GNU Linux-libre 5.10.217-gnu1
[releases.git] / security / keys / trusted-keys / trusted_tpm1.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  *
5  * Author:
6  * David Safford <safford@us.ibm.com>
7  *
8  * See Documentation/security/keys/trusted-encrypted.rst
9  */
10
11 #include <crypto/hash_info.h>
12 #include <linux/uaccess.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/parser.h>
17 #include <linux/string.h>
18 #include <linux/err.h>
19 #include <keys/user-type.h>
20 #include <keys/trusted-type.h>
21 #include <linux/key-type.h>
22 #include <linux/rcupdate.h>
23 #include <linux/crypto.h>
24 #include <crypto/hash.h>
25 #include <crypto/sha.h>
26 #include <linux/capability.h>
27 #include <linux/tpm.h>
28 #include <linux/tpm_command.h>
29
30 #include <keys/trusted_tpm.h>
31
32 static const char hmac_alg[] = "hmac(sha1)";
33 static const char hash_alg[] = "sha1";
34 static struct tpm_chip *chip;
35 static struct tpm_digest *digests;
36
37 struct sdesc {
38         struct shash_desc shash;
39         char ctx[];
40 };
41
42 static struct crypto_shash *hashalg;
43 static struct crypto_shash *hmacalg;
44
45 static struct sdesc *init_sdesc(struct crypto_shash *alg)
46 {
47         struct sdesc *sdesc;
48         int size;
49
50         size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51         sdesc = kmalloc(size, GFP_KERNEL);
52         if (!sdesc)
53                 return ERR_PTR(-ENOMEM);
54         sdesc->shash.tfm = alg;
55         return sdesc;
56 }
57
58 static int TSS_sha1(const unsigned char *data, unsigned int datalen,
59                     unsigned char *digest)
60 {
61         struct sdesc *sdesc;
62         int ret;
63
64         sdesc = init_sdesc(hashalg);
65         if (IS_ERR(sdesc)) {
66                 pr_info("trusted_key: can't alloc %s\n", hash_alg);
67                 return PTR_ERR(sdesc);
68         }
69
70         ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
71         kfree_sensitive(sdesc);
72         return ret;
73 }
74
75 static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
76                        unsigned int keylen, ...)
77 {
78         struct sdesc *sdesc;
79         va_list argp;
80         unsigned int dlen;
81         unsigned char *data;
82         int ret;
83
84         sdesc = init_sdesc(hmacalg);
85         if (IS_ERR(sdesc)) {
86                 pr_info("trusted_key: can't alloc %s\n", hmac_alg);
87                 return PTR_ERR(sdesc);
88         }
89
90         ret = crypto_shash_setkey(hmacalg, key, keylen);
91         if (ret < 0)
92                 goto out;
93         ret = crypto_shash_init(&sdesc->shash);
94         if (ret < 0)
95                 goto out;
96
97         va_start(argp, keylen);
98         for (;;) {
99                 dlen = va_arg(argp, unsigned int);
100                 if (dlen == 0)
101                         break;
102                 data = va_arg(argp, unsigned char *);
103                 if (data == NULL) {
104                         ret = -EINVAL;
105                         break;
106                 }
107                 ret = crypto_shash_update(&sdesc->shash, data, dlen);
108                 if (ret < 0)
109                         break;
110         }
111         va_end(argp);
112         if (!ret)
113                 ret = crypto_shash_final(&sdesc->shash, digest);
114 out:
115         kfree_sensitive(sdesc);
116         return ret;
117 }
118
119 /*
120  * calculate authorization info fields to send to TPM
121  */
122 int TSS_authhmac(unsigned char *digest, const unsigned char *key,
123                         unsigned int keylen, unsigned char *h1,
124                         unsigned char *h2, unsigned int h3, ...)
125 {
126         unsigned char paramdigest[SHA1_DIGEST_SIZE];
127         struct sdesc *sdesc;
128         unsigned int dlen;
129         unsigned char *data;
130         unsigned char c;
131         int ret;
132         va_list argp;
133
134         if (!chip)
135                 return -ENODEV;
136
137         sdesc = init_sdesc(hashalg);
138         if (IS_ERR(sdesc)) {
139                 pr_info("trusted_key: can't alloc %s\n", hash_alg);
140                 return PTR_ERR(sdesc);
141         }
142
143         c = !!h3;
144         ret = crypto_shash_init(&sdesc->shash);
145         if (ret < 0)
146                 goto out;
147         va_start(argp, h3);
148         for (;;) {
149                 dlen = va_arg(argp, unsigned int);
150                 if (dlen == 0)
151                         break;
152                 data = va_arg(argp, unsigned char *);
153                 if (!data) {
154                         ret = -EINVAL;
155                         break;
156                 }
157                 ret = crypto_shash_update(&sdesc->shash, data, dlen);
158                 if (ret < 0)
159                         break;
160         }
161         va_end(argp);
162         if (!ret)
163                 ret = crypto_shash_final(&sdesc->shash, paramdigest);
164         if (!ret)
165                 ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
166                                   paramdigest, TPM_NONCE_SIZE, h1,
167                                   TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
168 out:
169         kfree_sensitive(sdesc);
170         return ret;
171 }
172 EXPORT_SYMBOL_GPL(TSS_authhmac);
173
174 /*
175  * verify the AUTH1_COMMAND (Seal) result from TPM
176  */
177 int TSS_checkhmac1(unsigned char *buffer,
178                           const uint32_t command,
179                           const unsigned char *ononce,
180                           const unsigned char *key,
181                           unsigned int keylen, ...)
182 {
183         uint32_t bufsize;
184         uint16_t tag;
185         uint32_t ordinal;
186         uint32_t result;
187         unsigned char *enonce;
188         unsigned char *continueflag;
189         unsigned char *authdata;
190         unsigned char testhmac[SHA1_DIGEST_SIZE];
191         unsigned char paramdigest[SHA1_DIGEST_SIZE];
192         struct sdesc *sdesc;
193         unsigned int dlen;
194         unsigned int dpos;
195         va_list argp;
196         int ret;
197
198         if (!chip)
199                 return -ENODEV;
200
201         bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
202         tag = LOAD16(buffer, 0);
203         ordinal = command;
204         result = LOAD32N(buffer, TPM_RETURN_OFFSET);
205         if (tag == TPM_TAG_RSP_COMMAND)
206                 return 0;
207         if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
208                 return -EINVAL;
209         authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
210         continueflag = authdata - 1;
211         enonce = continueflag - TPM_NONCE_SIZE;
212
213         sdesc = init_sdesc(hashalg);
214         if (IS_ERR(sdesc)) {
215                 pr_info("trusted_key: can't alloc %s\n", hash_alg);
216                 return PTR_ERR(sdesc);
217         }
218         ret = crypto_shash_init(&sdesc->shash);
219         if (ret < 0)
220                 goto out;
221         ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
222                                   sizeof result);
223         if (ret < 0)
224                 goto out;
225         ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
226                                   sizeof ordinal);
227         if (ret < 0)
228                 goto out;
229         va_start(argp, keylen);
230         for (;;) {
231                 dlen = va_arg(argp, unsigned int);
232                 if (dlen == 0)
233                         break;
234                 dpos = va_arg(argp, unsigned int);
235                 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
236                 if (ret < 0)
237                         break;
238         }
239         va_end(argp);
240         if (!ret)
241                 ret = crypto_shash_final(&sdesc->shash, paramdigest);
242         if (ret < 0)
243                 goto out;
244
245         ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
246                           TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
247                           1, continueflag, 0, 0);
248         if (ret < 0)
249                 goto out;
250
251         if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
252                 ret = -EINVAL;
253 out:
254         kfree_sensitive(sdesc);
255         return ret;
256 }
257 EXPORT_SYMBOL_GPL(TSS_checkhmac1);
258
259 /*
260  * verify the AUTH2_COMMAND (unseal) result from TPM
261  */
262 static int TSS_checkhmac2(unsigned char *buffer,
263                           const uint32_t command,
264                           const unsigned char *ononce,
265                           const unsigned char *key1,
266                           unsigned int keylen1,
267                           const unsigned char *key2,
268                           unsigned int keylen2, ...)
269 {
270         uint32_t bufsize;
271         uint16_t tag;
272         uint32_t ordinal;
273         uint32_t result;
274         unsigned char *enonce1;
275         unsigned char *continueflag1;
276         unsigned char *authdata1;
277         unsigned char *enonce2;
278         unsigned char *continueflag2;
279         unsigned char *authdata2;
280         unsigned char testhmac1[SHA1_DIGEST_SIZE];
281         unsigned char testhmac2[SHA1_DIGEST_SIZE];
282         unsigned char paramdigest[SHA1_DIGEST_SIZE];
283         struct sdesc *sdesc;
284         unsigned int dlen;
285         unsigned int dpos;
286         va_list argp;
287         int ret;
288
289         bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
290         tag = LOAD16(buffer, 0);
291         ordinal = command;
292         result = LOAD32N(buffer, TPM_RETURN_OFFSET);
293
294         if (tag == TPM_TAG_RSP_COMMAND)
295                 return 0;
296         if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
297                 return -EINVAL;
298         authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
299                         + SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
300         authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
301         continueflag1 = authdata1 - 1;
302         continueflag2 = authdata2 - 1;
303         enonce1 = continueflag1 - TPM_NONCE_SIZE;
304         enonce2 = continueflag2 - TPM_NONCE_SIZE;
305
306         sdesc = init_sdesc(hashalg);
307         if (IS_ERR(sdesc)) {
308                 pr_info("trusted_key: can't alloc %s\n", hash_alg);
309                 return PTR_ERR(sdesc);
310         }
311         ret = crypto_shash_init(&sdesc->shash);
312         if (ret < 0)
313                 goto out;
314         ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
315                                   sizeof result);
316         if (ret < 0)
317                 goto out;
318         ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
319                                   sizeof ordinal);
320         if (ret < 0)
321                 goto out;
322
323         va_start(argp, keylen2);
324         for (;;) {
325                 dlen = va_arg(argp, unsigned int);
326                 if (dlen == 0)
327                         break;
328                 dpos = va_arg(argp, unsigned int);
329                 ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
330                 if (ret < 0)
331                         break;
332         }
333         va_end(argp);
334         if (!ret)
335                 ret = crypto_shash_final(&sdesc->shash, paramdigest);
336         if (ret < 0)
337                 goto out;
338
339         ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
340                           paramdigest, TPM_NONCE_SIZE, enonce1,
341                           TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
342         if (ret < 0)
343                 goto out;
344         if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
345                 ret = -EINVAL;
346                 goto out;
347         }
348         ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
349                           paramdigest, TPM_NONCE_SIZE, enonce2,
350                           TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
351         if (ret < 0)
352                 goto out;
353         if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
354                 ret = -EINVAL;
355 out:
356         kfree_sensitive(sdesc);
357         return ret;
358 }
359
360 /*
361  * For key specific tpm requests, we will generate and send our
362  * own TPM command packets using the drivers send function.
363  */
364 int trusted_tpm_send(unsigned char *cmd, size_t buflen)
365 {
366         int rc;
367
368         if (!chip)
369                 return -ENODEV;
370
371         dump_tpm_buf(cmd);
372         rc = tpm_send(chip, cmd, buflen);
373         dump_tpm_buf(cmd);
374         if (rc > 0)
375                 /* Can't return positive return codes values to keyctl */
376                 rc = -EPERM;
377         return rc;
378 }
379 EXPORT_SYMBOL_GPL(trusted_tpm_send);
380
381 /*
382  * Lock a trusted key, by extending a selected PCR.
383  *
384  * Prevents a trusted key that is sealed to PCRs from being accessed.
385  * This uses the tpm driver's extend function.
386  */
387 static int pcrlock(const int pcrnum)
388 {
389         if (!capable(CAP_SYS_ADMIN))
390                 return -EPERM;
391
392         return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0;
393 }
394
395 /*
396  * Create an object specific authorisation protocol (OSAP) session
397  */
398 static int osap(struct tpm_buf *tb, struct osapsess *s,
399                 const unsigned char *key, uint16_t type, uint32_t handle)
400 {
401         unsigned char enonce[TPM_NONCE_SIZE];
402         unsigned char ononce[TPM_NONCE_SIZE];
403         int ret;
404
405         ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE);
406         if (ret < 0)
407                 return ret;
408
409         if (ret != TPM_NONCE_SIZE)
410                 return -EIO;
411
412         tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OSAP);
413         tpm_buf_append_u16(tb, type);
414         tpm_buf_append_u32(tb, handle);
415         tpm_buf_append(tb, ononce, TPM_NONCE_SIZE);
416
417         ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
418         if (ret < 0)
419                 return ret;
420
421         s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
422         memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
423                TPM_NONCE_SIZE);
424         memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
425                                   TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
426         return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
427                            enonce, TPM_NONCE_SIZE, ononce, 0, 0);
428 }
429
430 /*
431  * Create an object independent authorisation protocol (oiap) session
432  */
433 int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
434 {
435         int ret;
436
437         if (!chip)
438                 return -ENODEV;
439
440         tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP);
441         ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
442         if (ret < 0)
443                 return ret;
444
445         *handle = LOAD32(tb->data, TPM_DATA_OFFSET);
446         memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
447                TPM_NONCE_SIZE);
448         return 0;
449 }
450 EXPORT_SYMBOL_GPL(oiap);
451
452 struct tpm_digests {
453         unsigned char encauth[SHA1_DIGEST_SIZE];
454         unsigned char pubauth[SHA1_DIGEST_SIZE];
455         unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
456         unsigned char xorhash[SHA1_DIGEST_SIZE];
457         unsigned char nonceodd[TPM_NONCE_SIZE];
458 };
459
460 /*
461  * Have the TPM seal(encrypt) the trusted key, possibly based on
462  * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
463  */
464 static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
465                     uint32_t keyhandle, const unsigned char *keyauth,
466                     const unsigned char *data, uint32_t datalen,
467                     unsigned char *blob, uint32_t *bloblen,
468                     const unsigned char *blobauth,
469                     const unsigned char *pcrinfo, uint32_t pcrinfosize)
470 {
471         struct osapsess sess;
472         struct tpm_digests *td;
473         unsigned char cont;
474         uint32_t ordinal;
475         uint32_t pcrsize;
476         uint32_t datsize;
477         int sealinfosize;
478         int encdatasize;
479         int storedsize;
480         int ret;
481         int i;
482
483         /* alloc some work space for all the hashes */
484         td = kmalloc(sizeof *td, GFP_KERNEL);
485         if (!td)
486                 return -ENOMEM;
487
488         /* get session for sealing key */
489         ret = osap(tb, &sess, keyauth, keytype, keyhandle);
490         if (ret < 0)
491                 goto out;
492         dump_sess(&sess);
493
494         /* calculate encrypted authorization value */
495         memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
496         memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
497         ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
498         if (ret < 0)
499                 goto out;
500
501         ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE);
502         if (ret < 0)
503                 goto out;
504
505         if (ret != TPM_NONCE_SIZE) {
506                 ret = -EIO;
507                 goto out;
508         }
509
510         ordinal = htonl(TPM_ORD_SEAL);
511         datsize = htonl(datalen);
512         pcrsize = htonl(pcrinfosize);
513         cont = 0;
514
515         /* encrypt data authorization key */
516         for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
517                 td->encauth[i] = td->xorhash[i] ^ blobauth[i];
518
519         /* calculate authorization HMAC value */
520         if (pcrinfosize == 0) {
521                 /* no pcr info specified */
522                 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
523                                    sess.enonce, td->nonceodd, cont,
524                                    sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
525                                    td->encauth, sizeof(uint32_t), &pcrsize,
526                                    sizeof(uint32_t), &datsize, datalen, data, 0,
527                                    0);
528         } else {
529                 /* pcr info specified */
530                 ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
531                                    sess.enonce, td->nonceodd, cont,
532                                    sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
533                                    td->encauth, sizeof(uint32_t), &pcrsize,
534                                    pcrinfosize, pcrinfo, sizeof(uint32_t),
535                                    &datsize, datalen, data, 0, 0);
536         }
537         if (ret < 0)
538                 goto out;
539
540         /* build and send the TPM request packet */
541         tpm_buf_reset(tb, TPM_TAG_RQU_AUTH1_COMMAND, TPM_ORD_SEAL);
542         tpm_buf_append_u32(tb, keyhandle);
543         tpm_buf_append(tb, td->encauth, SHA1_DIGEST_SIZE);
544         tpm_buf_append_u32(tb, pcrinfosize);
545         tpm_buf_append(tb, pcrinfo, pcrinfosize);
546         tpm_buf_append_u32(tb, datalen);
547         tpm_buf_append(tb, data, datalen);
548         tpm_buf_append_u32(tb, sess.handle);
549         tpm_buf_append(tb, td->nonceodd, TPM_NONCE_SIZE);
550         tpm_buf_append_u8(tb, cont);
551         tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE);
552
553         ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
554         if (ret < 0)
555                 goto out;
556
557         /* calculate the size of the returned Blob */
558         sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
559         encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
560                              sizeof(uint32_t) + sealinfosize);
561         storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
562             sizeof(uint32_t) + encdatasize;
563
564         /* check the HMAC in the response */
565         ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
566                              SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
567                              0);
568
569         /* copy the returned blob to caller */
570         if (!ret) {
571                 memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
572                 *bloblen = storedsize;
573         }
574 out:
575         kfree_sensitive(td);
576         return ret;
577 }
578
579 /*
580  * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
581  */
582 static int tpm_unseal(struct tpm_buf *tb,
583                       uint32_t keyhandle, const unsigned char *keyauth,
584                       const unsigned char *blob, int bloblen,
585                       const unsigned char *blobauth,
586                       unsigned char *data, unsigned int *datalen)
587 {
588         unsigned char nonceodd[TPM_NONCE_SIZE];
589         unsigned char enonce1[TPM_NONCE_SIZE];
590         unsigned char enonce2[TPM_NONCE_SIZE];
591         unsigned char authdata1[SHA1_DIGEST_SIZE];
592         unsigned char authdata2[SHA1_DIGEST_SIZE];
593         uint32_t authhandle1 = 0;
594         uint32_t authhandle2 = 0;
595         unsigned char cont = 0;
596         uint32_t ordinal;
597         int ret;
598
599         /* sessions for unsealing key and data */
600         ret = oiap(tb, &authhandle1, enonce1);
601         if (ret < 0) {
602                 pr_info("trusted_key: oiap failed (%d)\n", ret);
603                 return ret;
604         }
605         ret = oiap(tb, &authhandle2, enonce2);
606         if (ret < 0) {
607                 pr_info("trusted_key: oiap failed (%d)\n", ret);
608                 return ret;
609         }
610
611         ordinal = htonl(TPM_ORD_UNSEAL);
612         ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE);
613         if (ret < 0)
614                 return ret;
615
616         if (ret != TPM_NONCE_SIZE) {
617                 pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
618                 return -EIO;
619         }
620         ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
621                            enonce1, nonceodd, cont, sizeof(uint32_t),
622                            &ordinal, bloblen, blob, 0, 0);
623         if (ret < 0)
624                 return ret;
625         ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
626                            enonce2, nonceodd, cont, sizeof(uint32_t),
627                            &ordinal, bloblen, blob, 0, 0);
628         if (ret < 0)
629                 return ret;
630
631         /* build and send TPM request packet */
632         tpm_buf_reset(tb, TPM_TAG_RQU_AUTH2_COMMAND, TPM_ORD_UNSEAL);
633         tpm_buf_append_u32(tb, keyhandle);
634         tpm_buf_append(tb, blob, bloblen);
635         tpm_buf_append_u32(tb, authhandle1);
636         tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
637         tpm_buf_append_u8(tb, cont);
638         tpm_buf_append(tb, authdata1, SHA1_DIGEST_SIZE);
639         tpm_buf_append_u32(tb, authhandle2);
640         tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE);
641         tpm_buf_append_u8(tb, cont);
642         tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE);
643
644         ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
645         if (ret < 0) {
646                 pr_info("trusted_key: authhmac failed (%d)\n", ret);
647                 return ret;
648         }
649
650         *datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
651         ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
652                              keyauth, SHA1_DIGEST_SIZE,
653                              blobauth, SHA1_DIGEST_SIZE,
654                              sizeof(uint32_t), TPM_DATA_OFFSET,
655                              *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
656                              0);
657         if (ret < 0) {
658                 pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
659                 return ret;
660         }
661         memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
662         return 0;
663 }
664
665 /*
666  * Have the TPM seal(encrypt) the symmetric key
667  */
668 static int key_seal(struct trusted_key_payload *p,
669                     struct trusted_key_options *o)
670 {
671         struct tpm_buf tb;
672         int ret;
673
674         ret = tpm_buf_init(&tb, 0, 0);
675         if (ret)
676                 return ret;
677
678         /* include migratable flag at end of sealed key */
679         p->key[p->key_len] = p->migratable;
680
681         ret = tpm_seal(&tb, o->keytype, o->keyhandle, o->keyauth,
682                        p->key, p->key_len + 1, p->blob, &p->blob_len,
683                        o->blobauth, o->pcrinfo, o->pcrinfo_len);
684         if (ret < 0)
685                 pr_info("trusted_key: srkseal failed (%d)\n", ret);
686
687         tpm_buf_destroy(&tb);
688         return ret;
689 }
690
691 /*
692  * Have the TPM unseal(decrypt) the symmetric key
693  */
694 static int key_unseal(struct trusted_key_payload *p,
695                       struct trusted_key_options *o)
696 {
697         struct tpm_buf tb;
698         int ret;
699
700         ret = tpm_buf_init(&tb, 0, 0);
701         if (ret)
702                 return ret;
703
704         ret = tpm_unseal(&tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
705                          o->blobauth, p->key, &p->key_len);
706         if (ret < 0)
707                 pr_info("trusted_key: srkunseal failed (%d)\n", ret);
708         else
709                 /* pull migratable flag out of sealed key */
710                 p->migratable = p->key[--p->key_len];
711
712         tpm_buf_destroy(&tb);
713         return ret;
714 }
715
716 enum {
717         Opt_err,
718         Opt_new, Opt_load, Opt_update,
719         Opt_keyhandle, Opt_keyauth, Opt_blobauth,
720         Opt_pcrinfo, Opt_pcrlock, Opt_migratable,
721         Opt_hash,
722         Opt_policydigest,
723         Opt_policyhandle,
724 };
725
726 static const match_table_t key_tokens = {
727         {Opt_new, "new"},
728         {Opt_load, "load"},
729         {Opt_update, "update"},
730         {Opt_keyhandle, "keyhandle=%s"},
731         {Opt_keyauth, "keyauth=%s"},
732         {Opt_blobauth, "blobauth=%s"},
733         {Opt_pcrinfo, "pcrinfo=%s"},
734         {Opt_pcrlock, "pcrlock=%s"},
735         {Opt_migratable, "migratable=%s"},
736         {Opt_hash, "hash=%s"},
737         {Opt_policydigest, "policydigest=%s"},
738         {Opt_policyhandle, "policyhandle=%s"},
739         {Opt_err, NULL}
740 };
741
742 /* can have zero or more token= options */
743 static int getoptions(char *c, struct trusted_key_payload *pay,
744                       struct trusted_key_options *opt)
745 {
746         substring_t args[MAX_OPT_ARGS];
747         char *p = c;
748         int token;
749         int res;
750         unsigned long handle;
751         unsigned long lock;
752         unsigned long token_mask = 0;
753         unsigned int digest_len;
754         int i;
755         int tpm2;
756
757         tpm2 = tpm_is_tpm2(chip);
758         if (tpm2 < 0)
759                 return tpm2;
760
761         opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1;
762
763         while ((p = strsep(&c, " \t"))) {
764                 if (*p == '\0' || *p == ' ' || *p == '\t')
765                         continue;
766                 token = match_token(p, key_tokens, args);
767                 if (test_and_set_bit(token, &token_mask))
768                         return -EINVAL;
769
770                 switch (token) {
771                 case Opt_pcrinfo:
772                         opt->pcrinfo_len = strlen(args[0].from) / 2;
773                         if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
774                                 return -EINVAL;
775                         res = hex2bin(opt->pcrinfo, args[0].from,
776                                       opt->pcrinfo_len);
777                         if (res < 0)
778                                 return -EINVAL;
779                         break;
780                 case Opt_keyhandle:
781                         res = kstrtoul(args[0].from, 16, &handle);
782                         if (res < 0)
783                                 return -EINVAL;
784                         opt->keytype = SEAL_keytype;
785                         opt->keyhandle = handle;
786                         break;
787                 case Opt_keyauth:
788                         if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
789                                 return -EINVAL;
790                         res = hex2bin(opt->keyauth, args[0].from,
791                                       SHA1_DIGEST_SIZE);
792                         if (res < 0)
793                                 return -EINVAL;
794                         break;
795                 case Opt_blobauth:
796                         /*
797                          * TPM 1.2 authorizations are sha1 hashes passed in as
798                          * hex strings.  TPM 2.0 authorizations are simple
799                          * passwords (although it can take a hash as well)
800                          */
801                         opt->blobauth_len = strlen(args[0].from);
802
803                         if (opt->blobauth_len == 2 * TPM_DIGEST_SIZE) {
804                                 res = hex2bin(opt->blobauth, args[0].from,
805                                               TPM_DIGEST_SIZE);
806                                 if (res < 0)
807                                         return -EINVAL;
808
809                                 opt->blobauth_len = TPM_DIGEST_SIZE;
810                                 break;
811                         }
812
813                         if (tpm2 && opt->blobauth_len <= sizeof(opt->blobauth)) {
814                                 memcpy(opt->blobauth, args[0].from,
815                                        opt->blobauth_len);
816                                 break;
817                         }
818
819                         return -EINVAL;
820
821                         break;
822
823                 case Opt_migratable:
824                         if (*args[0].from == '0')
825                                 pay->migratable = 0;
826                         else if (*args[0].from != '1')
827                                 return -EINVAL;
828                         break;
829                 case Opt_pcrlock:
830                         res = kstrtoul(args[0].from, 10, &lock);
831                         if (res < 0)
832                                 return -EINVAL;
833                         opt->pcrlock = lock;
834                         break;
835                 case Opt_hash:
836                         if (test_bit(Opt_policydigest, &token_mask))
837                                 return -EINVAL;
838                         for (i = 0; i < HASH_ALGO__LAST; i++) {
839                                 if (!strcmp(args[0].from, hash_algo_name[i])) {
840                                         opt->hash = i;
841                                         break;
842                                 }
843                         }
844                         if (i == HASH_ALGO__LAST)
845                                 return -EINVAL;
846                         if  (!tpm2 && i != HASH_ALGO_SHA1) {
847                                 pr_info("trusted_key: TPM 1.x only supports SHA-1.\n");
848                                 return -EINVAL;
849                         }
850                         break;
851                 case Opt_policydigest:
852                         digest_len = hash_digest_size[opt->hash];
853                         if (!tpm2 || strlen(args[0].from) != (2 * digest_len))
854                                 return -EINVAL;
855                         res = hex2bin(opt->policydigest, args[0].from,
856                                       digest_len);
857                         if (res < 0)
858                                 return -EINVAL;
859                         opt->policydigest_len = digest_len;
860                         break;
861                 case Opt_policyhandle:
862                         if (!tpm2)
863                                 return -EINVAL;
864                         res = kstrtoul(args[0].from, 16, &handle);
865                         if (res < 0)
866                                 return -EINVAL;
867                         opt->policyhandle = handle;
868                         break;
869                 default:
870                         return -EINVAL;
871                 }
872         }
873         return 0;
874 }
875
876 /*
877  * datablob_parse - parse the keyctl data and fill in the
878  *                  payload and options structures
879  *
880  * On success returns 0, otherwise -EINVAL.
881  */
882 static int datablob_parse(char *datablob, struct trusted_key_payload *p,
883                           struct trusted_key_options *o)
884 {
885         substring_t args[MAX_OPT_ARGS];
886         long keylen;
887         int ret = -EINVAL;
888         int key_cmd;
889         char *c;
890
891         /* main command */
892         c = strsep(&datablob, " \t");
893         if (!c)
894                 return -EINVAL;
895         key_cmd = match_token(c, key_tokens, args);
896         switch (key_cmd) {
897         case Opt_new:
898                 /* first argument is key size */
899                 c = strsep(&datablob, " \t");
900                 if (!c)
901                         return -EINVAL;
902                 ret = kstrtol(c, 10, &keylen);
903                 if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
904                         return -EINVAL;
905                 p->key_len = keylen;
906                 ret = getoptions(datablob, p, o);
907                 if (ret < 0)
908                         return ret;
909                 ret = Opt_new;
910                 break;
911         case Opt_load:
912                 /* first argument is sealed blob */
913                 c = strsep(&datablob, " \t");
914                 if (!c)
915                         return -EINVAL;
916                 p->blob_len = strlen(c) / 2;
917                 if (p->blob_len > MAX_BLOB_SIZE)
918                         return -EINVAL;
919                 ret = hex2bin(p->blob, c, p->blob_len);
920                 if (ret < 0)
921                         return -EINVAL;
922                 ret = getoptions(datablob, p, o);
923                 if (ret < 0)
924                         return ret;
925                 ret = Opt_load;
926                 break;
927         case Opt_update:
928                 /* all arguments are options */
929                 ret = getoptions(datablob, p, o);
930                 if (ret < 0)
931                         return ret;
932                 ret = Opt_update;
933                 break;
934         case Opt_err:
935                 return -EINVAL;
936                 break;
937         }
938         return ret;
939 }
940
941 static struct trusted_key_options *trusted_options_alloc(void)
942 {
943         struct trusted_key_options *options;
944         int tpm2;
945
946         tpm2 = tpm_is_tpm2(chip);
947         if (tpm2 < 0)
948                 return NULL;
949
950         options = kzalloc(sizeof *options, GFP_KERNEL);
951         if (options) {
952                 /* set any non-zero defaults */
953                 options->keytype = SRK_keytype;
954
955                 if (!tpm2)
956                         options->keyhandle = SRKHANDLE;
957         }
958         return options;
959 }
960
961 static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
962 {
963         struct trusted_key_payload *p = NULL;
964         int ret;
965
966         ret = key_payload_reserve(key, sizeof *p);
967         if (ret < 0)
968                 return p;
969         p = kzalloc(sizeof *p, GFP_KERNEL);
970         if (p)
971                 p->migratable = 1; /* migratable by default */
972         return p;
973 }
974
975 /*
976  * trusted_instantiate - create a new trusted key
977  *
978  * Unseal an existing trusted blob or, for a new key, get a
979  * random key, then seal and create a trusted key-type key,
980  * adding it to the specified keyring.
981  *
982  * On success, return 0. Otherwise return errno.
983  */
984 static int trusted_instantiate(struct key *key,
985                                struct key_preparsed_payload *prep)
986 {
987         struct trusted_key_payload *payload = NULL;
988         struct trusted_key_options *options = NULL;
989         size_t datalen = prep->datalen;
990         char *datablob;
991         int ret = 0;
992         int key_cmd;
993         size_t key_len;
994         int tpm2;
995
996         tpm2 = tpm_is_tpm2(chip);
997         if (tpm2 < 0)
998                 return tpm2;
999
1000         if (datalen <= 0 || datalen > 32767 || !prep->data)
1001                 return -EINVAL;
1002
1003         datablob = kmalloc(datalen + 1, GFP_KERNEL);
1004         if (!datablob)
1005                 return -ENOMEM;
1006         memcpy(datablob, prep->data, datalen);
1007         datablob[datalen] = '\0';
1008
1009         options = trusted_options_alloc();
1010         if (!options) {
1011                 ret = -ENOMEM;
1012                 goto out;
1013         }
1014         payload = trusted_payload_alloc(key);
1015         if (!payload) {
1016                 ret = -ENOMEM;
1017                 goto out;
1018         }
1019
1020         key_cmd = datablob_parse(datablob, payload, options);
1021         if (key_cmd < 0) {
1022                 ret = key_cmd;
1023                 goto out;
1024         }
1025
1026         if (!options->keyhandle) {
1027                 ret = -EINVAL;
1028                 goto out;
1029         }
1030
1031         dump_payload(payload);
1032         dump_options(options);
1033
1034         switch (key_cmd) {
1035         case Opt_load:
1036                 if (tpm2)
1037                         ret = tpm2_unseal_trusted(chip, payload, options);
1038                 else
1039                         ret = key_unseal(payload, options);
1040                 dump_payload(payload);
1041                 dump_options(options);
1042                 if (ret < 0)
1043                         pr_info("trusted_key: key_unseal failed (%d)\n", ret);
1044                 break;
1045         case Opt_new:
1046                 key_len = payload->key_len;
1047                 ret = tpm_get_random(chip, payload->key, key_len);
1048                 if (ret < 0)
1049                         goto out;
1050
1051                 if (ret != key_len) {
1052                         pr_info("trusted_key: key_create failed (%d)\n", ret);
1053                         ret = -EIO;
1054                         goto out;
1055                 }
1056                 if (tpm2)
1057                         ret = tpm2_seal_trusted(chip, payload, options);
1058                 else
1059                         ret = key_seal(payload, options);
1060                 if (ret < 0)
1061                         pr_info("trusted_key: key_seal failed (%d)\n", ret);
1062                 break;
1063         default:
1064                 ret = -EINVAL;
1065                 goto out;
1066         }
1067         if (!ret && options->pcrlock)
1068                 ret = pcrlock(options->pcrlock);
1069 out:
1070         kfree_sensitive(datablob);
1071         kfree_sensitive(options);
1072         if (!ret)
1073                 rcu_assign_keypointer(key, payload);
1074         else
1075                 kfree_sensitive(payload);
1076         return ret;
1077 }
1078
1079 static void trusted_rcu_free(struct rcu_head *rcu)
1080 {
1081         struct trusted_key_payload *p;
1082
1083         p = container_of(rcu, struct trusted_key_payload, rcu);
1084         kfree_sensitive(p);
1085 }
1086
1087 /*
1088  * trusted_update - reseal an existing key with new PCR values
1089  */
1090 static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1091 {
1092         struct trusted_key_payload *p;
1093         struct trusted_key_payload *new_p;
1094         struct trusted_key_options *new_o;
1095         size_t datalen = prep->datalen;
1096         char *datablob;
1097         int ret = 0;
1098
1099         if (key_is_negative(key))
1100                 return -ENOKEY;
1101         p = key->payload.data[0];
1102         if (!p->migratable)
1103                 return -EPERM;
1104         if (datalen <= 0 || datalen > 32767 || !prep->data)
1105                 return -EINVAL;
1106
1107         datablob = kmalloc(datalen + 1, GFP_KERNEL);
1108         if (!datablob)
1109                 return -ENOMEM;
1110         new_o = trusted_options_alloc();
1111         if (!new_o) {
1112                 ret = -ENOMEM;
1113                 goto out;
1114         }
1115         new_p = trusted_payload_alloc(key);
1116         if (!new_p) {
1117                 ret = -ENOMEM;
1118                 goto out;
1119         }
1120
1121         memcpy(datablob, prep->data, datalen);
1122         datablob[datalen] = '\0';
1123         ret = datablob_parse(datablob, new_p, new_o);
1124         if (ret != Opt_update) {
1125                 ret = -EINVAL;
1126                 kfree_sensitive(new_p);
1127                 goto out;
1128         }
1129
1130         if (!new_o->keyhandle) {
1131                 ret = -EINVAL;
1132                 kfree_sensitive(new_p);
1133                 goto out;
1134         }
1135
1136         /* copy old key values, and reseal with new pcrs */
1137         new_p->migratable = p->migratable;
1138         new_p->key_len = p->key_len;
1139         memcpy(new_p->key, p->key, p->key_len);
1140         dump_payload(p);
1141         dump_payload(new_p);
1142
1143         ret = key_seal(new_p, new_o);
1144         if (ret < 0) {
1145                 pr_info("trusted_key: key_seal failed (%d)\n", ret);
1146                 kfree_sensitive(new_p);
1147                 goto out;
1148         }
1149         if (new_o->pcrlock) {
1150                 ret = pcrlock(new_o->pcrlock);
1151                 if (ret < 0) {
1152                         pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1153                         kfree_sensitive(new_p);
1154                         goto out;
1155                 }
1156         }
1157         rcu_assign_keypointer(key, new_p);
1158         call_rcu(&p->rcu, trusted_rcu_free);
1159 out:
1160         kfree_sensitive(datablob);
1161         kfree_sensitive(new_o);
1162         return ret;
1163 }
1164
1165 /*
1166  * trusted_read - copy the sealed blob data to userspace in hex.
1167  * On success, return to userspace the trusted key datablob size.
1168  */
1169 static long trusted_read(const struct key *key, char *buffer,
1170                          size_t buflen)
1171 {
1172         const struct trusted_key_payload *p;
1173         char *bufp;
1174         int i;
1175
1176         p = dereference_key_locked(key);
1177         if (!p)
1178                 return -EINVAL;
1179
1180         if (buffer && buflen >= 2 * p->blob_len) {
1181                 bufp = buffer;
1182                 for (i = 0; i < p->blob_len; i++)
1183                         bufp = hex_byte_pack(bufp, p->blob[i]);
1184         }
1185         return 2 * p->blob_len;
1186 }
1187
1188 /*
1189  * trusted_destroy - clear and free the key's payload
1190  */
1191 static void trusted_destroy(struct key *key)
1192 {
1193         kfree_sensitive(key->payload.data[0]);
1194 }
1195
1196 struct key_type key_type_trusted = {
1197         .name = "trusted",
1198         .instantiate = trusted_instantiate,
1199         .update = trusted_update,
1200         .destroy = trusted_destroy,
1201         .describe = user_describe,
1202         .read = trusted_read,
1203 };
1204
1205 EXPORT_SYMBOL_GPL(key_type_trusted);
1206
1207 static void trusted_shash_release(void)
1208 {
1209         if (hashalg)
1210                 crypto_free_shash(hashalg);
1211         if (hmacalg)
1212                 crypto_free_shash(hmacalg);
1213 }
1214
1215 static int __init trusted_shash_alloc(void)
1216 {
1217         int ret;
1218
1219         hmacalg = crypto_alloc_shash(hmac_alg, 0, 0);
1220         if (IS_ERR(hmacalg)) {
1221                 pr_info("trusted_key: could not allocate crypto %s\n",
1222                         hmac_alg);
1223                 return PTR_ERR(hmacalg);
1224         }
1225
1226         hashalg = crypto_alloc_shash(hash_alg, 0, 0);
1227         if (IS_ERR(hashalg)) {
1228                 pr_info("trusted_key: could not allocate crypto %s\n",
1229                         hash_alg);
1230                 ret = PTR_ERR(hashalg);
1231                 goto hashalg_fail;
1232         }
1233
1234         return 0;
1235
1236 hashalg_fail:
1237         crypto_free_shash(hmacalg);
1238         return ret;
1239 }
1240
1241 static int __init init_digests(void)
1242 {
1243         int i;
1244
1245         digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests),
1246                           GFP_KERNEL);
1247         if (!digests)
1248                 return -ENOMEM;
1249
1250         for (i = 0; i < chip->nr_allocated_banks; i++)
1251                 digests[i].alg_id = chip->allocated_banks[i].alg_id;
1252
1253         return 0;
1254 }
1255
1256 static int __init init_trusted(void)
1257 {
1258         int ret;
1259
1260         /* encrypted_keys.ko depends on successful load of this module even if
1261          * TPM is not used.
1262          */
1263         chip = tpm_default_chip();
1264         if (!chip)
1265                 return 0;
1266
1267         ret = init_digests();
1268         if (ret < 0)
1269                 goto err_put;
1270         ret = trusted_shash_alloc();
1271         if (ret < 0)
1272                 goto err_free;
1273         ret = register_key_type(&key_type_trusted);
1274         if (ret < 0)
1275                 goto err_release;
1276         return 0;
1277 err_release:
1278         trusted_shash_release();
1279 err_free:
1280         kfree(digests);
1281 err_put:
1282         put_device(&chip->dev);
1283         return ret;
1284 }
1285
1286 static void __exit cleanup_trusted(void)
1287 {
1288         if (chip) {
1289                 put_device(&chip->dev);
1290                 kfree(digests);
1291                 trusted_shash_release();
1292                 unregister_key_type(&key_type_trusted);
1293         }
1294 }
1295
1296 late_initcall(init_trusted);
1297 module_exit(cleanup_trusted);
1298
1299 MODULE_LICENSE("GPL");