1 // SPDX-License-Identifier: Apache-2.0 OR MIT
3 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
5 use core::alloc::LayoutError;
8 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
9 use core::ptr::{self, NonNull, Unique};
12 #[cfg(not(no_global_oom_handling))]
13 use crate::alloc::handle_alloc_error;
14 use crate::alloc::{Allocator, Global, Layout};
15 use crate::boxed::Box;
16 use crate::collections::TryReserveError;
17 use crate::collections::TryReserveErrorKind::*;
23 /// The contents of the new memory are uninitialized.
25 /// The new memory is guaranteed to be zeroed.
30 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
31 /// a buffer of memory on the heap without having to worry about all the corner cases
32 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
35 /// * Produces `Unique::dangling()` on zero-sized types.
36 /// * Produces `Unique::dangling()` on zero-length allocations.
37 /// * Avoids freeing `Unique::dangling()`.
38 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
39 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
40 /// * Guards against overflowing your length.
41 /// * Calls `handle_alloc_error` for fallible allocations.
42 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
43 /// * Uses the excess returned from the allocator to use the largest available capacity.
45 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
46 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
47 /// to handle the actual things *stored* inside of a `RawVec`.
49 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
50 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
51 /// `Box<[T]>`, since `capacity()` won't yield the length.
52 #[allow(missing_debug_implementations)]
53 pub(crate) struct RawVec<T, A: Allocator = Global> {
59 impl<T> RawVec<T, Global> {
60 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
61 /// they cannot call `Self::new()`.
63 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
64 /// that would truly const-call something unstable.
65 pub const NEW: Self = Self::new();
67 /// Creates the biggest possible `RawVec` (on the system heap)
68 /// without allocating. If `T` has positive size, then this makes a
69 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
70 /// `RawVec` with capacity `usize::MAX`. Useful for implementing
71 /// delayed allocation.
73 pub const fn new() -> Self {
77 /// Creates a `RawVec` (on the system heap) with exactly the
78 /// capacity and alignment requirements for a `[T; capacity]`. This is
79 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
80 /// zero-sized. Note that if `T` is zero-sized this means you will
81 /// *not* get a `RawVec` with the requested capacity.
85 /// Panics if the requested capacity exceeds `isize::MAX` bytes.
90 #[cfg(not(any(no_global_oom_handling, test)))]
93 pub fn with_capacity(capacity: usize) -> Self {
94 Self::with_capacity_in(capacity, Global)
97 /// Like `with_capacity`, but guarantees the buffer is zeroed.
98 #[cfg(not(any(no_global_oom_handling, test)))]
101 pub fn with_capacity_zeroed(capacity: usize) -> Self {
102 Self::with_capacity_zeroed_in(capacity, Global)
106 impl<T, A: Allocator> RawVec<T, A> {
107 // Tiny Vecs are dumb. Skip to:
108 // - 8 if the element size is 1, because any heap allocators is likely
109 // to round up a request of less than 8 bytes to at least 8 bytes.
110 // - 4 if elements are moderate-sized (<= 1 KiB).
111 // - 1 otherwise, to avoid wasting too much space for very short Vecs.
112 pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
114 } else if mem::size_of::<T>() <= 1024 {
120 /// Like `new`, but parameterized over the choice of allocator for
121 /// the returned `RawVec`.
122 pub const fn new_in(alloc: A) -> Self {
123 // `cap: 0` means "unallocated". zero-sized types are ignored.
124 Self { ptr: Unique::dangling(), cap: 0, alloc }
127 /// Like `with_capacity`, but parameterized over the choice of
128 /// allocator for the returned `RawVec`.
129 #[cfg(not(no_global_oom_handling))]
131 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
132 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
135 /// Like `try_with_capacity`, but parameterized over the choice of
136 /// allocator for the returned `RawVec`.
138 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
139 Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc)
142 /// Like `with_capacity_zeroed`, but parameterized over the choice
143 /// of allocator for the returned `RawVec`.
144 #[cfg(not(no_global_oom_handling))]
146 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
147 Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
150 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
152 /// Note that this will correctly reconstitute any `cap` changes
153 /// that may have been performed. (See description of type for details.)
157 /// * `len` must be greater than or equal to the most recently requested capacity, and
158 /// * `len` must be less than or equal to `self.capacity()`.
160 /// Note, that the requested capacity and `self.capacity()` could differ, as
161 /// an allocator could overallocate and return a greater memory block than requested.
162 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
163 // Sanity-check one half of the safety requirement (we cannot check the other half).
165 len <= self.capacity(),
166 "`len` must be smaller than or equal to `self.capacity()`"
169 let me = ManuallyDrop::new(self);
171 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
172 Box::from_raw_in(slice, ptr::read(&me.alloc))
176 #[cfg(not(no_global_oom_handling))]
177 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
178 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
179 if T::IS_ZST || capacity == 0 {
182 // We avoid `unwrap_or_else` here because it bloats the amount of
183 // LLVM IR generated.
184 let layout = match Layout::array::<T>(capacity) {
185 Ok(layout) => layout,
186 Err(_) => capacity_overflow(),
188 match alloc_guard(layout.size()) {
190 Err(_) => capacity_overflow(),
192 let result = match init {
193 AllocInit::Uninitialized => alloc.allocate(layout),
194 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
196 let ptr = match result {
198 Err(_) => handle_alloc_error(layout),
201 // Allocators currently return a `NonNull<[u8]>` whose length
202 // matches the size requested. If that ever changes, the capacity
203 // here should change to `ptr.len() / mem::size_of::<T>()`.
205 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
212 fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> {
213 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
214 if T::IS_ZST || capacity == 0 {
215 return Ok(Self::new_in(alloc));
218 let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?;
219 alloc_guard(layout.size())?;
220 let result = match init {
221 AllocInit::Uninitialized => alloc.allocate(layout),
222 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
224 let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?;
226 // Allocators currently return a `NonNull<[u8]>` whose length
227 // matches the size requested. If that ever changes, the capacity
228 // here should change to `ptr.len() / mem::size_of::<T>()`.
230 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
236 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
240 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
242 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
243 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
244 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
247 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
248 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
251 /// Gets a raw pointer to the start of the allocation. Note that this is
252 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
255 pub fn ptr(&self) -> *mut T {
259 /// Gets the capacity of the allocation.
261 /// This will always be `usize::MAX` if `T` is zero-sized.
263 pub fn capacity(&self) -> usize {
264 if T::IS_ZST { usize::MAX } else { self.cap }
267 /// Returns a shared reference to the allocator backing this `RawVec`.
268 pub fn allocator(&self) -> &A {
272 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
273 if T::IS_ZST || self.cap == 0 {
276 // We could use Layout::array here which ensures the absence of isize and usize overflows
277 // and could hypothetically handle differences between stride and size, but this memory
278 // has already been allocated so we know it can't overflow and currently rust does not
279 // support such types. So we can do better by skipping some checks and avoid an unwrap.
280 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
282 let align = mem::align_of::<T>();
283 let size = mem::size_of::<T>().unchecked_mul(self.cap);
284 let layout = Layout::from_size_align_unchecked(size, align);
285 Some((self.ptr.cast().into(), layout))
290 /// Ensures that the buffer contains at least enough space to hold `len +
291 /// additional` elements. If it doesn't already have enough capacity, will
292 /// reallocate enough space plus comfortable slack space to get amortized
293 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
296 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
297 /// the requested space. This is not really unsafe, but the unsafe
298 /// code *you* write that relies on the behavior of this function may break.
300 /// This is ideal for implementing a bulk-push operation like `extend`.
304 /// Panics if the new capacity exceeds `isize::MAX` bytes.
309 #[cfg(not(no_global_oom_handling))]
311 pub fn reserve(&mut self, len: usize, additional: usize) {
312 // Callers expect this function to be very cheap when there is already sufficient capacity.
313 // Therefore, we move all the resizing and error-handling logic from grow_amortized and
314 // handle_reserve behind a call, while making sure that this function is likely to be
315 // inlined as just a comparison and a call if the comparison fails.
317 fn do_reserve_and_handle<T, A: Allocator>(
318 slf: &mut RawVec<T, A>,
322 handle_reserve(slf.grow_amortized(len, additional));
325 if self.needs_to_grow(len, additional) {
326 do_reserve_and_handle(self, len, additional);
330 /// A specialized version of `reserve()` used only by the hot and
331 /// oft-instantiated `Vec::push()`, which does its own capacity check.
332 #[cfg(not(no_global_oom_handling))]
334 pub fn reserve_for_push(&mut self, len: usize) {
335 handle_reserve(self.grow_amortized(len, 1));
338 /// The same as `reserve`, but returns on errors instead of panicking or aborting.
339 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
340 if self.needs_to_grow(len, additional) {
341 self.grow_amortized(len, additional)
347 /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting.
349 pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> {
350 self.grow_amortized(len, 1)
353 /// Ensures that the buffer contains at least enough space to hold `len +
354 /// additional` elements. If it doesn't already, will reallocate the
355 /// minimum possible amount of memory necessary. Generally this will be
356 /// exactly the amount of memory necessary, but in principle the allocator
357 /// is free to give back more than we asked for.
359 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
360 /// the requested space. This is not really unsafe, but the unsafe code
361 /// *you* write that relies on the behavior of this function may break.
365 /// Panics if the new capacity exceeds `isize::MAX` bytes.
370 #[cfg(not(no_global_oom_handling))]
371 pub fn reserve_exact(&mut self, len: usize, additional: usize) {
372 handle_reserve(self.try_reserve_exact(len, additional));
375 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
376 pub fn try_reserve_exact(
380 ) -> Result<(), TryReserveError> {
381 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
384 /// Shrinks the buffer down to the specified capacity. If the given amount
385 /// is 0, actually completely deallocates.
389 /// Panics if the given amount is *larger* than the current capacity.
394 #[cfg(not(no_global_oom_handling))]
395 pub fn shrink_to_fit(&mut self, cap: usize) {
396 handle_reserve(self.shrink(cap));
400 impl<T, A: Allocator> RawVec<T, A> {
401 /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
402 /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
403 fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
404 additional > self.capacity().wrapping_sub(len)
407 fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
408 // Allocators currently return a `NonNull<[u8]>` whose length matches
409 // the size requested. If that ever changes, the capacity here should
410 // change to `ptr.len() / mem::size_of::<T>()`.
411 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
415 // This method is usually instantiated many times. So we want it to be as
416 // small as possible, to improve compile times. But we also want as much of
417 // its contents to be statically computable as possible, to make the
418 // generated code run faster. Therefore, this method is carefully written
419 // so that all of the code that depends on `T` is within it, while as much
420 // of the code that doesn't depend on `T` as possible is in functions that
421 // are non-generic over `T`.
422 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
423 // This is ensured by the calling contexts.
424 debug_assert!(additional > 0);
427 // Since we return a capacity of `usize::MAX` when `elem_size` is
428 // 0, getting to here necessarily means the `RawVec` is overfull.
429 return Err(CapacityOverflow.into());
432 // Nothing we can really do about these checks, sadly.
433 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
435 // This guarantees exponential growth. The doubling cannot overflow
436 // because `cap <= isize::MAX` and the type of `cap` is `usize`.
437 let cap = cmp::max(self.cap * 2, required_cap);
438 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
440 let new_layout = Layout::array::<T>(cap);
442 // `finish_grow` is non-generic over `T`.
443 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
444 self.set_ptr_and_cap(ptr, cap);
448 // The constraints on this method are much the same as those on
449 // `grow_amortized`, but this method is usually instantiated less often so
450 // it's less critical.
451 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
453 // Since we return a capacity of `usize::MAX` when the type size is
454 // 0, getting to here necessarily means the `RawVec` is overfull.
455 return Err(CapacityOverflow.into());
458 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
459 let new_layout = Layout::array::<T>(cap);
461 // `finish_grow` is non-generic over `T`.
462 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
463 self.set_ptr_and_cap(ptr, cap);
467 #[cfg(not(no_global_oom_handling))]
468 fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
469 assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
471 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
472 // See current_memory() why this assert is here
473 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
475 // If shrinking to 0, deallocate the buffer. We don't reach this point
476 // for the T::IS_ZST case since current_memory() will have returned
479 unsafe { self.alloc.deallocate(ptr, layout) };
480 self.ptr = Unique::dangling();
484 // `Layout::array` cannot overflow here because it would have
485 // overflowed earlier when capacity was larger.
486 let new_size = mem::size_of::<T>().unchecked_mul(cap);
487 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
489 .shrink(ptr, layout, new_layout)
490 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
492 self.set_ptr_and_cap(ptr, cap);
498 // This function is outside `RawVec` to minimize compile times. See the comment
499 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
500 // significant, because the number of different `A` types seen in practice is
501 // much smaller than the number of `T` types.)
504 new_layout: Result<Layout, LayoutError>,
505 current_memory: Option<(NonNull<u8>, Layout)>,
507 ) -> Result<NonNull<[u8]>, TryReserveError>
511 // Check for the error here to minimize the size of `RawVec::grow_*`.
512 let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
514 alloc_guard(new_layout.size())?;
516 let memory = if let Some((ptr, old_layout)) = current_memory {
517 debug_assert_eq!(old_layout.align(), new_layout.align());
519 // The allocator checks for alignment equality
520 intrinsics::assume(old_layout.align() == new_layout.align());
521 alloc.grow(ptr, old_layout, new_layout)
524 alloc.allocate(new_layout)
527 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
530 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
531 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
533 if let Some((ptr, layout)) = self.current_memory() {
534 unsafe { self.alloc.deallocate(ptr, layout) }
539 // Central function for reserve error handling.
540 #[cfg(not(no_global_oom_handling))]
542 fn handle_reserve(result: Result<(), TryReserveError>) {
543 match result.map_err(|e| e.kind()) {
544 Err(CapacityOverflow) => capacity_overflow(),
545 Err(AllocError { layout, .. }) => handle_alloc_error(layout),
546 Ok(()) => { /* yay */ }
550 // We need to guarantee the following:
551 // * We don't ever allocate `> isize::MAX` byte-size objects.
552 // * We don't overflow `usize::MAX` and actually allocate too little.
554 // On 64-bit we just need to check for overflow since trying to allocate
555 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
556 // an extra guard for this in case we're running on a platform which can use
557 // all 4GB in user-space, e.g., PAE or x32.
560 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
561 if usize::BITS < 64 && alloc_size > isize::MAX as usize {
562 Err(CapacityOverflow.into())
568 // One central function responsible for reporting capacity overflows. This'll
569 // ensure that the code generation related to these panics is minimal as there's
570 // only one location which panics rather than a bunch throughout the module.
571 #[cfg(not(no_global_oom_handling))]
572 fn capacity_overflow() -> ! {
573 panic!("capacity overflow");