Mention branches and keyring.
[releases.git] / s390 / kernel / vtime.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Virtual cpu timer based timer functions.
4  *
5  *    Copyright IBM Corp. 2004, 2012
6  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7  */
8
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16 #include <asm/alternative.h>
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21
22 #include "entry.h"
23
24 static void virt_timer_expire(void);
25
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36 static inline u64 get_vtimer(void)
37 {
38         u64 timer;
39
40         asm volatile("stpt %0" : "=Q" (timer));
41         return timer;
42 }
43
44 static inline void set_vtimer(u64 expires)
45 {
46         u64 timer;
47
48         asm volatile(
49                 "       stpt    %0\n"   /* Store current cpu timer value */
50                 "       spt     %1"     /* Set new value imm. afterwards */
51                 : "=Q" (timer) : "Q" (expires));
52         S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53         S390_lowcore.last_update_timer = expires;
54 }
55
56 static inline int virt_timer_forward(u64 elapsed)
57 {
58         BUG_ON(!irqs_disabled());
59
60         if (list_empty(&virt_timer_list))
61                 return 0;
62         elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63         return elapsed >= atomic64_read(&virt_timer_current);
64 }
65
66 static void update_mt_scaling(void)
67 {
68         u64 cycles_new[8], *cycles_old;
69         u64 delta, fac, mult, div;
70         int i;
71
72         stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73         cycles_old = this_cpu_ptr(mt_cycles);
74         fac = 1;
75         mult = div = 0;
76         for (i = 0; i <= smp_cpu_mtid; i++) {
77                 delta = cycles_new[i] - cycles_old[i];
78                 div += delta;
79                 mult *= i + 1;
80                 mult += delta * fac;
81                 fac *= i + 1;
82         }
83         div *= fac;
84         if (div > 0) {
85                 /* Update scaling factor */
86                 __this_cpu_write(mt_scaling_mult, mult);
87                 __this_cpu_write(mt_scaling_div, div);
88                 memcpy(cycles_old, cycles_new,
89                        sizeof(u64) * (smp_cpu_mtid + 1));
90         }
91         __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93
94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96         u64 delta;
97
98         delta = new - *tsk_vtime;
99         *tsk_vtime = new;
100         return delta;
101 }
102
103
104 static inline u64 scale_vtime(u64 vtime)
105 {
106         u64 mult = __this_cpu_read(mt_scaling_mult);
107         u64 div = __this_cpu_read(mt_scaling_div);
108
109         if (smp_cpu_mtid)
110                 return vtime * mult / div;
111         return vtime;
112 }
113
114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115                                         enum cpu_usage_stat index)
116 {
117         p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118         account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127         u64 timer, clock, user, guest, system, hardirq, softirq;
128
129         timer = S390_lowcore.last_update_timer;
130         clock = S390_lowcore.last_update_clock;
131         asm volatile(
132                 "       stpt    %0\n"   /* Store current cpu timer value */
133                 "       stckf   %1"     /* Store current tod clock value */
134                 : "=Q" (S390_lowcore.last_update_timer),
135                   "=Q" (S390_lowcore.last_update_clock)
136                 : : "cc");
137         clock = S390_lowcore.last_update_clock - clock;
138         timer -= S390_lowcore.last_update_timer;
139
140         if (hardirq_count())
141                 S390_lowcore.hardirq_timer += timer;
142         else
143                 S390_lowcore.system_timer += timer;
144
145         /* Update MT utilization calculation */
146         if (smp_cpu_mtid &&
147             time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
148                 update_mt_scaling();
149
150         /* Calculate cputime delta */
151         user = update_tsk_timer(&tsk->thread.user_timer,
152                                 READ_ONCE(S390_lowcore.user_timer));
153         guest = update_tsk_timer(&tsk->thread.guest_timer,
154                                  READ_ONCE(S390_lowcore.guest_timer));
155         system = update_tsk_timer(&tsk->thread.system_timer,
156                                   READ_ONCE(S390_lowcore.system_timer));
157         hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
158                                    READ_ONCE(S390_lowcore.hardirq_timer));
159         softirq = update_tsk_timer(&tsk->thread.softirq_timer,
160                                    READ_ONCE(S390_lowcore.softirq_timer));
161         S390_lowcore.steal_timer +=
162                 clock - user - guest - system - hardirq - softirq;
163
164         /* Push account value */
165         if (user) {
166                 account_user_time(tsk, cputime_to_nsecs(user));
167                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
168         }
169
170         if (guest) {
171                 account_guest_time(tsk, cputime_to_nsecs(guest));
172                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
173         }
174
175         if (system)
176                 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
177         if (hardirq)
178                 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
179         if (softirq)
180                 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
181
182         return virt_timer_forward(user + guest + system + hardirq + softirq);
183 }
184
185 void vtime_task_switch(struct task_struct *prev)
186 {
187         do_account_vtime(prev);
188         prev->thread.user_timer = S390_lowcore.user_timer;
189         prev->thread.guest_timer = S390_lowcore.guest_timer;
190         prev->thread.system_timer = S390_lowcore.system_timer;
191         prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
192         prev->thread.softirq_timer = S390_lowcore.softirq_timer;
193         S390_lowcore.user_timer = current->thread.user_timer;
194         S390_lowcore.guest_timer = current->thread.guest_timer;
195         S390_lowcore.system_timer = current->thread.system_timer;
196         S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
197         S390_lowcore.softirq_timer = current->thread.softirq_timer;
198 }
199
200 /*
201  * In s390, accounting pending user time also implies
202  * accounting system time in order to correctly compute
203  * the stolen time accounting.
204  */
205 void vtime_flush(struct task_struct *tsk)
206 {
207         u64 steal, avg_steal;
208
209         if (do_account_vtime(tsk))
210                 virt_timer_expire();
211
212         steal = S390_lowcore.steal_timer;
213         avg_steal = S390_lowcore.avg_steal_timer;
214         if ((s64) steal > 0) {
215                 S390_lowcore.steal_timer = 0;
216                 account_steal_time(cputime_to_nsecs(steal));
217                 avg_steal += steal;
218         }
219         S390_lowcore.avg_steal_timer = avg_steal / 2;
220 }
221
222 static u64 vtime_delta(void)
223 {
224         u64 timer = S390_lowcore.last_update_timer;
225
226         S390_lowcore.last_update_timer = get_vtimer();
227
228         return timer - S390_lowcore.last_update_timer;
229 }
230
231 /*
232  * Update process times based on virtual cpu times stored by entry.S
233  * to the lowcore fields user_timer, system_timer & steal_clock.
234  */
235 void vtime_account_kernel(struct task_struct *tsk)
236 {
237         u64 delta = vtime_delta();
238
239         if (tsk->flags & PF_VCPU)
240                 S390_lowcore.guest_timer += delta;
241         else
242                 S390_lowcore.system_timer += delta;
243
244         virt_timer_forward(delta);
245 }
246 EXPORT_SYMBOL_GPL(vtime_account_kernel);
247
248 void vtime_account_softirq(struct task_struct *tsk)
249 {
250         u64 delta = vtime_delta();
251
252         S390_lowcore.softirq_timer += delta;
253
254         virt_timer_forward(delta);
255 }
256
257 void vtime_account_hardirq(struct task_struct *tsk)
258 {
259         u64 delta = vtime_delta();
260
261         S390_lowcore.hardirq_timer += delta;
262
263         virt_timer_forward(delta);
264 }
265
266 /*
267  * Sorted add to a list. List is linear searched until first bigger
268  * element is found.
269  */
270 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
271 {
272         struct vtimer_list *tmp;
273
274         list_for_each_entry(tmp, head, entry) {
275                 if (tmp->expires > timer->expires) {
276                         list_add_tail(&timer->entry, &tmp->entry);
277                         return;
278                 }
279         }
280         list_add_tail(&timer->entry, head);
281 }
282
283 /*
284  * Handler for expired virtual CPU timer.
285  */
286 static void virt_timer_expire(void)
287 {
288         struct vtimer_list *timer, *tmp;
289         unsigned long elapsed;
290         LIST_HEAD(cb_list);
291
292         /* walk timer list, fire all expired timers */
293         spin_lock(&virt_timer_lock);
294         elapsed = atomic64_read(&virt_timer_elapsed);
295         list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
296                 if (timer->expires < elapsed)
297                         /* move expired timer to the callback queue */
298                         list_move_tail(&timer->entry, &cb_list);
299                 else
300                         timer->expires -= elapsed;
301         }
302         if (!list_empty(&virt_timer_list)) {
303                 timer = list_first_entry(&virt_timer_list,
304                                          struct vtimer_list, entry);
305                 atomic64_set(&virt_timer_current, timer->expires);
306         }
307         atomic64_sub(elapsed, &virt_timer_elapsed);
308         spin_unlock(&virt_timer_lock);
309
310         /* Do callbacks and recharge periodic timers */
311         list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
312                 list_del_init(&timer->entry);
313                 timer->function(timer->data);
314                 if (timer->interval) {
315                         /* Recharge interval timer */
316                         timer->expires = timer->interval +
317                                 atomic64_read(&virt_timer_elapsed);
318                         spin_lock(&virt_timer_lock);
319                         list_add_sorted(timer, &virt_timer_list);
320                         spin_unlock(&virt_timer_lock);
321                 }
322         }
323 }
324
325 void init_virt_timer(struct vtimer_list *timer)
326 {
327         timer->function = NULL;
328         INIT_LIST_HEAD(&timer->entry);
329 }
330 EXPORT_SYMBOL(init_virt_timer);
331
332 static inline int vtimer_pending(struct vtimer_list *timer)
333 {
334         return !list_empty(&timer->entry);
335 }
336
337 static void internal_add_vtimer(struct vtimer_list *timer)
338 {
339         if (list_empty(&virt_timer_list)) {
340                 /* First timer, just program it. */
341                 atomic64_set(&virt_timer_current, timer->expires);
342                 atomic64_set(&virt_timer_elapsed, 0);
343                 list_add(&timer->entry, &virt_timer_list);
344         } else {
345                 /* Update timer against current base. */
346                 timer->expires += atomic64_read(&virt_timer_elapsed);
347                 if (likely((s64) timer->expires <
348                            (s64) atomic64_read(&virt_timer_current)))
349                         /* The new timer expires before the current timer. */
350                         atomic64_set(&virt_timer_current, timer->expires);
351                 /* Insert new timer into the list. */
352                 list_add_sorted(timer, &virt_timer_list);
353         }
354 }
355
356 static void __add_vtimer(struct vtimer_list *timer, int periodic)
357 {
358         unsigned long flags;
359
360         timer->interval = periodic ? timer->expires : 0;
361         spin_lock_irqsave(&virt_timer_lock, flags);
362         internal_add_vtimer(timer);
363         spin_unlock_irqrestore(&virt_timer_lock, flags);
364 }
365
366 /*
367  * add_virt_timer - add a oneshot virtual CPU timer
368  */
369 void add_virt_timer(struct vtimer_list *timer)
370 {
371         __add_vtimer(timer, 0);
372 }
373 EXPORT_SYMBOL(add_virt_timer);
374
375 /*
376  * add_virt_timer_int - add an interval virtual CPU timer
377  */
378 void add_virt_timer_periodic(struct vtimer_list *timer)
379 {
380         __add_vtimer(timer, 1);
381 }
382 EXPORT_SYMBOL(add_virt_timer_periodic);
383
384 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
385 {
386         unsigned long flags;
387         int rc;
388
389         BUG_ON(!timer->function);
390
391         if (timer->expires == expires && vtimer_pending(timer))
392                 return 1;
393         spin_lock_irqsave(&virt_timer_lock, flags);
394         rc = vtimer_pending(timer);
395         if (rc)
396                 list_del_init(&timer->entry);
397         timer->interval = periodic ? expires : 0;
398         timer->expires = expires;
399         internal_add_vtimer(timer);
400         spin_unlock_irqrestore(&virt_timer_lock, flags);
401         return rc;
402 }
403
404 /*
405  * returns whether it has modified a pending timer (1) or not (0)
406  */
407 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
408 {
409         return __mod_vtimer(timer, expires, 0);
410 }
411 EXPORT_SYMBOL(mod_virt_timer);
412
413 /*
414  * returns whether it has modified a pending timer (1) or not (0)
415  */
416 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
417 {
418         return __mod_vtimer(timer, expires, 1);
419 }
420 EXPORT_SYMBOL(mod_virt_timer_periodic);
421
422 /*
423  * Delete a virtual timer.
424  *
425  * returns whether the deleted timer was pending (1) or not (0)
426  */
427 int del_virt_timer(struct vtimer_list *timer)
428 {
429         unsigned long flags;
430
431         if (!vtimer_pending(timer))
432                 return 0;
433         spin_lock_irqsave(&virt_timer_lock, flags);
434         list_del_init(&timer->entry);
435         spin_unlock_irqrestore(&virt_timer_lock, flags);
436         return 1;
437 }
438 EXPORT_SYMBOL(del_virt_timer);
439
440 /*
441  * Start the virtual CPU timer on the current CPU.
442  */
443 void vtime_init(void)
444 {
445         /* set initial cpu timer */
446         set_vtimer(VTIMER_MAX_SLICE);
447         /* Setup initial MT scaling values */
448         if (smp_cpu_mtid) {
449                 __this_cpu_write(mt_scaling_jiffies, jiffies);
450                 __this_cpu_write(mt_scaling_mult, 1);
451                 __this_cpu_write(mt_scaling_div, 1);
452                 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
453         }
454 }