d89d5c0a8cd2df281522dd6dd16e2f178955a7b4
[releases.git] / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40
41 struct scrub_ctx;
42
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP         8
50
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX           16
58
59 #define SCRUB_TOTAL_STRIPES             (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69         bool is_metadata;
70
71         union {
72                 /*
73                  * Csum pointer for data csum verification.  Should point to a
74                  * sector csum inside scrub_stripe::csums.
75                  *
76                  * NULL if this data sector has no csum.
77                  */
78                 u8 *csum;
79
80                 /*
81                  * Extra info for metadata verification.  All sectors inside a
82                  * tree block share the same generation.
83                  */
84                 u64 generation;
85         };
86 };
87
88 enum scrub_stripe_flags {
89         /* Set when @mirror_num, @dev, @physical and @logical are set. */
90         SCRUB_STRIPE_FLAG_INITIALIZED,
91
92         /* Set when the read-repair is finished. */
93         SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95         /*
96          * Set for data stripes if it's triggered from P/Q stripe.
97          * During such scrub, we should not report errors in data stripes, nor
98          * update the accounting.
99          */
100         SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102
103 #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109         struct scrub_ctx *sctx;
110         struct btrfs_block_group *bg;
111
112         struct page *pages[SCRUB_STRIPE_PAGES];
113         struct scrub_sector_verification *sectors;
114
115         struct btrfs_device *dev;
116         u64 logical;
117         u64 physical;
118
119         u16 mirror_num;
120
121         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122         u16 nr_sectors;
123
124         /*
125          * How many data/meta extents are in this stripe.  Only for scrub status
126          * reporting purposes.
127          */
128         u16 nr_data_extents;
129         u16 nr_meta_extents;
130
131         atomic_t pending_io;
132         wait_queue_head_t io_wait;
133         wait_queue_head_t repair_wait;
134
135         /*
136          * Indicate the states of the stripe.  Bits are defined in
137          * scrub_stripe_flags enum.
138          */
139         unsigned long state;
140
141         /* Indicate which sectors are covered by extent items. */
142         unsigned long extent_sector_bitmap;
143
144         /*
145          * The errors hit during the initial read of the stripe.
146          *
147          * Would be utilized for error reporting and repair.
148          *
149          * The remaining init_nr_* records the number of errors hit, only used
150          * by error reporting.
151          */
152         unsigned long init_error_bitmap;
153         unsigned int init_nr_io_errors;
154         unsigned int init_nr_csum_errors;
155         unsigned int init_nr_meta_errors;
156
157         /*
158          * The following error bitmaps are all for the current status.
159          * Every time we submit a new read, these bitmaps may be updated.
160          *
161          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162          *
163          * IO and csum errors can happen for both metadata and data.
164          */
165         unsigned long error_bitmap;
166         unsigned long io_error_bitmap;
167         unsigned long csum_error_bitmap;
168         unsigned long meta_error_bitmap;
169
170         /* For writeback (repair or replace) error reporting. */
171         unsigned long write_error_bitmap;
172
173         /* Writeback can be concurrent, thus we need to protect the bitmap. */
174         spinlock_t write_error_lock;
175
176         /*
177          * Checksum for the whole stripe if this stripe is inside a data block
178          * group.
179          */
180         u8 *csums;
181
182         struct work_struct work;
183 };
184
185 struct scrub_ctx {
186         struct scrub_stripe     stripes[SCRUB_TOTAL_STRIPES];
187         struct scrub_stripe     *raid56_data_stripes;
188         struct btrfs_fs_info    *fs_info;
189         struct btrfs_path       extent_path;
190         struct btrfs_path       csum_path;
191         int                     first_free;
192         int                     cur_stripe;
193         atomic_t                cancel_req;
194         int                     readonly;
195
196         /* State of IO submission throttling affecting the associated device */
197         ktime_t                 throttle_deadline;
198         u64                     throttle_sent;
199
200         int                     is_dev_replace;
201         u64                     write_pointer;
202
203         struct mutex            wr_lock;
204         struct btrfs_device     *wr_tgtdev;
205
206         /*
207          * statistics
208          */
209         struct btrfs_scrub_progress stat;
210         spinlock_t              stat_lock;
211
212         /*
213          * Use a ref counter to avoid use-after-free issues. Scrub workers
214          * decrement bios_in_flight and workers_pending and then do a wakeup
215          * on the list_wait wait queue. We must ensure the main scrub task
216          * doesn't free the scrub context before or while the workers are
217          * doing the wakeup() call.
218          */
219         refcount_t              refs;
220 };
221
222 struct scrub_warning {
223         struct btrfs_path       *path;
224         u64                     extent_item_size;
225         const char              *errstr;
226         u64                     physical;
227         u64                     logical;
228         struct btrfs_device     *dev;
229 };
230
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233         if (!stripe)
234                 return;
235
236         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237                 if (stripe->pages[i])
238                         __free_page(stripe->pages[i]);
239                 stripe->pages[i] = NULL;
240         }
241         kfree(stripe->sectors);
242         kfree(stripe->csums);
243         stripe->sectors = NULL;
244         stripe->csums = NULL;
245         stripe->sctx = NULL;
246         stripe->state = 0;
247 }
248
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250                              struct scrub_stripe *stripe)
251 {
252         int ret;
253
254         memset(stripe, 0, sizeof(*stripe));
255
256         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257         stripe->state = 0;
258
259         init_waitqueue_head(&stripe->io_wait);
260         init_waitqueue_head(&stripe->repair_wait);
261         atomic_set(&stripe->pending_io, 0);
262         spin_lock_init(&stripe->write_error_lock);
263
264         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
265         if (ret < 0)
266                 goto error;
267
268         stripe->sectors = kcalloc(stripe->nr_sectors,
269                                   sizeof(struct scrub_sector_verification),
270                                   GFP_KERNEL);
271         if (!stripe->sectors)
272                 goto error;
273
274         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275                                 fs_info->csum_size, GFP_KERNEL);
276         if (!stripe->csums)
277                 goto error;
278         return 0;
279 error:
280         release_scrub_stripe(stripe);
281         return -ENOMEM;
282 }
283
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293         while (atomic_read(&fs_info->scrub_pause_req)) {
294                 mutex_unlock(&fs_info->scrub_lock);
295                 wait_event(fs_info->scrub_pause_wait,
296                    atomic_read(&fs_info->scrub_pause_req) == 0);
297                 mutex_lock(&fs_info->scrub_lock);
298         }
299 }
300
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303         atomic_inc(&fs_info->scrubs_paused);
304         wake_up(&fs_info->scrub_pause_wait);
305 }
306
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309         mutex_lock(&fs_info->scrub_lock);
310         __scrub_blocked_if_needed(fs_info);
311         atomic_dec(&fs_info->scrubs_paused);
312         mutex_unlock(&fs_info->scrub_lock);
313
314         wake_up(&fs_info->scrub_pause_wait);
315 }
316
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319         scrub_pause_on(fs_info);
320         scrub_pause_off(fs_info);
321 }
322
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325         int i;
326
327         if (!sctx)
328                 return;
329
330         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331                 release_scrub_stripe(&sctx->stripes[i]);
332
333         kvfree(sctx);
334 }
335
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338         if (refcount_dec_and_test(&sctx->refs))
339                 scrub_free_ctx(sctx);
340 }
341
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343                 struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345         struct scrub_ctx *sctx;
346         int             i;
347
348         /* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349          * kvzalloc().
350          */
351         sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352         if (!sctx)
353                 goto nomem;
354         refcount_set(&sctx->refs, 1);
355         sctx->is_dev_replace = is_dev_replace;
356         sctx->fs_info = fs_info;
357         sctx->extent_path.search_commit_root = 1;
358         sctx->extent_path.skip_locking = 1;
359         sctx->csum_path.search_commit_root = 1;
360         sctx->csum_path.skip_locking = 1;
361         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362                 int ret;
363
364                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365                 if (ret < 0)
366                         goto nomem;
367                 sctx->stripes[i].sctx = sctx;
368         }
369         sctx->first_free = 0;
370         atomic_set(&sctx->cancel_req, 0);
371
372         spin_lock_init(&sctx->stat_lock);
373         sctx->throttle_deadline = 0;
374
375         mutex_init(&sctx->wr_lock);
376         if (is_dev_replace) {
377                 WARN_ON(!fs_info->dev_replace.tgtdev);
378                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379         }
380
381         return sctx;
382
383 nomem:
384         scrub_free_ctx(sctx);
385         return ERR_PTR(-ENOMEM);
386 }
387
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389                                      u64 root, void *warn_ctx)
390 {
391         u32 nlink;
392         int ret;
393         int i;
394         unsigned nofs_flag;
395         struct extent_buffer *eb;
396         struct btrfs_inode_item *inode_item;
397         struct scrub_warning *swarn = warn_ctx;
398         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399         struct inode_fs_paths *ipath = NULL;
400         struct btrfs_root *local_root;
401         struct btrfs_key key;
402
403         local_root = btrfs_get_fs_root(fs_info, root, true);
404         if (IS_ERR(local_root)) {
405                 ret = PTR_ERR(local_root);
406                 goto err;
407         }
408
409         /*
410          * this makes the path point to (inum INODE_ITEM ioff)
411          */
412         key.objectid = inum;
413         key.type = BTRFS_INODE_ITEM_KEY;
414         key.offset = 0;
415
416         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417         if (ret) {
418                 btrfs_put_root(local_root);
419                 btrfs_release_path(swarn->path);
420                 goto err;
421         }
422
423         eb = swarn->path->nodes[0];
424         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425                                         struct btrfs_inode_item);
426         nlink = btrfs_inode_nlink(eb, inode_item);
427         btrfs_release_path(swarn->path);
428
429         /*
430          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431          * uses GFP_NOFS in this context, so we keep it consistent but it does
432          * not seem to be strictly necessary.
433          */
434         nofs_flag = memalloc_nofs_save();
435         ipath = init_ipath(4096, local_root, swarn->path);
436         memalloc_nofs_restore(nofs_flag);
437         if (IS_ERR(ipath)) {
438                 btrfs_put_root(local_root);
439                 ret = PTR_ERR(ipath);
440                 ipath = NULL;
441                 goto err;
442         }
443         ret = paths_from_inode(inum, ipath);
444
445         if (ret < 0)
446                 goto err;
447
448         /*
449          * we deliberately ignore the bit ipath might have been too small to
450          * hold all of the paths here
451          */
452         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453                 btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455                                   swarn->errstr, swarn->logical,
456                                   btrfs_dev_name(swarn->dev),
457                                   swarn->physical,
458                                   root, inum, offset,
459                                   fs_info->sectorsize, nlink,
460                                   (char *)(unsigned long)ipath->fspath->val[i]);
461
462         btrfs_put_root(local_root);
463         free_ipath(ipath);
464         return 0;
465
466 err:
467         btrfs_warn_in_rcu(fs_info,
468                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469                           swarn->errstr, swarn->logical,
470                           btrfs_dev_name(swarn->dev),
471                           swarn->physical,
472                           root, inum, offset, ret);
473
474         free_ipath(ipath);
475         return 0;
476 }
477
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479                                        bool is_super, u64 logical, u64 physical)
480 {
481         struct btrfs_fs_info *fs_info = dev->fs_info;
482         struct btrfs_path *path;
483         struct btrfs_key found_key;
484         struct extent_buffer *eb;
485         struct btrfs_extent_item *ei;
486         struct scrub_warning swarn;
487         u64 flags = 0;
488         u32 item_size;
489         int ret;
490
491         /* Super block error, no need to search extent tree. */
492         if (is_super) {
493                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494                                   errstr, btrfs_dev_name(dev), physical);
495                 return;
496         }
497         path = btrfs_alloc_path();
498         if (!path)
499                 return;
500
501         swarn.physical = physical;
502         swarn.logical = logical;
503         swarn.errstr = errstr;
504         swarn.dev = NULL;
505
506         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507                                   &flags);
508         if (ret < 0)
509                 goto out;
510
511         swarn.extent_item_size = found_key.offset;
512
513         eb = path->nodes[0];
514         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515         item_size = btrfs_item_size(eb, path->slots[0]);
516
517         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518                 unsigned long ptr = 0;
519                 u8 ref_level;
520                 u64 ref_root;
521
522                 while (true) {
523                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524                                                       item_size, &ref_root,
525                                                       &ref_level);
526                         if (ret < 0) {
527                                 btrfs_warn(fs_info,
528                                 "failed to resolve tree backref for logical %llu: %d",
529                                                   swarn.logical, ret);
530                                 break;
531                         }
532                         if (ret > 0)
533                                 break;
534                         btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536                                 errstr, swarn.logical, btrfs_dev_name(dev),
537                                 swarn.physical, (ref_level ? "node" : "leaf"),
538                                 ref_level, ref_root);
539                 }
540                 btrfs_release_path(path);
541         } else {
542                 struct btrfs_backref_walk_ctx ctx = { 0 };
543
544                 btrfs_release_path(path);
545
546                 ctx.bytenr = found_key.objectid;
547                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
548                 ctx.fs_info = fs_info;
549
550                 swarn.path = path;
551                 swarn.dev = dev;
552
553                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554         }
555
556 out:
557         btrfs_free_path(path);
558 }
559
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562         int ret = 0;
563         u64 length;
564
565         if (!btrfs_is_zoned(sctx->fs_info))
566                 return 0;
567
568         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569                 return 0;
570
571         if (sctx->write_pointer < physical) {
572                 length = physical - sctx->write_pointer;
573
574                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575                                                 sctx->write_pointer, length);
576                 if (!ret)
577                         sctx->write_pointer = physical;
578         }
579         return ret;
580 }
581
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586
587         return stripe->pages[page_index];
588 }
589
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591                                                  int sector_nr)
592 {
593         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594
595         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606         u8 on_disk_csum[BTRFS_CSUM_SIZE];
607         u8 calculated_csum[BTRFS_CSUM_SIZE];
608         struct btrfs_header *header;
609
610         /*
611          * Here we don't have a good way to attach the pages (and subpages)
612          * to a dummy extent buffer, thus we have to directly grab the members
613          * from pages.
614          */
615         header = (struct btrfs_header *)(page_address(first_page) + first_off);
616         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617
618         if (logical != btrfs_stack_header_bytenr(header)) {
619                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621                 btrfs_warn_rl(fs_info,
622                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623                               logical, stripe->mirror_num,
624                               btrfs_stack_header_bytenr(header), logical);
625                 return;
626         }
627         if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628                    BTRFS_FSID_SIZE) != 0) {
629                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631                 btrfs_warn_rl(fs_info,
632                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
633                               logical, stripe->mirror_num,
634                               header->fsid, fs_info->fs_devices->fsid);
635                 return;
636         }
637         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638                    BTRFS_UUID_SIZE) != 0) {
639                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641                 btrfs_warn_rl(fs_info,
642                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643                               logical, stripe->mirror_num,
644                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645                 return;
646         }
647
648         /* Now check tree block csum. */
649         shash->tfm = fs_info->csum_shash;
650         crypto_shash_init(shash);
651         crypto_shash_update(shash, page_address(first_page) + first_off +
652                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653
654         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655                 struct page *page = scrub_stripe_get_page(stripe, i);
656                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657
658                 crypto_shash_update(shash, page_address(page) + page_off,
659                                     fs_info->sectorsize);
660         }
661
662         crypto_shash_final(shash, calculated_csum);
663         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666                 btrfs_warn_rl(fs_info,
667                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668                               logical, stripe->mirror_num,
669                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671                 return;
672         }
673         if (stripe->sectors[sector_nr].generation !=
674             btrfs_stack_header_generation(header)) {
675                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677                 btrfs_warn_rl(fs_info,
678                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
679                               logical, stripe->mirror_num,
680                               btrfs_stack_header_generation(header),
681                               stripe->sectors[sector_nr].generation);
682                 return;
683         }
684         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696         u8 csum_buf[BTRFS_CSUM_SIZE];
697         int ret;
698
699         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700
701         /* Sector not utilized, skip it. */
702         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703                 return;
704
705         /* IO error, no need to check. */
706         if (test_bit(sector_nr, &stripe->io_error_bitmap))
707                 return;
708
709         /* Metadata, verify the full tree block. */
710         if (sector->is_metadata) {
711                 /*
712                  * Check if the tree block crosses the stripe boundary.  If
713                  * crossed the boundary, we cannot verify it but only give a
714                  * warning.
715                  *
716                  * This can only happen on a very old filesystem where chunks
717                  * are not ensured to be stripe aligned.
718                  */
719                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720                         btrfs_warn_rl(fs_info,
721                         "tree block at %llu crosses stripe boundary %llu",
722                                       stripe->logical +
723                                       (sector_nr << fs_info->sectorsize_bits),
724                                       stripe->logical);
725                         return;
726                 }
727                 scrub_verify_one_metadata(stripe, sector_nr);
728                 return;
729         }
730
731         /*
732          * Data is easier, we just verify the data csum (if we have it).  For
733          * cases without csum, we have no other choice but to trust it.
734          */
735         if (!sector->csum) {
736                 clear_bit(sector_nr, &stripe->error_bitmap);
737                 return;
738         }
739
740         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741         if (ret < 0) {
742                 set_bit(sector_nr, &stripe->csum_error_bitmap);
743                 set_bit(sector_nr, &stripe->error_bitmap);
744         } else {
745                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
746                 clear_bit(sector_nr, &stripe->error_bitmap);
747         }
748 }
749
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755         int sector_nr;
756
757         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758                 scrub_verify_one_sector(stripe, sector_nr);
759                 if (stripe->sectors[sector_nr].is_metadata)
760                         sector_nr += sectors_per_tree - 1;
761         }
762 }
763
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766         int i;
767
768         for (i = 0; i < stripe->nr_sectors; i++) {
769                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771                         break;
772         }
773         ASSERT(i < stripe->nr_sectors);
774         return i;
775 }
776
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785         struct scrub_stripe *stripe = bbio->private;
786         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787         struct bio_vec *bvec;
788         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789         u32 bio_size = 0;
790         int i;
791
792         ASSERT(sector_nr < stripe->nr_sectors);
793
794         bio_for_each_bvec_all(bvec, &bbio->bio, i)
795                 bio_size += bvec->bv_len;
796
797         if (bbio->bio.bi_status) {
798                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
799                            bio_size >> fs_info->sectorsize_bits);
800                 bitmap_set(&stripe->error_bitmap, sector_nr,
801                            bio_size >> fs_info->sectorsize_bits);
802         } else {
803                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804                              bio_size >> fs_info->sectorsize_bits);
805         }
806         bio_put(&bbio->bio);
807         if (atomic_dec_and_test(&stripe->pending_io))
808                 wake_up(&stripe->io_wait);
809 }
810
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813         ASSERT(mirror <= num_copies);
814         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818                                             int mirror, int blocksize, bool wait)
819 {
820         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821         struct btrfs_bio *bbio = NULL;
822         const unsigned long old_error_bitmap = stripe->error_bitmap;
823         int i;
824
825         ASSERT(stripe->mirror_num >= 1);
826         ASSERT(atomic_read(&stripe->pending_io) == 0);
827
828         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829                 struct page *page;
830                 int pgoff;
831                 int ret;
832
833                 page = scrub_stripe_get_page(stripe, i);
834                 pgoff = scrub_stripe_get_page_offset(stripe, i);
835
836                 /* The current sector cannot be merged, submit the bio. */
837                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838                              bbio->bio.bi_iter.bi_size >= blocksize)) {
839                         ASSERT(bbio->bio.bi_iter.bi_size);
840                         atomic_inc(&stripe->pending_io);
841                         btrfs_submit_bio(bbio, mirror);
842                         if (wait)
843                                 wait_scrub_stripe_io(stripe);
844                         bbio = NULL;
845                 }
846
847                 if (!bbio) {
848                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849                                 fs_info, scrub_repair_read_endio, stripe);
850                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
851                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852                 }
853
854                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855                 ASSERT(ret == fs_info->sectorsize);
856         }
857         if (bbio) {
858                 ASSERT(bbio->bio.bi_iter.bi_size);
859                 atomic_inc(&stripe->pending_io);
860                 btrfs_submit_bio(bbio, mirror);
861                 if (wait)
862                         wait_scrub_stripe_io(stripe);
863         }
864 }
865
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867                                        struct scrub_stripe *stripe)
868 {
869         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870                                       DEFAULT_RATELIMIT_BURST);
871         struct btrfs_fs_info *fs_info = sctx->fs_info;
872         struct btrfs_device *dev = NULL;
873         u64 physical = 0;
874         int nr_data_sectors = 0;
875         int nr_meta_sectors = 0;
876         int nr_nodatacsum_sectors = 0;
877         int nr_repaired_sectors = 0;
878         int sector_nr;
879
880         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881                 return;
882
883         /*
884          * Init needed infos for error reporting.
885          *
886          * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887          * thus no need for dev/physical, error reporting still needs dev and physical.
888          */
889         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890                 u64 mapped_len = fs_info->sectorsize;
891                 struct btrfs_io_context *bioc = NULL;
892                 int stripe_index = stripe->mirror_num - 1;
893                 int ret;
894
895                 /* For scrub, our mirror_num should always start at 1. */
896                 ASSERT(stripe->mirror_num >= 1);
897                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898                                       stripe->logical, &mapped_len, &bioc,
899                                       NULL, NULL);
900                 /*
901                  * If we failed, dev will be NULL, and later detailed reports
902                  * will just be skipped.
903                  */
904                 if (ret < 0)
905                         goto skip;
906                 physical = bioc->stripes[stripe_index].physical;
907                 dev = bioc->stripes[stripe_index].dev;
908                 btrfs_put_bioc(bioc);
909         }
910
911 skip:
912         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913                 bool repaired = false;
914
915                 if (stripe->sectors[sector_nr].is_metadata) {
916                         nr_meta_sectors++;
917                 } else {
918                         nr_data_sectors++;
919                         if (!stripe->sectors[sector_nr].csum)
920                                 nr_nodatacsum_sectors++;
921                 }
922
923                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924                     !test_bit(sector_nr, &stripe->error_bitmap)) {
925                         nr_repaired_sectors++;
926                         repaired = true;
927                 }
928
929                 /* Good sector from the beginning, nothing need to be done. */
930                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931                         continue;
932
933                 /*
934                  * Report error for the corrupted sectors.  If repaired, just
935                  * output the message of repaired message.
936                  */
937                 if (repaired) {
938                         if (dev) {
939                                 btrfs_err_rl_in_rcu(fs_info,
940                         "fixed up error at logical %llu on dev %s physical %llu",
941                                             stripe->logical, btrfs_dev_name(dev),
942                                             physical);
943                         } else {
944                                 btrfs_err_rl_in_rcu(fs_info,
945                         "fixed up error at logical %llu on mirror %u",
946                                             stripe->logical, stripe->mirror_num);
947                         }
948                         continue;
949                 }
950
951                 /* The remaining are all for unrepaired. */
952                 if (dev) {
953                         btrfs_err_rl_in_rcu(fs_info,
954         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955                                             stripe->logical, btrfs_dev_name(dev),
956                                             physical);
957                 } else {
958                         btrfs_err_rl_in_rcu(fs_info,
959         "unable to fixup (regular) error at logical %llu on mirror %u",
960                                             stripe->logical, stripe->mirror_num);
961                 }
962
963                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
964                         if (__ratelimit(&rs) && dev)
965                                 scrub_print_common_warning("i/o error", dev, false,
966                                                      stripe->logical, physical);
967                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968                         if (__ratelimit(&rs) && dev)
969                                 scrub_print_common_warning("checksum error", dev, false,
970                                                      stripe->logical, physical);
971                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972                         if (__ratelimit(&rs) && dev)
973                                 scrub_print_common_warning("header error", dev, false,
974                                                      stripe->logical, physical);
975         }
976
977         spin_lock(&sctx->stat_lock);
978         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982         sctx->stat.no_csum += nr_nodatacsum_sectors;
983         sctx->stat.read_errors += stripe->init_nr_io_errors;
984         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986         sctx->stat.uncorrectable_errors +=
987                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988         sctx->stat.corrected_errors += nr_repaired_sectors;
989         spin_unlock(&sctx->stat_lock);
990 }
991
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993                                 unsigned long write_bitmap, bool dev_replace);
994
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011         struct scrub_ctx *sctx = stripe->sctx;
1012         struct btrfs_fs_info *fs_info = sctx->fs_info;
1013         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014                                           stripe->bg->length);
1015         unsigned long repaired;
1016         int mirror;
1017         int i;
1018
1019         ASSERT(stripe->mirror_num > 0);
1020
1021         wait_scrub_stripe_io(stripe);
1022         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023         /* Save the initial failed bitmap for later repair and report usage. */
1024         stripe->init_error_bitmap = stripe->error_bitmap;
1025         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026                                                   stripe->nr_sectors);
1027         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028                                                     stripe->nr_sectors);
1029         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030                                                     stripe->nr_sectors);
1031
1032         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033                 goto out;
1034
1035         /*
1036          * Try all remaining mirrors.
1037          *
1038          * Here we still try to read as large block as possible, as this is
1039          * faster and we have extra safety nets to rely on.
1040          */
1041         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042              mirror != stripe->mirror_num;
1043              mirror = calc_next_mirror(mirror, num_copies)) {
1044                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046                 scrub_stripe_submit_repair_read(stripe, mirror,
1047                                                 BTRFS_STRIPE_LEN, false);
1048                 wait_scrub_stripe_io(stripe);
1049                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1050                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051                         goto out;
1052         }
1053
1054         /*
1055          * Last safety net, try re-checking all mirrors, including the failed
1056          * one, sector-by-sector.
1057          *
1058          * As if one sector failed the drive's internal csum, the whole read
1059          * containing the offending sector would be marked as error.
1060          * Thus here we do sector-by-sector read.
1061          *
1062          * This can be slow, thus we only try it as the last resort.
1063          */
1064
1065         for (i = 0, mirror = stripe->mirror_num;
1066              i < num_copies;
1067              i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070                 scrub_stripe_submit_repair_read(stripe, mirror,
1071                                                 fs_info->sectorsize, true);
1072                 wait_scrub_stripe_io(stripe);
1073                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1074                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075                         goto out;
1076         }
1077 out:
1078         /*
1079          * Submit the repaired sectors.  For zoned case, we cannot do repair
1080          * in-place, but queue the bg to be relocated.
1081          */
1082         bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083                       stripe->nr_sectors);
1084         if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085                 if (btrfs_is_zoned(fs_info)) {
1086                         btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087                 } else {
1088                         scrub_write_sectors(sctx, stripe, repaired, false);
1089                         wait_scrub_stripe_io(stripe);
1090                 }
1091         }
1092
1093         scrub_stripe_report_errors(sctx, stripe);
1094         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095         wake_up(&stripe->repair_wait);
1096 }
1097
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100         struct scrub_stripe *stripe = bbio->private;
1101         struct bio_vec *bvec;
1102         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103         int num_sectors;
1104         u32 bio_size = 0;
1105         int i;
1106
1107         ASSERT(sector_nr < stripe->nr_sectors);
1108         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109                 bio_size += bvec->bv_len;
1110         num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112         if (bbio->bio.bi_status) {
1113                 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114                 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115         } else {
1116                 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117         }
1118         bio_put(&bbio->bio);
1119         if (atomic_dec_and_test(&stripe->pending_io)) {
1120                 wake_up(&stripe->io_wait);
1121                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123         }
1124 }
1125
1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128         struct scrub_stripe *stripe = bbio->private;
1129         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130         struct bio_vec *bvec;
1131         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132         u32 bio_size = 0;
1133         int i;
1134
1135         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136                 bio_size += bvec->bv_len;
1137
1138         if (bbio->bio.bi_status) {
1139                 unsigned long flags;
1140
1141                 spin_lock_irqsave(&stripe->write_error_lock, flags);
1142                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143                            bio_size >> fs_info->sectorsize_bits);
1144                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145         }
1146         bio_put(&bbio->bio);
1147
1148         if (atomic_dec_and_test(&stripe->pending_io))
1149                 wake_up(&stripe->io_wait);
1150 }
1151
1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153                                    struct scrub_stripe *stripe,
1154                                    struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156         struct btrfs_fs_info *fs_info = sctx->fs_info;
1157         u32 bio_len = bbio->bio.bi_iter.bi_size;
1158         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159                       stripe->logical;
1160
1161         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162         atomic_inc(&stripe->pending_io);
1163         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164         if (!btrfs_is_zoned(fs_info))
1165                 return;
1166         /*
1167          * For zoned writeback, queue depth must be 1, thus we must wait for
1168          * the write to finish before the next write.
1169          */
1170         wait_scrub_stripe_io(stripe);
1171
1172         /*
1173          * And also need to update the write pointer if write finished
1174          * successfully.
1175          */
1176         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177                       &stripe->write_error_bitmap))
1178                 sctx->write_pointer += bio_len;
1179 }
1180
1181 /*
1182  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183  *
1184  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185  *
1186  * - Only needs logical bytenr and mirror_num
1187  *   Just like the scrub read path
1188  *
1189  * - Would only result in writes to the specified mirror
1190  *   Unlike the regular writeback path, which would write back to all stripes
1191  *
1192  * - Handle dev-replace and read-repair writeback differently
1193  */
1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195                                 unsigned long write_bitmap, bool dev_replace)
1196 {
1197         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198         struct btrfs_bio *bbio = NULL;
1199         int sector_nr;
1200
1201         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204                 int ret;
1205
1206                 /* We should only writeback sectors covered by an extent. */
1207                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209                 /* Cannot merge with previous sector, submit the current one. */
1210                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212                         bbio = NULL;
1213                 }
1214                 if (!bbio) {
1215                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216                                                fs_info, scrub_write_endio, stripe);
1217                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218                                 (sector_nr << fs_info->sectorsize_bits)) >>
1219                                 SECTOR_SHIFT;
1220                 }
1221                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222                 ASSERT(ret == fs_info->sectorsize);
1223         }
1224         if (bbio)
1225                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227
1228 /*
1229  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231  */
1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233                                   unsigned int bio_size)
1234 {
1235         const int time_slice = 1000;
1236         s64 delta;
1237         ktime_t now;
1238         u32 div;
1239         u64 bwlimit;
1240
1241         bwlimit = READ_ONCE(device->scrub_speed_max);
1242         if (bwlimit == 0)
1243                 return;
1244
1245         /*
1246          * Slice is divided into intervals when the IO is submitted, adjust by
1247          * bwlimit and maximum of 64 intervals.
1248          */
1249         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250         div = min_t(u32, 64, div);
1251
1252         /* Start new epoch, set deadline */
1253         now = ktime_get();
1254         if (sctx->throttle_deadline == 0) {
1255                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256                 sctx->throttle_sent = 0;
1257         }
1258
1259         /* Still in the time to send? */
1260         if (ktime_before(now, sctx->throttle_deadline)) {
1261                 /* If current bio is within the limit, send it */
1262                 sctx->throttle_sent += bio_size;
1263                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264                         return;
1265
1266                 /* We're over the limit, sleep until the rest of the slice */
1267                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268         } else {
1269                 /* New request after deadline, start new epoch */
1270                 delta = 0;
1271         }
1272
1273         if (delta) {
1274                 long timeout;
1275
1276                 timeout = div_u64(delta * HZ, 1000);
1277                 schedule_timeout_interruptible(timeout);
1278         }
1279
1280         /* Next call will start the deadline period */
1281         sctx->throttle_deadline = 0;
1282 }
1283
1284 /*
1285  * Given a physical address, this will calculate it's
1286  * logical offset. if this is a parity stripe, it will return
1287  * the most left data stripe's logical offset.
1288  *
1289  * return 0 if it is a data stripe, 1 means parity stripe.
1290  */
1291 static int get_raid56_logic_offset(u64 physical, int num,
1292                                    struct btrfs_chunk_map *map, u64 *offset,
1293                                    u64 *stripe_start)
1294 {
1295         int i;
1296         int j = 0;
1297         u64 last_offset;
1298         const int data_stripes = nr_data_stripes(map);
1299
1300         last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301         if (stripe_start)
1302                 *stripe_start = last_offset;
1303
1304         *offset = last_offset;
1305         for (i = 0; i < data_stripes; i++) {
1306                 u32 stripe_nr;
1307                 u32 stripe_index;
1308                 u32 rot;
1309
1310                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311
1312                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313
1314                 /* Work out the disk rotation on this stripe-set */
1315                 rot = stripe_nr % map->num_stripes;
1316                 /* calculate which stripe this data locates */
1317                 rot += i;
1318                 stripe_index = rot % map->num_stripes;
1319                 if (stripe_index == num)
1320                         return 0;
1321                 if (stripe_index < num)
1322                         j++;
1323         }
1324         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325         return 1;
1326 }
1327
1328 /*
1329  * Return 0 if the extent item range covers any byte of the range.
1330  * Return <0 if the extent item is before @search_start.
1331  * Return >0 if the extent item is after @start_start + @search_len.
1332  */
1333 static int compare_extent_item_range(struct btrfs_path *path,
1334                                      u64 search_start, u64 search_len)
1335 {
1336         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337         u64 len;
1338         struct btrfs_key key;
1339
1340         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342                key.type == BTRFS_METADATA_ITEM_KEY);
1343         if (key.type == BTRFS_METADATA_ITEM_KEY)
1344                 len = fs_info->nodesize;
1345         else
1346                 len = key.offset;
1347
1348         if (key.objectid + len <= search_start)
1349                 return -1;
1350         if (key.objectid >= search_start + search_len)
1351                 return 1;
1352         return 0;
1353 }
1354
1355 /*
1356  * Locate one extent item which covers any byte in range
1357  * [@search_start, @search_start + @search_length)
1358  *
1359  * If the path is not initialized, we will initialize the search by doing
1360  * a btrfs_search_slot().
1361  * If the path is already initialized, we will use the path as the initial
1362  * slot, to avoid duplicated btrfs_search_slot() calls.
1363  *
1364  * NOTE: If an extent item starts before @search_start, we will still
1365  * return the extent item. This is for data extent crossing stripe boundary.
1366  *
1367  * Return 0 if we found such extent item, and @path will point to the extent item.
1368  * Return >0 if no such extent item can be found, and @path will be released.
1369  * Return <0 if hit fatal error, and @path will be released.
1370  */
1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372                                   struct btrfs_path *path,
1373                                   u64 search_start, u64 search_len)
1374 {
1375         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376         struct btrfs_key key;
1377         int ret;
1378
1379         /* Continue using the existing path */
1380         if (path->nodes[0])
1381                 goto search_forward;
1382
1383         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384                 key.type = BTRFS_METADATA_ITEM_KEY;
1385         else
1386                 key.type = BTRFS_EXTENT_ITEM_KEY;
1387         key.objectid = search_start;
1388         key.offset = (u64)-1;
1389
1390         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391         if (ret < 0)
1392                 return ret;
1393
1394         ASSERT(ret > 0);
1395         /*
1396          * Here we intentionally pass 0 as @min_objectid, as there could be
1397          * an extent item starting before @search_start.
1398          */
1399         ret = btrfs_previous_extent_item(extent_root, path, 0);
1400         if (ret < 0)
1401                 return ret;
1402         /*
1403          * No matter whether we have found an extent item, the next loop will
1404          * properly do every check on the key.
1405          */
1406 search_forward:
1407         while (true) {
1408                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409                 if (key.objectid >= search_start + search_len)
1410                         break;
1411                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412                     key.type != BTRFS_EXTENT_ITEM_KEY)
1413                         goto next;
1414
1415                 ret = compare_extent_item_range(path, search_start, search_len);
1416                 if (ret == 0)
1417                         return ret;
1418                 if (ret > 0)
1419                         break;
1420 next:
1421                 ret = btrfs_next_item(extent_root, path);
1422                 if (ret) {
1423                         /* Either no more items or a fatal error. */
1424                         btrfs_release_path(path);
1425                         return ret;
1426                 }
1427         }
1428         btrfs_release_path(path);
1429         return 1;
1430 }
1431
1432 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434 {
1435         struct btrfs_key key;
1436         struct btrfs_extent_item *ei;
1437
1438         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440                key.type == BTRFS_EXTENT_ITEM_KEY);
1441         *extent_start_ret = key.objectid;
1442         if (key.type == BTRFS_METADATA_ITEM_KEY)
1443                 *size_ret = path->nodes[0]->fs_info->nodesize;
1444         else
1445                 *size_ret = key.offset;
1446         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449 }
1450
1451 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452                                         u64 physical, u64 physical_end)
1453 {
1454         struct btrfs_fs_info *fs_info = sctx->fs_info;
1455         int ret = 0;
1456
1457         if (!btrfs_is_zoned(fs_info))
1458                 return 0;
1459
1460         mutex_lock(&sctx->wr_lock);
1461         if (sctx->write_pointer < physical_end) {
1462                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463                                                     physical,
1464                                                     sctx->write_pointer);
1465                 if (ret)
1466                         btrfs_err(fs_info,
1467                                   "zoned: failed to recover write pointer");
1468         }
1469         mutex_unlock(&sctx->wr_lock);
1470         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471
1472         return ret;
1473 }
1474
1475 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476                                  struct scrub_stripe *stripe,
1477                                  u64 extent_start, u64 extent_len,
1478                                  u64 extent_flags, u64 extent_gen)
1479 {
1480         for (u64 cur_logical = max(stripe->logical, extent_start);
1481              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482                                extent_start + extent_len);
1483              cur_logical += fs_info->sectorsize) {
1484                 const int nr_sector = (cur_logical - stripe->logical) >>
1485                                       fs_info->sectorsize_bits;
1486                 struct scrub_sector_verification *sector =
1487                                                 &stripe->sectors[nr_sector];
1488
1489                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491                         sector->is_metadata = true;
1492                         sector->generation = extent_gen;
1493                 }
1494         }
1495 }
1496
1497 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498 {
1499         stripe->extent_sector_bitmap = 0;
1500         stripe->init_error_bitmap = 0;
1501         stripe->init_nr_io_errors = 0;
1502         stripe->init_nr_csum_errors = 0;
1503         stripe->init_nr_meta_errors = 0;
1504         stripe->error_bitmap = 0;
1505         stripe->io_error_bitmap = 0;
1506         stripe->csum_error_bitmap = 0;
1507         stripe->meta_error_bitmap = 0;
1508 }
1509
1510 /*
1511  * Locate one stripe which has at least one extent in its range.
1512  *
1513  * Return 0 if found such stripe, and store its info into @stripe.
1514  * Return >0 if there is no such stripe in the specified range.
1515  * Return <0 for error.
1516  */
1517 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518                                         struct btrfs_path *extent_path,
1519                                         struct btrfs_path *csum_path,
1520                                         struct btrfs_device *dev, u64 physical,
1521                                         int mirror_num, u64 logical_start,
1522                                         u32 logical_len,
1523                                         struct scrub_stripe *stripe)
1524 {
1525         struct btrfs_fs_info *fs_info = bg->fs_info;
1526         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528         const u64 logical_end = logical_start + logical_len;
1529         u64 cur_logical = logical_start;
1530         u64 stripe_end;
1531         u64 extent_start;
1532         u64 extent_len;
1533         u64 extent_flags;
1534         u64 extent_gen;
1535         int ret;
1536
1537         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538                                    stripe->nr_sectors);
1539         scrub_stripe_reset_bitmaps(stripe);
1540
1541         /* The range must be inside the bg. */
1542         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543
1544         ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545                                      logical_len);
1546         /* Either error or not found. */
1547         if (ret)
1548                 goto out;
1549         get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550                         &extent_gen);
1551         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552                 stripe->nr_meta_extents++;
1553         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554                 stripe->nr_data_extents++;
1555         cur_logical = max(extent_start, cur_logical);
1556
1557         /*
1558          * Round down to stripe boundary.
1559          *
1560          * The extra calculation against bg->start is to handle block groups
1561          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562          */
1563         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564                           bg->start;
1565         stripe->physical = physical + stripe->logical - logical_start;
1566         stripe->dev = dev;
1567         stripe->bg = bg;
1568         stripe->mirror_num = mirror_num;
1569         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570
1571         /* Fill the first extent info into stripe->sectors[] array. */
1572         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573                              extent_flags, extent_gen);
1574         cur_logical = extent_start + extent_len;
1575
1576         /* Fill the extent info for the remaining sectors. */
1577         while (cur_logical <= stripe_end) {
1578                 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579                                              stripe_end - cur_logical + 1);
1580                 if (ret < 0)
1581                         goto out;
1582                 if (ret > 0) {
1583                         ret = 0;
1584                         break;
1585                 }
1586                 get_extent_info(extent_path, &extent_start, &extent_len,
1587                                 &extent_flags, &extent_gen);
1588                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589                         stripe->nr_meta_extents++;
1590                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591                         stripe->nr_data_extents++;
1592                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593                                      extent_flags, extent_gen);
1594                 cur_logical = extent_start + extent_len;
1595         }
1596
1597         /* Now fill the data csum. */
1598         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599                 int sector_nr;
1600                 unsigned long csum_bitmap = 0;
1601
1602                 /* Csum space should have already been allocated. */
1603                 ASSERT(stripe->csums);
1604
1605                 /*
1606                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607                  * should contain at most 16 sectors.
1608                  */
1609                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610
1611                 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612                                                 stripe->logical, stripe_end,
1613                                                 stripe->csums, &csum_bitmap);
1614                 if (ret < 0)
1615                         goto out;
1616                 if (ret > 0)
1617                         ret = 0;
1618
1619                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620                         stripe->sectors[sector_nr].csum = stripe->csums +
1621                                 sector_nr * fs_info->csum_size;
1622                 }
1623         }
1624         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625 out:
1626         return ret;
1627 }
1628
1629 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630 {
1631         scrub_stripe_reset_bitmaps(stripe);
1632
1633         stripe->nr_meta_extents = 0;
1634         stripe->nr_data_extents = 0;
1635         stripe->state = 0;
1636
1637         for (int i = 0; i < stripe->nr_sectors; i++) {
1638                 stripe->sectors[i].is_metadata = false;
1639                 stripe->sectors[i].csum = NULL;
1640                 stripe->sectors[i].generation = 0;
1641         }
1642 }
1643
1644 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645                                             struct scrub_stripe *stripe)
1646 {
1647         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648         struct btrfs_bio *bbio = NULL;
1649         unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650                                       stripe->bg->length - stripe->logical) >>
1651                                   fs_info->sectorsize_bits;
1652         u64 stripe_len = BTRFS_STRIPE_LEN;
1653         int mirror = stripe->mirror_num;
1654         int i;
1655
1656         atomic_inc(&stripe->pending_io);
1657
1658         for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659                 struct page *page = scrub_stripe_get_page(stripe, i);
1660                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1661
1662                 /* We're beyond the chunk boundary, no need to read anymore. */
1663                 if (i >= nr_sectors)
1664                         break;
1665
1666                 /* The current sector cannot be merged, submit the bio. */
1667                 if (bbio &&
1668                     ((i > 0 &&
1669                       !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670                      bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671                         ASSERT(bbio->bio.bi_iter.bi_size);
1672                         atomic_inc(&stripe->pending_io);
1673                         btrfs_submit_bio(bbio, mirror);
1674                         bbio = NULL;
1675                 }
1676
1677                 if (!bbio) {
1678                         struct btrfs_io_stripe io_stripe = {};
1679                         struct btrfs_io_context *bioc = NULL;
1680                         const u64 logical = stripe->logical +
1681                                             (i << fs_info->sectorsize_bits);
1682                         int err;
1683
1684                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685                                                fs_info, scrub_read_endio, stripe);
1686                         bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687
1688                         io_stripe.is_scrub = true;
1689                         err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690                                               &stripe_len, &bioc, &io_stripe,
1691                                               &mirror);
1692                         btrfs_put_bioc(bioc);
1693                         if (err) {
1694                                 btrfs_bio_end_io(bbio,
1695                                                  errno_to_blk_status(err));
1696                                 return;
1697                         }
1698                 }
1699
1700                 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1701         }
1702
1703         if (bbio) {
1704                 ASSERT(bbio->bio.bi_iter.bi_size);
1705                 atomic_inc(&stripe->pending_io);
1706                 btrfs_submit_bio(bbio, mirror);
1707         }
1708
1709         if (atomic_dec_and_test(&stripe->pending_io)) {
1710                 wake_up(&stripe->io_wait);
1711                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1713         }
1714 }
1715
1716 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717                                       struct scrub_stripe *stripe)
1718 {
1719         struct btrfs_fs_info *fs_info = sctx->fs_info;
1720         struct btrfs_bio *bbio;
1721         unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722                                       stripe->bg->length - stripe->logical) >>
1723                                   fs_info->sectorsize_bits;
1724         int mirror = stripe->mirror_num;
1725
1726         ASSERT(stripe->bg);
1727         ASSERT(stripe->mirror_num > 0);
1728         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729
1730         if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731                 scrub_submit_extent_sector_read(sctx, stripe);
1732                 return;
1733         }
1734
1735         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736                                scrub_read_endio, stripe);
1737
1738         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739         /* Read the whole range inside the chunk boundary. */
1740         for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741                 struct page *page = scrub_stripe_get_page(stripe, cur);
1742                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743                 int ret;
1744
1745                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746                 /* We should have allocated enough bio vectors. */
1747                 ASSERT(ret == fs_info->sectorsize);
1748         }
1749         atomic_inc(&stripe->pending_io);
1750
1751         /*
1752          * For dev-replace, either user asks to avoid the source dev, or
1753          * the device is missing, we try the next mirror instead.
1754          */
1755         if (sctx->is_dev_replace &&
1756             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758              !stripe->dev->bdev)) {
1759                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760                                                   stripe->bg->length);
1761
1762                 mirror = calc_next_mirror(mirror, num_copies);
1763         }
1764         btrfs_submit_bio(bbio, mirror);
1765 }
1766
1767 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1768 {
1769         int i;
1770
1771         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772                 if (stripe->sectors[i].is_metadata) {
1773                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1774
1775                         btrfs_err(fs_info,
1776                         "stripe %llu has unrepaired metadata sector at %llu",
1777                                   stripe->logical,
1778                                   stripe->logical + (i << fs_info->sectorsize_bits));
1779                         return true;
1780                 }
1781         }
1782         return false;
1783 }
1784
1785 static void submit_initial_group_read(struct scrub_ctx *sctx,
1786                                       unsigned int first_slot,
1787                                       unsigned int nr_stripes)
1788 {
1789         struct blk_plug plug;
1790
1791         ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792         ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1793
1794         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795                               btrfs_stripe_nr_to_offset(nr_stripes));
1796         blk_start_plug(&plug);
1797         for (int i = 0; i < nr_stripes; i++) {
1798                 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1799
1800                 /* Those stripes should be initialized. */
1801                 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802                 scrub_submit_initial_read(sctx, stripe);
1803         }
1804         blk_finish_plug(&plug);
1805 }
1806
1807 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1808 {
1809         struct btrfs_fs_info *fs_info = sctx->fs_info;
1810         struct scrub_stripe *stripe;
1811         const int nr_stripes = sctx->cur_stripe;
1812         int ret = 0;
1813
1814         if (!nr_stripes)
1815                 return 0;
1816
1817         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1818
1819         /* Submit the stripes which are populated but not submitted. */
1820         if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821                 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1822
1823                 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1824         }
1825
1826         for (int i = 0; i < nr_stripes; i++) {
1827                 stripe = &sctx->stripes[i];
1828
1829                 wait_event(stripe->repair_wait,
1830                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1831         }
1832
1833         /* Submit for dev-replace. */
1834         if (sctx->is_dev_replace) {
1835                 /*
1836                  * For dev-replace, if we know there is something wrong with
1837                  * metadata, we should immediately abort.
1838                  */
1839                 for (int i = 0; i < nr_stripes; i++) {
1840                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841                                 ret = -EIO;
1842                                 goto out;
1843                         }
1844                 }
1845                 for (int i = 0; i < nr_stripes; i++) {
1846                         unsigned long good;
1847
1848                         stripe = &sctx->stripes[i];
1849
1850                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1851
1852                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853                                       &stripe->error_bitmap, stripe->nr_sectors);
1854                         scrub_write_sectors(sctx, stripe, good, true);
1855                 }
1856         }
1857
1858         /* Wait for the above writebacks to finish. */
1859         for (int i = 0; i < nr_stripes; i++) {
1860                 stripe = &sctx->stripes[i];
1861
1862                 wait_scrub_stripe_io(stripe);
1863                 scrub_reset_stripe(stripe);
1864         }
1865 out:
1866         sctx->cur_stripe = 0;
1867         return ret;
1868 }
1869
1870 static void raid56_scrub_wait_endio(struct bio *bio)
1871 {
1872         complete(bio->bi_private);
1873 }
1874
1875 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876                               struct btrfs_device *dev, int mirror_num,
1877                               u64 logical, u32 length, u64 physical,
1878                               u64 *found_logical_ret)
1879 {
1880         struct scrub_stripe *stripe;
1881         int ret;
1882
1883         /*
1884          * There should always be one slot left, as caller filling the last
1885          * slot should flush them all.
1886          */
1887         ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1888
1889         /* @found_logical_ret must be specified. */
1890         ASSERT(found_logical_ret);
1891
1892         stripe = &sctx->stripes[sctx->cur_stripe];
1893         scrub_reset_stripe(stripe);
1894         ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895                                            &sctx->csum_path, dev, physical,
1896                                            mirror_num, logical, length, stripe);
1897         /* Either >0 as no more extents or <0 for error. */
1898         if (ret)
1899                 return ret;
1900         *found_logical_ret = stripe->logical;
1901         sctx->cur_stripe++;
1902
1903         /* We filled one group, submit it. */
1904         if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905                 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1906
1907                 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1908         }
1909
1910         /* Last slot used, flush them all. */
1911         if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912                 return flush_scrub_stripes(sctx);
1913         return 0;
1914 }
1915
1916 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917                                       struct btrfs_device *scrub_dev,
1918                                       struct btrfs_block_group *bg,
1919                                       struct btrfs_chunk_map *map,
1920                                       u64 full_stripe_start)
1921 {
1922         DECLARE_COMPLETION_ONSTACK(io_done);
1923         struct btrfs_fs_info *fs_info = sctx->fs_info;
1924         struct btrfs_raid_bio *rbio;
1925         struct btrfs_io_context *bioc = NULL;
1926         struct btrfs_path extent_path = { 0 };
1927         struct btrfs_path csum_path = { 0 };
1928         struct bio *bio;
1929         struct scrub_stripe *stripe;
1930         bool all_empty = true;
1931         const int data_stripes = nr_data_stripes(map);
1932         unsigned long extent_bitmap = 0;
1933         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934         int ret;
1935
1936         ASSERT(sctx->raid56_data_stripes);
1937
1938         /*
1939          * For data stripe search, we cannot re-use the same extent/csum paths,
1940          * as the data stripe bytenr may be smaller than previous extent.  Thus
1941          * we have to use our own extent/csum paths.
1942          */
1943         extent_path.search_commit_root = 1;
1944         extent_path.skip_locking = 1;
1945         csum_path.search_commit_root = 1;
1946         csum_path.skip_locking = 1;
1947
1948         for (int i = 0; i < data_stripes; i++) {
1949                 int stripe_index;
1950                 int rot;
1951                 u64 physical;
1952
1953                 stripe = &sctx->raid56_data_stripes[i];
1954                 rot = div_u64(full_stripe_start - bg->start,
1955                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956                 stripe_index = (i + rot) % map->num_stripes;
1957                 physical = map->stripes[stripe_index].physical +
1958                            btrfs_stripe_nr_to_offset(rot);
1959
1960                 scrub_reset_stripe(stripe);
1961                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962                 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963                                 map->stripes[stripe_index].dev, physical, 1,
1964                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965                                 BTRFS_STRIPE_LEN, stripe);
1966                 if (ret < 0)
1967                         goto out;
1968                 /*
1969                  * No extent in this data stripe, need to manually mark them
1970                  * initialized to make later read submission happy.
1971                  */
1972                 if (ret > 0) {
1973                         stripe->logical = full_stripe_start +
1974                                           btrfs_stripe_nr_to_offset(i);
1975                         stripe->dev = map->stripes[stripe_index].dev;
1976                         stripe->mirror_num = 1;
1977                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978                 }
1979         }
1980
1981         /* Check if all data stripes are empty. */
1982         for (int i = 0; i < data_stripes; i++) {
1983                 stripe = &sctx->raid56_data_stripes[i];
1984                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985                         all_empty = false;
1986                         break;
1987                 }
1988         }
1989         if (all_empty) {
1990                 ret = 0;
1991                 goto out;
1992         }
1993
1994         for (int i = 0; i < data_stripes; i++) {
1995                 stripe = &sctx->raid56_data_stripes[i];
1996                 scrub_submit_initial_read(sctx, stripe);
1997         }
1998         for (int i = 0; i < data_stripes; i++) {
1999                 stripe = &sctx->raid56_data_stripes[i];
2000
2001                 wait_event(stripe->repair_wait,
2002                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2003         }
2004         /* For now, no zoned support for RAID56. */
2005         ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006
2007         /*
2008          * Now all data stripes are properly verified. Check if we have any
2009          * unrepaired, if so abort immediately or we could further corrupt the
2010          * P/Q stripes.
2011          *
2012          * During the loop, also populate extent_bitmap.
2013          */
2014         for (int i = 0; i < data_stripes; i++) {
2015                 unsigned long error;
2016
2017                 stripe = &sctx->raid56_data_stripes[i];
2018
2019                 /*
2020                  * We should only check the errors where there is an extent.
2021                  * As we may hit an empty data stripe while it's missing.
2022                  */
2023                 bitmap_and(&error, &stripe->error_bitmap,
2024                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026                         btrfs_err(fs_info,
2027 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028                                   full_stripe_start, i, stripe->nr_sectors,
2029                                   &error);
2030                         ret = -EIO;
2031                         goto out;
2032                 }
2033                 bitmap_or(&extent_bitmap, &extent_bitmap,
2034                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
2035         }
2036
2037         /* Now we can check and regenerate the P/Q stripe. */
2038         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040         bio->bi_private = &io_done;
2041         bio->bi_end_io = raid56_scrub_wait_endio;
2042
2043         btrfs_bio_counter_inc_blocked(fs_info);
2044         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045                               &length, &bioc, NULL, NULL);
2046         if (ret < 0) {
2047                 btrfs_put_bioc(bioc);
2048                 btrfs_bio_counter_dec(fs_info);
2049                 goto out;
2050         }
2051         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053         btrfs_put_bioc(bioc);
2054         if (!rbio) {
2055                 ret = -ENOMEM;
2056                 btrfs_bio_counter_dec(fs_info);
2057                 goto out;
2058         }
2059         /* Use the recovered stripes as cache to avoid read them from disk again. */
2060         for (int i = 0; i < data_stripes; i++) {
2061                 stripe = &sctx->raid56_data_stripes[i];
2062
2063                 raid56_parity_cache_data_pages(rbio, stripe->pages,
2064                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2065         }
2066         raid56_parity_submit_scrub_rbio(rbio);
2067         wait_for_completion_io(&io_done);
2068         ret = blk_status_to_errno(bio->bi_status);
2069         bio_put(bio);
2070         btrfs_bio_counter_dec(fs_info);
2071
2072         btrfs_release_path(&extent_path);
2073         btrfs_release_path(&csum_path);
2074 out:
2075         return ret;
2076 }
2077
2078 /*
2079  * Scrub one range which can only has simple mirror based profile.
2080  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081  *  RAID0/RAID10).
2082  *
2083  * Since we may need to handle a subset of block group, we need @logical_start
2084  * and @logical_length parameter.
2085  */
2086 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087                                struct btrfs_block_group *bg,
2088                                struct btrfs_chunk_map *map,
2089                                u64 logical_start, u64 logical_length,
2090                                struct btrfs_device *device,
2091                                u64 physical, int mirror_num)
2092 {
2093         struct btrfs_fs_info *fs_info = sctx->fs_info;
2094         const u64 logical_end = logical_start + logical_length;
2095         u64 cur_logical = logical_start;
2096         int ret;
2097
2098         /* The range must be inside the bg */
2099         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2100
2101         /* Go through each extent items inside the logical range */
2102         while (cur_logical < logical_end) {
2103                 u64 found_logical = U64_MAX;
2104                 u64 cur_physical = physical + cur_logical - logical_start;
2105
2106                 /* Canceled? */
2107                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2108                     atomic_read(&sctx->cancel_req)) {
2109                         ret = -ECANCELED;
2110                         break;
2111                 }
2112                 /* Paused? */
2113                 if (atomic_read(&fs_info->scrub_pause_req)) {
2114                         /* Push queued extents */
2115                         scrub_blocked_if_needed(fs_info);
2116                 }
2117                 /* Block group removed? */
2118                 spin_lock(&bg->lock);
2119                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120                         spin_unlock(&bg->lock);
2121                         ret = 0;
2122                         break;
2123                 }
2124                 spin_unlock(&bg->lock);
2125
2126                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127                                          cur_logical, logical_end - cur_logical,
2128                                          cur_physical, &found_logical);
2129                 if (ret > 0) {
2130                         /* No more extent, just update the accounting */
2131                         sctx->stat.last_physical = physical + logical_length;
2132                         ret = 0;
2133                         break;
2134                 }
2135                 if (ret < 0)
2136                         break;
2137
2138                 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139                 ASSERT(found_logical != U64_MAX);
2140                 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2141
2142                 /* Don't hold CPU for too long time */
2143                 cond_resched();
2144         }
2145         return ret;
2146 }
2147
2148 /* Calculate the full stripe length for simple stripe based profiles */
2149 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150 {
2151         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152                             BTRFS_BLOCK_GROUP_RAID10));
2153
2154         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2155 }
2156
2157 /* Get the logical bytenr for the stripe */
2158 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159                                      struct btrfs_block_group *bg,
2160                                      int stripe_index)
2161 {
2162         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163                             BTRFS_BLOCK_GROUP_RAID10));
2164         ASSERT(stripe_index < map->num_stripes);
2165
2166         /*
2167          * (stripe_index / sub_stripes) gives how many data stripes we need to
2168          * skip.
2169          */
2170         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171                bg->start;
2172 }
2173
2174 /* Get the mirror number for the stripe */
2175 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176 {
2177         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178                             BTRFS_BLOCK_GROUP_RAID10));
2179         ASSERT(stripe_index < map->num_stripes);
2180
2181         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182         return stripe_index % map->sub_stripes + 1;
2183 }
2184
2185 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186                                struct btrfs_block_group *bg,
2187                                struct btrfs_chunk_map *map,
2188                                struct btrfs_device *device,
2189                                int stripe_index)
2190 {
2191         const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193         const u64 orig_physical = map->stripes[stripe_index].physical;
2194         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195         u64 cur_logical = orig_logical;
2196         u64 cur_physical = orig_physical;
2197         int ret = 0;
2198
2199         while (cur_logical < bg->start + bg->length) {
2200                 /*
2201                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203                  * this stripe.
2204                  */
2205                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206                                           BTRFS_STRIPE_LEN, device, cur_physical,
2207                                           mirror_num);
2208                 if (ret)
2209                         return ret;
2210                 /* Skip to next stripe which belongs to the target device */
2211                 cur_logical += logical_increment;
2212                 /* For physical offset, we just go to next stripe */
2213                 cur_physical += BTRFS_STRIPE_LEN;
2214         }
2215         return ret;
2216 }
2217
2218 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219                                            struct btrfs_block_group *bg,
2220                                            struct btrfs_chunk_map *map,
2221                                            struct btrfs_device *scrub_dev,
2222                                            int stripe_index)
2223 {
2224         struct btrfs_fs_info *fs_info = sctx->fs_info;
2225         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226         const u64 chunk_logical = bg->start;
2227         int ret;
2228         int ret2;
2229         u64 physical = map->stripes[stripe_index].physical;
2230         const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231         const u64 physical_end = physical + dev_stripe_len;
2232         u64 logical;
2233         u64 logic_end;
2234         /* The logical increment after finishing one stripe */
2235         u64 increment;
2236         /* Offset inside the chunk */
2237         u64 offset;
2238         u64 stripe_logical;
2239         int stop_loop = 0;
2240
2241         /* Extent_path should be released by now. */
2242         ASSERT(sctx->extent_path.nodes[0] == NULL);
2243
2244         scrub_blocked_if_needed(fs_info);
2245
2246         if (sctx->is_dev_replace &&
2247             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248                 mutex_lock(&sctx->wr_lock);
2249                 sctx->write_pointer = physical;
2250                 mutex_unlock(&sctx->wr_lock);
2251         }
2252
2253         /* Prepare the extra data stripes used by RAID56. */
2254         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255                 ASSERT(sctx->raid56_data_stripes == NULL);
2256
2257                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258                                                     sizeof(struct scrub_stripe),
2259                                                     GFP_KERNEL);
2260                 if (!sctx->raid56_data_stripes) {
2261                         ret = -ENOMEM;
2262                         goto out;
2263                 }
2264                 for (int i = 0; i < nr_data_stripes(map); i++) {
2265                         ret = init_scrub_stripe(fs_info,
2266                                                 &sctx->raid56_data_stripes[i]);
2267                         if (ret < 0)
2268                                 goto out;
2269                         sctx->raid56_data_stripes[i].bg = bg;
2270                         sctx->raid56_data_stripes[i].sctx = sctx;
2271                 }
2272         }
2273         /*
2274          * There used to be a big double loop to handle all profiles using the
2275          * same routine, which grows larger and more gross over time.
2276          *
2277          * So here we handle each profile differently, so simpler profiles
2278          * have simpler scrubbing function.
2279          */
2280         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282                 /*
2283                  * Above check rules out all complex profile, the remaining
2284                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285                  * mirrored duplication without stripe.
2286                  *
2287                  * Only @physical and @mirror_num needs to calculated using
2288                  * @stripe_index.
2289                  */
2290                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291                                 scrub_dev, map->stripes[stripe_index].physical,
2292                                 stripe_index + 1);
2293                 offset = 0;
2294                 goto out;
2295         }
2296         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299                 goto out;
2300         }
2301
2302         /* Only RAID56 goes through the old code */
2303         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304         ret = 0;
2305
2306         /* Calculate the logical end of the stripe */
2307         get_raid56_logic_offset(physical_end, stripe_index,
2308                                 map, &logic_end, NULL);
2309         logic_end += chunk_logical;
2310
2311         /* Initialize @offset in case we need to go to out: label */
2312         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2314
2315         /*
2316          * Due to the rotation, for RAID56 it's better to iterate each stripe
2317          * using their physical offset.
2318          */
2319         while (physical < physical_end) {
2320                 ret = get_raid56_logic_offset(physical, stripe_index, map,
2321                                               &logical, &stripe_logical);
2322                 logical += chunk_logical;
2323                 if (ret) {
2324                         /* it is parity strip */
2325                         stripe_logical += chunk_logical;
2326                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327                                                          map, stripe_logical);
2328                         if (ret)
2329                                 goto out;
2330                         goto next;
2331                 }
2332
2333                 /*
2334                  * Now we're at a data stripe, scrub each extents in the range.
2335                  *
2336                  * At this stage, if we ignore the repair part, inside each data
2337                  * stripe it is no different than SINGLE profile.
2338                  * We can reuse scrub_simple_mirror() here, as the repair part
2339                  * is still based on @mirror_num.
2340                  */
2341                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342                                           scrub_dev, physical, 1);
2343                 if (ret < 0)
2344                         goto out;
2345 next:
2346                 logical += increment;
2347                 physical += BTRFS_STRIPE_LEN;
2348                 spin_lock(&sctx->stat_lock);
2349                 if (stop_loop)
2350                         sctx->stat.last_physical =
2351                                 map->stripes[stripe_index].physical + dev_stripe_len;
2352                 else
2353                         sctx->stat.last_physical = physical;
2354                 spin_unlock(&sctx->stat_lock);
2355                 if (stop_loop)
2356                         break;
2357         }
2358 out:
2359         ret2 = flush_scrub_stripes(sctx);
2360         if (!ret)
2361                 ret = ret2;
2362         btrfs_release_path(&sctx->extent_path);
2363         btrfs_release_path(&sctx->csum_path);
2364
2365         if (sctx->raid56_data_stripes) {
2366                 for (int i = 0; i < nr_data_stripes(map); i++)
2367                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368                 kfree(sctx->raid56_data_stripes);
2369                 sctx->raid56_data_stripes = NULL;
2370         }
2371
2372         if (sctx->is_dev_replace && ret >= 0) {
2373                 int ret2;
2374
2375                 ret2 = sync_write_pointer_for_zoned(sctx,
2376                                 chunk_logical + offset,
2377                                 map->stripes[stripe_index].physical,
2378                                 physical_end);
2379                 if (ret2)
2380                         ret = ret2;
2381         }
2382
2383         return ret < 0 ? ret : 0;
2384 }
2385
2386 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387                                           struct btrfs_block_group *bg,
2388                                           struct btrfs_device *scrub_dev,
2389                                           u64 dev_offset,
2390                                           u64 dev_extent_len)
2391 {
2392         struct btrfs_fs_info *fs_info = sctx->fs_info;
2393         struct btrfs_chunk_map *map;
2394         int i;
2395         int ret = 0;
2396
2397         map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398         if (!map) {
2399                 /*
2400                  * Might have been an unused block group deleted by the cleaner
2401                  * kthread or relocation.
2402                  */
2403                 spin_lock(&bg->lock);
2404                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405                         ret = -EINVAL;
2406                 spin_unlock(&bg->lock);
2407
2408                 return ret;
2409         }
2410         if (map->start != bg->start)
2411                 goto out;
2412         if (map->chunk_len < dev_extent_len)
2413                 goto out;
2414
2415         for (i = 0; i < map->num_stripes; ++i) {
2416                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417                     map->stripes[i].physical == dev_offset) {
2418                         ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2419                         if (ret)
2420                                 goto out;
2421                 }
2422         }
2423 out:
2424         btrfs_free_chunk_map(map);
2425
2426         return ret;
2427 }
2428
2429 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430                                           struct btrfs_block_group *cache)
2431 {
2432         struct btrfs_fs_info *fs_info = cache->fs_info;
2433         struct btrfs_trans_handle *trans;
2434
2435         if (!btrfs_is_zoned(fs_info))
2436                 return 0;
2437
2438         btrfs_wait_block_group_reservations(cache);
2439         btrfs_wait_nocow_writers(cache);
2440         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441
2442         trans = btrfs_join_transaction(root);
2443         if (IS_ERR(trans))
2444                 return PTR_ERR(trans);
2445         return btrfs_commit_transaction(trans);
2446 }
2447
2448 static noinline_for_stack
2449 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450                            struct btrfs_device *scrub_dev, u64 start, u64 end)
2451 {
2452         struct btrfs_dev_extent *dev_extent = NULL;
2453         struct btrfs_path *path;
2454         struct btrfs_fs_info *fs_info = sctx->fs_info;
2455         struct btrfs_root *root = fs_info->dev_root;
2456         u64 chunk_offset;
2457         int ret = 0;
2458         int ro_set;
2459         int slot;
2460         struct extent_buffer *l;
2461         struct btrfs_key key;
2462         struct btrfs_key found_key;
2463         struct btrfs_block_group *cache;
2464         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465
2466         path = btrfs_alloc_path();
2467         if (!path)
2468                 return -ENOMEM;
2469
2470         path->reada = READA_FORWARD;
2471         path->search_commit_root = 1;
2472         path->skip_locking = 1;
2473
2474         key.objectid = scrub_dev->devid;
2475         key.offset = 0ull;
2476         key.type = BTRFS_DEV_EXTENT_KEY;
2477
2478         while (1) {
2479                 u64 dev_extent_len;
2480
2481                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482                 if (ret < 0)
2483                         break;
2484                 if (ret > 0) {
2485                         if (path->slots[0] >=
2486                             btrfs_header_nritems(path->nodes[0])) {
2487                                 ret = btrfs_next_leaf(root, path);
2488                                 if (ret < 0)
2489                                         break;
2490                                 if (ret > 0) {
2491                                         ret = 0;
2492                                         break;
2493                                 }
2494                         } else {
2495                                 ret = 0;
2496                         }
2497                 }
2498
2499                 l = path->nodes[0];
2500                 slot = path->slots[0];
2501
2502                 btrfs_item_key_to_cpu(l, &found_key, slot);
2503
2504                 if (found_key.objectid != scrub_dev->devid)
2505                         break;
2506
2507                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508                         break;
2509
2510                 if (found_key.offset >= end)
2511                         break;
2512
2513                 if (found_key.offset < key.offset)
2514                         break;
2515
2516                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518
2519                 if (found_key.offset + dev_extent_len <= start)
2520                         goto skip;
2521
2522                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523
2524                 /*
2525                  * get a reference on the corresponding block group to prevent
2526                  * the chunk from going away while we scrub it
2527                  */
2528                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529
2530                 /* some chunks are removed but not committed to disk yet,
2531                  * continue scrubbing */
2532                 if (!cache)
2533                         goto skip;
2534
2535                 ASSERT(cache->start <= chunk_offset);
2536                 /*
2537                  * We are using the commit root to search for device extents, so
2538                  * that means we could have found a device extent item from a
2539                  * block group that was deleted in the current transaction. The
2540                  * logical start offset of the deleted block group, stored at
2541                  * @chunk_offset, might be part of the logical address range of
2542                  * a new block group (which uses different physical extents).
2543                  * In this case btrfs_lookup_block_group() has returned the new
2544                  * block group, and its start address is less than @chunk_offset.
2545                  *
2546                  * We skip such new block groups, because it's pointless to
2547                  * process them, as we won't find their extents because we search
2548                  * for them using the commit root of the extent tree. For a device
2549                  * replace it's also fine to skip it, we won't miss copying them
2550                  * to the target device because we have the write duplication
2551                  * setup through the regular write path (by btrfs_map_block()),
2552                  * and we have committed a transaction when we started the device
2553                  * replace, right after setting up the device replace state.
2554                  */
2555                 if (cache->start < chunk_offset) {
2556                         btrfs_put_block_group(cache);
2557                         goto skip;
2558                 }
2559
2560                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2562                                 btrfs_put_block_group(cache);
2563                                 goto skip;
2564                         }
2565                 }
2566
2567                 /*
2568                  * Make sure that while we are scrubbing the corresponding block
2569                  * group doesn't get its logical address and its device extents
2570                  * reused for another block group, which can possibly be of a
2571                  * different type and different profile. We do this to prevent
2572                  * false error detections and crashes due to bogus attempts to
2573                  * repair extents.
2574                  */
2575                 spin_lock(&cache->lock);
2576                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577                         spin_unlock(&cache->lock);
2578                         btrfs_put_block_group(cache);
2579                         goto skip;
2580                 }
2581                 btrfs_freeze_block_group(cache);
2582                 spin_unlock(&cache->lock);
2583
2584                 /*
2585                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586                  * to avoid deadlock caused by:
2587                  * btrfs_inc_block_group_ro()
2588                  * -> btrfs_wait_for_commit()
2589                  * -> btrfs_commit_transaction()
2590                  * -> btrfs_scrub_pause()
2591                  */
2592                 scrub_pause_on(fs_info);
2593
2594                 /*
2595                  * Don't do chunk preallocation for scrub.
2596                  *
2597                  * This is especially important for SYSTEM bgs, or we can hit
2598                  * -EFBIG from btrfs_finish_chunk_alloc() like:
2599                  * 1. The only SYSTEM bg is marked RO.
2600                  *    Since SYSTEM bg is small, that's pretty common.
2601                  * 2. New SYSTEM bg will be allocated
2602                  *    Due to regular version will allocate new chunk.
2603                  * 3. New SYSTEM bg is empty and will get cleaned up
2604                  *    Before cleanup really happens, it's marked RO again.
2605                  * 4. Empty SYSTEM bg get scrubbed
2606                  *    We go back to 2.
2607                  *
2608                  * This can easily boost the amount of SYSTEM chunks if cleaner
2609                  * thread can't be triggered fast enough, and use up all space
2610                  * of btrfs_super_block::sys_chunk_array
2611                  *
2612                  * While for dev replace, we need to try our best to mark block
2613                  * group RO, to prevent race between:
2614                  * - Write duplication
2615                  *   Contains latest data
2616                  * - Scrub copy
2617                  *   Contains data from commit tree
2618                  *
2619                  * If target block group is not marked RO, nocow writes can
2620                  * be overwritten by scrub copy, causing data corruption.
2621                  * So for dev-replace, it's not allowed to continue if a block
2622                  * group is not RO.
2623                  */
2624                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625                 if (!ret && sctx->is_dev_replace) {
2626                         ret = finish_extent_writes_for_zoned(root, cache);
2627                         if (ret) {
2628                                 btrfs_dec_block_group_ro(cache);
2629                                 scrub_pause_off(fs_info);
2630                                 btrfs_put_block_group(cache);
2631                                 break;
2632                         }
2633                 }
2634
2635                 if (ret == 0) {
2636                         ro_set = 1;
2637                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639                         /*
2640                          * btrfs_inc_block_group_ro return -ENOSPC when it
2641                          * failed in creating new chunk for metadata.
2642                          * It is not a problem for scrub, because
2643                          * metadata are always cowed, and our scrub paused
2644                          * commit_transactions.
2645                          *
2646                          * For RAID56 chunks, we have to mark them read-only
2647                          * for scrub, as later we would use our own cache
2648                          * out of RAID56 realm.
2649                          * Thus we want the RAID56 bg to be marked RO to
2650                          * prevent RMW from screwing up out cache.
2651                          */
2652                         ro_set = 0;
2653                 } else if (ret == -ETXTBSY) {
2654                         btrfs_warn(fs_info,
2655                    "skipping scrub of block group %llu due to active swapfile",
2656                                    cache->start);
2657                         scrub_pause_off(fs_info);
2658                         ret = 0;
2659                         goto skip_unfreeze;
2660                 } else {
2661                         btrfs_warn(fs_info,
2662                                    "failed setting block group ro: %d", ret);
2663                         btrfs_unfreeze_block_group(cache);
2664                         btrfs_put_block_group(cache);
2665                         scrub_pause_off(fs_info);
2666                         break;
2667                 }
2668
2669                 /*
2670                  * Now the target block is marked RO, wait for nocow writes to
2671                  * finish before dev-replace.
2672                  * COW is fine, as COW never overwrites extents in commit tree.
2673                  */
2674                 if (sctx->is_dev_replace) {
2675                         btrfs_wait_nocow_writers(cache);
2676                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677                                         cache->length);
2678                 }
2679
2680                 scrub_pause_off(fs_info);
2681                 down_write(&dev_replace->rwsem);
2682                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683                 dev_replace->cursor_left = found_key.offset;
2684                 dev_replace->item_needs_writeback = 1;
2685                 up_write(&dev_replace->rwsem);
2686
2687                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688                                   dev_extent_len);
2689                 if (sctx->is_dev_replace &&
2690                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691                                                       cache, found_key.offset))
2692                         ro_set = 0;
2693
2694                 down_write(&dev_replace->rwsem);
2695                 dev_replace->cursor_left = dev_replace->cursor_right;
2696                 dev_replace->item_needs_writeback = 1;
2697                 up_write(&dev_replace->rwsem);
2698
2699                 if (ro_set)
2700                         btrfs_dec_block_group_ro(cache);
2701
2702                 /*
2703                  * We might have prevented the cleaner kthread from deleting
2704                  * this block group if it was already unused because we raced
2705                  * and set it to RO mode first. So add it back to the unused
2706                  * list, otherwise it might not ever be deleted unless a manual
2707                  * balance is triggered or it becomes used and unused again.
2708                  */
2709                 spin_lock(&cache->lock);
2710                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712                         spin_unlock(&cache->lock);
2713                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
2715                                                          cache);
2716                         else
2717                                 btrfs_mark_bg_unused(cache);
2718                 } else {
2719                         spin_unlock(&cache->lock);
2720                 }
2721 skip_unfreeze:
2722                 btrfs_unfreeze_block_group(cache);
2723                 btrfs_put_block_group(cache);
2724                 if (ret)
2725                         break;
2726                 if (sctx->is_dev_replace &&
2727                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2728                         ret = -EIO;
2729                         break;
2730                 }
2731                 if (sctx->stat.malloc_errors > 0) {
2732                         ret = -ENOMEM;
2733                         break;
2734                 }
2735 skip:
2736                 key.offset = found_key.offset + dev_extent_len;
2737                 btrfs_release_path(path);
2738         }
2739
2740         btrfs_free_path(path);
2741
2742         return ret;
2743 }
2744
2745 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746                            struct page *page, u64 physical, u64 generation)
2747 {
2748         struct btrfs_fs_info *fs_info = sctx->fs_info;
2749         struct bio_vec bvec;
2750         struct bio bio;
2751         struct btrfs_super_block *sb = page_address(page);
2752         int ret;
2753
2754         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757         ret = submit_bio_wait(&bio);
2758         bio_uninit(&bio);
2759
2760         if (ret < 0)
2761                 return ret;
2762         ret = btrfs_check_super_csum(fs_info, sb);
2763         if (ret != 0) {
2764                 btrfs_err_rl(fs_info,
2765                         "super block at physical %llu devid %llu has bad csum",
2766                         physical, dev->devid);
2767                 return -EIO;
2768         }
2769         if (btrfs_super_generation(sb) != generation) {
2770                 btrfs_err_rl(fs_info,
2771 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772                              physical, dev->devid,
2773                              btrfs_super_generation(sb), generation);
2774                 return -EUCLEAN;
2775         }
2776
2777         return btrfs_validate_super(fs_info, sb, -1);
2778 }
2779
2780 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781                                            struct btrfs_device *scrub_dev)
2782 {
2783         int     i;
2784         u64     bytenr;
2785         u64     gen;
2786         int ret = 0;
2787         struct page *page;
2788         struct btrfs_fs_info *fs_info = sctx->fs_info;
2789
2790         if (BTRFS_FS_ERROR(fs_info))
2791                 return -EROFS;
2792
2793         page = alloc_page(GFP_KERNEL);
2794         if (!page) {
2795                 spin_lock(&sctx->stat_lock);
2796                 sctx->stat.malloc_errors++;
2797                 spin_unlock(&sctx->stat_lock);
2798                 return -ENOMEM;
2799         }
2800
2801         /* Seed devices of a new filesystem has their own generation. */
2802         if (scrub_dev->fs_devices != fs_info->fs_devices)
2803                 gen = scrub_dev->generation;
2804         else
2805                 gen = btrfs_get_last_trans_committed(fs_info);
2806
2807         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808                 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2809                 if (ret == -ENOENT)
2810                         break;
2811
2812                 if (ret) {
2813                         spin_lock(&sctx->stat_lock);
2814                         sctx->stat.super_errors++;
2815                         spin_unlock(&sctx->stat_lock);
2816                         continue;
2817                 }
2818
2819                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2820                     scrub_dev->commit_total_bytes)
2821                         break;
2822                 if (!btrfs_check_super_location(scrub_dev, bytenr))
2823                         continue;
2824
2825                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2826                 if (ret) {
2827                         spin_lock(&sctx->stat_lock);
2828                         sctx->stat.super_errors++;
2829                         spin_unlock(&sctx->stat_lock);
2830                 }
2831         }
2832         __free_page(page);
2833         return 0;
2834 }
2835
2836 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2837 {
2838         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2839                                         &fs_info->scrub_lock)) {
2840                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2841
2842                 fs_info->scrub_workers = NULL;
2843                 mutex_unlock(&fs_info->scrub_lock);
2844
2845                 if (scrub_workers)
2846                         destroy_workqueue(scrub_workers);
2847         }
2848 }
2849
2850 /*
2851  * get a reference count on fs_info->scrub_workers. start worker if necessary
2852  */
2853 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2854 {
2855         struct workqueue_struct *scrub_workers = NULL;
2856         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2857         int max_active = fs_info->thread_pool_size;
2858         int ret = -ENOMEM;
2859
2860         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2861                 return 0;
2862
2863         scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2864         if (!scrub_workers)
2865                 return -ENOMEM;
2866
2867         mutex_lock(&fs_info->scrub_lock);
2868         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2869                 ASSERT(fs_info->scrub_workers == NULL);
2870                 fs_info->scrub_workers = scrub_workers;
2871                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2872                 mutex_unlock(&fs_info->scrub_lock);
2873                 return 0;
2874         }
2875         /* Other thread raced in and created the workers for us */
2876         refcount_inc(&fs_info->scrub_workers_refcnt);
2877         mutex_unlock(&fs_info->scrub_lock);
2878
2879         ret = 0;
2880
2881         destroy_workqueue(scrub_workers);
2882         return ret;
2883 }
2884
2885 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2886                     u64 end, struct btrfs_scrub_progress *progress,
2887                     int readonly, int is_dev_replace)
2888 {
2889         struct btrfs_dev_lookup_args args = { .devid = devid };
2890         struct scrub_ctx *sctx;
2891         int ret;
2892         struct btrfs_device *dev;
2893         unsigned int nofs_flag;
2894         bool need_commit = false;
2895
2896         if (btrfs_fs_closing(fs_info))
2897                 return -EAGAIN;
2898
2899         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2900         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2901
2902         /*
2903          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2904          * value (max nodesize / min sectorsize), thus nodesize should always
2905          * be fine.
2906          */
2907         ASSERT(fs_info->nodesize <=
2908                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2909
2910         /* Allocate outside of device_list_mutex */
2911         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2912         if (IS_ERR(sctx))
2913                 return PTR_ERR(sctx);
2914
2915         ret = scrub_workers_get(fs_info);
2916         if (ret)
2917                 goto out_free_ctx;
2918
2919         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2920         dev = btrfs_find_device(fs_info->fs_devices, &args);
2921         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2922                      !is_dev_replace)) {
2923                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2924                 ret = -ENODEV;
2925                 goto out;
2926         }
2927
2928         if (!is_dev_replace && !readonly &&
2929             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2930                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2931                 btrfs_err_in_rcu(fs_info,
2932                         "scrub on devid %llu: filesystem on %s is not writable",
2933                                  devid, btrfs_dev_name(dev));
2934                 ret = -EROFS;
2935                 goto out;
2936         }
2937
2938         mutex_lock(&fs_info->scrub_lock);
2939         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2940             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2941                 mutex_unlock(&fs_info->scrub_lock);
2942                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2943                 ret = -EIO;
2944                 goto out;
2945         }
2946
2947         down_read(&fs_info->dev_replace.rwsem);
2948         if (dev->scrub_ctx ||
2949             (!is_dev_replace &&
2950              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2951                 up_read(&fs_info->dev_replace.rwsem);
2952                 mutex_unlock(&fs_info->scrub_lock);
2953                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2954                 ret = -EINPROGRESS;
2955                 goto out;
2956         }
2957         up_read(&fs_info->dev_replace.rwsem);
2958
2959         sctx->readonly = readonly;
2960         dev->scrub_ctx = sctx;
2961         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2962
2963         /*
2964          * checking @scrub_pause_req here, we can avoid
2965          * race between committing transaction and scrubbing.
2966          */
2967         __scrub_blocked_if_needed(fs_info);
2968         atomic_inc(&fs_info->scrubs_running);
2969         mutex_unlock(&fs_info->scrub_lock);
2970
2971         /*
2972          * In order to avoid deadlock with reclaim when there is a transaction
2973          * trying to pause scrub, make sure we use GFP_NOFS for all the
2974          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2975          * invoked by our callees. The pausing request is done when the
2976          * transaction commit starts, and it blocks the transaction until scrub
2977          * is paused (done at specific points at scrub_stripe() or right above
2978          * before incrementing fs_info->scrubs_running).
2979          */
2980         nofs_flag = memalloc_nofs_save();
2981         if (!is_dev_replace) {
2982                 u64 old_super_errors;
2983
2984                 spin_lock(&sctx->stat_lock);
2985                 old_super_errors = sctx->stat.super_errors;
2986                 spin_unlock(&sctx->stat_lock);
2987
2988                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2989                 /*
2990                  * by holding device list mutex, we can
2991                  * kick off writing super in log tree sync.
2992                  */
2993                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2994                 ret = scrub_supers(sctx, dev);
2995                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2996
2997                 spin_lock(&sctx->stat_lock);
2998                 /*
2999                  * Super block errors found, but we can not commit transaction
3000                  * at current context, since btrfs_commit_transaction() needs
3001                  * to pause the current running scrub (hold by ourselves).
3002                  */
3003                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3004                         need_commit = true;
3005                 spin_unlock(&sctx->stat_lock);
3006         }
3007
3008         if (!ret)
3009                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3010         memalloc_nofs_restore(nofs_flag);
3011
3012         atomic_dec(&fs_info->scrubs_running);
3013         wake_up(&fs_info->scrub_pause_wait);
3014
3015         if (progress)
3016                 memcpy(progress, &sctx->stat, sizeof(*progress));
3017
3018         if (!is_dev_replace)
3019                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3020                         ret ? "not finished" : "finished", devid, ret);
3021
3022         mutex_lock(&fs_info->scrub_lock);
3023         dev->scrub_ctx = NULL;
3024         mutex_unlock(&fs_info->scrub_lock);
3025
3026         scrub_workers_put(fs_info);
3027         scrub_put_ctx(sctx);
3028
3029         /*
3030          * We found some super block errors before, now try to force a
3031          * transaction commit, as scrub has finished.
3032          */
3033         if (need_commit) {
3034                 struct btrfs_trans_handle *trans;
3035
3036                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3037                 if (IS_ERR(trans)) {
3038                         ret = PTR_ERR(trans);
3039                         btrfs_err(fs_info,
3040         "scrub: failed to start transaction to fix super block errors: %d", ret);
3041                         return ret;
3042                 }
3043                 ret = btrfs_commit_transaction(trans);
3044                 if (ret < 0)
3045                         btrfs_err(fs_info,
3046         "scrub: failed to commit transaction to fix super block errors: %d", ret);
3047         }
3048         return ret;
3049 out:
3050         scrub_workers_put(fs_info);
3051 out_free_ctx:
3052         scrub_free_ctx(sctx);
3053
3054         return ret;
3055 }
3056
3057 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3058 {
3059         mutex_lock(&fs_info->scrub_lock);
3060         atomic_inc(&fs_info->scrub_pause_req);
3061         while (atomic_read(&fs_info->scrubs_paused) !=
3062                atomic_read(&fs_info->scrubs_running)) {
3063                 mutex_unlock(&fs_info->scrub_lock);
3064                 wait_event(fs_info->scrub_pause_wait,
3065                            atomic_read(&fs_info->scrubs_paused) ==
3066                            atomic_read(&fs_info->scrubs_running));
3067                 mutex_lock(&fs_info->scrub_lock);
3068         }
3069         mutex_unlock(&fs_info->scrub_lock);
3070 }
3071
3072 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3073 {
3074         atomic_dec(&fs_info->scrub_pause_req);
3075         wake_up(&fs_info->scrub_pause_wait);
3076 }
3077
3078 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3079 {
3080         mutex_lock(&fs_info->scrub_lock);
3081         if (!atomic_read(&fs_info->scrubs_running)) {
3082                 mutex_unlock(&fs_info->scrub_lock);
3083                 return -ENOTCONN;
3084         }
3085
3086         atomic_inc(&fs_info->scrub_cancel_req);
3087         while (atomic_read(&fs_info->scrubs_running)) {
3088                 mutex_unlock(&fs_info->scrub_lock);
3089                 wait_event(fs_info->scrub_pause_wait,
3090                            atomic_read(&fs_info->scrubs_running) == 0);
3091                 mutex_lock(&fs_info->scrub_lock);
3092         }
3093         atomic_dec(&fs_info->scrub_cancel_req);
3094         mutex_unlock(&fs_info->scrub_lock);
3095
3096         return 0;
3097 }
3098
3099 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3100 {
3101         struct btrfs_fs_info *fs_info = dev->fs_info;
3102         struct scrub_ctx *sctx;
3103
3104         mutex_lock(&fs_info->scrub_lock);
3105         sctx = dev->scrub_ctx;
3106         if (!sctx) {
3107                 mutex_unlock(&fs_info->scrub_lock);
3108                 return -ENOTCONN;
3109         }
3110         atomic_inc(&sctx->cancel_req);
3111         while (dev->scrub_ctx) {
3112                 mutex_unlock(&fs_info->scrub_lock);
3113                 wait_event(fs_info->scrub_pause_wait,
3114                            dev->scrub_ctx == NULL);
3115                 mutex_lock(&fs_info->scrub_lock);
3116         }
3117         mutex_unlock(&fs_info->scrub_lock);
3118
3119         return 0;
3120 }
3121
3122 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3123                          struct btrfs_scrub_progress *progress)
3124 {
3125         struct btrfs_dev_lookup_args args = { .devid = devid };
3126         struct btrfs_device *dev;
3127         struct scrub_ctx *sctx = NULL;
3128
3129         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3130         dev = btrfs_find_device(fs_info->fs_devices, &args);
3131         if (dev)
3132                 sctx = dev->scrub_ctx;
3133         if (sctx)
3134                 memcpy(progress, &sctx->stat, sizeof(*progress));
3135         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3136
3137         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3138 }