Mention branches and keyring.
[releases.git] / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/abs_lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include <asm/maccess.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99
100 static int __init early_nosmt(char *s)
101 {
102         smp_max_threads = 1;
103         return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
107 static int __init early_smt(char *s)
108 {
109         get_option(&s, &smp_max_threads);
110         return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125         int cc;
126
127         while (1) {
128                 cc = __pcpu_sigp(addr, order, parm, NULL);
129                 if (cc != SIGP_CC_BUSY)
130                         return cc;
131                 cpu_relax();
132         }
133 }
134
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137         int cc, retry;
138
139         for (retry = 0; ; retry++) {
140                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141                 if (cc != SIGP_CC_BUSY)
142                         break;
143                 if (retry >= 3)
144                         udelay(10);
145         }
146         return cc;
147 }
148
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151         u32 status;
152
153         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154                         0, &status) != SIGP_CC_STATUS_STORED)
155                 return 0;
156         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162                         0, NULL) != SIGP_CC_STATUS_STORED)
163                 return 1;
164         /* Status stored condition code is equivalent to cpu not running. */
165         return 0;
166 }
167
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173         int cpu;
174
175         for_each_cpu(cpu, mask)
176                 if (pcpu_devices[cpu].address == address)
177                         return pcpu_devices + cpu;
178         return NULL;
179 }
180
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183         int order;
184
185         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186                 return;
187         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188         pcpu->ec_clk = get_tod_clock_fast();
189         pcpu_sigp_retry(pcpu, order, 0);
190 }
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, nodat_stack, mcck_stack;
195         struct lowcore *lc;
196
197         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199         async_stack = stack_alloc();
200         mcck_stack = stack_alloc();
201         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202                 goto out;
203         memcpy(lc, &S390_lowcore, 512);
204         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205         lc->async_stack = async_stack + STACK_INIT_OFFSET;
206         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208         lc->cpu_nr = cpu;
209         lc->spinlock_lockval = arch_spin_lockval(cpu);
210         lc->spinlock_index = 0;
211         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213         lc->preempt_count = PREEMPT_DISABLED;
214         if (nmi_alloc_mcesa(&lc->mcesad))
215                 goto out;
216         if (abs_lowcore_map(cpu, lc, true))
217                 goto out_mcesa;
218         lowcore_ptr[cpu] = lc;
219         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
220         return 0;
221
222 out_mcesa:
223         nmi_free_mcesa(&lc->mcesad);
224 out:
225         stack_free(mcck_stack);
226         stack_free(async_stack);
227         free_pages(nodat_stack, THREAD_SIZE_ORDER);
228         free_pages((unsigned long) lc, LC_ORDER);
229         return -ENOMEM;
230 }
231
232 static void pcpu_free_lowcore(struct pcpu *pcpu)
233 {
234         unsigned long async_stack, nodat_stack, mcck_stack;
235         struct lowcore *lc;
236         int cpu;
237
238         cpu = pcpu - pcpu_devices;
239         lc = lowcore_ptr[cpu];
240         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
241         async_stack = lc->async_stack - STACK_INIT_OFFSET;
242         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
243         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
244         lowcore_ptr[cpu] = NULL;
245         abs_lowcore_unmap(cpu);
246         nmi_free_mcesa(&lc->mcesad);
247         stack_free(async_stack);
248         stack_free(mcck_stack);
249         free_pages(nodat_stack, THREAD_SIZE_ORDER);
250         free_pages((unsigned long) lc, LC_ORDER);
251 }
252
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254 {
255         struct lowcore *lc = lowcore_ptr[cpu];
256
257         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
258         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
259         lc->cpu_nr = cpu;
260         lc->restart_flags = RESTART_FLAG_CTLREGS;
261         lc->spinlock_lockval = arch_spin_lockval(cpu);
262         lc->spinlock_index = 0;
263         lc->percpu_offset = __per_cpu_offset[cpu];
264         lc->kernel_asce = S390_lowcore.kernel_asce;
265         lc->user_asce = s390_invalid_asce;
266         lc->machine_flags = S390_lowcore.machine_flags;
267         lc->user_timer = lc->system_timer =
268                 lc->steal_timer = lc->avg_steal_timer = 0;
269         __ctl_store(lc->cregs_save_area, 0, 15);
270         lc->cregs_save_area[1] = lc->kernel_asce;
271         lc->cregs_save_area[7] = lc->user_asce;
272         save_access_regs((unsigned int *) lc->access_regs_save_area);
273         arch_spin_lock_setup(cpu);
274 }
275
276 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
277 {
278         struct lowcore *lc;
279         int cpu;
280
281         cpu = pcpu - pcpu_devices;
282         lc = lowcore_ptr[cpu];
283         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
284                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
285         lc->current_task = (unsigned long) tsk;
286         lc->lpp = LPP_MAGIC;
287         lc->current_pid = tsk->pid;
288         lc->user_timer = tsk->thread.user_timer;
289         lc->guest_timer = tsk->thread.guest_timer;
290         lc->system_timer = tsk->thread.system_timer;
291         lc->hardirq_timer = tsk->thread.hardirq_timer;
292         lc->softirq_timer = tsk->thread.softirq_timer;
293         lc->steal_timer = 0;
294 }
295
296 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
297 {
298         struct lowcore *lc;
299         int cpu;
300
301         cpu = pcpu - pcpu_devices;
302         lc = lowcore_ptr[cpu];
303         lc->restart_stack = lc->kernel_stack;
304         lc->restart_fn = (unsigned long) func;
305         lc->restart_data = (unsigned long) data;
306         lc->restart_source = -1U;
307         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
308 }
309
310 typedef void (pcpu_delegate_fn)(void *);
311
312 /*
313  * Call function via PSW restart on pcpu and stop the current cpu.
314  */
315 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
316 {
317         func(data);     /* should not return */
318 }
319
320 static void pcpu_delegate(struct pcpu *pcpu,
321                           pcpu_delegate_fn *func,
322                           void *data, unsigned long stack)
323 {
324         struct lowcore *lc, *abs_lc;
325         unsigned int source_cpu;
326         unsigned long flags;
327
328         lc = lowcore_ptr[pcpu - pcpu_devices];
329         source_cpu = stap();
330         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
331         if (pcpu->address == source_cpu) {
332                 call_on_stack(2, stack, void, __pcpu_delegate,
333                               pcpu_delegate_fn *, func, void *, data);
334         }
335         /* Stop target cpu (if func returns this stops the current cpu). */
336         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
337         /* Restart func on the target cpu and stop the current cpu. */
338         if (lc) {
339                 lc->restart_stack = stack;
340                 lc->restart_fn = (unsigned long)func;
341                 lc->restart_data = (unsigned long)data;
342                 lc->restart_source = source_cpu;
343         } else {
344                 abs_lc = get_abs_lowcore(&flags);
345                 abs_lc->restart_stack = stack;
346                 abs_lc->restart_fn = (unsigned long)func;
347                 abs_lc->restart_data = (unsigned long)data;
348                 abs_lc->restart_source = source_cpu;
349                 put_abs_lowcore(abs_lc, flags);
350         }
351         __bpon();
352         asm volatile(
353                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
354                 "       brc     2,0b    # busy, try again\n"
355                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
356                 "       brc     2,1b    # busy, try again\n"
357                 : : "d" (pcpu->address), "d" (source_cpu),
358                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
359                 : "0", "1", "cc");
360         for (;;) ;
361 }
362
363 /*
364  * Enable additional logical cpus for multi-threading.
365  */
366 static int pcpu_set_smt(unsigned int mtid)
367 {
368         int cc;
369
370         if (smp_cpu_mtid == mtid)
371                 return 0;
372         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
373         if (cc == 0) {
374                 smp_cpu_mtid = mtid;
375                 smp_cpu_mt_shift = 0;
376                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
377                         smp_cpu_mt_shift++;
378                 pcpu_devices[0].address = stap();
379         }
380         return cc;
381 }
382
383 /*
384  * Call function on an online CPU.
385  */
386 void smp_call_online_cpu(void (*func)(void *), void *data)
387 {
388         struct pcpu *pcpu;
389
390         /* Use the current cpu if it is online. */
391         pcpu = pcpu_find_address(cpu_online_mask, stap());
392         if (!pcpu)
393                 /* Use the first online cpu. */
394                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
395         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
396 }
397
398 /*
399  * Call function on the ipl CPU.
400  */
401 void smp_call_ipl_cpu(void (*func)(void *), void *data)
402 {
403         struct lowcore *lc = lowcore_ptr[0];
404
405         if (pcpu_devices[0].address == stap())
406                 lc = &S390_lowcore;
407
408         pcpu_delegate(&pcpu_devices[0], func, data,
409                       lc->nodat_stack);
410 }
411
412 int smp_find_processor_id(u16 address)
413 {
414         int cpu;
415
416         for_each_present_cpu(cpu)
417                 if (pcpu_devices[cpu].address == address)
418                         return cpu;
419         return -1;
420 }
421
422 void schedule_mcck_handler(void)
423 {
424         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
425 }
426
427 bool notrace arch_vcpu_is_preempted(int cpu)
428 {
429         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
430                 return false;
431         if (pcpu_running(pcpu_devices + cpu))
432                 return false;
433         return true;
434 }
435 EXPORT_SYMBOL(arch_vcpu_is_preempted);
436
437 void notrace smp_yield_cpu(int cpu)
438 {
439         if (!MACHINE_HAS_DIAG9C)
440                 return;
441         diag_stat_inc_norecursion(DIAG_STAT_X09C);
442         asm volatile("diag %0,0,0x9c"
443                      : : "d" (pcpu_devices[cpu].address));
444 }
445 EXPORT_SYMBOL_GPL(smp_yield_cpu);
446
447 /*
448  * Send cpus emergency shutdown signal. This gives the cpus the
449  * opportunity to complete outstanding interrupts.
450  */
451 void notrace smp_emergency_stop(void)
452 {
453         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
454         static cpumask_t cpumask;
455         u64 end;
456         int cpu;
457
458         arch_spin_lock(&lock);
459         cpumask_copy(&cpumask, cpu_online_mask);
460         cpumask_clear_cpu(smp_processor_id(), &cpumask);
461
462         end = get_tod_clock() + (1000000UL << 12);
463         for_each_cpu(cpu, &cpumask) {
464                 struct pcpu *pcpu = pcpu_devices + cpu;
465                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
466                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
467                                    0, NULL) == SIGP_CC_BUSY &&
468                        get_tod_clock() < end)
469                         cpu_relax();
470         }
471         while (get_tod_clock() < end) {
472                 for_each_cpu(cpu, &cpumask)
473                         if (pcpu_stopped(pcpu_devices + cpu))
474                                 cpumask_clear_cpu(cpu, &cpumask);
475                 if (cpumask_empty(&cpumask))
476                         break;
477                 cpu_relax();
478         }
479         arch_spin_unlock(&lock);
480 }
481 NOKPROBE_SYMBOL(smp_emergency_stop);
482
483 /*
484  * Stop all cpus but the current one.
485  */
486 void smp_send_stop(void)
487 {
488         int cpu;
489
490         /* Disable all interrupts/machine checks */
491         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
492         trace_hardirqs_off();
493
494         debug_set_critical();
495
496         if (oops_in_progress)
497                 smp_emergency_stop();
498
499         /* stop all processors */
500         for_each_online_cpu(cpu) {
501                 if (cpu == smp_processor_id())
502                         continue;
503                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
504                 while (!pcpu_stopped(pcpu_devices + cpu))
505                         cpu_relax();
506         }
507 }
508
509 /*
510  * This is the main routine where commands issued by other
511  * cpus are handled.
512  */
513 static void smp_handle_ext_call(void)
514 {
515         unsigned long bits;
516
517         /* handle bit signal external calls */
518         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
519         if (test_bit(ec_stop_cpu, &bits))
520                 smp_stop_cpu();
521         if (test_bit(ec_schedule, &bits))
522                 scheduler_ipi();
523         if (test_bit(ec_call_function_single, &bits))
524                 generic_smp_call_function_single_interrupt();
525         if (test_bit(ec_mcck_pending, &bits))
526                 __s390_handle_mcck();
527         if (test_bit(ec_irq_work, &bits))
528                 irq_work_run();
529 }
530
531 static void do_ext_call_interrupt(struct ext_code ext_code,
532                                   unsigned int param32, unsigned long param64)
533 {
534         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
535         smp_handle_ext_call();
536 }
537
538 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
539 {
540         int cpu;
541
542         for_each_cpu(cpu, mask)
543                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
544 }
545
546 void arch_send_call_function_single_ipi(int cpu)
547 {
548         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
549 }
550
551 /*
552  * this function sends a 'reschedule' IPI to another CPU.
553  * it goes straight through and wastes no time serializing
554  * anything. Worst case is that we lose a reschedule ...
555  */
556 void smp_send_reschedule(int cpu)
557 {
558         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
559 }
560
561 #ifdef CONFIG_IRQ_WORK
562 void arch_irq_work_raise(void)
563 {
564         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
565 }
566 #endif
567
568 /*
569  * parameter area for the set/clear control bit callbacks
570  */
571 struct ec_creg_mask_parms {
572         unsigned long orval;
573         unsigned long andval;
574         int cr;
575 };
576
577 /*
578  * callback for setting/clearing control bits
579  */
580 static void smp_ctl_bit_callback(void *info)
581 {
582         struct ec_creg_mask_parms *pp = info;
583         unsigned long cregs[16];
584
585         __ctl_store(cregs, 0, 15);
586         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
587         __ctl_load(cregs, 0, 15);
588 }
589
590 static DEFINE_SPINLOCK(ctl_lock);
591
592 void smp_ctl_set_clear_bit(int cr, int bit, bool set)
593 {
594         struct ec_creg_mask_parms parms = { .cr = cr, };
595         struct lowcore *abs_lc;
596         unsigned long flags;
597         u64 ctlreg;
598
599         if (set) {
600                 parms.orval = 1UL << bit;
601                 parms.andval = -1UL;
602         } else {
603                 parms.orval = 0;
604                 parms.andval = ~(1UL << bit);
605         }
606         spin_lock(&ctl_lock);
607         abs_lc = get_abs_lowcore(&flags);
608         ctlreg = abs_lc->cregs_save_area[cr];
609         ctlreg = (ctlreg & parms.andval) | parms.orval;
610         abs_lc->cregs_save_area[cr] = ctlreg;
611         put_abs_lowcore(abs_lc, flags);
612         spin_unlock(&ctl_lock);
613         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
614 }
615 EXPORT_SYMBOL(smp_ctl_set_clear_bit);
616
617 #ifdef CONFIG_CRASH_DUMP
618
619 int smp_store_status(int cpu)
620 {
621         struct lowcore *lc;
622         struct pcpu *pcpu;
623         unsigned long pa;
624
625         pcpu = pcpu_devices + cpu;
626         lc = lowcore_ptr[cpu];
627         pa = __pa(&lc->floating_pt_save_area);
628         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
629                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
630                 return -EIO;
631         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
632                 return 0;
633         pa = lc->mcesad & MCESA_ORIGIN_MASK;
634         if (MACHINE_HAS_GS)
635                 pa |= lc->mcesad & MCESA_LC_MASK;
636         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
637                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
638                 return -EIO;
639         return 0;
640 }
641
642 /*
643  * Collect CPU state of the previous, crashed system.
644  * There are four cases:
645  * 1) standard zfcp/nvme dump
646  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
647  *    The state for all CPUs except the boot CPU needs to be collected
648  *    with sigp stop-and-store-status. The boot CPU state is located in
649  *    the absolute lowcore of the memory stored in the HSA. The zcore code
650  *    will copy the boot CPU state from the HSA.
651  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
652  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
653  *    The state for all CPUs except the boot CPU needs to be collected
654  *    with sigp stop-and-store-status. The firmware or the boot-loader
655  *    stored the registers of the boot CPU in the absolute lowcore in the
656  *    memory of the old system.
657  * 3) kdump and the old kernel did not store the CPU state,
658  *    or stand-alone kdump for DASD
659  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
660  *    The state for all CPUs except the boot CPU needs to be collected
661  *    with sigp stop-and-store-status. The kexec code or the boot-loader
662  *    stored the registers of the boot CPU in the memory of the old system.
663  * 4) kdump and the old kernel stored the CPU state
664  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
665  *    This case does not exist for s390 anymore, setup_arch explicitly
666  *    deactivates the elfcorehdr= kernel parameter
667  */
668 static bool dump_available(void)
669 {
670         return oldmem_data.start || is_ipl_type_dump();
671 }
672
673 void __init smp_save_dump_ipl_cpu(void)
674 {
675         struct save_area *sa;
676         void *regs;
677
678         if (!dump_available())
679                 return;
680         sa = save_area_alloc(true);
681         regs = memblock_alloc(512, 8);
682         if (!sa || !regs)
683                 panic("could not allocate memory for boot CPU save area\n");
684         copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
685         save_area_add_regs(sa, regs);
686         memblock_free(regs, 512);
687         if (MACHINE_HAS_VX)
688                 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
689 }
690
691 void __init smp_save_dump_secondary_cpus(void)
692 {
693         int addr, boot_cpu_addr, max_cpu_addr;
694         struct save_area *sa;
695         void *page;
696
697         if (!dump_available())
698                 return;
699         /* Allocate a page as dumping area for the store status sigps */
700         page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
701         if (!page)
702                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
703                       PAGE_SIZE, 1UL << 31);
704
705         /* Set multi-threading state to the previous system. */
706         pcpu_set_smt(sclp.mtid_prev);
707         boot_cpu_addr = stap();
708         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
709         for (addr = 0; addr <= max_cpu_addr; addr++) {
710                 if (addr == boot_cpu_addr)
711                         continue;
712                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
713                     SIGP_CC_NOT_OPERATIONAL)
714                         continue;
715                 sa = save_area_alloc(false);
716                 if (!sa)
717                         panic("could not allocate memory for save area\n");
718                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
719                 save_area_add_regs(sa, page);
720                 if (MACHINE_HAS_VX) {
721                         __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
722                         save_area_add_vxrs(sa, page);
723                 }
724         }
725         memblock_free(page, PAGE_SIZE);
726         diag_amode31_ops.diag308_reset();
727         pcpu_set_smt(0);
728 }
729 #endif /* CONFIG_CRASH_DUMP */
730
731 void smp_cpu_set_polarization(int cpu, int val)
732 {
733         pcpu_devices[cpu].polarization = val;
734 }
735
736 int smp_cpu_get_polarization(int cpu)
737 {
738         return pcpu_devices[cpu].polarization;
739 }
740
741 int smp_cpu_get_cpu_address(int cpu)
742 {
743         return pcpu_devices[cpu].address;
744 }
745
746 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
747 {
748         static int use_sigp_detection;
749         int address;
750
751         if (use_sigp_detection || sclp_get_core_info(info, early)) {
752                 use_sigp_detection = 1;
753                 for (address = 0;
754                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
755                      address += (1U << smp_cpu_mt_shift)) {
756                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
757                             SIGP_CC_NOT_OPERATIONAL)
758                                 continue;
759                         info->core[info->configured].core_id =
760                                 address >> smp_cpu_mt_shift;
761                         info->configured++;
762                 }
763                 info->combined = info->configured;
764         }
765 }
766
767 static int smp_add_present_cpu(int cpu);
768
769 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
770                         bool configured, bool early)
771 {
772         struct pcpu *pcpu;
773         int cpu, nr, i;
774         u16 address;
775
776         nr = 0;
777         if (sclp.has_core_type && core->type != boot_core_type)
778                 return nr;
779         cpu = cpumask_first(avail);
780         address = core->core_id << smp_cpu_mt_shift;
781         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
782                 if (pcpu_find_address(cpu_present_mask, address + i))
783                         continue;
784                 pcpu = pcpu_devices + cpu;
785                 pcpu->address = address + i;
786                 if (configured)
787                         pcpu->state = CPU_STATE_CONFIGURED;
788                 else
789                         pcpu->state = CPU_STATE_STANDBY;
790                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
791                 set_cpu_present(cpu, true);
792                 if (!early && smp_add_present_cpu(cpu) != 0)
793                         set_cpu_present(cpu, false);
794                 else
795                         nr++;
796                 cpumask_clear_cpu(cpu, avail);
797                 cpu = cpumask_next(cpu, avail);
798         }
799         return nr;
800 }
801
802 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
803 {
804         struct sclp_core_entry *core;
805         static cpumask_t avail;
806         bool configured;
807         u16 core_id;
808         int nr, i;
809
810         cpus_read_lock();
811         mutex_lock(&smp_cpu_state_mutex);
812         nr = 0;
813         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
814         /*
815          * Add IPL core first (which got logical CPU number 0) to make sure
816          * that all SMT threads get subsequent logical CPU numbers.
817          */
818         if (early) {
819                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
820                 for (i = 0; i < info->configured; i++) {
821                         core = &info->core[i];
822                         if (core->core_id == core_id) {
823                                 nr += smp_add_core(core, &avail, true, early);
824                                 break;
825                         }
826                 }
827         }
828         for (i = 0; i < info->combined; i++) {
829                 configured = i < info->configured;
830                 nr += smp_add_core(&info->core[i], &avail, configured, early);
831         }
832         mutex_unlock(&smp_cpu_state_mutex);
833         cpus_read_unlock();
834         return nr;
835 }
836
837 void __init smp_detect_cpus(void)
838 {
839         unsigned int cpu, mtid, c_cpus, s_cpus;
840         struct sclp_core_info *info;
841         u16 address;
842
843         /* Get CPU information */
844         info = memblock_alloc(sizeof(*info), 8);
845         if (!info)
846                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
847                       __func__, sizeof(*info), 8);
848         smp_get_core_info(info, 1);
849         /* Find boot CPU type */
850         if (sclp.has_core_type) {
851                 address = stap();
852                 for (cpu = 0; cpu < info->combined; cpu++)
853                         if (info->core[cpu].core_id == address) {
854                                 /* The boot cpu dictates the cpu type. */
855                                 boot_core_type = info->core[cpu].type;
856                                 break;
857                         }
858                 if (cpu >= info->combined)
859                         panic("Could not find boot CPU type");
860         }
861
862         /* Set multi-threading state for the current system */
863         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
864         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
865         pcpu_set_smt(mtid);
866
867         /* Print number of CPUs */
868         c_cpus = s_cpus = 0;
869         for (cpu = 0; cpu < info->combined; cpu++) {
870                 if (sclp.has_core_type &&
871                     info->core[cpu].type != boot_core_type)
872                         continue;
873                 if (cpu < info->configured)
874                         c_cpus += smp_cpu_mtid + 1;
875                 else
876                         s_cpus += smp_cpu_mtid + 1;
877         }
878         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
879
880         /* Add CPUs present at boot */
881         __smp_rescan_cpus(info, true);
882         memblock_free(info, sizeof(*info));
883 }
884
885 /*
886  *      Activate a secondary processor.
887  */
888 static void smp_start_secondary(void *cpuvoid)
889 {
890         int cpu = raw_smp_processor_id();
891
892         S390_lowcore.last_update_clock = get_tod_clock();
893         S390_lowcore.restart_stack = (unsigned long)restart_stack;
894         S390_lowcore.restart_fn = (unsigned long)do_restart;
895         S390_lowcore.restart_data = 0;
896         S390_lowcore.restart_source = -1U;
897         S390_lowcore.restart_flags = 0;
898         restore_access_regs(S390_lowcore.access_regs_save_area);
899         cpu_init();
900         rcu_cpu_starting(cpu);
901         init_cpu_timer();
902         vtime_init();
903         vdso_getcpu_init();
904         pfault_init();
905         cpumask_set_cpu(cpu, &cpu_setup_mask);
906         update_cpu_masks();
907         notify_cpu_starting(cpu);
908         if (topology_cpu_dedicated(cpu))
909                 set_cpu_flag(CIF_DEDICATED_CPU);
910         else
911                 clear_cpu_flag(CIF_DEDICATED_CPU);
912         set_cpu_online(cpu, true);
913         inc_irq_stat(CPU_RST);
914         local_irq_enable();
915         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
916 }
917
918 /* Upping and downing of CPUs */
919 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
920 {
921         struct pcpu *pcpu = pcpu_devices + cpu;
922         int rc;
923
924         if (pcpu->state != CPU_STATE_CONFIGURED)
925                 return -EIO;
926         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
927             SIGP_CC_ORDER_CODE_ACCEPTED)
928                 return -EIO;
929
930         rc = pcpu_alloc_lowcore(pcpu, cpu);
931         if (rc)
932                 return rc;
933         pcpu_prepare_secondary(pcpu, cpu);
934         pcpu_attach_task(pcpu, tidle);
935         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
936         /* Wait until cpu puts itself in the online & active maps */
937         while (!cpu_online(cpu))
938                 cpu_relax();
939         return 0;
940 }
941
942 static unsigned int setup_possible_cpus __initdata;
943
944 static int __init _setup_possible_cpus(char *s)
945 {
946         get_option(&s, &setup_possible_cpus);
947         return 0;
948 }
949 early_param("possible_cpus", _setup_possible_cpus);
950
951 int __cpu_disable(void)
952 {
953         unsigned long cregs[16];
954         int cpu;
955
956         /* Handle possible pending IPIs */
957         smp_handle_ext_call();
958         cpu = smp_processor_id();
959         set_cpu_online(cpu, false);
960         cpumask_clear_cpu(cpu, &cpu_setup_mask);
961         update_cpu_masks();
962         /* Disable pseudo page faults on this cpu. */
963         pfault_fini();
964         /* Disable interrupt sources via control register. */
965         __ctl_store(cregs, 0, 15);
966         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
967         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
968         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
969         __ctl_load(cregs, 0, 15);
970         clear_cpu_flag(CIF_NOHZ_DELAY);
971         return 0;
972 }
973
974 void __cpu_die(unsigned int cpu)
975 {
976         struct pcpu *pcpu;
977
978         /* Wait until target cpu is down */
979         pcpu = pcpu_devices + cpu;
980         while (!pcpu_stopped(pcpu))
981                 cpu_relax();
982         pcpu_free_lowcore(pcpu);
983         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
984         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
985 }
986
987 void __noreturn cpu_die(void)
988 {
989         idle_task_exit();
990         __bpon();
991         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
992         for (;;) ;
993 }
994
995 void __init smp_fill_possible_mask(void)
996 {
997         unsigned int possible, sclp_max, cpu;
998
999         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1000         sclp_max = min(smp_max_threads, sclp_max);
1001         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1002         possible = setup_possible_cpus ?: nr_cpu_ids;
1003         possible = min(possible, sclp_max);
1004         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1005                 set_cpu_possible(cpu, true);
1006 }
1007
1008 void __init smp_prepare_cpus(unsigned int max_cpus)
1009 {
1010         /* request the 0x1201 emergency signal external interrupt */
1011         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1012                 panic("Couldn't request external interrupt 0x1201");
1013         /* request the 0x1202 external call external interrupt */
1014         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1015                 panic("Couldn't request external interrupt 0x1202");
1016 }
1017
1018 void __init smp_prepare_boot_cpu(void)
1019 {
1020         struct pcpu *pcpu = pcpu_devices;
1021
1022         WARN_ON(!cpu_present(0) || !cpu_online(0));
1023         pcpu->state = CPU_STATE_CONFIGURED;
1024         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1025         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1026 }
1027
1028 void __init smp_setup_processor_id(void)
1029 {
1030         pcpu_devices[0].address = stap();
1031         S390_lowcore.cpu_nr = 0;
1032         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1033         S390_lowcore.spinlock_index = 0;
1034 }
1035
1036 /*
1037  * the frequency of the profiling timer can be changed
1038  * by writing a multiplier value into /proc/profile.
1039  *
1040  * usually you want to run this on all CPUs ;)
1041  */
1042 int setup_profiling_timer(unsigned int multiplier)
1043 {
1044         return 0;
1045 }
1046
1047 static ssize_t cpu_configure_show(struct device *dev,
1048                                   struct device_attribute *attr, char *buf)
1049 {
1050         ssize_t count;
1051
1052         mutex_lock(&smp_cpu_state_mutex);
1053         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1054         mutex_unlock(&smp_cpu_state_mutex);
1055         return count;
1056 }
1057
1058 static ssize_t cpu_configure_store(struct device *dev,
1059                                    struct device_attribute *attr,
1060                                    const char *buf, size_t count)
1061 {
1062         struct pcpu *pcpu;
1063         int cpu, val, rc, i;
1064         char delim;
1065
1066         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1067                 return -EINVAL;
1068         if (val != 0 && val != 1)
1069                 return -EINVAL;
1070         cpus_read_lock();
1071         mutex_lock(&smp_cpu_state_mutex);
1072         rc = -EBUSY;
1073         /* disallow configuration changes of online cpus and cpu 0 */
1074         cpu = dev->id;
1075         cpu = smp_get_base_cpu(cpu);
1076         if (cpu == 0)
1077                 goto out;
1078         for (i = 0; i <= smp_cpu_mtid; i++)
1079                 if (cpu_online(cpu + i))
1080                         goto out;
1081         pcpu = pcpu_devices + cpu;
1082         rc = 0;
1083         switch (val) {
1084         case 0:
1085                 if (pcpu->state != CPU_STATE_CONFIGURED)
1086                         break;
1087                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1088                 if (rc)
1089                         break;
1090                 for (i = 0; i <= smp_cpu_mtid; i++) {
1091                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1092                                 continue;
1093                         pcpu[i].state = CPU_STATE_STANDBY;
1094                         smp_cpu_set_polarization(cpu + i,
1095                                                  POLARIZATION_UNKNOWN);
1096                 }
1097                 topology_expect_change();
1098                 break;
1099         case 1:
1100                 if (pcpu->state != CPU_STATE_STANDBY)
1101                         break;
1102                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1103                 if (rc)
1104                         break;
1105                 for (i = 0; i <= smp_cpu_mtid; i++) {
1106                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1107                                 continue;
1108                         pcpu[i].state = CPU_STATE_CONFIGURED;
1109                         smp_cpu_set_polarization(cpu + i,
1110                                                  POLARIZATION_UNKNOWN);
1111                 }
1112                 topology_expect_change();
1113                 break;
1114         default:
1115                 break;
1116         }
1117 out:
1118         mutex_unlock(&smp_cpu_state_mutex);
1119         cpus_read_unlock();
1120         return rc ? rc : count;
1121 }
1122 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1123
1124 static ssize_t show_cpu_address(struct device *dev,
1125                                 struct device_attribute *attr, char *buf)
1126 {
1127         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1128 }
1129 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1130
1131 static struct attribute *cpu_common_attrs[] = {
1132         &dev_attr_configure.attr,
1133         &dev_attr_address.attr,
1134         NULL,
1135 };
1136
1137 static struct attribute_group cpu_common_attr_group = {
1138         .attrs = cpu_common_attrs,
1139 };
1140
1141 static struct attribute *cpu_online_attrs[] = {
1142         &dev_attr_idle_count.attr,
1143         &dev_attr_idle_time_us.attr,
1144         NULL,
1145 };
1146
1147 static struct attribute_group cpu_online_attr_group = {
1148         .attrs = cpu_online_attrs,
1149 };
1150
1151 static int smp_cpu_online(unsigned int cpu)
1152 {
1153         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1154
1155         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1156 }
1157
1158 static int smp_cpu_pre_down(unsigned int cpu)
1159 {
1160         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1161
1162         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1163         return 0;
1164 }
1165
1166 static int smp_add_present_cpu(int cpu)
1167 {
1168         struct device *s;
1169         struct cpu *c;
1170         int rc;
1171
1172         c = kzalloc(sizeof(*c), GFP_KERNEL);
1173         if (!c)
1174                 return -ENOMEM;
1175         per_cpu(cpu_device, cpu) = c;
1176         s = &c->dev;
1177         c->hotpluggable = 1;
1178         rc = register_cpu(c, cpu);
1179         if (rc)
1180                 goto out;
1181         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1182         if (rc)
1183                 goto out_cpu;
1184         rc = topology_cpu_init(c);
1185         if (rc)
1186                 goto out_topology;
1187         return 0;
1188
1189 out_topology:
1190         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1191 out_cpu:
1192         unregister_cpu(c);
1193 out:
1194         return rc;
1195 }
1196
1197 int __ref smp_rescan_cpus(void)
1198 {
1199         struct sclp_core_info *info;
1200         int nr;
1201
1202         info = kzalloc(sizeof(*info), GFP_KERNEL);
1203         if (!info)
1204                 return -ENOMEM;
1205         smp_get_core_info(info, 0);
1206         nr = __smp_rescan_cpus(info, false);
1207         kfree(info);
1208         if (nr)
1209                 topology_schedule_update();
1210         return 0;
1211 }
1212
1213 static ssize_t __ref rescan_store(struct device *dev,
1214                                   struct device_attribute *attr,
1215                                   const char *buf,
1216                                   size_t count)
1217 {
1218         int rc;
1219
1220         rc = lock_device_hotplug_sysfs();
1221         if (rc)
1222                 return rc;
1223         rc = smp_rescan_cpus();
1224         unlock_device_hotplug();
1225         return rc ? rc : count;
1226 }
1227 static DEVICE_ATTR_WO(rescan);
1228
1229 static int __init s390_smp_init(void)
1230 {
1231         int cpu, rc = 0;
1232
1233         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1234         if (rc)
1235                 return rc;
1236         for_each_present_cpu(cpu) {
1237                 rc = smp_add_present_cpu(cpu);
1238                 if (rc)
1239                         goto out;
1240         }
1241
1242         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1243                                smp_cpu_online, smp_cpu_pre_down);
1244         rc = rc <= 0 ? rc : 0;
1245 out:
1246         return rc;
1247 }
1248 subsys_initcall(s390_smp_init);
1249
1250 static __always_inline void set_new_lowcore(struct lowcore *lc)
1251 {
1252         union register_pair dst, src;
1253         u32 pfx;
1254
1255         src.even = (unsigned long) &S390_lowcore;
1256         src.odd  = sizeof(S390_lowcore);
1257         dst.even = (unsigned long) lc;
1258         dst.odd  = sizeof(*lc);
1259         pfx = __pa(lc);
1260
1261         asm volatile(
1262                 "       mvcl    %[dst],%[src]\n"
1263                 "       spx     %[pfx]\n"
1264                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1265                 : [pfx] "Q" (pfx)
1266                 : "memory", "cc");
1267 }
1268
1269 int __init smp_reinit_ipl_cpu(void)
1270 {
1271         unsigned long async_stack, nodat_stack, mcck_stack;
1272         struct lowcore *lc, *lc_ipl;
1273         unsigned long flags, cr0;
1274         u64 mcesad;
1275
1276         lc_ipl = lowcore_ptr[0];
1277         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1278         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1279         async_stack = stack_alloc();
1280         mcck_stack = stack_alloc();
1281         if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1282                 panic("Couldn't allocate memory");
1283
1284         local_irq_save(flags);
1285         local_mcck_disable();
1286         set_new_lowcore(lc);
1287         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1288         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1289         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1290         __ctl_store(cr0, 0, 0);
1291         __ctl_clear_bit(0, 28); /* disable lowcore protection */
1292         S390_lowcore.mcesad = mcesad;
1293         __ctl_load(cr0, 0, 0);
1294         if (abs_lowcore_map(0, lc, false))
1295                 panic("Couldn't remap absolute lowcore");
1296         lowcore_ptr[0] = lc;
1297         local_mcck_enable();
1298         local_irq_restore(flags);
1299
1300         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1301         memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1302         memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1303
1304         return 0;
1305 }