = NULL;
330                 }
331                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332         } else
333                 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335         for (lsm = ordered_lsms; *lsm; lsm++)
336                 prepare_lsm(*lsm);
337
338         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
339         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
340         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
341         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
342         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
343         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
344
345         /*
346          * Create any kmem_caches needed for blobs
347          */
348         if (blob_sizes.lbs_file)
349                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
350                                                    blob_sizes.lbs_file, 0,
351                                                    SLAB_PANIC, NULL);
352         if (blob_sizes.lbs_inode)
353                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
354                                                     blob_sizes.lbs_inode, 0,
355                                                     SLAB_PANIC, NULL);
356
357         lsm_early_cred((struct cred *) current->cred);
358         lsm_early_task(current);
359         for (lsm = ordered_lsms; *lsm; lsm++)
360                 initialize_lsm(*lsm);
361
362         kfree(ordered_lsms);
363 }
364
365 int __init early_security_init(void)
366 {
367         int i;
368         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
369         struct lsm_info *lsm;
370
371         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
372              i++)
373                 INIT_HLIST_HEAD(&list[i]);
374
375         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376                 if (!lsm->enabled)
377                         lsm->enabled = &lsm_enabled_true;
378                 prepare_lsm(lsm);
379                 initialize_lsm(lsm);
380         }
381
382         return 0;
383 }
384
385 /**
386  * security_init - initializes the security framework
387  *
388  * This should be called early in the kernel initialization sequence.
389  */
390 int __init security_init(void)
391 {
392         struct lsm_info *lsm;
393
394         pr_info("Security Framework initializing\n");
395
396         /*
397          * Append the names of the early LSM modules now that kmalloc() is
398          * available
399          */
400         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401                 if (lsm->enabled)
402                         lsm_append(lsm->name, &lsm_names);
403         }
404
405         /* Load LSMs in specified order. */
406         ordered_lsm_init();
407
408         return 0;
409 }
410
411 /* Save user chosen LSM */
412 static int __init choose_major_lsm(char *str)
413 {
414         chosen_major_lsm = str;
415         return 1;
416 }
417 __setup("security=", choose_major_lsm);
418
419 /* Explicitly choose LSM initialization order. */
420 static int __init choose_lsm_order(char *str)
421 {
422         chosen_lsm_order = str;
423         return 1;
424 }
425 __setup("lsm=", choose_lsm_order);
426
427 /* Enable LSM order debugging. */
428 static int __init enable_debug(char *str)
429 {
430         debug = true;
431         return 1;
432 }
433 __setup("lsm.debug", enable_debug);
434
435 static bool match_last_lsm(const char *list, const char *lsm)
436 {
437         const char *last;
438
439         if (WARN_ON(!list || !lsm))
440                 return false;
441         last = strrchr(list, ',');
442         if (last)
443                 /* Pass the comma, strcmp() will check for '\0' */
444                 last++;
445         else
446                 last = list;
447         return !strcmp(last, lsm);
448 }
449
450 static int lsm_append(const char *new, char **result)
451 {
452         char *cp;
453
454         if (*result == NULL) {
455                 *result = kstrdup(new, GFP_KERNEL);
456                 if (*result == NULL)
457                         return -ENOMEM;
458         } else {
459                 /* Check if it is the last registered name */
460                 if (match_last_lsm(*result, new))
461                         return 0;
462                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463                 if (cp == NULL)
464                         return -ENOMEM;
465                 kfree(*result);
466                 *result = cp;
467         }
468         return 0;
469 }
470
471 /**
472  * security_add_hooks - Add a modules hooks to the hook lists.
473  * @hooks: the hooks to add
474  * @count: the number of hooks to add
475  * @lsm: the name of the security module
476  *
477  * Each LSM has to register its hooks with the infrastructure.
478  */
479 void __init security_add_hooks(struct security_hook_list *hooks, int count,
480                                 char *lsm)
481 {
482         int i;
483
484         for (i = 0; i < count; i++) {
485                 hooks[i].lsm = lsm;
486                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487         }
488
489         /*
490          * Don't try to append during early_security_init(), we'll come back
491          * and fix this up afterwards.
492          */
493         if (slab_is_available()) {
494                 if (lsm_append(lsm, &lsm_names) < 0)
495                         panic("%s - Cannot get early memory.\n", __func__);
496         }
497 }
498
499 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500 {
501         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502                                             event, data);
503 }
504 EXPORT_SYMBOL(call_blocking_lsm_notifier);
505
506 int register_blocking_lsm_notifier(struct notifier_block *nb)
507 {
508         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509                                                 nb);
510 }
511 EXPORT_SYMBOL(register_blocking_lsm_notifier);
512
513 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514 {
515         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516                                                   nb);
517 }
518 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519
520 /**
521  * lsm_cred_alloc - allocate a composite cred blob
522  * @cred: the cred that needs a blob
523  * @gfp: allocation type
524  *
525  * Allocate the cred blob for all the modules
526  *
527  * Returns 0, or -ENOMEM if memory can't be allocated.
528  */
529 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530 {
531         if (blob_sizes.lbs_cred == 0) {
532                 cred->security = NULL;
533                 return 0;
534         }
535
536         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537         if (cred->security == NULL)
538                 return -ENOMEM;
539         return 0;
540 }
541
542 /**
543  * lsm_early_cred - during initialization allocate a composite cred blob
544  * @cred: the cred that needs a blob
545  *
546  * Allocate the cred blob for all the modules
547  */
548 static void __init lsm_early_cred(struct cred *cred)
549 {
550         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551
552         if (rc)
553                 panic("%s: Early cred alloc failed.\n", __func__);
554 }
555
556 /**
557  * lsm_file_alloc - allocate a composite file blob
558  * @file: the file that needs a blob
559  *
560  * Allocate the file blob for all the modules
561  *
562  * Returns 0, or -ENOMEM if memory can't be allocated.
563  */
564 static int lsm_file_alloc(struct file *file)
565 {
566         if (!lsm_file_cache) {
567                 file->f_security = NULL;
568                 return 0;
569         }
570
571         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572         if (file->f_security == NULL)
573                 return -ENOMEM;
574         return 0;
575 }
576
577 /**
578  * lsm_inode_alloc - allocate a composite inode blob
579  * @inode: the inode that needs a blob
580  *
581  * Allocate the inode blob for all the modules
582  *
583  * Returns 0, or -ENOMEM if memory can't be allocated.
584  */
585 int lsm_inode_alloc(struct inode *inode)
586 {
587         if (!lsm_inode_cache) {
588                 inode->i_security = NULL;
589                 return 0;
590         }
591
592         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593         if (inode->i_security == NULL)
594                 return -ENOMEM;
595         return 0;
596 }
597
598 /**
599  * lsm_task_alloc - allocate a composite task blob
600  * @task: the task that needs a blob
601  *
602  * Allocate the task blob for all the modules
603  *
604  * Returns 0, or -ENOMEM if memory can't be allocated.
605  */
606 static int lsm_task_alloc(struct task_struct *task)
607 {
608         if (blob_sizes.lbs_task == 0) {
609                 task->security = NULL;
610                 return 0;
611         }
612
613         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614         if (task->security == NULL)
615                 return -ENOMEM;
616         return 0;
617 }
618
619 /**
620  * lsm_ipc_alloc - allocate a composite ipc blob
621  * @kip: the ipc that needs a blob
622  *
623  * Allocate the ipc blob for all the modules
624  *
625  * Returns 0, or -ENOMEM if memory can't be allocated.
626  */
627 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628 {
629         if (blob_sizes.lbs_ipc == 0) {
630                 kip->security = NULL;
631                 return 0;
632         }
633
634         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635         if (kip->security == NULL)
636                 return -ENOMEM;
637         return 0;
638 }
639
640 /**
641  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642  * @mp: the msg_msg that needs a blob
643  *
644  * Allocate the ipc blob for all the modules
645  *
646  * Returns 0, or -ENOMEM if memory can't be allocated.
647  */
648 static int lsm_msg_msg_alloc(struct msg_msg *mp)
649 {
650         if (blob_sizes.lbs_msg_msg == 0) {
651                 mp->security = NULL;
652                 return 0;
653         }
654
655         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656         if (mp->security == NULL)
657                 return -ENOMEM;
658         return 0;
659 }
660
661 /**
662  * lsm_early_task - during initialization allocate a composite task blob
663  * @task: the task that needs a blob
664  *
665  * Allocate the task blob for all the modules
666  */
667 static void __init lsm_early_task(struct task_struct *task)
668 {
669         int rc = lsm_task_alloc(task);
670
671         if (rc)
672                 panic("%s: Early task alloc failed.\n", __func__);
673 }
674
675 /*
676  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
677  * can be accessed with:
678  *
679  *      LSM_RET_DEFAULT(<hook_name>)
680  *
681  * The macros below define static constants for the default value of each
682  * LSM hook.
683  */
684 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
685 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
686 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
687         static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
688 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
689         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
690
691 #include <linux/lsm_hook_defs.h>
692 #undef LSM_HOOK
693
694 /*
695  * Hook list operation macros.
696  *
697  * call_void_hook:
698  *      This is a hook that does not return a value.
699  *
700  * call_int_hook:
701  *      This is a hook that returns a value.
702  */
703
704 #define call_void_hook(FUNC, ...)                               \
705         do {                                                    \
706                 struct security_hook_list *P;                   \
707                                                                 \
708                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
709                         P->hook.FUNC(__VA_ARGS__);              \
710         } while (0)
711
712 #define call_int_hook(FUNC, IRC, ...) ({                        \
713         int RC = IRC;                                           \
714         do {                                                    \
715                 struct security_hook_list *P;                   \
716                                                                 \
717                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
718                         RC = P->hook.FUNC(__VA_ARGS__);         \
719                         if (RC != 0)                            \
720                                 break;                          \
721                 }                                               \
722         } while (0);                                            \
723         RC;                                                     \
724 })
725
726 /* Security operations */
727
728 int security_binder_set_context_mgr(const struct cred *mgr)
729 {
730         return call_int_hook(binder_set_context_mgr, 0, mgr);
731 }
732
733 int security_binder_transaction(const struct cred *from,
734                                 const struct cred *to)
735 {
736         return call_int_hook(binder_transaction, 0, from, to);
737 }
738
739 int security_binder_transfer_binder(const struct cred *from,
740                                     const struct cred *to)
741 {
742         return call_int_hook(binder_transfer_binder, 0, from, to);
743 }
744
745 int security_binder_transfer_file(const struct cred *from,
746                                   const struct cred *to, struct file *file)
747 {
748         return call_int_hook(binder_transfer_file, 0, from, to, file);
749 }
750
751 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
752 {
753         return call_int_hook(ptrace_access_check, 0, child, mode);
754 }
755
756 int security_ptrace_traceme(struct task_struct *parent)
757 {
758         return call_int_hook(ptrace_traceme, 0, parent);
759 }
760
761 int security_capget(struct task_struct *target,
762                      kernel_cap_t *effective,
763                      kernel_cap_t *inheritable,
764                      kernel_cap_t *permitted)
765 {
766         return call_int_hook(capget, 0, target,
767                                 effective, inheritable, permitted);
768 }
769
770 int security_capset(struct cred *new, const struct cred *old,
771                     const kernel_cap_t *effective,
772                     const kernel_cap_t *inheritable,
773                     const kernel_cap_t *permitted)
774 {
775         return call_int_hook(capset, 0, new, old,
776                                 effective, inheritable, permitted);
777 }
778
779 int security_capable(const struct cred *cred,
780                      struct user_namespace *ns,
781                      int cap,
782                      unsigned int opts)
783 {
784         return call_int_hook(capable, 0, cred, ns, cap, opts);
785 }
786
787 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
788 {
789         return call_int_hook(quotactl, 0, cmds, type, id, sb);
790 }
791
792 int security_quota_on(struct dentry *dentry)
793 {
794         return call_int_hook(quota_on, 0, dentry);
795 }
796
797 int security_syslog(int type)
798 {
799         return call_int_hook(syslog, 0, type);
800 }
801
802 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
803 {
804         return call_int_hook(settime, 0, ts, tz);
805 }
806
807 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
808 {
809         struct security_hook_list *hp;
810         int cap_sys_admin = 1;
811         int rc;
812
813         /*
814          * The module will respond with a positive value if
815          * it thinks the __vm_enough_memory() call should be
816          * made with the cap_sys_admin set. If all of the modules
817          * agree that it should be set it will. If any module
818          * thinks it should not be set it won't.
819          */
820         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
821                 rc = hp->hook.vm_enough_memory(mm, pages);
822                 if (rc <= 0) {
823                         cap_sys_admin = 0;
824                         break;
825                 }
826         }
827         return __vm_enough_memory(mm, pages, cap_sys_admin);
828 }
829
830 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
831 {
832         return call_int_hook(bprm_creds_for_exec, 0, bprm);
833 }
834
835 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
836 {
837         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
838 }
839
840 int security_bprm_check(struct linux_binprm *bprm)
841 {
842         int ret;
843
844         ret = call_int_hook(bprm_check_security, 0, bprm);
845         if (ret)
846                 return ret;
847         return ima_bprm_check(bprm);
848 }
849
850 void security_bprm_committing_creds(struct linux_binprm *bprm)
851 {
852         call_void_hook(bprm_committing_creds, bprm);
853 }
854
855 void security_bprm_committed_creds(struct linux_binprm *bprm)
856 {
857         call_void_hook(bprm_committed_creds, bprm);
858 }
859
860 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
861 {
862         return call_int_hook(fs_context_dup, 0, fc, src_fc);
863 }
864
865 int security_fs_context_parse_param(struct fs_context *fc,
866                                     struct fs_parameter *param)
867 {
868         struct security_hook_list *hp;
869         int trc;
870         int rc = -ENOPARAM;
871
872         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
873                              list) {
874                 trc = hp->hook.fs_context_parse_param(fc, param);
875                 if (trc == 0)
876                         rc = 0;
877                 else if (trc != -ENOPARAM)
878                         return trc;
879         }
880         return rc;
881 }
882
883 int security_sb_alloc(struct super_block *sb)
884 {
885         return call_int_hook(sb_alloc_security, 0, sb);
886 }
887
888 void security_sb_free(struct super_block *sb)
889 {
890         call_void_hook(sb_free_security, sb);
891 }
892
893 void security_free_mnt_opts(void **mnt_opts)
894 {
895         if (!*mnt_opts)
896                 return;
897         call_void_hook(sb_free_mnt_opts, *mnt_opts);
898         *mnt_opts = NULL;
899 }
900 EXPORT_SYMBOL(security_free_mnt_opts);
901
902 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
903 {
904         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
905 }
906 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
907
908 int security_sb_remount(struct super_block *sb,
909                         void *mnt_opts)
910 {
911         return call_int_hook(sb_remount, 0, sb, mnt_opts);
912 }
913 EXPORT_SYMBOL(security_sb_remount);
914
915 int security_sb_kern_mount(struct super_block *sb)
916 {
917         return call_int_hook(sb_kern_mount, 0, sb);
918 }
919
920 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
921 {
922         return call_int_hook(sb_show_options, 0, m, sb);
923 }
924
925 int security_sb_statfs(struct dentry *dentry)
926 {
927         return call_int_hook(sb_statfs, 0, dentry);
928 }
929
930 int security_sb_mount(const char *dev_name, const struct path *path,
931                        const char *type, unsigned long flags, void *data)
932 {
933         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
934 }
935
936 int security_sb_umount(struct vfsmount *mnt, int flags)
937 {
938         return call_int_hook(sb_umount, 0, mnt, flags);
939 }
940
941 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
942 {
943         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
944 }
945
946 int security_sb_set_mnt_opts(struct super_block *sb,
947                                 void *mnt_opts,
948                                 unsigned long kern_flags,
949                                 unsigned long *set_kern_flags)
950 {
951         return call_int_hook(sb_set_mnt_opts,
952                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
953                                 mnt_opts, kern_flags, set_kern_flags);
954 }
955 EXPORT_SYMBOL(security_sb_set_mnt_opts);
956
957 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
958                                 struct super_block *newsb,
959                                 unsigned long kern_flags,
960                                 unsigned long *set_kern_flags)
961 {
962         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
963                                 kern_flags, set_kern_flags);
964 }
965 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
966
967 int security_add_mnt_opt(const char *option, const char *val, int len,
968                          void **mnt_opts)
969 {
970         return call_int_hook(sb_add_mnt_opt, -EINVAL,
971                                         option, val, len, mnt_opts);
972 }
973 EXPORT_SYMBOL(security_add_mnt_opt);
974
975 int security_move_mount(const struct path *from_path, const struct path *to_path)
976 {
977         return call_int_hook(move_mount, 0, from_path, to_path);
978 }
979
980 int security_path_notify(const struct path *path, u64 mask,
981                                 unsigned int obj_type)
982 {
983         return call_int_hook(path_notify, 0, path, mask, obj_type);
984 }
985
986 int security_inode_alloc(struct inode *inode)
987 {
988         int rc = lsm_inode_alloc(inode);
989
990         if (unlikely(rc))
991                 return rc;
992         rc = call_int_hook(inode_alloc_security, 0, inode);
993         if (unlikely(rc))
994                 security_inode_free(inode);
995         return rc;
996 }
997
998 static void inode_free_by_rcu(struct rcu_head *head)
999 {
1000         /*
1001          * The rcu head is at the start of the inode blob
1002          */
1003         kmem_cache_free(lsm_inode_cache, head);
1004 }
1005
1006 void security_inode_free(struct inode *inode)
1007 {
1008         integrity_inode_free(inode);
1009         call_void_hook(inode_free_security, inode);
1010         /*
1011          * The inode may still be referenced in a path walk and
1012          * a call to security_inode_permission() can be made
1013          * after inode_free_security() is called. Ideally, the VFS
1014          * wouldn't do this, but fixing that is a much harder
1015          * job. For now, simply free the i_security via RCU, and
1016          * leave the current inode->i_security pointer intact.
1017          * The inode will be freed after the RCU grace period too.
1018          */
1019         if (inode->i_security)
1020                 call_rcu((struct rcu_head *)inode->i_security,
1021                                 inode_free_by_rcu);
1022 }
1023
1024 int security_dentry_init_security(struct dentry *dentry, int mode,
1025                                         const struct qstr *name, void **ctx,
1026                                         u32 *ctxlen)
1027 {
1028         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1029                                 name, ctx, ctxlen);
1030 }
1031 EXPORT_SYMBOL(security_dentry_init_security);
1032
1033 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1034                                     struct qstr *name,
1035                                     const struct cred *old, struct cred *new)
1036 {
1037         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1038                                 name, old, new);
1039 }
1040 EXPORT_SYMBOL(security_dentry_create_files_as);
1041
1042 int security_inode_init_security(struct inode *inode, struct inode *dir,
1043                                  const struct qstr *qstr,
1044                                  const initxattrs initxattrs, void *fs_data)
1045 {
1046         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1047         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1048         int ret;
1049
1050         if (unlikely(IS_PRIVATE(inode)))
1051                 return 0;
1052
1053         if (!initxattrs)
1054                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1055                                      dir, qstr, NULL, NULL, NULL);
1056         memset(new_xattrs, 0, sizeof(new_xattrs));
1057         lsm_xattr = new_xattrs;
1058         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1059                                                 &lsm_xattr->name,
1060                                                 &lsm_xattr->value,
1061                                                 &lsm_xattr->value_len);
1062         if (ret)
1063                 goto out;
1064
1065         evm_xattr = lsm_xattr + 1;
1066         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1067         if (ret)
1068                 goto out;
1069         ret = initxattrs(inode, new_xattrs, fs_data);
1070 out:
1071         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1072                 kfree(xattr->value);
1073         return (ret == -EOPNOTSUPP) ? 0 : ret;
1074 }
1075 EXPORT_SYMBOL(security_inode_init_security);
1076
1077 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1078                                      const struct qstr *qstr, const char **name,
1079                                      void **value, size_t *len)
1080 {
1081         if (unlikely(IS_PRIVATE(inode)))
1082                 return -EOPNOTSUPP;
1083         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1084                              qstr, name, value, len);
1085 }
1086 EXPORT_SYMBOL(security_old_inode_init_security);
1087
1088 #ifdef CONFIG_SECURITY_PATH
1089 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1090                         unsigned int dev)
1091 {
1092         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1093                 return 0;
1094         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1095 }
1096 EXPORT_SYMBOL(security_path_mknod);
1097
1098 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1099 {
1100         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1101                 return 0;
1102         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1103 }
1104 EXPORT_SYMBOL(security_path_mkdir);
1105
1106 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1107 {
1108         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109                 return 0;
1110         return call_int_hook(path_rmdir, 0, dir, dentry);
1111 }
1112
1113 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1114 {
1115         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1116                 return 0;
1117         return call_int_hook(path_unlink, 0, dir, dentry);
1118 }
1119 EXPORT_SYMBOL(security_path_unlink);
1120
1121 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1122                           const char *old_name)
1123 {
1124         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1125                 return 0;
1126         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1127 }
1128
1129 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1130                        struct dentry *new_dentry)
1131 {
1132         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1133                 return 0;
1134         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1135 }
1136
1137 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1138                          const struct path *new_dir, struct dentry *new_dentry,
1139                          unsigned int flags)
1140 {
1141         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1142                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1143                 return 0;
1144
1145         if (flags & RENAME_EXCHANGE) {
1146                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1147                                         old_dir, old_dentry);
1148                 if (err)
1149                         return err;
1150         }
1151
1152         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1153                                 new_dentry);
1154 }
1155 EXPORT_SYMBOL(security_path_rename);
1156
1157 int security_path_truncate(const struct path *path)
1158 {
1159         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1160                 return 0;
1161         return call_int_hook(path_truncate, 0, path);
1162 }
1163
1164 int security_path_chmod(const struct path *path, umode_t mode)
1165 {
1166         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1167                 return 0;
1168         return call_int_hook(path_chmod, 0, path, mode);
1169 }
1170
1171 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1172 {
1173         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1174                 return 0;
1175         return call_int_hook(path_chown, 0, path, uid, gid);
1176 }
1177
1178 int security_path_chroot(const struct path *path)
1179 {
1180         return call_int_hook(path_chroot, 0, path);
1181 }
1182 #endif
1183
1184 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1185 {
1186         if (unlikely(IS_PRIVATE(dir)))
1187                 return 0;
1188         return call_int_hook(inode_create, 0, dir, dentry, mode);
1189 }
1190 EXPORT_SYMBOL_GPL(security_inode_create);
1191
1192 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1193                          struct dentry *new_dentry)
1194 {
1195         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1196                 return 0;
1197         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1198 }
1199
1200 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1201 {
1202         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1203                 return 0;
1204         return call_int_hook(inode_unlink, 0, dir, dentry);
1205 }
1206
1207 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1208                             const char *old_name)
1209 {
1210         if (unlikely(IS_PRIVATE(dir)))
1211                 return 0;
1212         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1213 }
1214
1215 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1216 {
1217         if (unlikely(IS_PRIVATE(dir)))
1218                 return 0;
1219         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1220 }
1221 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1222
1223 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1224 {
1225         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1226                 return 0;
1227         return call_int_hook(inode_rmdir, 0, dir, dentry);
1228 }
1229
1230 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1231 {
1232         if (unlikely(IS_PRIVATE(dir)))
1233                 return 0;
1234         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1235 }
1236
1237 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1238                            struct inode *new_dir, struct dentry *new_dentry,
1239                            unsigned int flags)
1240 {
1241         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1242             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1243                 return 0;
1244
1245         if (flags & RENAME_EXCHANGE) {
1246                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1247                                                      old_dir, old_dentry);
1248                 if (err)
1249                         return err;
1250         }
1251
1252         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1253                                            new_dir, new_dentry);
1254 }
1255
1256 int security_inode_readlink(struct dentry *dentry)
1257 {
1258         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1259                 return 0;
1260         return call_int_hook(inode_readlink, 0, dentry);
1261 }
1262
1263 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1264                                bool rcu)
1265 {
1266         if (unlikely(IS_PRIVATE(inode)))
1267                 return 0;
1268         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1269 }
1270
1271 int security_inode_permission(struct inode *inode, int mask)
1272 {
1273         if (unlikely(IS_PRIVATE(inode)))
1274                 return 0;
1275         return call_int_hook(inode_permission, 0, inode, mask);
1276 }
1277
1278 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1279 {
1280         int ret;
1281
1282         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1283                 return 0;
1284         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1285         if (ret)
1286                 return ret;
1287         return evm_inode_setattr(dentry, attr);
1288 }
1289 EXPORT_SYMBOL_GPL(security_inode_setattr);
1290
1291 int security_inode_getattr(const struct path *path)
1292 {
1293         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1294                 return 0;
1295         return call_int_hook(inode_getattr, 0, path);
1296 }
1297
1298 int security_inode_setxattr(struct dentry *dentry, const char *name,
1299                             const void *value, size_t size, int flags)
1300 {
1301         int ret;
1302
1303         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1304                 return 0;
1305         /*
1306          * SELinux and Smack integrate the cap call,
1307          * so assume that all LSMs supplying this call do so.
1308          */
1309         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1310                                 flags);
1311
1312         if (ret == 1)
1313                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1314         if (ret)
1315                 return ret;
1316         ret = ima_inode_setxattr(dentry, name, value, size);
1317         if (ret)
1318                 return ret;
1319         return evm_inode_setxattr(dentry, name, value, size);
1320 }
1321
1322 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1323                                   const void *value, size_t size, int flags)
1324 {
1325         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1326                 return;
1327         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1328         evm_inode_post_setxattr(dentry, name, value, size);
1329 }
1330
1331 int security_inode_getxattr(struct dentry *dentry, const char *name)
1332 {
1333         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1334                 return 0;
1335         return call_int_hook(inode_getxattr, 0, dentry, name);
1336 }
1337
1338 int security_inode_listxattr(struct dentry *dentry)
1339 {
1340         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1341                 return 0;
1342         return call_int_hook(inode_listxattr, 0, dentry);
1343 }
1344
1345 int security_inode_removexattr(struct dentry *dentry, const char *name)
1346 {
1347         int ret;
1348
1349         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1350                 return 0;
1351         /*
1352          * SELinux and Smack integrate the cap call,
1353          * so assume that all LSMs supplying this call do so.
1354          */
1355         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1356         if (ret == 1)
1357                 ret = cap_inode_removexattr(dentry, name);
1358         if (ret)
1359                 return ret;
1360         ret = ima_inode_removexattr(dentry, name);
1361         if (ret)
1362                 return ret;
1363         return evm_inode_removexattr(dentry, name);
1364 }
1365
1366 int security_inode_need_killpriv(struct dentry *dentry)
1367 {
1368         return call_int_hook(inode_need_killpriv, 0, dentry);
1369 }
1370
1371 int security_inode_killpriv(struct dentry *dentry)
1372 {
1373         return call_int_hook(inode_killpriv, 0, dentry);
1374 }
1375
1376 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1377 {
1378         struct security_hook_list *hp;
1379         int rc;
1380
1381         if (unlikely(IS_PRIVATE(inode)))
1382                 return LSM_RET_DEFAULT(inode_getsecurity);
1383         /*
1384          * Only one module will provide an attribute with a given name.
1385          */
1386         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1387                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1388                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1389                         return rc;
1390         }
1391         return LSM_RET_DEFAULT(inode_getsecurity);
1392 }
1393
1394 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1395 {
1396         struct security_hook_list *hp;
1397         int rc;
1398
1399         if (unlikely(IS_PRIVATE(inode)))
1400                 return LSM_RET_DEFAULT(inode_setsecurity);
1401         /*
1402          * Only one module will provide an attribute with a given name.
1403          */
1404         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1405                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1406                                                                 flags);
1407                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1408                         return rc;
1409         }
1410         return LSM_RET_DEFAULT(inode_setsecurity);
1411 }
1412
1413 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1414 {
1415         if (unlikely(IS_PRIVATE(inode)))
1416                 return 0;
1417         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1418 }
1419 EXPORT_SYMBOL(security_inode_listsecurity);
1420
1421 void security_inode_getsecid(struct inode *inode, u32 *secid)
1422 {
1423         call_void_hook(inode_getsecid, inode, secid);
1424 }
1425
1426 int security_inode_copy_up(struct dentry *src, struct cred **new)
1427 {
1428         return call_int_hook(inode_copy_up, 0, src, new);
1429 }
1430 EXPORT_SYMBOL(security_inode_copy_up);
1431
1432 int security_inode_copy_up_xattr(const char *name)
1433 {
1434         struct security_hook_list *hp;
1435         int rc;
1436
1437         /*
1438          * The implementation can return 0 (accept the xattr), 1 (discard the
1439          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1440          * any other error code incase of an error.
1441          */
1442         hlist_for_each_entry(hp,
1443                 &security_hook_heads.inode_copy_up_xattr, list) {
1444                 rc = hp->hook.inode_copy_up_xattr(name);
1445                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1446                         return rc;
1447         }
1448
1449         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1450 }
1451 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1452
1453 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1454                                   struct kernfs_node *kn)
1455 {
1456         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1457 }
1458
1459 int security_file_permission(struct file *file, int mask)
1460 {
1461         int ret;
1462
1463         ret = call_int_hook(file_permission, 0, file, mask);
1464         if (ret)
1465                 return ret;
1466
1467         return fsnotify_perm(file, mask);
1468 }
1469
1470 int security_file_alloc(struct file *file)
1471 {
1472         int rc = lsm_file_alloc(file);
1473
1474         if (rc)
1475                 return rc;
1476         rc = call_int_hook(file_alloc_security, 0, file);
1477         if (unlikely(rc))
1478                 security_file_free(file);
1479         return rc;
1480 }
1481
1482 void security_file_free(struct file *file)
1483 {
1484         void *blob;
1485
1486         call_void_hook(file_free_security, file);
1487
1488         blob = file->f_security;
1489         if (blob) {
1490                 file->f_security = NULL;
1491                 kmem_cache_free(lsm_file_cache, blob);
1492         }
1493 }
1494
1495 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1496 {
1497         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1498 }
1499 EXPORT_SYMBOL_GPL(security_file_ioctl);
1500
1501 /**
1502  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
1503  * @file: associated file
1504  * @cmd: ioctl cmd
1505  * @arg: ioctl arguments
1506  *
1507  * Compat version of security_file_ioctl() that correctly handles 32-bit
1508  * processes running on 64-bit kernels.
1509  *
1510  * Return: Returns 0 if permission is granted.
1511  */
1512 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
1513                                unsigned long arg)
1514 {
1515         return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
1516 }
1517 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
1518
1519 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1520 {
1521         /*
1522          * Does we have PROT_READ and does the application expect
1523          * it to imply PROT_EXEC?  If not, nothing to talk about...
1524          */
1525         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1526                 return prot;
1527         if (!(current->personality & READ_IMPLIES_EXEC))
1528                 return prot;
1529         /*
1530          * if that's an anonymous mapping, let it.
1531          */
1532         if (!file)
1533                 return prot | PROT_EXEC;
1534         /*
1535          * ditto if it's not on noexec mount, except that on !MMU we need
1536          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1537          */
1538         if (!path_noexec(&file->f_path)) {
1539 #ifndef CONFIG_MMU
1540                 if (file->f_op->mmap_capabilities) {
1541                         unsigned caps = file->f_op->mmap_capabilities(file);
1542                         if (!(caps & NOMMU_MAP_EXEC))
1543                                 return prot;
1544                 }
1545 #endif
1546                 return prot | PROT_EXEC;
1547         }
1548         /* anything on noexec mount won't get PROT_EXEC */
1549         return prot;
1550 }
1551
1552 int security_mmap_file(struct file *file, unsigned long prot,
1553                         unsigned long flags)
1554 {
1555         unsigned long prot_adj = mmap_prot(file, prot);
1556         int ret;
1557
1558         ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1559         if (ret)
1560                 return ret;
1561         return ima_file_mmap(file, prot, prot_adj, flags);
1562 }
1563
1564 int security_mmap_addr(unsigned long addr)
1565 {
1566         return call_int_hook(mmap_addr, 0, addr);
1567 }
1568
1569 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1570                             unsigned long prot)
1571 {
1572         int ret;
1573
1574         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1575         if (ret)
1576                 return ret;
1577         return ima_file_mprotect(vma, prot);
1578 }
1579
1580 int security_file_lock(struct file *file, unsigned int cmd)
1581 {
1582         return call_int_hook(file_lock, 0, file, cmd);
1583 }
1584
1585 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1586 {
1587         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1588 }
1589
1590 void security_file_set_fowner(struct file *file)
1591 {
1592         call_void_hook(file_set_fowner, file);
1593 }
1594
1595 int security_file_send_sigiotask(struct task_struct *tsk,
1596                                   struct fown_struct *fown, int sig)
1597 {
1598         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1599 }
1600
1601 int security_file_receive(struct file *file)
1602 {
1603         return call_int_hook(file_receive, 0, file);
1604 }
1605
1606 int security_file_open(struct file *file)
1607 {
1608         int ret;
1609
1610         ret = call_int_hook(file_open, 0, file);
1611         if (ret)
1612                 return ret;
1613
1614         return fsnotify_perm(file, MAY_OPEN);
1615 }
1616
1617 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1618 {
1619         int rc = lsm_task_alloc(task);
1620
1621         if (rc)
1622                 return rc;
1623         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1624         if (unlikely(rc))
1625                 security_task_free(task);
1626         return rc;
1627 }
1628
1629 void security_task_free(struct task_struct *task)
1630 {
1631         call_void_hook(task_free, task);
1632
1633         kfree(task->security);
1634         task->security = NULL;
1635 }
1636
1637 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1638 {
1639         int rc = lsm_cred_alloc(cred, gfp);
1640
1641         if (rc)
1642                 return rc;
1643
1644         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1645         if (unlikely(rc))
1646                 security_cred_free(cred);
1647         return rc;
1648 }
1649
1650 void security_cred_free(struct cred *cred)
1651 {
1652         /*
1653          * There is a failure case in prepare_creds() that
1654          * may result in a call here with ->security being NULL.
1655          */
1656         if (unlikely(cred->security == NULL))
1657                 return;
1658
1659         call_void_hook(cred_free, cred);
1660
1661         kfree(cred->security);
1662         cred->security = NULL;
1663 }
1664
1665 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1666 {
1667         int rc = lsm_cred_alloc(new, gfp);
1668
1669         if (rc)
1670                 return rc;
1671
1672         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1673         if (unlikely(rc))
1674                 security_cred_free(new);
1675         return rc;
1676 }
1677
1678 void security_transfer_creds(struct cred *new, const struct cred *old)
1679 {
1680         call_void_hook(cred_transfer, new, old);
1681 }
1682
1683 void security_cred_getsecid(const struct cred *c, u32 *secid)
1684 {
1685         *secid = 0;
1686         call_void_hook(cred_getsecid, c, secid);
1687 }
1688 EXPORT_SYMBOL(security_cred_getsecid);
1689
1690 int security_kernel_act_as(struct cred *new, u32 secid)
1691 {
1692         return call_int_hook(kernel_act_as, 0, new, secid);
1693 }
1694
1695 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1696 {
1697         return call_int_hook(kernel_create_files_as, 0, new, inode);
1698 }
1699
1700 int security_kernel_module_request(char *kmod_name)
1701 {
1702         int ret;
1703
1704         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1705         if (ret)
1706                 return ret;
1707         return integrity_kernel_module_request(kmod_name);
1708 }
1709
1710 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1711                               bool contents)
1712 {
1713         int ret;
1714
1715         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1716         if (ret)
1717                 return ret;
1718         return ima_read_file(file, id, contents);
1719 }
1720 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1721
1722 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1723                                    enum kernel_read_file_id id)
1724 {
1725         int ret;
1726
1727         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1728         if (ret)
1729                 return ret;
1730         return ima_post_read_file(file, buf, size, id);
1731 }
1732 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1733
1734 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1735 {
1736         int ret;
1737
1738         ret = call_int_hook(kernel_load_data, 0, id, contents);
1739         if (ret)
1740                 return ret;
1741         return ima_load_data(id, contents);
1742 }
1743 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1744
1745 int security_kernel_post_load_data(char *buf, loff_t size,
1746                                    enum kernel_load_data_id id,
1747                                    char *description)
1748 {
1749         int ret;
1750
1751         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1752                             description);
1753         if (ret)
1754                 return ret;
1755         return ima_post_load_data(buf, size, id, description);
1756 }
1757 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1758
1759 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1760                              int flags)
1761 {
1762         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1763 }
1764
1765 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1766                                  int flags)
1767 {
1768         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1769 }
1770
1771 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1772 {
1773         return call_int_hook(task_setpgid, 0, p, pgid);
1774 }
1775
1776 int security_task_getpgid(struct task_struct *p)
1777 {
1778         return call_int_hook(task_getpgid, 0, p);
1779 }
1780
1781 int security_task_getsid(struct task_struct *p)
1782 {
1783         return call_int_hook(task_getsid, 0, p);
1784 }
1785
1786 void security_task_getsecid(struct task_struct *p, u32 *secid)
1787 {
1788         *secid = 0;
1789         call_void_hook(task_getsecid, p, secid);
1790 }
1791 EXPORT_SYMBOL(security_task_getsecid);
1792
1793 int security_task_setnice(struct task_struct *p, int nice)
1794 {
1795         return call_int_hook(task_setnice, 0, p, nice);
1796 }
1797
1798 int security_task_setioprio(struct task_struct *p, int ioprio)
1799 {
1800         return call_int_hook(task_setioprio, 0, p, ioprio);
1801 }
1802
1803 int security_task_getioprio(struct task_struct *p)
1804 {
1805         return call_int_hook(task_getioprio, 0, p);
1806 }
1807
1808 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1809                           unsigned int flags)
1810 {
1811         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1812 }
1813
1814 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1815                 struct rlimit *new_rlim)
1816 {
1817         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1818 }
1819
1820 int security_task_setscheduler(struct task_struct *p)
1821 {
1822         return call_int_hook(task_setscheduler, 0, p);
1823 }
1824
1825 int security_task_getscheduler(struct task_struct *p)
1826 {
1827         return call_int_hook(task_getscheduler, 0, p);
1828 }
1829
1830 int security_task_movememory(struct task_struct *p)
1831 {
1832         return call_int_hook(task_movememory, 0, p);
1833 }
1834
1835 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1836                         int sig, const struct cred *cred)
1837 {
1838         return call_int_hook(task_kill, 0, p, info, sig, cred);
1839 }
1840
1841 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1842                          unsigned long arg4, unsigned long arg5)
1843 {
1844         int thisrc;
1845         int rc = LSM_RET_DEFAULT(task_prctl);
1846         struct security_hook_list *hp;
1847
1848         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1849                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1850                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1851                         rc = thisrc;
1852                         if (thisrc != 0)
1853                                 break;
1854                 }
1855         }
1856         return rc;
1857 }
1858
1859 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1860 {
1861         call_void_hook(task_to_inode, p, inode);
1862 }
1863
1864 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1865 {
1866         return call_int_hook(ipc_permission, 0, ipcp, flag);
1867 }
1868
1869 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1870 {
1871         *secid = 0;
1872         call_void_hook(ipc_getsecid, ipcp, secid);
1873 }
1874
1875 int security_msg_msg_alloc(struct msg_msg *msg)
1876 {
1877         int rc = lsm_msg_msg_alloc(msg);
1878
1879         if (unlikely(rc))
1880                 return rc;
1881         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1882         if (unlikely(rc))
1883                 security_msg_msg_free(msg);
1884         return rc;
1885 }
1886
1887 void security_msg_msg_free(struct msg_msg *msg)
1888 {
1889         call_void_hook(msg_msg_free_security, msg);
1890         kfree(msg->security);
1891         msg->security = NULL;
1892 }
1893
1894 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1895 {
1896         int rc = lsm_ipc_alloc(msq);
1897
1898         if (unlikely(rc))
1899                 return rc;
1900         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1901         if (unlikely(rc))
1902                 security_msg_queue_free(msq);
1903         return rc;
1904 }
1905
1906 void security_msg_queue_free(struct kern_ipc_perm *msq)
1907 {
1908         call_void_hook(msg_queue_free_security, msq);
1909         kfree(msq->security);
1910         msq->security = NULL;
1911 }
1912
1913 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1914 {
1915         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1916 }
1917
1918 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1919 {
1920         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1921 }
1922
1923 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1924                                struct msg_msg *msg, int msqflg)
1925 {
1926         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1927 }
1928
1929 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1930                                struct task_struct *target, long type, int mode)
1931 {
1932         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1933 }
1934
1935 int security_shm_alloc(struct kern_ipc_perm *shp)
1936 {
1937         int rc = lsm_ipc_alloc(shp);
1938
1939         if (unlikely(rc))
1940                 return rc;
1941         rc = call_int_hook(shm_alloc_security, 0, shp);
1942         if (unlikely(rc))
1943                 security_shm_free(shp);
1944         return rc;
1945 }
1946
1947 void security_shm_free(struct kern_ipc_perm *shp)
1948 {
1949         call_void_hook(shm_free_security, shp);
1950         kfree(shp->security);
1951         shp->security = NULL;
1952 }
1953
1954 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1955 {
1956         return call_int_hook(shm_associate, 0, shp, shmflg);
1957 }
1958
1959 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1960 {
1961         return call_int_hook(shm_shmctl, 0, shp, cmd);
1962 }
1963
1964 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1965 {
1966         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1967 }
1968
1969 int security_sem_alloc(struct kern_ipc_perm *sma)
1970 {
1971         int rc = lsm_ipc_alloc(sma);
1972
1973         if (unlikely(rc))
1974                 return rc;
1975         rc = call_int_hook(sem_alloc_security, 0, sma);
1976         if (unlikely(rc))
1977                 security_sem_free(sma);
1978         return rc;
1979 }
1980
1981 void security_sem_free(struct kern_ipc_perm *sma)
1982 {
1983         call_void_hook(sem_free_security, sma);
1984         kfree(sma->security);
1985         sma->security = NULL;
1986 }
1987
1988 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1989 {
1990         return call_int_hook(sem_associate, 0, sma, semflg);
1991 }
1992
1993 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1994 {
1995         return call_int_hook(sem_semctl, 0, sma, cmd);
1996 }
1997
1998 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1999                         unsigned nsops, int alter)
2000 {
2001         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2002 }
2003
2004 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2005 {
2006         if (unlikely(inode && IS_PRIVATE(inode)))
2007                 return;
2008         call_void_hook(d_instantiate, dentry, inode);
2009 }
2010 EXPORT_SYMBOL(security_d_instantiate);
2011
2012 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2013                                 char **value)
2014 {
2015         struct security_hook_list *hp;
2016
2017         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2018                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2019                         continue;
2020                 return hp->hook.getprocattr(p, name, value);
2021         }
2022         return LSM_RET_DEFAULT(getprocattr);
2023 }
2024
2025 int security_setprocattr(const char *lsm, const char *name, void *value,
2026                          size_t size)
2027 {
2028         struct security_hook_list *hp;
2029
2030         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2031                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2032                         continue;
2033                 return hp->hook.setprocattr(name, value, size);
2034         }
2035         return LSM_RET_DEFAULT(setprocattr);
2036 }
2037
2038 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2039 {
2040         return call_int_hook(netlink_send, 0, sk, skb);
2041 }
2042
2043 int security_ismaclabel(const char *name)
2044 {
2045         return call_int_hook(ismaclabel, 0, name);
2046 }
2047 EXPORT_SYMBOL(security_ismaclabel);
2048
2049 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2050 {
2051         struct security_hook_list *hp;
2052         int rc;
2053
2054         /*
2055          * Currently, only one LSM can implement secid_to_secctx (i.e this
2056          * LSM hook is not "stackable").
2057          */
2058         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2059                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2060                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2061                         return rc;
2062         }
2063
2064         return LSM_RET_DEFAULT(secid_to_secctx);
2065 }
2066 EXPORT_SYMBOL(security_secid_to_secctx);
2067
2068 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2069 {
2070         *secid = 0;
2071         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2072 }
2073 EXPORT_SYMBOL(security_secctx_to_secid);
2074
2075 void security_release_secctx(char *secdata, u32 seclen)
2076 {
2077         call_void_hook(release_secctx, secdata, seclen);
2078 }
2079 EXPORT_SYMBOL(security_release_secctx);
2080
2081 void security_inode_invalidate_secctx(struct inode *inode)
2082 {
2083         call_void_hook(inode_invalidate_secctx, inode);
2084 }
2085 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2086
2087 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2088 {
2089         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2090 }
2091 EXPORT_SYMBOL(security_inode_notifysecctx);
2092
2093 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2094 {
2095         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2096 }
2097 EXPORT_SYMBOL(security_inode_setsecctx);
2098
2099 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2100 {
2101         struct security_hook_list *hp;
2102         int rc;
2103
2104         /*
2105          * Only one module will provide a security context.
2106          */
2107         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
2108                 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
2109                 if (rc != LSM_RET_DEFAULT(inode_getsecctx))
2110                         return rc;
2111         }
2112
2113         return LSM_RET_DEFAULT(inode_getsecctx);
2114 }
2115 EXPORT_SYMBOL(security_inode_getsecctx);
2116
2117 #ifdef CONFIG_WATCH_QUEUE
2118 int security_post_notification(const struct cred *w_cred,
2119                                const struct cred *cred,
2120                                struct watch_notification *n)
2121 {
2122         return call_int_hook(post_notification, 0, w_cred, cred, n);
2123 }
2124 #endif /* CONFIG_WATCH_QUEUE */
2125
2126 #ifdef CONFIG_KEY_NOTIFICATIONS
2127 int security_watch_key(struct key *key)
2128 {
2129         return call_int_hook(watch_key, 0, key);
2130 }
2131 #endif
2132
2133 #ifdef CONFIG_SECURITY_NETWORK
2134
2135 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2136 {
2137         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2138 }
2139 EXPORT_SYMBOL(security_unix_stream_connect);
2140
2141 int security_unix_may_send(struct socket *sock,  struct socket *other)
2142 {
2143         return call_int_hook(unix_may_send, 0, sock, other);
2144 }
2145 EXPORT_SYMBOL(security_unix_may_send);
2146
2147 int security_socket_create(int family, int type, int protocol, int kern)
2148 {
2149         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2150 }
2151
2152 int security_socket_post_create(struct socket *sock, int family,
2153                                 int type, int protocol, int kern)
2154 {
2155         return call_int_hook(socket_post_create, 0, sock, family, type,
2156                                                 protocol, kern);
2157 }
2158
2159 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2160 {
2161         return call_int_hook(socket_socketpair, 0, socka, sockb);
2162 }
2163 EXPORT_SYMBOL(security_socket_socketpair);
2164
2165 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2166 {
2167         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2168 }
2169
2170 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2171 {
2172         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2173 }
2174
2175 int security_socket_listen(struct socket *sock, int backlog)
2176 {
2177         return call_int_hook(socket_listen, 0, sock, backlog);
2178 }
2179
2180 int security_socket_accept(struct socket *sock, struct socket *newsock)
2181 {
2182         return call_int_hook(socket_accept, 0, sock, newsock);
2183 }
2184
2185 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2186 {
2187         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2188 }
2189
2190 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2191                             int size, int flags)
2192 {
2193         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2194 }
2195
2196 int security_socket_getsockname(struct socket *sock)
2197 {
2198         return call_int_hook(socket_getsockname, 0, sock);
2199 }
2200
2201 int security_socket_getpeername(struct socket *sock)
2202 {
2203         return call_int_hook(socket_getpeername, 0, sock);
2204 }
2205
2206 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2207 {
2208         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2209 }
2210
2211 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2212 {
2213         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2214 }
2215
2216 int security_socket_shutdown(struct socket *sock, int how)
2217 {
2218         return call_int_hook(socket_shutdown, 0, sock, how);
2219 }
2220
2221 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2222 {
2223         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2224 }
2225 EXPORT_SYMBOL(security_sock_rcv_skb);
2226
2227 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2228                                       sockptr_t optlen, unsigned int len)
2229 {
2230         struct security_hook_list *hp;
2231         int rc;
2232
2233         /*
2234          * Only one module will provide a security context.
2235          */
2236         hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
2237                              list) {
2238                 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen,
2239                                                        len);
2240                 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream))
2241                         return rc;
2242         }
2243         return LSM_RET_DEFAULT(socket_getpeersec_stream);
2244 }
2245
2246 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2247 {
2248         struct security_hook_list *hp;
2249         int rc;
2250
2251         /*
2252          * Only one module will provide a security context.
2253          */
2254         hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram,
2255                              list) {
2256                 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid);
2257                 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram))
2258                         return rc;
2259         }
2260         return LSM_RET_DEFAULT(socket_getpeersec_dgram);
2261 }
2262 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2263
2264 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2265 {
2266         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2267 }
2268
2269 void security_sk_free(struct sock *sk)
2270 {
2271         call_void_hook(sk_free_security, sk);
2272 }
2273
2274 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2275 {
2276         call_void_hook(sk_clone_security, sk, newsk);
2277 }
2278 EXPORT_SYMBOL(security_sk_clone);
2279
2280 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2281 {
2282         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2283 }
2284 EXPORT_SYMBOL(security_sk_classify_flow);
2285
2286 void security_req_classify_flow(const struct request_sock *req,
2287                                 struct flowi_common *flic)
2288 {
2289         call_void_hook(req_classify_flow, req, flic);
2290 }
2291 EXPORT_SYMBOL(security_req_classify_flow);
2292
2293 void security_sock_graft(struct sock *sk, struct socket *parent)
2294 {
2295         call_void_hook(sock_graft, sk, parent);
2296 }
2297 EXPORT_SYMBOL(security_sock_graft);
2298
2299 int security_inet_conn_request(struct sock *sk,
2300                         struct sk_buff *skb, struct request_sock *req)
2301 {
2302         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2303 }
2304 EXPORT_SYMBOL(security_inet_conn_request);
2305
2306 void security_inet_csk_clone(struct sock *newsk,
2307                         const struct request_sock *req)
2308 {
2309         call_void_hook(inet_csk_clone, newsk, req);
2310 }
2311
2312 void security_inet_conn_established(struct sock *sk,
2313                         struct sk_buff *skb)
2314 {
2315         call_void_hook(inet_conn_established, sk, skb);
2316 }
2317 EXPORT_SYMBOL(security_inet_conn_established);
2318
2319 int security_secmark_relabel_packet(u32 secid)
2320 {
2321         return call_int_hook(secmark_relabel_packet, 0, secid);
2322 }
2323 EXPORT_SYMBOL(security_secmark_relabel_packet);
2324
2325 void security_secmark_refcount_inc(void)
2326 {
2327         call_void_hook(secmark_refcount_inc);
2328 }
2329 EXPORT_SYMBOL(security_secmark_refcount_inc);
2330
2331 void security_secmark_refcount_dec(void)
2332 {
2333         call_void_hook(secmark_refcount_dec);
2334 }
2335 EXPORT_SYMBOL(security_secmark_refcount_dec);
2336
2337 int security_tun_dev_alloc_security(void **security)
2338 {
2339         return call_int_hook(tun_dev_alloc_security, 0, security);
2340 }
2341 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2342
2343 void security_tun_dev_free_security(void *security)
2344 {
2345         call_void_hook(tun_dev_free_security, security);
2346 }
2347 EXPORT_SYMBOL(security_tun_dev_free_security);
2348
2349 int security_tun_dev_create(void)
2350 {
2351         return call_int_hook(tun_dev_create, 0);
2352 }
2353 EXPORT_SYMBOL(security_tun_dev_create);
2354
2355 int security_tun_dev_attach_queue(void *security)
2356 {
2357         return call_int_hook(tun_dev_attach_queue, 0, security);
2358 }
2359 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2360
2361 int security_tun_dev_attach(struct sock *sk, void *security)
2362 {
2363         return call_int_hook(tun_dev_attach, 0, sk, security);
2364 }
2365 EXPORT_SYMBOL(security_tun_dev_attach);
2366
2367 int security_tun_dev_open(void *security)
2368 {
2369         return call_int_hook(tun_dev_open, 0, security);
2370 }
2371 EXPORT_SYMBOL(security_tun_dev_open);
2372
2373 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2374 {
2375         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2376 }
2377 EXPORT_SYMBOL(security_sctp_assoc_request);
2378
2379 int security_sctp_bind_connect(struct sock *sk, int optname,
2380                                struct sockaddr *address, int addrlen)
2381 {
2382         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2383                              address, addrlen);
2384 }
2385 EXPORT_SYMBOL(security_sctp_bind_connect);
2386
2387 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2388                             struct sock *newsk)
2389 {
2390         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2391 }
2392 EXPORT_SYMBOL(security_sctp_sk_clone);
2393
2394 #endif  /* CONFIG_SECURITY_NETWORK */
2395
2396 #ifdef CONFIG_SECURITY_INFINIBAND
2397
2398 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2399 {
2400         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2401 }
2402 EXPORT_SYMBOL(security_ib_pkey_access);
2403
2404 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2405 {
2406         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2407 }
2408 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2409
2410 int security_ib_alloc_security(void **sec)
2411 {
2412         return call_int_hook(ib_alloc_security, 0, sec);
2413 }
2414 EXPORT_SYMBOL(security_ib_alloc_security);
2415
2416 void security_ib_free_security(void *sec)
2417 {
2418         call_void_hook(ib_free_security, sec);
2419 }
2420 EXPORT_SYMBOL(security_ib_free_security);
2421 #endif  /* CONFIG_SECURITY_INFINIBAND */
2422
2423 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2424
2425 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2426                                struct xfrm_user_sec_ctx *sec_ctx,
2427                                gfp_t gfp)
2428 {
2429         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2430 }
2431 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2432
2433 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2434                               struct xfrm_sec_ctx **new_ctxp)
2435 {
2436         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2437 }
2438
2439 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2440 {
2441         call_void_hook(xfrm_policy_free_security, ctx);
2442 }
2443 EXPORT_SYMBOL(security_xfrm_policy_free);
2444
2445 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2446 {
2447         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2448 }
2449
2450 int security_xfrm_state_alloc(struct xfrm_state *x,
2451                               struct xfrm_user_sec_ctx *sec_ctx)
2452 {
2453         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2454 }
2455 EXPORT_SYMBOL(security_xfrm_state_alloc);
2456
2457 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2458                                       struct xfrm_sec_ctx *polsec, u32 secid)
2459 {
2460         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2461 }
2462
2463 int security_xfrm_state_delete(struct xfrm_state *x)
2464 {
2465         return call_int_hook(xfrm_state_delete_security, 0, x);
2466 }
2467 EXPORT_SYMBOL(security_xfrm_state_delete);
2468
2469 void security_xfrm_state_free(struct xfrm_state *x)
2470 {
2471         call_void_hook(xfrm_state_free_security, x);
2472 }
2473
2474 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2475 {
2476         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2477 }
2478
2479 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2480                                        struct xfrm_policy *xp,
2481                                        const struct flowi_common *flic)
2482 {
2483         struct security_hook_list *hp;
2484         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2485
2486         /*
2487          * Since this function is expected to return 0 or 1, the judgment
2488          * becomes difficult if multiple LSMs supply this call. Fortunately,
2489          * we can use the first LSM's judgment because currently only SELinux
2490          * supplies this call.
2491          *
2492          * For speed optimization, we explicitly break the loop rather than
2493          * using the macro
2494          */
2495         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2496                                 list) {
2497                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2498                 break;
2499         }
2500         return rc;
2501 }
2502
2503 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2504 {
2505         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2506 }
2507
2508 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2509 {
2510         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2511                                 0);
2512
2513         BUG_ON(rc);
2514 }
2515 EXPORT_SYMBOL(security_skb_classify_flow);
2516
2517 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2518
2519 #ifdef CONFIG_KEYS
2520
2521 int security_key_alloc(struct key *key, const struct cred *cred,
2522                        unsigned long flags)
2523 {
2524         return call_int_hook(key_alloc, 0, key, cred, flags);
2525 }
2526
2527 void security_key_free(struct key *key)
2528 {
2529         call_void_hook(key_free, key);
2530 }
2531
2532 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2533                             enum key_need_perm need_perm)
2534 {
2535         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2536 }
2537
2538 int security_key_getsecurity(struct key *key, char **_buffer)
2539 {
2540         *_buffer = NULL;
2541         return call_int_hook(key_getsecurity, 0, key, _buffer);
2542 }
2543
2544 #endif  /* CONFIG_KEYS */
2545
2546 #ifdef CONFIG_AUDIT
2547
2548 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2549 {
2550         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2551 }
2552
2553 int security_audit_rule_known(struct audit_krule *krule)
2554 {
2555         return call_int_hook(audit_rule_known, 0, krule);
2556 }
2557
2558 void security_audit_rule_free(void *lsmrule)
2559 {
2560         call_void_hook(audit_rule_free, lsmrule);
2561 }
2562
2563 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2564 {
2565         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2566 }
2567 #endif /* CONFIG_AUDIT */
2568
2569 #ifdef CONFIG_BPF_SYSCALL
2570 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2571 {
2572         return call_int_hook(bpf, 0, cmd, attr, size);
2573 }
2574 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2575 {
2576         return call_int_hook(bpf_map, 0, map, fmode);
2577 }
2578 int security_bpf_prog(struct bpf_prog *prog)
2579 {
2580         return call_int_hook(bpf_prog, 0, prog);
2581 }
2582 int security_bpf_map_alloc(struct bpf_map *map)
2583 {
2584         return call_int_hook(bpf_map_alloc_security, 0, map);
2585 }
2586 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2587 {
2588         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2589 }
2590 void security_bpf_map_free(struct bpf_map *map)
2591 {
2592         call_void_hook(bpf_map_free_security, map);
2593 }
2594 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2595 {
2596         call_void_hook(bpf_prog_free_security, aux);
2597 }
2598 #endif /* CONFIG_BPF_SYSCALL */
2599
2600 int security_locked_down(enum lockdown_reason what)
2601 {
2602         return call_int_hook(locked_down, 0, what);
2603 }
2604 EXPORT_SYMBOL(security_locked_down);
2605
2606 #ifdef CONFIG_PERF_EVENTS
2607 int security_perf_event_open(struct perf_event_attr *attr, int type)
2608 {
2609         return call_int_hook(perf_event_open, 0, attr, type);
2610 }
2611
2612 int security_perf_event_alloc(struct perf_event *event)
2613 {
2614         return call_int_hook(perf_event_alloc, 0, event);
2615 }
2616
2617 void security_perf_event_free(struct perf_event *event)
2618 {
2619         call_void_hook(perf_event_free, event);
2620 }
2621
2622 int security_perf_event_read(struct perf_event *event)
2623 {
2624         return call_int_hook(perf_event_read, 0, event);
2625 }
2626
2627 int security_perf_event_write(struct perf_event *event)
2628 {
2629         return call_int_hook(perf_event_write, 0, event);
2630 }
2631 #endif /* CONFIG_PERF_EVENTS */