1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
42 void __key_check(const struct key *key)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
51 * Get the key quota record for a user, allocating a new record if one doesn't
54 struct key_user *key_user_lookup(kuid_t uid)
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent, **p;
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
64 /* search the tree for a user record with a matching UID */
67 user = rb_entry(parent, struct key_user, node);
69 if (uid_lt(uid, user->uid))
71 else if (uid_gt(uid, user->uid))
77 /* if we get here, we failed to find a match in the tree */
79 /* allocate a candidate user record if we don't already have
81 spin_unlock(&key_user_lock);
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 refcount_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
111 /* okay - we found a user record for this UID */
113 refcount_inc(&user->usage);
114 spin_unlock(&key_user_lock);
121 * Dispose of a user structure
123 void key_user_put(struct key_user *user)
125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key *key)
139 struct rb_node *parent, **p;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
145 get_random_bytes(&key->serial, sizeof(key->serial));
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
150 spin_lock(&key_serial_lock);
154 p = &key_serial_tree.rb_node;
158 xkey = rb_entry(parent, struct key, serial_node);
160 if (key->serial < xkey->serial)
162 else if (key->serial > xkey->serial)
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
172 spin_unlock(&key_serial_lock);
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
180 if (key->serial < 3) {
182 goto attempt_insertion;
185 parent = rb_next(parent);
187 goto attempt_insertion;
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction for new keyrings.
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
210 * The restrict_link structure (if not NULL) will be freed when the
211 * keyring is destroyed, so it must be dynamically allocated.
213 * The user's key count quota is updated to reflect the creation of the key and
214 * the user's key data quota has the default for the key type reserved. The
215 * instantiation function should amend this as necessary. If insufficient
216 * quota is available, -EDQUOT will be returned.
218 * The LSM security modules can prevent a key being created, in which case
219 * -EACCES will be returned.
221 * Returns a pointer to the new key if successful and an error code otherwise.
223 * Note that the caller needs to ensure the key type isn't uninstantiated.
224 * Internally this can be done by locking key_types_sem. Externally, this can
225 * be done by either never unregistering the key type, or making sure
226 * key_alloc() calls don't race with module unloading.
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 kuid_t uid, kgid_t gid, const struct cred *cred,
230 key_perm_t perm, unsigned long flags,
231 struct key_restriction *restrict_link)
233 struct key_user *user = NULL;
235 size_t desclen, quotalen;
238 key = ERR_PTR(-EINVAL);
242 if (type->vet_description) {
243 ret = type->vet_description(desc);
250 desclen = strlen(desc);
251 quotalen = desclen + 1 + type->def_datalen;
253 /* get hold of the key tracking for this user */
254 user = key_user_lookup(uid);
258 /* check that the user's quota permits allocation of another key and
260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 key_quota_root_maxkeys : key_quota_maxkeys;
263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 key_quota_root_maxbytes : key_quota_maxbytes;
266 spin_lock(&user->lock);
267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 if (user->qnkeys + 1 > maxkeys ||
269 user->qnbytes + quotalen > maxbytes ||
270 user->qnbytes + quotalen < user->qnbytes)
275 user->qnbytes += quotalen;
276 spin_unlock(&user->lock);
279 /* allocate and initialise the key and its description */
280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
284 key->index_key.desc_len = desclen;
285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 if (!key->index_key.description)
289 refcount_set(&key->usage, 1);
290 init_rwsem(&key->sem);
291 lockdep_set_class(&key->sem, &type->lock_class);
292 key->index_key.type = type;
294 key->quotalen = quotalen;
295 key->datalen = type->def_datalen;
299 key->restrict_link = restrict_link;
300 key->last_used_at = ktime_get_real_seconds();
302 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
303 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
304 if (flags & KEY_ALLOC_BUILT_IN)
305 key->flags |= 1 << KEY_FLAG_BUILTIN;
306 if (flags & KEY_ALLOC_UID_KEYRING)
307 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
308 if (flags & KEY_ALLOC_SET_KEEP)
309 key->flags |= 1 << KEY_FLAG_KEEP;
312 key->magic = KEY_DEBUG_MAGIC;
315 /* let the security module know about the key */
316 ret = security_key_alloc(key, cred, flags);
320 /* publish the key by giving it a serial number */
321 atomic_inc(&user->nkeys);
322 key_alloc_serial(key);
328 kfree(key->description);
329 kmem_cache_free(key_jar, key);
330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331 spin_lock(&user->lock);
333 user->qnbytes -= quotalen;
334 spin_unlock(&user->lock);
341 kmem_cache_free(key_jar, key);
343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344 spin_lock(&user->lock);
346 user->qnbytes -= quotalen;
347 spin_unlock(&user->lock);
351 key = ERR_PTR(-ENOMEM);
355 spin_unlock(&user->lock);
357 key = ERR_PTR(-EDQUOT);
360 EXPORT_SYMBOL(key_alloc);
363 * key_payload_reserve - Adjust data quota reservation for the key's payload
364 * @key: The key to make the reservation for.
365 * @datalen: The amount of data payload the caller now wants.
367 * Adjust the amount of the owning user's key data quota that a key reserves.
368 * If the amount is increased, then -EDQUOT may be returned if there isn't
369 * enough free quota available.
371 * If successful, 0 is returned.
373 int key_payload_reserve(struct key *key, size_t datalen)
375 int delta = (int)datalen - key->datalen;
380 /* contemplate the quota adjustment */
381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
383 key_quota_root_maxbytes : key_quota_maxbytes;
385 spin_lock(&key->user->lock);
388 (key->user->qnbytes + delta > maxbytes ||
389 key->user->qnbytes + delta < key->user->qnbytes)) {
393 key->user->qnbytes += delta;
394 key->quotalen += delta;
396 spin_unlock(&key->user->lock);
399 /* change the recorded data length if that didn't generate an error */
401 key->datalen = datalen;
405 EXPORT_SYMBOL(key_payload_reserve);
408 * Change the key state to being instantiated.
410 static void mark_key_instantiated(struct key *key, int reject_error)
412 /* Commit the payload before setting the state; barrier versus
415 smp_store_release(&key->state,
416 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
420 * Instantiate a key and link it into the target keyring atomically. Must be
421 * called with the target keyring's semaphore writelocked. The target key's
422 * semaphore need not be locked as instantiation is serialised by
423 * key_construction_mutex.
425 static int __key_instantiate_and_link(struct key *key,
426 struct key_preparsed_payload *prep,
429 struct assoc_array_edit **_edit)
439 mutex_lock(&key_construction_mutex);
441 /* can't instantiate twice */
442 if (key->state == KEY_IS_UNINSTANTIATED) {
443 /* instantiate the key */
444 ret = key->type->instantiate(key, prep);
447 /* mark the key as being instantiated */
448 atomic_inc(&key->user->nikeys);
449 mark_key_instantiated(key, 0);
451 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
454 /* and link it into the destination keyring */
456 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
457 set_bit(KEY_FLAG_KEEP, &key->flags);
459 __key_link(key, _edit);
462 /* disable the authorisation key */
466 if (prep->expiry != TIME64_MAX) {
467 key->expiry = prep->expiry;
468 key_schedule_gc(prep->expiry + key_gc_delay);
473 mutex_unlock(&key_construction_mutex);
475 /* wake up anyone waiting for a key to be constructed */
477 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
484 * @key: The key to instantiate.
485 * @data: The data to use to instantiate the keyring.
486 * @datalen: The length of @data.
487 * @keyring: Keyring to create a link in on success (or NULL).
488 * @authkey: The authorisation token permitting instantiation.
490 * Instantiate a key that's in the uninstantiated state using the provided data
491 * and, if successful, link it in to the destination keyring if one is
494 * If successful, 0 is returned, the authorisation token is revoked and anyone
495 * waiting for the key is woken up. If the key was already instantiated,
496 * -EBUSY will be returned.
498 int key_instantiate_and_link(struct key *key,
504 struct key_preparsed_payload prep;
505 struct assoc_array_edit *edit;
508 memset(&prep, 0, sizeof(prep));
510 prep.datalen = datalen;
511 prep.quotalen = key->type->def_datalen;
512 prep.expiry = TIME64_MAX;
513 if (key->type->preparse) {
514 ret = key->type->preparse(&prep);
520 ret = __key_link_begin(keyring, &key->index_key, &edit);
524 if (keyring->restrict_link && keyring->restrict_link->check) {
525 struct key_restriction *keyres = keyring->restrict_link;
527 ret = keyres->check(keyring, key->type, &prep.payload,
534 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
538 __key_link_end(keyring, &key->index_key, edit);
541 if (key->type->preparse)
542 key->type->free_preparse(&prep);
546 EXPORT_SYMBOL(key_instantiate_and_link);
549 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
550 * @key: The key to instantiate.
551 * @timeout: The timeout on the negative key.
552 * @error: The error to return when the key is hit.
553 * @keyring: Keyring to create a link in on success (or NULL).
554 * @authkey: The authorisation token permitting instantiation.
556 * Negatively instantiate a key that's in the uninstantiated state and, if
557 * successful, set its timeout and stored error and link it in to the
558 * destination keyring if one is supplied. The key and any links to the key
559 * will be automatically garbage collected after the timeout expires.
561 * Negative keys are used to rate limit repeated request_key() calls by causing
562 * them to return the stored error code (typically ENOKEY) until the negative
565 * If successful, 0 is returned, the authorisation token is revoked and anyone
566 * waiting for the key is woken up. If the key was already instantiated,
567 * -EBUSY will be returned.
569 int key_reject_and_link(struct key *key,
575 struct assoc_array_edit *edit;
576 int ret, awaken, link_ret = 0;
585 if (keyring->restrict_link)
588 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
591 mutex_lock(&key_construction_mutex);
593 /* can't instantiate twice */
594 if (key->state == KEY_IS_UNINSTANTIATED) {
595 /* mark the key as being negatively instantiated */
596 atomic_inc(&key->user->nikeys);
597 mark_key_instantiated(key, -error);
598 key->expiry = ktime_get_real_seconds() + timeout;
599 key_schedule_gc(key->expiry + key_gc_delay);
601 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
606 /* and link it into the destination keyring */
607 if (keyring && link_ret == 0)
608 __key_link(key, &edit);
610 /* disable the authorisation key */
615 mutex_unlock(&key_construction_mutex);
617 if (keyring && link_ret == 0)
618 __key_link_end(keyring, &key->index_key, edit);
620 /* wake up anyone waiting for a key to be constructed */
622 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
624 return ret == 0 ? link_ret : ret;
626 EXPORT_SYMBOL(key_reject_and_link);
629 * key_put - Discard a reference to a key.
630 * @key: The key to discard a reference from.
632 * Discard a reference to a key, and when all the references are gone, we
633 * schedule the cleanup task to come and pull it out of the tree in process
634 * context at some later time.
636 void key_put(struct key *key)
641 if (refcount_dec_and_test(&key->usage))
642 schedule_work(&key_gc_work);
645 EXPORT_SYMBOL(key_put);
648 * Find a key by its serial number.
650 struct key *key_lookup(key_serial_t id)
655 spin_lock(&key_serial_lock);
657 /* search the tree for the specified key */
658 n = key_serial_tree.rb_node;
660 key = rb_entry(n, struct key, serial_node);
662 if (id < key->serial)
664 else if (id > key->serial)
671 key = ERR_PTR(-ENOKEY);
675 /* A key is allowed to be looked up only if someone still owns a
676 * reference to it - otherwise it's awaiting the gc.
678 if (!refcount_inc_not_zero(&key->usage))
682 spin_unlock(&key_serial_lock);
687 * Find and lock the specified key type against removal.
689 * We return with the sem read-locked if successful. If the type wasn't
690 * available -ENOKEY is returned instead.
692 struct key_type *key_type_lookup(const char *type)
694 struct key_type *ktype;
696 down_read(&key_types_sem);
698 /* look up the key type to see if it's one of the registered kernel
700 list_for_each_entry(ktype, &key_types_list, link) {
701 if (strcmp(ktype->name, type) == 0)
702 goto found_kernel_type;
705 up_read(&key_types_sem);
706 ktype = ERR_PTR(-ENOKEY);
712 void key_set_timeout(struct key *key, unsigned timeout)
716 /* make the changes with the locks held to prevent races */
717 down_write(&key->sem);
720 expiry = ktime_get_real_seconds() + timeout;
722 key->expiry = expiry;
723 key_schedule_gc(key->expiry + key_gc_delay);
727 EXPORT_SYMBOL_GPL(key_set_timeout);
730 * Unlock a key type locked by key_type_lookup().
732 void key_type_put(struct key_type *ktype)
734 up_read(&key_types_sem);
738 * Attempt to update an existing key.
740 * The key is given to us with an incremented refcount that we need to discard
741 * if we get an error.
743 static inline key_ref_t __key_update(key_ref_t key_ref,
744 struct key_preparsed_payload *prep)
746 struct key *key = key_ref_to_ptr(key_ref);
749 /* need write permission on the key to update it */
750 ret = key_permission(key_ref, KEY_NEED_WRITE);
755 if (!key->type->update)
758 down_write(&key->sem);
760 ret = key->type->update(key, prep);
762 /* Updating a negative key positively instantiates it */
763 mark_key_instantiated(key, 0);
774 key_ref = ERR_PTR(ret);
779 * key_create_or_update - Update or create and instantiate a key.
780 * @keyring_ref: A pointer to the destination keyring with possession flag.
781 * @type: The type of key.
782 * @description: The searchable description for the key.
783 * @payload: The data to use to instantiate or update the key.
784 * @plen: The length of @payload.
785 * @perm: The permissions mask for a new key.
786 * @flags: The quota flags for a new key.
788 * Search the destination keyring for a key of the same description and if one
789 * is found, update it, otherwise create and instantiate a new one and create a
790 * link to it from that keyring.
792 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
795 * Returns a pointer to the new key if successful, -ENODEV if the key type
796 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
797 * caller isn't permitted to modify the keyring or the LSM did not permit
798 * creation of the key.
800 * On success, the possession flag from the keyring ref will be tacked on to
801 * the key ref before it is returned.
803 key_ref_t key_create_or_update(key_ref_t keyring_ref,
805 const char *description,
811 struct keyring_index_key index_key = {
812 .description = description,
814 struct key_preparsed_payload prep;
815 struct assoc_array_edit *edit;
816 const struct cred *cred = current_cred();
817 struct key *keyring, *key = NULL;
820 struct key_restriction *restrict_link = NULL;
822 /* look up the key type to see if it's one of the registered kernel
824 index_key.type = key_type_lookup(type);
825 if (IS_ERR(index_key.type)) {
826 key_ref = ERR_PTR(-ENODEV);
830 key_ref = ERR_PTR(-EINVAL);
831 if (!index_key.type->instantiate ||
832 (!index_key.description && !index_key.type->preparse))
835 keyring = key_ref_to_ptr(keyring_ref);
839 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
840 restrict_link = keyring->restrict_link;
842 key_ref = ERR_PTR(-ENOTDIR);
843 if (keyring->type != &key_type_keyring)
846 memset(&prep, 0, sizeof(prep));
849 prep.quotalen = index_key.type->def_datalen;
850 prep.expiry = TIME64_MAX;
851 if (index_key.type->preparse) {
852 ret = index_key.type->preparse(&prep);
854 key_ref = ERR_PTR(ret);
855 goto error_free_prep;
857 if (!index_key.description)
858 index_key.description = prep.description;
859 key_ref = ERR_PTR(-EINVAL);
860 if (!index_key.description)
861 goto error_free_prep;
863 index_key.desc_len = strlen(index_key.description);
865 ret = __key_link_begin(keyring, &index_key, &edit);
867 key_ref = ERR_PTR(ret);
868 goto error_free_prep;
871 if (restrict_link && restrict_link->check) {
872 ret = restrict_link->check(keyring, index_key.type,
873 &prep.payload, restrict_link->key);
875 key_ref = ERR_PTR(ret);
880 /* if we're going to allocate a new key, we're going to have
881 * to modify the keyring */
882 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
884 key_ref = ERR_PTR(ret);
888 /* if it's possible to update this type of key, search for an existing
889 * key of the same type and description in the destination keyring and
890 * update that instead if possible
892 if (index_key.type->update) {
893 key_ref = find_key_to_update(keyring_ref, &index_key);
895 goto found_matching_key;
898 /* if the client doesn't provide, decide on the permissions we want */
899 if (perm == KEY_PERM_UNDEF) {
900 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
901 perm |= KEY_USR_VIEW;
903 if (index_key.type->read)
904 perm |= KEY_POS_READ;
906 if (index_key.type == &key_type_keyring ||
907 index_key.type->update)
908 perm |= KEY_POS_WRITE;
911 /* allocate a new key */
912 key = key_alloc(index_key.type, index_key.description,
913 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
915 key_ref = ERR_CAST(key);
919 /* instantiate it and link it into the target keyring */
920 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
923 key_ref = ERR_PTR(ret);
927 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
930 __key_link_end(keyring, &index_key, edit);
932 if (index_key.type->preparse)
933 index_key.type->free_preparse(&prep);
935 key_type_put(index_key.type);
940 /* we found a matching key, so we're going to try to update it
941 * - we can drop the locks first as we have the key pinned
943 __key_link_end(keyring, &index_key, edit);
945 key = key_ref_to_ptr(key_ref);
946 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
947 ret = wait_for_key_construction(key, true);
949 key_ref_put(key_ref);
950 key_ref = ERR_PTR(ret);
951 goto error_free_prep;
955 key_ref = __key_update(key_ref, &prep);
956 goto error_free_prep;
958 EXPORT_SYMBOL(key_create_or_update);
961 * key_update - Update a key's contents.
962 * @key_ref: The pointer (plus possession flag) to the key.
963 * @payload: The data to be used to update the key.
964 * @plen: The length of @payload.
966 * Attempt to update the contents of a key with the given payload data. The
967 * caller must be granted Write permission on the key. Negative keys can be
968 * instantiated by this method.
970 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
971 * type does not support updating. The key type may return other errors.
973 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
975 struct key_preparsed_payload prep;
976 struct key *key = key_ref_to_ptr(key_ref);
981 /* the key must be writable */
982 ret = key_permission(key_ref, KEY_NEED_WRITE);
986 /* attempt to update it if supported */
987 if (!key->type->update)
990 memset(&prep, 0, sizeof(prep));
993 prep.quotalen = key->type->def_datalen;
994 prep.expiry = TIME64_MAX;
995 if (key->type->preparse) {
996 ret = key->type->preparse(&prep);
1001 down_write(&key->sem);
1003 ret = key->type->update(key, &prep);
1005 /* Updating a negative key positively instantiates it */
1006 mark_key_instantiated(key, 0);
1008 up_write(&key->sem);
1011 if (key->type->preparse)
1012 key->type->free_preparse(&prep);
1015 EXPORT_SYMBOL(key_update);
1018 * key_revoke - Revoke a key.
1019 * @key: The key to be revoked.
1021 * Mark a key as being revoked and ask the type to free up its resources. The
1022 * revocation timeout is set and the key and all its links will be
1023 * automatically garbage collected after key_gc_delay amount of time if they
1024 * are not manually dealt with first.
1026 void key_revoke(struct key *key)
1032 /* make sure no one's trying to change or use the key when we mark it
1033 * - we tell lockdep that we might nest because we might be revoking an
1034 * authorisation key whilst holding the sem on a key we've just
1037 down_write_nested(&key->sem, 1);
1038 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1040 key->type->revoke(key);
1042 /* set the death time to no more than the expiry time */
1043 time = ktime_get_real_seconds();
1044 if (key->revoked_at == 0 || key->revoked_at > time) {
1045 key->revoked_at = time;
1046 key_schedule_gc(key->revoked_at + key_gc_delay);
1049 up_write(&key->sem);
1051 EXPORT_SYMBOL(key_revoke);
1054 * key_invalidate - Invalidate a key.
1055 * @key: The key to be invalidated.
1057 * Mark a key as being invalidated and have it cleaned up immediately. The key
1058 * is ignored by all searches and other operations from this point.
1060 void key_invalidate(struct key *key)
1062 kenter("%d", key_serial(key));
1066 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1067 down_write_nested(&key->sem, 1);
1068 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1069 key_schedule_gc_links();
1070 up_write(&key->sem);
1073 EXPORT_SYMBOL(key_invalidate);
1076 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1077 * @key: The key to be instantiated
1078 * @prep: The preparsed data to load.
1080 * Instantiate a key from preparsed data. We assume we can just copy the data
1081 * in directly and clear the old pointers.
1083 * This can be pointed to directly by the key type instantiate op pointer.
1085 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1089 pr_devel("==>%s()\n", __func__);
1091 ret = key_payload_reserve(key, prep->quotalen);
1093 rcu_assign_keypointer(key, prep->payload.data[0]);
1094 key->payload.data[1] = prep->payload.data[1];
1095 key->payload.data[2] = prep->payload.data[2];
1096 key->payload.data[3] = prep->payload.data[3];
1097 prep->payload.data[0] = NULL;
1098 prep->payload.data[1] = NULL;
1099 prep->payload.data[2] = NULL;
1100 prep->payload.data[3] = NULL;
1102 pr_devel("<==%s() = %d\n", __func__, ret);
1105 EXPORT_SYMBOL(generic_key_instantiate);
1108 * register_key_type - Register a type of key.
1109 * @ktype: The new key type.
1111 * Register a new key type.
1113 * Returns 0 on success or -EEXIST if a type of this name already exists.
1115 int register_key_type(struct key_type *ktype)
1120 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1123 down_write(&key_types_sem);
1125 /* disallow key types with the same name */
1126 list_for_each_entry(p, &key_types_list, link) {
1127 if (strcmp(p->name, ktype->name) == 0)
1131 /* store the type */
1132 list_add(&ktype->link, &key_types_list);
1134 pr_notice("Key type %s registered\n", ktype->name);
1138 up_write(&key_types_sem);
1141 EXPORT_SYMBOL(register_key_type);
1144 * unregister_key_type - Unregister a type of key.
1145 * @ktype: The key type.
1147 * Unregister a key type and mark all the extant keys of this type as dead.
1148 * Those keys of this type are then destroyed to get rid of their payloads and
1149 * they and their links will be garbage collected as soon as possible.
1151 void unregister_key_type(struct key_type *ktype)
1153 down_write(&key_types_sem);
1154 list_del_init(&ktype->link);
1155 downgrade_write(&key_types_sem);
1156 key_gc_keytype(ktype);
1157 pr_notice("Key type %s unregistered\n", ktype->name);
1158 up_read(&key_types_sem);
1160 EXPORT_SYMBOL(unregister_key_type);
1163 * Initialise the key management state.
1165 void __init key_init(void)
1167 /* allocate a slab in which we can store keys */
1168 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1169 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1171 /* add the special key types */
1172 list_add_tail(&key_type_keyring.link, &key_types_list);
1173 list_add_tail(&key_type_dead.link, &key_types_list);
1174 list_add_tail(&key_type_user.link, &key_types_list);
1175 list_add_tail(&key_type_logon.link, &key_types_list);
1177 /* record the root user tracking */
1178 rb_link_node(&root_key_user.node,
1180 &key_user_tree.rb_node);
1182 rb_insert_color(&root_key_user.node,