GNU Linux-libre 6.9-gnu
[releases.git] / security / integrity / ima / ima_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4  *
5  * Authors:
6  * Mimi Zohar <zohar@us.ibm.com>
7  * Kylene Hall <kjhall@us.ibm.com>
8  *
9  * File: ima_crypto.c
10  *      Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/ratelimit.h>
16 #include <linux/file.h>
17 #include <linux/crypto.h>
18 #include <linux/scatterlist.h>
19 #include <linux/err.h>
20 #include <linux/slab.h>
21 #include <crypto/hash.h>
22
23 #include "ima.h"
24
25 /* minimum file size for ahash use */
26 static unsigned long ima_ahash_minsize;
27 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
28 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
29
30 /* default is 0 - 1 page. */
31 static int ima_maxorder;
32 static unsigned int ima_bufsize = PAGE_SIZE;
33
34 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
35 {
36         unsigned long long size;
37         int order;
38
39         size = memparse(val, NULL);
40         order = get_order(size);
41         if (order > MAX_PAGE_ORDER)
42                 return -EINVAL;
43         ima_maxorder = order;
44         ima_bufsize = PAGE_SIZE << order;
45         return 0;
46 }
47
48 static const struct kernel_param_ops param_ops_bufsize = {
49         .set = param_set_bufsize,
50         .get = param_get_uint,
51 };
52 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
53
54 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
55 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
56
57 static struct crypto_shash *ima_shash_tfm;
58 static struct crypto_ahash *ima_ahash_tfm;
59
60 struct ima_algo_desc {
61         struct crypto_shash *tfm;
62         enum hash_algo algo;
63 };
64
65 int ima_sha1_idx __ro_after_init;
66 int ima_hash_algo_idx __ro_after_init;
67 /*
68  * Additional number of slots reserved, as needed, for SHA1
69  * and IMA default algo.
70  */
71 int ima_extra_slots __ro_after_init;
72
73 static struct ima_algo_desc *ima_algo_array;
74
75 static int __init ima_init_ima_crypto(void)
76 {
77         long rc;
78
79         ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
80         if (IS_ERR(ima_shash_tfm)) {
81                 rc = PTR_ERR(ima_shash_tfm);
82                 pr_err("Can not allocate %s (reason: %ld)\n",
83                        hash_algo_name[ima_hash_algo], rc);
84                 return rc;
85         }
86         pr_info("Allocated hash algorithm: %s\n",
87                 hash_algo_name[ima_hash_algo]);
88         return 0;
89 }
90
91 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
92 {
93         struct crypto_shash *tfm = ima_shash_tfm;
94         int rc, i;
95
96         if (algo < 0 || algo >= HASH_ALGO__LAST)
97                 algo = ima_hash_algo;
98
99         if (algo == ima_hash_algo)
100                 return tfm;
101
102         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
103                 if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
104                         return ima_algo_array[i].tfm;
105
106         tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
107         if (IS_ERR(tfm)) {
108                 rc = PTR_ERR(tfm);
109                 pr_err("Can not allocate %s (reason: %d)\n",
110                        hash_algo_name[algo], rc);
111         }
112         return tfm;
113 }
114
115 int __init ima_init_crypto(void)
116 {
117         enum hash_algo algo;
118         long rc;
119         int i;
120
121         rc = ima_init_ima_crypto();
122         if (rc)
123                 return rc;
124
125         ima_sha1_idx = -1;
126         ima_hash_algo_idx = -1;
127
128         for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
129                 algo = ima_tpm_chip->allocated_banks[i].crypto_id;
130                 if (algo == HASH_ALGO_SHA1)
131                         ima_sha1_idx = i;
132
133                 if (algo == ima_hash_algo)
134                         ima_hash_algo_idx = i;
135         }
136
137         if (ima_sha1_idx < 0) {
138                 ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
139                 if (ima_hash_algo == HASH_ALGO_SHA1)
140                         ima_hash_algo_idx = ima_sha1_idx;
141         }
142
143         if (ima_hash_algo_idx < 0)
144                 ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
145
146         ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
147                                  sizeof(*ima_algo_array), GFP_KERNEL);
148         if (!ima_algo_array) {
149                 rc = -ENOMEM;
150                 goto out;
151         }
152
153         for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
154                 algo = ima_tpm_chip->allocated_banks[i].crypto_id;
155                 ima_algo_array[i].algo = algo;
156
157                 /* unknown TPM algorithm */
158                 if (algo == HASH_ALGO__LAST)
159                         continue;
160
161                 if (algo == ima_hash_algo) {
162                         ima_algo_array[i].tfm = ima_shash_tfm;
163                         continue;
164                 }
165
166                 ima_algo_array[i].tfm = ima_alloc_tfm(algo);
167                 if (IS_ERR(ima_algo_array[i].tfm)) {
168                         if (algo == HASH_ALGO_SHA1) {
169                                 rc = PTR_ERR(ima_algo_array[i].tfm);
170                                 ima_algo_array[i].tfm = NULL;
171                                 goto out_array;
172                         }
173
174                         ima_algo_array[i].tfm = NULL;
175                 }
176         }
177
178         if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
179                 if (ima_hash_algo == HASH_ALGO_SHA1) {
180                         ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
181                 } else {
182                         ima_algo_array[ima_sha1_idx].tfm =
183                                                 ima_alloc_tfm(HASH_ALGO_SHA1);
184                         if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
185                                 rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
186                                 goto out_array;
187                         }
188                 }
189
190                 ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
191         }
192
193         if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
194             ima_hash_algo_idx != ima_sha1_idx) {
195                 ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
196                 ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
197         }
198
199         return 0;
200 out_array:
201         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
202                 if (!ima_algo_array[i].tfm ||
203                     ima_algo_array[i].tfm == ima_shash_tfm)
204                         continue;
205
206                 crypto_free_shash(ima_algo_array[i].tfm);
207         }
208         kfree(ima_algo_array);
209 out:
210         crypto_free_shash(ima_shash_tfm);
211         return rc;
212 }
213
214 static void ima_free_tfm(struct crypto_shash *tfm)
215 {
216         int i;
217
218         if (tfm == ima_shash_tfm)
219                 return;
220
221         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
222                 if (ima_algo_array[i].tfm == tfm)
223                         return;
224
225         crypto_free_shash(tfm);
226 }
227
228 /**
229  * ima_alloc_pages() - Allocate contiguous pages.
230  * @max_size:       Maximum amount of memory to allocate.
231  * @allocated_size: Returned size of actual allocation.
232  * @last_warn:      Should the min_size allocation warn or not.
233  *
234  * Tries to do opportunistic allocation for memory first trying to allocate
235  * max_size amount of memory and then splitting that until zero order is
236  * reached. Allocation is tried without generating allocation warnings unless
237  * last_warn is set. Last_warn set affects only last allocation of zero order.
238  *
239  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
240  *
241  * Return pointer to allocated memory, or NULL on failure.
242  */
243 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
244                              int last_warn)
245 {
246         void *ptr;
247         int order = ima_maxorder;
248         gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
249
250         if (order)
251                 order = min(get_order(max_size), order);
252
253         for (; order; order--) {
254                 ptr = (void *)__get_free_pages(gfp_mask, order);
255                 if (ptr) {
256                         *allocated_size = PAGE_SIZE << order;
257                         return ptr;
258                 }
259         }
260
261         /* order is zero - one page */
262
263         gfp_mask = GFP_KERNEL;
264
265         if (!last_warn)
266                 gfp_mask |= __GFP_NOWARN;
267
268         ptr = (void *)__get_free_pages(gfp_mask, 0);
269         if (ptr) {
270                 *allocated_size = PAGE_SIZE;
271                 return ptr;
272         }
273
274         *allocated_size = 0;
275         return NULL;
276 }
277
278 /**
279  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
280  * @ptr:  Pointer to allocated pages.
281  * @size: Size of allocated buffer.
282  */
283 static void ima_free_pages(void *ptr, size_t size)
284 {
285         if (!ptr)
286                 return;
287         free_pages((unsigned long)ptr, get_order(size));
288 }
289
290 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
291 {
292         struct crypto_ahash *tfm = ima_ahash_tfm;
293         int rc;
294
295         if (algo < 0 || algo >= HASH_ALGO__LAST)
296                 algo = ima_hash_algo;
297
298         if (algo != ima_hash_algo || !tfm) {
299                 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
300                 if (!IS_ERR(tfm)) {
301                         if (algo == ima_hash_algo)
302                                 ima_ahash_tfm = tfm;
303                 } else {
304                         rc = PTR_ERR(tfm);
305                         pr_err("Can not allocate %s (reason: %d)\n",
306                                hash_algo_name[algo], rc);
307                 }
308         }
309         return tfm;
310 }
311
312 static void ima_free_atfm(struct crypto_ahash *tfm)
313 {
314         if (tfm != ima_ahash_tfm)
315                 crypto_free_ahash(tfm);
316 }
317
318 static inline int ahash_wait(int err, struct crypto_wait *wait)
319 {
320
321         err = crypto_wait_req(err, wait);
322
323         if (err)
324                 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
325
326         return err;
327 }
328
329 static int ima_calc_file_hash_atfm(struct file *file,
330                                    struct ima_digest_data *hash,
331                                    struct crypto_ahash *tfm)
332 {
333         loff_t i_size, offset;
334         char *rbuf[2] = { NULL, };
335         int rc, rbuf_len, active = 0, ahash_rc = 0;
336         struct ahash_request *req;
337         struct scatterlist sg[1];
338         struct crypto_wait wait;
339         size_t rbuf_size[2];
340
341         hash->length = crypto_ahash_digestsize(tfm);
342
343         req = ahash_request_alloc(tfm, GFP_KERNEL);
344         if (!req)
345                 return -ENOMEM;
346
347         crypto_init_wait(&wait);
348         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
349                                    CRYPTO_TFM_REQ_MAY_SLEEP,
350                                    crypto_req_done, &wait);
351
352         rc = ahash_wait(crypto_ahash_init(req), &wait);
353         if (rc)
354                 goto out1;
355
356         i_size = i_size_read(file_inode(file));
357
358         if (i_size == 0)
359                 goto out2;
360
361         /*
362          * Try to allocate maximum size of memory.
363          * Fail if even a single page cannot be allocated.
364          */
365         rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
366         if (!rbuf[0]) {
367                 rc = -ENOMEM;
368                 goto out1;
369         }
370
371         /* Only allocate one buffer if that is enough. */
372         if (i_size > rbuf_size[0]) {
373                 /*
374                  * Try to allocate secondary buffer. If that fails fallback to
375                  * using single buffering. Use previous memory allocation size
376                  * as baseline for possible allocation size.
377                  */
378                 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
379                                           &rbuf_size[1], 0);
380         }
381
382         for (offset = 0; offset < i_size; offset += rbuf_len) {
383                 if (!rbuf[1] && offset) {
384                         /* Not using two buffers, and it is not the first
385                          * read/request, wait for the completion of the
386                          * previous ahash_update() request.
387                          */
388                         rc = ahash_wait(ahash_rc, &wait);
389                         if (rc)
390                                 goto out3;
391                 }
392                 /* read buffer */
393                 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
394                 rc = integrity_kernel_read(file, offset, rbuf[active],
395                                            rbuf_len);
396                 if (rc != rbuf_len) {
397                         if (rc >= 0)
398                                 rc = -EINVAL;
399                         /*
400                          * Forward current rc, do not overwrite with return value
401                          * from ahash_wait()
402                          */
403                         ahash_wait(ahash_rc, &wait);
404                         goto out3;
405                 }
406
407                 if (rbuf[1] && offset) {
408                         /* Using two buffers, and it is not the first
409                          * read/request, wait for the completion of the
410                          * previous ahash_update() request.
411                          */
412                         rc = ahash_wait(ahash_rc, &wait);
413                         if (rc)
414                                 goto out3;
415                 }
416
417                 sg_init_one(&sg[0], rbuf[active], rbuf_len);
418                 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
419
420                 ahash_rc = crypto_ahash_update(req);
421
422                 if (rbuf[1])
423                         active = !active; /* swap buffers, if we use two */
424         }
425         /* wait for the last update request to complete */
426         rc = ahash_wait(ahash_rc, &wait);
427 out3:
428         ima_free_pages(rbuf[0], rbuf_size[0]);
429         ima_free_pages(rbuf[1], rbuf_size[1]);
430 out2:
431         if (!rc) {
432                 ahash_request_set_crypt(req, NULL, hash->digest, 0);
433                 rc = ahash_wait(crypto_ahash_final(req), &wait);
434         }
435 out1:
436         ahash_request_free(req);
437         return rc;
438 }
439
440 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
441 {
442         struct crypto_ahash *tfm;
443         int rc;
444
445         tfm = ima_alloc_atfm(hash->algo);
446         if (IS_ERR(tfm))
447                 return PTR_ERR(tfm);
448
449         rc = ima_calc_file_hash_atfm(file, hash, tfm);
450
451         ima_free_atfm(tfm);
452
453         return rc;
454 }
455
456 static int ima_calc_file_hash_tfm(struct file *file,
457                                   struct ima_digest_data *hash,
458                                   struct crypto_shash *tfm)
459 {
460         loff_t i_size, offset = 0;
461         char *rbuf;
462         int rc;
463         SHASH_DESC_ON_STACK(shash, tfm);
464
465         shash->tfm = tfm;
466
467         hash->length = crypto_shash_digestsize(tfm);
468
469         rc = crypto_shash_init(shash);
470         if (rc != 0)
471                 return rc;
472
473         i_size = i_size_read(file_inode(file));
474
475         if (i_size == 0)
476                 goto out;
477
478         rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
479         if (!rbuf)
480                 return -ENOMEM;
481
482         while (offset < i_size) {
483                 int rbuf_len;
484
485                 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
486                 if (rbuf_len < 0) {
487                         rc = rbuf_len;
488                         break;
489                 }
490                 if (rbuf_len == 0) {    /* unexpected EOF */
491                         rc = -EINVAL;
492                         break;
493                 }
494                 offset += rbuf_len;
495
496                 rc = crypto_shash_update(shash, rbuf, rbuf_len);
497                 if (rc)
498                         break;
499         }
500         kfree(rbuf);
501 out:
502         if (!rc)
503                 rc = crypto_shash_final(shash, hash->digest);
504         return rc;
505 }
506
507 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
508 {
509         struct crypto_shash *tfm;
510         int rc;
511
512         tfm = ima_alloc_tfm(hash->algo);
513         if (IS_ERR(tfm))
514                 return PTR_ERR(tfm);
515
516         rc = ima_calc_file_hash_tfm(file, hash, tfm);
517
518         ima_free_tfm(tfm);
519
520         return rc;
521 }
522
523 /*
524  * ima_calc_file_hash - calculate file hash
525  *
526  * Asynchronous hash (ahash) allows using HW acceleration for calculating
527  * a hash. ahash performance varies for different data sizes on different
528  * crypto accelerators. shash performance might be better for smaller files.
529  * The 'ima.ahash_minsize' module parameter allows specifying the best
530  * minimum file size for using ahash on the system.
531  *
532  * If the ima.ahash_minsize parameter is not specified, this function uses
533  * shash for the hash calculation.  If ahash fails, it falls back to using
534  * shash.
535  */
536 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
537 {
538         loff_t i_size;
539         int rc;
540         struct file *f = file;
541         bool new_file_instance = false;
542
543         /*
544          * For consistency, fail file's opened with the O_DIRECT flag on
545          * filesystems mounted with/without DAX option.
546          */
547         if (file->f_flags & O_DIRECT) {
548                 hash->length = hash_digest_size[ima_hash_algo];
549                 hash->algo = ima_hash_algo;
550                 return -EINVAL;
551         }
552
553         /* Open a new file instance in O_RDONLY if we cannot read */
554         if (!(file->f_mode & FMODE_READ)) {
555                 int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
556                                 O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
557                 flags |= O_RDONLY;
558                 f = dentry_open(&file->f_path, flags, file->f_cred);
559                 if (IS_ERR(f))
560                         return PTR_ERR(f);
561
562                 new_file_instance = true;
563         }
564
565         i_size = i_size_read(file_inode(f));
566
567         if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
568                 rc = ima_calc_file_ahash(f, hash);
569                 if (!rc)
570                         goto out;
571         }
572
573         rc = ima_calc_file_shash(f, hash);
574 out:
575         if (new_file_instance)
576                 fput(f);
577         return rc;
578 }
579
580 /*
581  * Calculate the hash of template data
582  */
583 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
584                                          struct ima_template_entry *entry,
585                                          int tfm_idx)
586 {
587         SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
588         struct ima_template_desc *td = entry->template_desc;
589         int num_fields = entry->template_desc->num_fields;
590         int rc, i;
591
592         shash->tfm = ima_algo_array[tfm_idx].tfm;
593
594         rc = crypto_shash_init(shash);
595         if (rc != 0)
596                 return rc;
597
598         for (i = 0; i < num_fields; i++) {
599                 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
600                 u8 *data_to_hash = field_data[i].data;
601                 u32 datalen = field_data[i].len;
602                 u32 datalen_to_hash = !ima_canonical_fmt ?
603                                 datalen : (__force u32)cpu_to_le32(datalen);
604
605                 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
606                         rc = crypto_shash_update(shash,
607                                                 (const u8 *) &datalen_to_hash,
608                                                 sizeof(datalen_to_hash));
609                         if (rc)
610                                 break;
611                 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
612                         memcpy(buffer, data_to_hash, datalen);
613                         data_to_hash = buffer;
614                         datalen = IMA_EVENT_NAME_LEN_MAX + 1;
615                 }
616                 rc = crypto_shash_update(shash, data_to_hash, datalen);
617                 if (rc)
618                         break;
619         }
620
621         if (!rc)
622                 rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);
623
624         return rc;
625 }
626
627 int ima_calc_field_array_hash(struct ima_field_data *field_data,
628                               struct ima_template_entry *entry)
629 {
630         u16 alg_id;
631         int rc, i;
632
633         rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
634         if (rc)
635                 return rc;
636
637         entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;
638
639         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
640                 if (i == ima_sha1_idx)
641                         continue;
642
643                 if (i < NR_BANKS(ima_tpm_chip)) {
644                         alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
645                         entry->digests[i].alg_id = alg_id;
646                 }
647
648                 /* for unmapped TPM algorithms digest is still a padded SHA1 */
649                 if (!ima_algo_array[i].tfm) {
650                         memcpy(entry->digests[i].digest,
651                                entry->digests[ima_sha1_idx].digest,
652                                TPM_DIGEST_SIZE);
653                         continue;
654                 }
655
656                 rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
657                 if (rc)
658                         return rc;
659         }
660         return rc;
661 }
662
663 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
664                                   struct ima_digest_data *hash,
665                                   struct crypto_ahash *tfm)
666 {
667         struct ahash_request *req;
668         struct scatterlist sg;
669         struct crypto_wait wait;
670         int rc, ahash_rc = 0;
671
672         hash->length = crypto_ahash_digestsize(tfm);
673
674         req = ahash_request_alloc(tfm, GFP_KERNEL);
675         if (!req)
676                 return -ENOMEM;
677
678         crypto_init_wait(&wait);
679         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
680                                    CRYPTO_TFM_REQ_MAY_SLEEP,
681                                    crypto_req_done, &wait);
682
683         rc = ahash_wait(crypto_ahash_init(req), &wait);
684         if (rc)
685                 goto out;
686
687         sg_init_one(&sg, buf, len);
688         ahash_request_set_crypt(req, &sg, NULL, len);
689
690         ahash_rc = crypto_ahash_update(req);
691
692         /* wait for the update request to complete */
693         rc = ahash_wait(ahash_rc, &wait);
694         if (!rc) {
695                 ahash_request_set_crypt(req, NULL, hash->digest, 0);
696                 rc = ahash_wait(crypto_ahash_final(req), &wait);
697         }
698 out:
699         ahash_request_free(req);
700         return rc;
701 }
702
703 static int calc_buffer_ahash(const void *buf, loff_t len,
704                              struct ima_digest_data *hash)
705 {
706         struct crypto_ahash *tfm;
707         int rc;
708
709         tfm = ima_alloc_atfm(hash->algo);
710         if (IS_ERR(tfm))
711                 return PTR_ERR(tfm);
712
713         rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
714
715         ima_free_atfm(tfm);
716
717         return rc;
718 }
719
720 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
721                                 struct ima_digest_data *hash,
722                                 struct crypto_shash *tfm)
723 {
724         SHASH_DESC_ON_STACK(shash, tfm);
725         unsigned int len;
726         int rc;
727
728         shash->tfm = tfm;
729
730         hash->length = crypto_shash_digestsize(tfm);
731
732         rc = crypto_shash_init(shash);
733         if (rc != 0)
734                 return rc;
735
736         while (size) {
737                 len = size < PAGE_SIZE ? size : PAGE_SIZE;
738                 rc = crypto_shash_update(shash, buf, len);
739                 if (rc)
740                         break;
741                 buf += len;
742                 size -= len;
743         }
744
745         if (!rc)
746                 rc = crypto_shash_final(shash, hash->digest);
747         return rc;
748 }
749
750 static int calc_buffer_shash(const void *buf, loff_t len,
751                              struct ima_digest_data *hash)
752 {
753         struct crypto_shash *tfm;
754         int rc;
755
756         tfm = ima_alloc_tfm(hash->algo);
757         if (IS_ERR(tfm))
758                 return PTR_ERR(tfm);
759
760         rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
761
762         ima_free_tfm(tfm);
763         return rc;
764 }
765
766 int ima_calc_buffer_hash(const void *buf, loff_t len,
767                          struct ima_digest_data *hash)
768 {
769         int rc;
770
771         if (ima_ahash_minsize && len >= ima_ahash_minsize) {
772                 rc = calc_buffer_ahash(buf, len, hash);
773                 if (!rc)
774                         return 0;
775         }
776
777         return calc_buffer_shash(buf, len, hash);
778 }
779
780 static void ima_pcrread(u32 idx, struct tpm_digest *d)
781 {
782         if (!ima_tpm_chip)
783                 return;
784
785         if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
786                 pr_err("Error Communicating to TPM chip\n");
787 }
788
789 /*
790  * The boot_aggregate is a cumulative hash over TPM registers 0 - 7.  With
791  * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
792  * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
793  * allowing firmware to configure and enable different banks.
794  *
795  * Knowing which TPM bank is read to calculate the boot_aggregate digest
796  * needs to be conveyed to a verifier.  For this reason, use the same
797  * hash algorithm for reading the TPM PCRs as for calculating the boot
798  * aggregate digest as stored in the measurement list.
799  */
800 static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
801                                        struct crypto_shash *tfm)
802 {
803         struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
804         int rc;
805         u32 i;
806         SHASH_DESC_ON_STACK(shash, tfm);
807
808         shash->tfm = tfm;
809
810         pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
811                  d.alg_id);
812
813         rc = crypto_shash_init(shash);
814         if (rc != 0)
815                 return rc;
816
817         /* cumulative digest over TPM registers 0-7 */
818         for (i = TPM_PCR0; i < TPM_PCR8; i++) {
819                 ima_pcrread(i, &d);
820                 /* now accumulate with current aggregate */
821                 rc = crypto_shash_update(shash, d.digest,
822                                          crypto_shash_digestsize(tfm));
823                 if (rc != 0)
824                         return rc;
825         }
826         /*
827          * Extend cumulative digest over TPM registers 8-9, which contain
828          * measurement for the kernel command line (reg. 8) and image (reg. 9)
829          * in a typical PCR allocation. Registers 8-9 are only included in
830          * non-SHA1 boot_aggregate digests to avoid ambiguity.
831          */
832         if (alg_id != TPM_ALG_SHA1) {
833                 for (i = TPM_PCR8; i < TPM_PCR10; i++) {
834                         ima_pcrread(i, &d);
835                         rc = crypto_shash_update(shash, d.digest,
836                                                 crypto_shash_digestsize(tfm));
837                 }
838         }
839         if (!rc)
840                 crypto_shash_final(shash, digest);
841         return rc;
842 }
843
844 int ima_calc_boot_aggregate(struct ima_digest_data *hash)
845 {
846         struct crypto_shash *tfm;
847         u16 crypto_id, alg_id;
848         int rc, i, bank_idx = -1;
849
850         for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
851                 crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
852                 if (crypto_id == hash->algo) {
853                         bank_idx = i;
854                         break;
855                 }
856
857                 if (crypto_id == HASH_ALGO_SHA256)
858                         bank_idx = i;
859
860                 if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
861                         bank_idx = i;
862         }
863
864         if (bank_idx == -1) {
865                 pr_err("No suitable TPM algorithm for boot aggregate\n");
866                 return 0;
867         }
868
869         hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
870
871         tfm = ima_alloc_tfm(hash->algo);
872         if (IS_ERR(tfm))
873                 return PTR_ERR(tfm);
874
875         hash->length = crypto_shash_digestsize(tfm);
876         alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
877         rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
878
879         ima_free_tfm(tfm);
880
881         return rc;
882 }